Abstract

Intensity-dependent effective four-photon absorption (4PA) coefficients in GaP and ZnTe semiconductors were measured by the z-scan method using pump pulses of 1.75 µm wavelength, 135 fs duration, and up to 500 GWcm−2 intensity. A nonlinear pulse propagation model, including linear dispersion and 4PA was used to obtain the 4PA coefficients from measurements. The intensity-dependent effective 4PA coefficients vary from 2.6 × 10−4 to 65 × 10−4 cm5GW−3 in GaP, and from 3.5 × 10−4 to 9.1 × 10−4 cm5GW−3 in ZnTe. The anisotropy in 4PA was shown in GaP. The knowledge of 4PA coefficients is important for the design of semiconductor photonics devices.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High-energy terahertz pulses from semiconductors pumped beyond the three-photon absorption edge

Gy. Polónyi, B. Monoszlai, G. Gäumann, E. J. Rohwer, G. Andriukaitis, T. Balciunas, A. Pugzlys, A. Baltuska, T. Feurer, J. Hebling, and J. A. Fülöp
Opt. Express 24(21) 23872-23882 (2016)

Extremely nondegenerate two-photon absorption in direct-gap semiconductors [Invited]

Claudiu M. Cirloganu, Lazaro A. Padilha, Dmitry A. Fishman, Scott Webster, David J. Hagan, and Eric W. Van Stryland
Opt. Express 19(23) 22951-22960 (2011)

Saturation of the free carrier absorption in ZnTe crystals

S. A. Ku, C. M. Tu, W.-C. Chu, C. W. Luo, K. H. Wu, A. Yabushita, C. C. Chi, and T. Kobayashi
Opt. Express 21(12) 13930-13937 (2013)

References

  • View by:
  • |
  • |
  • |

  1. A. D. Koulouklidis, C. Gollner, V. Shumakova, V. Y. Fedorov, A. Pugžlys, A. Baltuška, and S. Tzortzakis, “Observation of extremely efficient terahertz generation from mid-infrared two-color laser filaments,” Nat. Comm. 11, 292 (2020).
    [Crossref]
  2. D. Jain and O. Bang, “High power mid-infrared fiber based supercontinuum sources: Current status and future perspectives,” in 2018 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), (2018), pp. 1–2.
  3. M. C. Hoffmann, K.-L. Yeh, J. Hebling, and K. A. Nelson, “Efficient terahertz generation by optical rectification at 1035 nm,” Opt. Express 15(18), 11706–11713 (2007).
    [Crossref]
  4. J. A. Fülöp, L. Pálfalvi, G. Almási, and J. Hebling, “Design of high-energy terahertz sources based on optical rectification,” Opt. Express 18(12), 12311–12327 (2010).
    [Crossref]
  5. Z. Ollmann, J. A. Fülöp, J. Hebling, and G. Almási, “Design of a high-energy terahertz pulse source based on ZnTe contact grating,” Opt. Commun. 315, 159–163 (2014).
    [Crossref]
  6. F. Blanchard, B. E. Schmidt, X. Ropagnol, N. Thire, T. Ozaki, R. Morandotti, D. G. Cooke, and F. Legare, “Terahertz pulse generation from bulk GaAs by a tilted-pulse-front excitation at 1.8 μm,” Appl. Phys. Lett. 105(24), 241106 (2014).
    [Crossref]
  7. G. Polónyi, B. Monoszlai, G. Gaumann, E. J. Rohwer, G. Andriukaitis, T. Balciunas, A. Pugzlys, A. Baltuska, T. Feurer, J. Hebling, and J. A. Fülöp, “High-energy terahertz pulses from semiconductors pumped beyond the three-photon absorption edge,” Opt. Express 24(21), 23872–23882 (2016).
    [Crossref]
  8. J. A. Fülöp, G. Polónyi, B. Monoszlai, G. Andriukaitis, T. Balciunas, A. Pugzlys, G. Arthur, A. Baltuska, and J. Hebling, “Highly efficient scalable monolithic semiconductor terahertz pulse source,” Optica 3(10), 1075–1078 (2016).
    [Crossref]
  9. G. Polónyi, M. I. Mechler, J. Hebling, and J. A. Fülöp, “Prospects of semiconductor terahertz pulse sources,” IEEE J. Sel. Top. Quantum Electron. 23(4), 1–8 (2017).
    [Crossref]
  10. M. Hohenleutner, F. Langer, O. Schubert, M. Knorr, U. Huttner, S. W. Koch, M. Kira, and R. Huber, “Real-time observation of interfering crystal electrons in high-harmonic generation,” Nature 523(7562), 572–575 (2015).
    [Crossref]
  11. B. S. Wherrett, “Scaling rules for multiphoton interband absorption in semiconductors,” J. Opt. Soc. Am. B 1(1), 67–72 (1984).
    [Crossref]
  12. V. Nathan, A. H. Guenther, and S. S. Mitra, “Review of multiphoton absorption in crystalline solids,” J. Opt. Soc. Am. B 2(2), 294–316 (1985).
    [Crossref]
  13. S. J. Bepko, “Anisotropy of two-photon absorption in GaAs and CdTe,” Phys. Rev. B 12(2), 669–672 (1975).
    [Crossref]
  14. R. DeSalvo, M. Sheik-Bahae, A. A. Said, D. J. Hagan, and E. W. Van Stryland, “Z-scan measurements of the anisotropy of nonlinear refraction and absorption in crystals,” Opt. Lett. 18(3), 194–196 (1993).
    [Crossref]
  15. M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
    [Crossref]
  16. T. D. Krauss, J. K. Ranka, F. W. Wise, and A. L. Gaeta, “Measurements of the tensor properties of third-order nonlinearities in wide-gap semiconductors,” Opt. Lett. 20(10), 1110–1112 (1995).
    [Crossref]
  17. J. Yumoto and K. Otsuka, “Frustrated optical instability: Self-induced periodic and chaotic spatial distribution of polarization in nonlinear optical media,” Phys. Rev. Lett. 54(16), 1806–1809 (1985).
    [Crossref]
  18. I. B. Zotova and Y. J. Ding, “Spectral measurements of two-photon absorption coefficients for CdSe and GaSe crystals,” Appl. Opt. 40(36), 6654–6658 (2001).
    [Crossref]
  19. W. C. Hurlbut, Y.-S. Lee, K. L. Vodopyanov, P. S. Kuo, and M. M. Fejer, “Multiphoton absorption and nonlinear refraction of GaAs in the mid-infrared,” Opt. Lett. 32(6), 668–670 (2007).
    [Crossref]
  20. C. M. Cirloganu, P. D. Olszak, L. A. Padilha, S. Webster, D. J. Hagan, and E. W. Van Stryland, “Three-photon absorption spectra of zinc blende semiconductors: theory and experiment,” Opt. Lett. 33(22), 2626–2628 (2008).
    [Crossref]
  21. D. Peceli, P. D. Olszak, C. M. Cirloganu, S. Webster, L. A. Padilha, T. Ensley, H. Hu, G. Nootz, D. J. Hagan, and E. W. Van Stryland, “Three-photon absorption of GaAs and other semiconductors,” in Nonlinear Optics (Optical Society of America, 2013), p. NTu1B.6
  22. B.-U. Sohn, M. Kang, J. W. Choi, A. M. Agarwal, K. Richardson, and D. T. H. Tan, “Observation of very high order multi-photon absorption in GeSbS chalcogenide glass,” APL Photonics 4(3), 036102 (2019).
    [Crossref]
  23. P. S. Nugraha, G. Krizsán, G. Polónyi, M. I. Mechler, J. Hebling, G. Tóth, and J. A. Fülöp, “Efficient semiconductor multicycle terahertz pulse source,” J. Phys. B: At., Mol. Opt. Phys. 51(9), 094007 (2018).
    [Crossref]
  24. F. Blanchard, L. Razzari, H. C. Bandulet, G. Sharma, R. Morandotti, J. C. Kieffer, T. Ozaki, M. Reid, H. F. Tiedje, H. K. Haugen, and F. A. Hegmann, “Generation of 1.5 μJ single-cycle terahertz pulses by optical rectification from a large aperture ZnTe crystal,” Opt. Express 15(20), 13212–13220 (2007).
    [Crossref]
  25. K. L. Vodopyanov, “Terahertz-wave generation with periodically inverted gallium arsenide,” Laser Phys. 19(2), 305–321 (2009).
    [Crossref]
  26. K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y. S. Lee, W. C. Hurlbut, V. G. Kozlov, D. Bliss, and C. Lynch, “Terahertz-wave generation in quasi-phase-matched GaAs,” Appl. Phys. Lett. 89(14), 141119 (2006).
    [Crossref]
  27. P. Y. Yu and M. Cardona, Fundamentals of semiconductors: physics and materials properties (Springer, 2010).
  28. F. Liu, Y. F. Li, Q. R. Xing, L. Chai, M. L. Hu, C. L. Wang, Y. Q. Deng, Q. Sun, and C. Y. Wang, “Three-photon absorption and kerr nonlinearity in undoped bulk GaP excited by a femtosecond laser at 1040 nm,” J. Opt. 12(9), 095201 (2010).
    [Crossref]
  29. Y. Li, F. Liu, Y. Li, L. Chai, Q. Xing, M. Hu, and C. Wang, “Experimental study on GaP surface damage threshold induced by a high repetition rate femtosecond laser,” Appl. Opt. 50(13), 1958–1962 (2011).
    [Crossref]
  30. Y. Yin, J. Li, X. Ren, Y. Wang, A. Chew, and Z. Chang, “High-energy two-cycle pulses at 3.2 μm by a broadband-pumped dual-chirped optical parametric amplification,” Opt. Express 24(22), 24989–24998 (2016).
    [Crossref]
  31. M. Yin, H. Li, S. Tang, and W. Ji, “Determination of nonlinear absorption and refraction by single Z-scan method,” Appl. Phys. B 70(4), 587–591 (2000).
    [Crossref]
  32. M. Schultze, K. Ramasesha, C. D. Pemmaraju, S. A. Sato, D. Whitmore, A. Gandman, J. S. Prell, L. J. Borja, D. Prendergast, K. Yabana, D. M. Neumark, and S. R. Leone, “Attosecond band-gap dynamics in silicon,” Science 346(6215), 1348–1352 (2014).
    [Crossref]
  33. A. A. Said, M. Sheik-Bahae, D. J. Hagan, T. H. Wei, J. Wang, J. Young, and E. W. Van Stryland, “Determination of bound-electronic and free-carrier nonlinearities in ZnSe, GaAs, CdTe, and ZnTe,” J. Opt. Soc. Am. B 9(3), 405–414 (1992).
    [Crossref]
  34. J. Hebling, M. C. Hoffmann, H. Y. Hwang, K.-L. Yeh, and K. A. Nelson, “Observation of nonequilibrium carrier distribution in Ge, Si, and GaAs by terahertz pump–terahertz probe measurements,” Phys. Rev. B 81(3), 035201 (2010).
    [Crossref]
  35. S. A. Ku, C. M. Tu, W.-C. Chu, C. W. Luo, K. H. Wu, A. Yabushita, C. C. Chi, and T. Kobayashi, “Saturation of the free carrier absorption in ZnTe crystals,” Opt. Express 21(12), 13930 (2013).
    [Crossref]
  36. R. L. Sutherland, D. G. McLean, and S. Kirkpatrick, Handbook of nonlinear optics, 2nd ed. (Marcel Dekker, 2003).
  37. V. I. Zavelishko, V. A. Martynov, S. M. Saltiel, and V. G. Tunkin, “Optical nonlinear fourth- and fifth-order susceptibilities,” Quantum Electron. 5(11), 1392–1393 (1975).
    [Crossref]
  38. S. V. Popov, Y. P. Svirko, and N. I. Zheludev, Susceptibility Tensors for Nonlinear Optics (IOP Publishing Ltd., 1995).
  39. W.-Q. He, C.-M. Gu, and W.-Z. Shen, “Direct evidence of kerr-like nonlinearity by femtosecond z-scan technique,” Opt. Express 14(12), 5476 (2006).
    [Crossref]

2020 (1)

A. D. Koulouklidis, C. Gollner, V. Shumakova, V. Y. Fedorov, A. Pugžlys, A. Baltuška, and S. Tzortzakis, “Observation of extremely efficient terahertz generation from mid-infrared two-color laser filaments,” Nat. Comm. 11, 292 (2020).
[Crossref]

2019 (1)

B.-U. Sohn, M. Kang, J. W. Choi, A. M. Agarwal, K. Richardson, and D. T. H. Tan, “Observation of very high order multi-photon absorption in GeSbS chalcogenide glass,” APL Photonics 4(3), 036102 (2019).
[Crossref]

2018 (1)

P. S. Nugraha, G. Krizsán, G. Polónyi, M. I. Mechler, J. Hebling, G. Tóth, and J. A. Fülöp, “Efficient semiconductor multicycle terahertz pulse source,” J. Phys. B: At., Mol. Opt. Phys. 51(9), 094007 (2018).
[Crossref]

2017 (1)

G. Polónyi, M. I. Mechler, J. Hebling, and J. A. Fülöp, “Prospects of semiconductor terahertz pulse sources,” IEEE J. Sel. Top. Quantum Electron. 23(4), 1–8 (2017).
[Crossref]

2016 (3)

2015 (1)

M. Hohenleutner, F. Langer, O. Schubert, M. Knorr, U. Huttner, S. W. Koch, M. Kira, and R. Huber, “Real-time observation of interfering crystal electrons in high-harmonic generation,” Nature 523(7562), 572–575 (2015).
[Crossref]

2014 (3)

Z. Ollmann, J. A. Fülöp, J. Hebling, and G. Almási, “Design of a high-energy terahertz pulse source based on ZnTe contact grating,” Opt. Commun. 315, 159–163 (2014).
[Crossref]

F. Blanchard, B. E. Schmidt, X. Ropagnol, N. Thire, T. Ozaki, R. Morandotti, D. G. Cooke, and F. Legare, “Terahertz pulse generation from bulk GaAs by a tilted-pulse-front excitation at 1.8 μm,” Appl. Phys. Lett. 105(24), 241106 (2014).
[Crossref]

M. Schultze, K. Ramasesha, C. D. Pemmaraju, S. A. Sato, D. Whitmore, A. Gandman, J. S. Prell, L. J. Borja, D. Prendergast, K. Yabana, D. M. Neumark, and S. R. Leone, “Attosecond band-gap dynamics in silicon,” Science 346(6215), 1348–1352 (2014).
[Crossref]

2013 (1)

2011 (1)

2010 (3)

F. Liu, Y. F. Li, Q. R. Xing, L. Chai, M. L. Hu, C. L. Wang, Y. Q. Deng, Q. Sun, and C. Y. Wang, “Three-photon absorption and kerr nonlinearity in undoped bulk GaP excited by a femtosecond laser at 1040 nm,” J. Opt. 12(9), 095201 (2010).
[Crossref]

J. Hebling, M. C. Hoffmann, H. Y. Hwang, K.-L. Yeh, and K. A. Nelson, “Observation of nonequilibrium carrier distribution in Ge, Si, and GaAs by terahertz pump–terahertz probe measurements,” Phys. Rev. B 81(3), 035201 (2010).
[Crossref]

J. A. Fülöp, L. Pálfalvi, G. Almási, and J. Hebling, “Design of high-energy terahertz sources based on optical rectification,” Opt. Express 18(12), 12311–12327 (2010).
[Crossref]

2009 (1)

K. L. Vodopyanov, “Terahertz-wave generation with periodically inverted gallium arsenide,” Laser Phys. 19(2), 305–321 (2009).
[Crossref]

2008 (1)

2007 (3)

2006 (2)

K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y. S. Lee, W. C. Hurlbut, V. G. Kozlov, D. Bliss, and C. Lynch, “Terahertz-wave generation in quasi-phase-matched GaAs,” Appl. Phys. Lett. 89(14), 141119 (2006).
[Crossref]

W.-Q. He, C.-M. Gu, and W.-Z. Shen, “Direct evidence of kerr-like nonlinearity by femtosecond z-scan technique,” Opt. Express 14(12), 5476 (2006).
[Crossref]

2001 (1)

2000 (1)

M. Yin, H. Li, S. Tang, and W. Ji, “Determination of nonlinear absorption and refraction by single Z-scan method,” Appl. Phys. B 70(4), 587–591 (2000).
[Crossref]

1995 (1)

1993 (1)

1992 (1)

1990 (1)

M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

1985 (2)

V. Nathan, A. H. Guenther, and S. S. Mitra, “Review of multiphoton absorption in crystalline solids,” J. Opt. Soc. Am. B 2(2), 294–316 (1985).
[Crossref]

J. Yumoto and K. Otsuka, “Frustrated optical instability: Self-induced periodic and chaotic spatial distribution of polarization in nonlinear optical media,” Phys. Rev. Lett. 54(16), 1806–1809 (1985).
[Crossref]

1984 (1)

1975 (2)

S. J. Bepko, “Anisotropy of two-photon absorption in GaAs and CdTe,” Phys. Rev. B 12(2), 669–672 (1975).
[Crossref]

V. I. Zavelishko, V. A. Martynov, S. M. Saltiel, and V. G. Tunkin, “Optical nonlinear fourth- and fifth-order susceptibilities,” Quantum Electron. 5(11), 1392–1393 (1975).
[Crossref]

Agarwal, A. M.

B.-U. Sohn, M. Kang, J. W. Choi, A. M. Agarwal, K. Richardson, and D. T. H. Tan, “Observation of very high order multi-photon absorption in GeSbS chalcogenide glass,” APL Photonics 4(3), 036102 (2019).
[Crossref]

Almási, G.

Z. Ollmann, J. A. Fülöp, J. Hebling, and G. Almási, “Design of a high-energy terahertz pulse source based on ZnTe contact grating,” Opt. Commun. 315, 159–163 (2014).
[Crossref]

J. A. Fülöp, L. Pálfalvi, G. Almási, and J. Hebling, “Design of high-energy terahertz sources based on optical rectification,” Opt. Express 18(12), 12311–12327 (2010).
[Crossref]

Andriukaitis, G.

Arthur, G.

Balciunas, T.

Baltuska, A.

Baltuška, A.

A. D. Koulouklidis, C. Gollner, V. Shumakova, V. Y. Fedorov, A. Pugžlys, A. Baltuška, and S. Tzortzakis, “Observation of extremely efficient terahertz generation from mid-infrared two-color laser filaments,” Nat. Comm. 11, 292 (2020).
[Crossref]

Bandulet, H. C.

Bang, O.

D. Jain and O. Bang, “High power mid-infrared fiber based supercontinuum sources: Current status and future perspectives,” in 2018 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), (2018), pp. 1–2.

Bepko, S. J.

S. J. Bepko, “Anisotropy of two-photon absorption in GaAs and CdTe,” Phys. Rev. B 12(2), 669–672 (1975).
[Crossref]

Blanchard, F.

F. Blanchard, B. E. Schmidt, X. Ropagnol, N. Thire, T. Ozaki, R. Morandotti, D. G. Cooke, and F. Legare, “Terahertz pulse generation from bulk GaAs by a tilted-pulse-front excitation at 1.8 μm,” Appl. Phys. Lett. 105(24), 241106 (2014).
[Crossref]

F. Blanchard, L. Razzari, H. C. Bandulet, G. Sharma, R. Morandotti, J. C. Kieffer, T. Ozaki, M. Reid, H. F. Tiedje, H. K. Haugen, and F. A. Hegmann, “Generation of 1.5 μJ single-cycle terahertz pulses by optical rectification from a large aperture ZnTe crystal,” Opt. Express 15(20), 13212–13220 (2007).
[Crossref]

Bliss, D.

K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y. S. Lee, W. C. Hurlbut, V. G. Kozlov, D. Bliss, and C. Lynch, “Terahertz-wave generation in quasi-phase-matched GaAs,” Appl. Phys. Lett. 89(14), 141119 (2006).
[Crossref]

Borja, L. J.

M. Schultze, K. Ramasesha, C. D. Pemmaraju, S. A. Sato, D. Whitmore, A. Gandman, J. S. Prell, L. J. Borja, D. Prendergast, K. Yabana, D. M. Neumark, and S. R. Leone, “Attosecond band-gap dynamics in silicon,” Science 346(6215), 1348–1352 (2014).
[Crossref]

Cardona, M.

P. Y. Yu and M. Cardona, Fundamentals of semiconductors: physics and materials properties (Springer, 2010).

Chai, L.

Y. Li, F. Liu, Y. Li, L. Chai, Q. Xing, M. Hu, and C. Wang, “Experimental study on GaP surface damage threshold induced by a high repetition rate femtosecond laser,” Appl. Opt. 50(13), 1958–1962 (2011).
[Crossref]

F. Liu, Y. F. Li, Q. R. Xing, L. Chai, M. L. Hu, C. L. Wang, Y. Q. Deng, Q. Sun, and C. Y. Wang, “Three-photon absorption and kerr nonlinearity in undoped bulk GaP excited by a femtosecond laser at 1040 nm,” J. Opt. 12(9), 095201 (2010).
[Crossref]

Chang, Z.

Chew, A.

Chi, C. C.

Choi, J. W.

B.-U. Sohn, M. Kang, J. W. Choi, A. M. Agarwal, K. Richardson, and D. T. H. Tan, “Observation of very high order multi-photon absorption in GeSbS chalcogenide glass,” APL Photonics 4(3), 036102 (2019).
[Crossref]

Chu, W.-C.

Cirloganu, C. M.

C. M. Cirloganu, P. D. Olszak, L. A. Padilha, S. Webster, D. J. Hagan, and E. W. Van Stryland, “Three-photon absorption spectra of zinc blende semiconductors: theory and experiment,” Opt. Lett. 33(22), 2626–2628 (2008).
[Crossref]

D. Peceli, P. D. Olszak, C. M. Cirloganu, S. Webster, L. A. Padilha, T. Ensley, H. Hu, G. Nootz, D. J. Hagan, and E. W. Van Stryland, “Three-photon absorption of GaAs and other semiconductors,” in Nonlinear Optics (Optical Society of America, 2013), p. NTu1B.6

Cooke, D. G.

F. Blanchard, B. E. Schmidt, X. Ropagnol, N. Thire, T. Ozaki, R. Morandotti, D. G. Cooke, and F. Legare, “Terahertz pulse generation from bulk GaAs by a tilted-pulse-front excitation at 1.8 μm,” Appl. Phys. Lett. 105(24), 241106 (2014).
[Crossref]

Deng, Y. Q.

F. Liu, Y. F. Li, Q. R. Xing, L. Chai, M. L. Hu, C. L. Wang, Y. Q. Deng, Q. Sun, and C. Y. Wang, “Three-photon absorption and kerr nonlinearity in undoped bulk GaP excited by a femtosecond laser at 1040 nm,” J. Opt. 12(9), 095201 (2010).
[Crossref]

DeSalvo, R.

Ding, Y. J.

Ensley, T.

D. Peceli, P. D. Olszak, C. M. Cirloganu, S. Webster, L. A. Padilha, T. Ensley, H. Hu, G. Nootz, D. J. Hagan, and E. W. Van Stryland, “Three-photon absorption of GaAs and other semiconductors,” in Nonlinear Optics (Optical Society of America, 2013), p. NTu1B.6

Fedorov, V. Y.

A. D. Koulouklidis, C. Gollner, V. Shumakova, V. Y. Fedorov, A. Pugžlys, A. Baltuška, and S. Tzortzakis, “Observation of extremely efficient terahertz generation from mid-infrared two-color laser filaments,” Nat. Comm. 11, 292 (2020).
[Crossref]

Fejer, M. M.

W. C. Hurlbut, Y.-S. Lee, K. L. Vodopyanov, P. S. Kuo, and M. M. Fejer, “Multiphoton absorption and nonlinear refraction of GaAs in the mid-infrared,” Opt. Lett. 32(6), 668–670 (2007).
[Crossref]

K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y. S. Lee, W. C. Hurlbut, V. G. Kozlov, D. Bliss, and C. Lynch, “Terahertz-wave generation in quasi-phase-matched GaAs,” Appl. Phys. Lett. 89(14), 141119 (2006).
[Crossref]

Feurer, T.

Fülöp, J. A.

P. S. Nugraha, G. Krizsán, G. Polónyi, M. I. Mechler, J. Hebling, G. Tóth, and J. A. Fülöp, “Efficient semiconductor multicycle terahertz pulse source,” J. Phys. B: At., Mol. Opt. Phys. 51(9), 094007 (2018).
[Crossref]

G. Polónyi, M. I. Mechler, J. Hebling, and J. A. Fülöp, “Prospects of semiconductor terahertz pulse sources,” IEEE J. Sel. Top. Quantum Electron. 23(4), 1–8 (2017).
[Crossref]

G. Polónyi, B. Monoszlai, G. Gaumann, E. J. Rohwer, G. Andriukaitis, T. Balciunas, A. Pugzlys, A. Baltuska, T. Feurer, J. Hebling, and J. A. Fülöp, “High-energy terahertz pulses from semiconductors pumped beyond the three-photon absorption edge,” Opt. Express 24(21), 23872–23882 (2016).
[Crossref]

J. A. Fülöp, G. Polónyi, B. Monoszlai, G. Andriukaitis, T. Balciunas, A. Pugzlys, G. Arthur, A. Baltuska, and J. Hebling, “Highly efficient scalable monolithic semiconductor terahertz pulse source,” Optica 3(10), 1075–1078 (2016).
[Crossref]

Z. Ollmann, J. A. Fülöp, J. Hebling, and G. Almási, “Design of a high-energy terahertz pulse source based on ZnTe contact grating,” Opt. Commun. 315, 159–163 (2014).
[Crossref]

J. A. Fülöp, L. Pálfalvi, G. Almási, and J. Hebling, “Design of high-energy terahertz sources based on optical rectification,” Opt. Express 18(12), 12311–12327 (2010).
[Crossref]

Gaeta, A. L.

Gandman, A.

M. Schultze, K. Ramasesha, C. D. Pemmaraju, S. A. Sato, D. Whitmore, A. Gandman, J. S. Prell, L. J. Borja, D. Prendergast, K. Yabana, D. M. Neumark, and S. R. Leone, “Attosecond band-gap dynamics in silicon,” Science 346(6215), 1348–1352 (2014).
[Crossref]

Gaumann, G.

Gollner, C.

A. D. Koulouklidis, C. Gollner, V. Shumakova, V. Y. Fedorov, A. Pugžlys, A. Baltuška, and S. Tzortzakis, “Observation of extremely efficient terahertz generation from mid-infrared two-color laser filaments,” Nat. Comm. 11, 292 (2020).
[Crossref]

Gu, C.-M.

Guenther, A. H.

Hagan, D. J.

Harris, J. S.

K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y. S. Lee, W. C. Hurlbut, V. G. Kozlov, D. Bliss, and C. Lynch, “Terahertz-wave generation in quasi-phase-matched GaAs,” Appl. Phys. Lett. 89(14), 141119 (2006).
[Crossref]

Haugen, H. K.

He, W.-Q.

Hebling, J.

P. S. Nugraha, G. Krizsán, G. Polónyi, M. I. Mechler, J. Hebling, G. Tóth, and J. A. Fülöp, “Efficient semiconductor multicycle terahertz pulse source,” J. Phys. B: At., Mol. Opt. Phys. 51(9), 094007 (2018).
[Crossref]

G. Polónyi, M. I. Mechler, J. Hebling, and J. A. Fülöp, “Prospects of semiconductor terahertz pulse sources,” IEEE J. Sel. Top. Quantum Electron. 23(4), 1–8 (2017).
[Crossref]

J. A. Fülöp, G. Polónyi, B. Monoszlai, G. Andriukaitis, T. Balciunas, A. Pugzlys, G. Arthur, A. Baltuska, and J. Hebling, “Highly efficient scalable monolithic semiconductor terahertz pulse source,” Optica 3(10), 1075–1078 (2016).
[Crossref]

G. Polónyi, B. Monoszlai, G. Gaumann, E. J. Rohwer, G. Andriukaitis, T. Balciunas, A. Pugzlys, A. Baltuska, T. Feurer, J. Hebling, and J. A. Fülöp, “High-energy terahertz pulses from semiconductors pumped beyond the three-photon absorption edge,” Opt. Express 24(21), 23872–23882 (2016).
[Crossref]

Z. Ollmann, J. A. Fülöp, J. Hebling, and G. Almási, “Design of a high-energy terahertz pulse source based on ZnTe contact grating,” Opt. Commun. 315, 159–163 (2014).
[Crossref]

J. A. Fülöp, L. Pálfalvi, G. Almási, and J. Hebling, “Design of high-energy terahertz sources based on optical rectification,” Opt. Express 18(12), 12311–12327 (2010).
[Crossref]

J. Hebling, M. C. Hoffmann, H. Y. Hwang, K.-L. Yeh, and K. A. Nelson, “Observation of nonequilibrium carrier distribution in Ge, Si, and GaAs by terahertz pump–terahertz probe measurements,” Phys. Rev. B 81(3), 035201 (2010).
[Crossref]

M. C. Hoffmann, K.-L. Yeh, J. Hebling, and K. A. Nelson, “Efficient terahertz generation by optical rectification at 1035 nm,” Opt. Express 15(18), 11706–11713 (2007).
[Crossref]

Hegmann, F. A.

Hoffmann, M. C.

J. Hebling, M. C. Hoffmann, H. Y. Hwang, K.-L. Yeh, and K. A. Nelson, “Observation of nonequilibrium carrier distribution in Ge, Si, and GaAs by terahertz pump–terahertz probe measurements,” Phys. Rev. B 81(3), 035201 (2010).
[Crossref]

M. C. Hoffmann, K.-L. Yeh, J. Hebling, and K. A. Nelson, “Efficient terahertz generation by optical rectification at 1035 nm,” Opt. Express 15(18), 11706–11713 (2007).
[Crossref]

Hohenleutner, M.

M. Hohenleutner, F. Langer, O. Schubert, M. Knorr, U. Huttner, S. W. Koch, M. Kira, and R. Huber, “Real-time observation of interfering crystal electrons in high-harmonic generation,” Nature 523(7562), 572–575 (2015).
[Crossref]

Hu, H.

D. Peceli, P. D. Olszak, C. M. Cirloganu, S. Webster, L. A. Padilha, T. Ensley, H. Hu, G. Nootz, D. J. Hagan, and E. W. Van Stryland, “Three-photon absorption of GaAs and other semiconductors,” in Nonlinear Optics (Optical Society of America, 2013), p. NTu1B.6

Hu, M.

Hu, M. L.

F. Liu, Y. F. Li, Q. R. Xing, L. Chai, M. L. Hu, C. L. Wang, Y. Q. Deng, Q. Sun, and C. Y. Wang, “Three-photon absorption and kerr nonlinearity in undoped bulk GaP excited by a femtosecond laser at 1040 nm,” J. Opt. 12(9), 095201 (2010).
[Crossref]

Huber, R.

M. Hohenleutner, F. Langer, O. Schubert, M. Knorr, U. Huttner, S. W. Koch, M. Kira, and R. Huber, “Real-time observation of interfering crystal electrons in high-harmonic generation,” Nature 523(7562), 572–575 (2015).
[Crossref]

Hurlbut, W. C.

W. C. Hurlbut, Y.-S. Lee, K. L. Vodopyanov, P. S. Kuo, and M. M. Fejer, “Multiphoton absorption and nonlinear refraction of GaAs in the mid-infrared,” Opt. Lett. 32(6), 668–670 (2007).
[Crossref]

K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y. S. Lee, W. C. Hurlbut, V. G. Kozlov, D. Bliss, and C. Lynch, “Terahertz-wave generation in quasi-phase-matched GaAs,” Appl. Phys. Lett. 89(14), 141119 (2006).
[Crossref]

Huttner, U.

M. Hohenleutner, F. Langer, O. Schubert, M. Knorr, U. Huttner, S. W. Koch, M. Kira, and R. Huber, “Real-time observation of interfering crystal electrons in high-harmonic generation,” Nature 523(7562), 572–575 (2015).
[Crossref]

Hwang, H. Y.

J. Hebling, M. C. Hoffmann, H. Y. Hwang, K.-L. Yeh, and K. A. Nelson, “Observation of nonequilibrium carrier distribution in Ge, Si, and GaAs by terahertz pump–terahertz probe measurements,” Phys. Rev. B 81(3), 035201 (2010).
[Crossref]

Jain, D.

D. Jain and O. Bang, “High power mid-infrared fiber based supercontinuum sources: Current status and future perspectives,” in 2018 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), (2018), pp. 1–2.

Ji, W.

M. Yin, H. Li, S. Tang, and W. Ji, “Determination of nonlinear absorption and refraction by single Z-scan method,” Appl. Phys. B 70(4), 587–591 (2000).
[Crossref]

Kang, M.

B.-U. Sohn, M. Kang, J. W. Choi, A. M. Agarwal, K. Richardson, and D. T. H. Tan, “Observation of very high order multi-photon absorption in GeSbS chalcogenide glass,” APL Photonics 4(3), 036102 (2019).
[Crossref]

Kieffer, J. C.

Kira, M.

M. Hohenleutner, F. Langer, O. Schubert, M. Knorr, U. Huttner, S. W. Koch, M. Kira, and R. Huber, “Real-time observation of interfering crystal electrons in high-harmonic generation,” Nature 523(7562), 572–575 (2015).
[Crossref]

Kirkpatrick, S.

R. L. Sutherland, D. G. McLean, and S. Kirkpatrick, Handbook of nonlinear optics, 2nd ed. (Marcel Dekker, 2003).

Knorr, M.

M. Hohenleutner, F. Langer, O. Schubert, M. Knorr, U. Huttner, S. W. Koch, M. Kira, and R. Huber, “Real-time observation of interfering crystal electrons in high-harmonic generation,” Nature 523(7562), 572–575 (2015).
[Crossref]

Kobayashi, T.

Koch, S. W.

M. Hohenleutner, F. Langer, O. Schubert, M. Knorr, U. Huttner, S. W. Koch, M. Kira, and R. Huber, “Real-time observation of interfering crystal electrons in high-harmonic generation,” Nature 523(7562), 572–575 (2015).
[Crossref]

Koulouklidis, A. D.

A. D. Koulouklidis, C. Gollner, V. Shumakova, V. Y. Fedorov, A. Pugžlys, A. Baltuška, and S. Tzortzakis, “Observation of extremely efficient terahertz generation from mid-infrared two-color laser filaments,” Nat. Comm. 11, 292 (2020).
[Crossref]

Kozlov, V. G.

K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y. S. Lee, W. C. Hurlbut, V. G. Kozlov, D. Bliss, and C. Lynch, “Terahertz-wave generation in quasi-phase-matched GaAs,” Appl. Phys. Lett. 89(14), 141119 (2006).
[Crossref]

Krauss, T. D.

Krizsán, G.

P. S. Nugraha, G. Krizsán, G. Polónyi, M. I. Mechler, J. Hebling, G. Tóth, and J. A. Fülöp, “Efficient semiconductor multicycle terahertz pulse source,” J. Phys. B: At., Mol. Opt. Phys. 51(9), 094007 (2018).
[Crossref]

Ku, S. A.

Kuo, P. S.

Langer, F.

M. Hohenleutner, F. Langer, O. Schubert, M. Knorr, U. Huttner, S. W. Koch, M. Kira, and R. Huber, “Real-time observation of interfering crystal electrons in high-harmonic generation,” Nature 523(7562), 572–575 (2015).
[Crossref]

Lee, Y. S.

K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y. S. Lee, W. C. Hurlbut, V. G. Kozlov, D. Bliss, and C. Lynch, “Terahertz-wave generation in quasi-phase-matched GaAs,” Appl. Phys. Lett. 89(14), 141119 (2006).
[Crossref]

Lee, Y.-S.

Legare, F.

F. Blanchard, B. E. Schmidt, X. Ropagnol, N. Thire, T. Ozaki, R. Morandotti, D. G. Cooke, and F. Legare, “Terahertz pulse generation from bulk GaAs by a tilted-pulse-front excitation at 1.8 μm,” Appl. Phys. Lett. 105(24), 241106 (2014).
[Crossref]

Leone, S. R.

M. Schultze, K. Ramasesha, C. D. Pemmaraju, S. A. Sato, D. Whitmore, A. Gandman, J. S. Prell, L. J. Borja, D. Prendergast, K. Yabana, D. M. Neumark, and S. R. Leone, “Attosecond band-gap dynamics in silicon,” Science 346(6215), 1348–1352 (2014).
[Crossref]

Li, H.

M. Yin, H. Li, S. Tang, and W. Ji, “Determination of nonlinear absorption and refraction by single Z-scan method,” Appl. Phys. B 70(4), 587–591 (2000).
[Crossref]

Li, J.

Li, Y.

Li, Y. F.

F. Liu, Y. F. Li, Q. R. Xing, L. Chai, M. L. Hu, C. L. Wang, Y. Q. Deng, Q. Sun, and C. Y. Wang, “Three-photon absorption and kerr nonlinearity in undoped bulk GaP excited by a femtosecond laser at 1040 nm,” J. Opt. 12(9), 095201 (2010).
[Crossref]

Liu, F.

Y. Li, F. Liu, Y. Li, L. Chai, Q. Xing, M. Hu, and C. Wang, “Experimental study on GaP surface damage threshold induced by a high repetition rate femtosecond laser,” Appl. Opt. 50(13), 1958–1962 (2011).
[Crossref]

F. Liu, Y. F. Li, Q. R. Xing, L. Chai, M. L. Hu, C. L. Wang, Y. Q. Deng, Q. Sun, and C. Y. Wang, “Three-photon absorption and kerr nonlinearity in undoped bulk GaP excited by a femtosecond laser at 1040 nm,” J. Opt. 12(9), 095201 (2010).
[Crossref]

Luo, C. W.

Lynch, C.

K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y. S. Lee, W. C. Hurlbut, V. G. Kozlov, D. Bliss, and C. Lynch, “Terahertz-wave generation in quasi-phase-matched GaAs,” Appl. Phys. Lett. 89(14), 141119 (2006).
[Crossref]

Martynov, V. A.

V. I. Zavelishko, V. A. Martynov, S. M. Saltiel, and V. G. Tunkin, “Optical nonlinear fourth- and fifth-order susceptibilities,” Quantum Electron. 5(11), 1392–1393 (1975).
[Crossref]

McLean, D. G.

R. L. Sutherland, D. G. McLean, and S. Kirkpatrick, Handbook of nonlinear optics, 2nd ed. (Marcel Dekker, 2003).

Mechler, M. I.

P. S. Nugraha, G. Krizsán, G. Polónyi, M. I. Mechler, J. Hebling, G. Tóth, and J. A. Fülöp, “Efficient semiconductor multicycle terahertz pulse source,” J. Phys. B: At., Mol. Opt. Phys. 51(9), 094007 (2018).
[Crossref]

G. Polónyi, M. I. Mechler, J. Hebling, and J. A. Fülöp, “Prospects of semiconductor terahertz pulse sources,” IEEE J. Sel. Top. Quantum Electron. 23(4), 1–8 (2017).
[Crossref]

Mitra, S. S.

Monoszlai, B.

Morandotti, R.

F. Blanchard, B. E. Schmidt, X. Ropagnol, N. Thire, T. Ozaki, R. Morandotti, D. G. Cooke, and F. Legare, “Terahertz pulse generation from bulk GaAs by a tilted-pulse-front excitation at 1.8 μm,” Appl. Phys. Lett. 105(24), 241106 (2014).
[Crossref]

F. Blanchard, L. Razzari, H. C. Bandulet, G. Sharma, R. Morandotti, J. C. Kieffer, T. Ozaki, M. Reid, H. F. Tiedje, H. K. Haugen, and F. A. Hegmann, “Generation of 1.5 μJ single-cycle terahertz pulses by optical rectification from a large aperture ZnTe crystal,” Opt. Express 15(20), 13212–13220 (2007).
[Crossref]

Nathan, V.

Nelson, K. A.

J. Hebling, M. C. Hoffmann, H. Y. Hwang, K.-L. Yeh, and K. A. Nelson, “Observation of nonequilibrium carrier distribution in Ge, Si, and GaAs by terahertz pump–terahertz probe measurements,” Phys. Rev. B 81(3), 035201 (2010).
[Crossref]

M. C. Hoffmann, K.-L. Yeh, J. Hebling, and K. A. Nelson, “Efficient terahertz generation by optical rectification at 1035 nm,” Opt. Express 15(18), 11706–11713 (2007).
[Crossref]

Neumark, D. M.

M. Schultze, K. Ramasesha, C. D. Pemmaraju, S. A. Sato, D. Whitmore, A. Gandman, J. S. Prell, L. J. Borja, D. Prendergast, K. Yabana, D. M. Neumark, and S. R. Leone, “Attosecond band-gap dynamics in silicon,” Science 346(6215), 1348–1352 (2014).
[Crossref]

Nootz, G.

D. Peceli, P. D. Olszak, C. M. Cirloganu, S. Webster, L. A. Padilha, T. Ensley, H. Hu, G. Nootz, D. J. Hagan, and E. W. Van Stryland, “Three-photon absorption of GaAs and other semiconductors,” in Nonlinear Optics (Optical Society of America, 2013), p. NTu1B.6

Nugraha, P. S.

P. S. Nugraha, G. Krizsán, G. Polónyi, M. I. Mechler, J. Hebling, G. Tóth, and J. A. Fülöp, “Efficient semiconductor multicycle terahertz pulse source,” J. Phys. B: At., Mol. Opt. Phys. 51(9), 094007 (2018).
[Crossref]

Ollmann, Z.

Z. Ollmann, J. A. Fülöp, J. Hebling, and G. Almási, “Design of a high-energy terahertz pulse source based on ZnTe contact grating,” Opt. Commun. 315, 159–163 (2014).
[Crossref]

Olszak, P. D.

C. M. Cirloganu, P. D. Olszak, L. A. Padilha, S. Webster, D. J. Hagan, and E. W. Van Stryland, “Three-photon absorption spectra of zinc blende semiconductors: theory and experiment,” Opt. Lett. 33(22), 2626–2628 (2008).
[Crossref]

D. Peceli, P. D. Olszak, C. M. Cirloganu, S. Webster, L. A. Padilha, T. Ensley, H. Hu, G. Nootz, D. J. Hagan, and E. W. Van Stryland, “Three-photon absorption of GaAs and other semiconductors,” in Nonlinear Optics (Optical Society of America, 2013), p. NTu1B.6

Otsuka, K.

J. Yumoto and K. Otsuka, “Frustrated optical instability: Self-induced periodic and chaotic spatial distribution of polarization in nonlinear optical media,” Phys. Rev. Lett. 54(16), 1806–1809 (1985).
[Crossref]

Ozaki, T.

F. Blanchard, B. E. Schmidt, X. Ropagnol, N. Thire, T. Ozaki, R. Morandotti, D. G. Cooke, and F. Legare, “Terahertz pulse generation from bulk GaAs by a tilted-pulse-front excitation at 1.8 μm,” Appl. Phys. Lett. 105(24), 241106 (2014).
[Crossref]

F. Blanchard, L. Razzari, H. C. Bandulet, G. Sharma, R. Morandotti, J. C. Kieffer, T. Ozaki, M. Reid, H. F. Tiedje, H. K. Haugen, and F. A. Hegmann, “Generation of 1.5 μJ single-cycle terahertz pulses by optical rectification from a large aperture ZnTe crystal,” Opt. Express 15(20), 13212–13220 (2007).
[Crossref]

Padilha, L. A.

C. M. Cirloganu, P. D. Olszak, L. A. Padilha, S. Webster, D. J. Hagan, and E. W. Van Stryland, “Three-photon absorption spectra of zinc blende semiconductors: theory and experiment,” Opt. Lett. 33(22), 2626–2628 (2008).
[Crossref]

D. Peceli, P. D. Olszak, C. M. Cirloganu, S. Webster, L. A. Padilha, T. Ensley, H. Hu, G. Nootz, D. J. Hagan, and E. W. Van Stryland, “Three-photon absorption of GaAs and other semiconductors,” in Nonlinear Optics (Optical Society of America, 2013), p. NTu1B.6

Pálfalvi, L.

Peceli, D.

D. Peceli, P. D. Olszak, C. M. Cirloganu, S. Webster, L. A. Padilha, T. Ensley, H. Hu, G. Nootz, D. J. Hagan, and E. W. Van Stryland, “Three-photon absorption of GaAs and other semiconductors,” in Nonlinear Optics (Optical Society of America, 2013), p. NTu1B.6

Pemmaraju, C. D.

M. Schultze, K. Ramasesha, C. D. Pemmaraju, S. A. Sato, D. Whitmore, A. Gandman, J. S. Prell, L. J. Borja, D. Prendergast, K. Yabana, D. M. Neumark, and S. R. Leone, “Attosecond band-gap dynamics in silicon,” Science 346(6215), 1348–1352 (2014).
[Crossref]

Polónyi, G.

P. S. Nugraha, G. Krizsán, G. Polónyi, M. I. Mechler, J. Hebling, G. Tóth, and J. A. Fülöp, “Efficient semiconductor multicycle terahertz pulse source,” J. Phys. B: At., Mol. Opt. Phys. 51(9), 094007 (2018).
[Crossref]

G. Polónyi, M. I. Mechler, J. Hebling, and J. A. Fülöp, “Prospects of semiconductor terahertz pulse sources,” IEEE J. Sel. Top. Quantum Electron. 23(4), 1–8 (2017).
[Crossref]

J. A. Fülöp, G. Polónyi, B. Monoszlai, G. Andriukaitis, T. Balciunas, A. Pugzlys, G. Arthur, A. Baltuska, and J. Hebling, “Highly efficient scalable monolithic semiconductor terahertz pulse source,” Optica 3(10), 1075–1078 (2016).
[Crossref]

G. Polónyi, B. Monoszlai, G. Gaumann, E. J. Rohwer, G. Andriukaitis, T. Balciunas, A. Pugzlys, A. Baltuska, T. Feurer, J. Hebling, and J. A. Fülöp, “High-energy terahertz pulses from semiconductors pumped beyond the three-photon absorption edge,” Opt. Express 24(21), 23872–23882 (2016).
[Crossref]

Popov, S. V.

S. V. Popov, Y. P. Svirko, and N. I. Zheludev, Susceptibility Tensors for Nonlinear Optics (IOP Publishing Ltd., 1995).

Prell, J. S.

M. Schultze, K. Ramasesha, C. D. Pemmaraju, S. A. Sato, D. Whitmore, A. Gandman, J. S. Prell, L. J. Borja, D. Prendergast, K. Yabana, D. M. Neumark, and S. R. Leone, “Attosecond band-gap dynamics in silicon,” Science 346(6215), 1348–1352 (2014).
[Crossref]

Prendergast, D.

M. Schultze, K. Ramasesha, C. D. Pemmaraju, S. A. Sato, D. Whitmore, A. Gandman, J. S. Prell, L. J. Borja, D. Prendergast, K. Yabana, D. M. Neumark, and S. R. Leone, “Attosecond band-gap dynamics in silicon,” Science 346(6215), 1348–1352 (2014).
[Crossref]

Pugzlys, A.

Pugžlys, A.

A. D. Koulouklidis, C. Gollner, V. Shumakova, V. Y. Fedorov, A. Pugžlys, A. Baltuška, and S. Tzortzakis, “Observation of extremely efficient terahertz generation from mid-infrared two-color laser filaments,” Nat. Comm. 11, 292 (2020).
[Crossref]

Ramasesha, K.

M. Schultze, K. Ramasesha, C. D. Pemmaraju, S. A. Sato, D. Whitmore, A. Gandman, J. S. Prell, L. J. Borja, D. Prendergast, K. Yabana, D. M. Neumark, and S. R. Leone, “Attosecond band-gap dynamics in silicon,” Science 346(6215), 1348–1352 (2014).
[Crossref]

Ranka, J. K.

Razzari, L.

Reid, M.

Ren, X.

Richardson, K.

B.-U. Sohn, M. Kang, J. W. Choi, A. M. Agarwal, K. Richardson, and D. T. H. Tan, “Observation of very high order multi-photon absorption in GeSbS chalcogenide glass,” APL Photonics 4(3), 036102 (2019).
[Crossref]

Rohwer, E. J.

Ropagnol, X.

F. Blanchard, B. E. Schmidt, X. Ropagnol, N. Thire, T. Ozaki, R. Morandotti, D. G. Cooke, and F. Legare, “Terahertz pulse generation from bulk GaAs by a tilted-pulse-front excitation at 1.8 μm,” Appl. Phys. Lett. 105(24), 241106 (2014).
[Crossref]

Said, A. A.

Saltiel, S. M.

V. I. Zavelishko, V. A. Martynov, S. M. Saltiel, and V. G. Tunkin, “Optical nonlinear fourth- and fifth-order susceptibilities,” Quantum Electron. 5(11), 1392–1393 (1975).
[Crossref]

Sato, S. A.

M. Schultze, K. Ramasesha, C. D. Pemmaraju, S. A. Sato, D. Whitmore, A. Gandman, J. S. Prell, L. J. Borja, D. Prendergast, K. Yabana, D. M. Neumark, and S. R. Leone, “Attosecond band-gap dynamics in silicon,” Science 346(6215), 1348–1352 (2014).
[Crossref]

Schmidt, B. E.

F. Blanchard, B. E. Schmidt, X. Ropagnol, N. Thire, T. Ozaki, R. Morandotti, D. G. Cooke, and F. Legare, “Terahertz pulse generation from bulk GaAs by a tilted-pulse-front excitation at 1.8 μm,” Appl. Phys. Lett. 105(24), 241106 (2014).
[Crossref]

Schubert, O.

M. Hohenleutner, F. Langer, O. Schubert, M. Knorr, U. Huttner, S. W. Koch, M. Kira, and R. Huber, “Real-time observation of interfering crystal electrons in high-harmonic generation,” Nature 523(7562), 572–575 (2015).
[Crossref]

Schultze, M.

M. Schultze, K. Ramasesha, C. D. Pemmaraju, S. A. Sato, D. Whitmore, A. Gandman, J. S. Prell, L. J. Borja, D. Prendergast, K. Yabana, D. M. Neumark, and S. R. Leone, “Attosecond band-gap dynamics in silicon,” Science 346(6215), 1348–1352 (2014).
[Crossref]

Sharma, G.

Sheik-Bahae, M.

Shen, W.-Z.

Shumakova, V.

A. D. Koulouklidis, C. Gollner, V. Shumakova, V. Y. Fedorov, A. Pugžlys, A. Baltuška, and S. Tzortzakis, “Observation of extremely efficient terahertz generation from mid-infrared two-color laser filaments,” Nat. Comm. 11, 292 (2020).
[Crossref]

Sohn, B.-U.

B.-U. Sohn, M. Kang, J. W. Choi, A. M. Agarwal, K. Richardson, and D. T. H. Tan, “Observation of very high order multi-photon absorption in GeSbS chalcogenide glass,” APL Photonics 4(3), 036102 (2019).
[Crossref]

Sun, Q.

F. Liu, Y. F. Li, Q. R. Xing, L. Chai, M. L. Hu, C. L. Wang, Y. Q. Deng, Q. Sun, and C. Y. Wang, “Three-photon absorption and kerr nonlinearity in undoped bulk GaP excited by a femtosecond laser at 1040 nm,” J. Opt. 12(9), 095201 (2010).
[Crossref]

Sutherland, R. L.

R. L. Sutherland, D. G. McLean, and S. Kirkpatrick, Handbook of nonlinear optics, 2nd ed. (Marcel Dekker, 2003).

Svirko, Y. P.

S. V. Popov, Y. P. Svirko, and N. I. Zheludev, Susceptibility Tensors for Nonlinear Optics (IOP Publishing Ltd., 1995).

Tan, D. T. H.

B.-U. Sohn, M. Kang, J. W. Choi, A. M. Agarwal, K. Richardson, and D. T. H. Tan, “Observation of very high order multi-photon absorption in GeSbS chalcogenide glass,” APL Photonics 4(3), 036102 (2019).
[Crossref]

Tang, S.

M. Yin, H. Li, S. Tang, and W. Ji, “Determination of nonlinear absorption and refraction by single Z-scan method,” Appl. Phys. B 70(4), 587–591 (2000).
[Crossref]

Thire, N.

F. Blanchard, B. E. Schmidt, X. Ropagnol, N. Thire, T. Ozaki, R. Morandotti, D. G. Cooke, and F. Legare, “Terahertz pulse generation from bulk GaAs by a tilted-pulse-front excitation at 1.8 μm,” Appl. Phys. Lett. 105(24), 241106 (2014).
[Crossref]

Tiedje, H. F.

Tóth, G.

P. S. Nugraha, G. Krizsán, G. Polónyi, M. I. Mechler, J. Hebling, G. Tóth, and J. A. Fülöp, “Efficient semiconductor multicycle terahertz pulse source,” J. Phys. B: At., Mol. Opt. Phys. 51(9), 094007 (2018).
[Crossref]

Tu, C. M.

Tunkin, V. G.

V. I. Zavelishko, V. A. Martynov, S. M. Saltiel, and V. G. Tunkin, “Optical nonlinear fourth- and fifth-order susceptibilities,” Quantum Electron. 5(11), 1392–1393 (1975).
[Crossref]

Tzortzakis, S.

A. D. Koulouklidis, C. Gollner, V. Shumakova, V. Y. Fedorov, A. Pugžlys, A. Baltuška, and S. Tzortzakis, “Observation of extremely efficient terahertz generation from mid-infrared two-color laser filaments,” Nat. Comm. 11, 292 (2020).
[Crossref]

Van Stryland, E. W.

Vodopyanov, K. L.

K. L. Vodopyanov, “Terahertz-wave generation with periodically inverted gallium arsenide,” Laser Phys. 19(2), 305–321 (2009).
[Crossref]

W. C. Hurlbut, Y.-S. Lee, K. L. Vodopyanov, P. S. Kuo, and M. M. Fejer, “Multiphoton absorption and nonlinear refraction of GaAs in the mid-infrared,” Opt. Lett. 32(6), 668–670 (2007).
[Crossref]

K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y. S. Lee, W. C. Hurlbut, V. G. Kozlov, D. Bliss, and C. Lynch, “Terahertz-wave generation in quasi-phase-matched GaAs,” Appl. Phys. Lett. 89(14), 141119 (2006).
[Crossref]

Wang, C.

Wang, C. L.

F. Liu, Y. F. Li, Q. R. Xing, L. Chai, M. L. Hu, C. L. Wang, Y. Q. Deng, Q. Sun, and C. Y. Wang, “Three-photon absorption and kerr nonlinearity in undoped bulk GaP excited by a femtosecond laser at 1040 nm,” J. Opt. 12(9), 095201 (2010).
[Crossref]

Wang, C. Y.

F. Liu, Y. F. Li, Q. R. Xing, L. Chai, M. L. Hu, C. L. Wang, Y. Q. Deng, Q. Sun, and C. Y. Wang, “Three-photon absorption and kerr nonlinearity in undoped bulk GaP excited by a femtosecond laser at 1040 nm,” J. Opt. 12(9), 095201 (2010).
[Crossref]

Wang, J.

Wang, Y.

Webster, S.

C. M. Cirloganu, P. D. Olszak, L. A. Padilha, S. Webster, D. J. Hagan, and E. W. Van Stryland, “Three-photon absorption spectra of zinc blende semiconductors: theory and experiment,” Opt. Lett. 33(22), 2626–2628 (2008).
[Crossref]

D. Peceli, P. D. Olszak, C. M. Cirloganu, S. Webster, L. A. Padilha, T. Ensley, H. Hu, G. Nootz, D. J. Hagan, and E. W. Van Stryland, “Three-photon absorption of GaAs and other semiconductors,” in Nonlinear Optics (Optical Society of America, 2013), p. NTu1B.6

Wei, T.

M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Wei, T. H.

Wherrett, B. S.

Whitmore, D.

M. Schultze, K. Ramasesha, C. D. Pemmaraju, S. A. Sato, D. Whitmore, A. Gandman, J. S. Prell, L. J. Borja, D. Prendergast, K. Yabana, D. M. Neumark, and S. R. Leone, “Attosecond band-gap dynamics in silicon,” Science 346(6215), 1348–1352 (2014).
[Crossref]

Wise, F. W.

Wu, K. H.

Xing, Q.

Xing, Q. R.

F. Liu, Y. F. Li, Q. R. Xing, L. Chai, M. L. Hu, C. L. Wang, Y. Q. Deng, Q. Sun, and C. Y. Wang, “Three-photon absorption and kerr nonlinearity in undoped bulk GaP excited by a femtosecond laser at 1040 nm,” J. Opt. 12(9), 095201 (2010).
[Crossref]

Yabana, K.

M. Schultze, K. Ramasesha, C. D. Pemmaraju, S. A. Sato, D. Whitmore, A. Gandman, J. S. Prell, L. J. Borja, D. Prendergast, K. Yabana, D. M. Neumark, and S. R. Leone, “Attosecond band-gap dynamics in silicon,” Science 346(6215), 1348–1352 (2014).
[Crossref]

Yabushita, A.

Yeh, K.-L.

J. Hebling, M. C. Hoffmann, H. Y. Hwang, K.-L. Yeh, and K. A. Nelson, “Observation of nonequilibrium carrier distribution in Ge, Si, and GaAs by terahertz pump–terahertz probe measurements,” Phys. Rev. B 81(3), 035201 (2010).
[Crossref]

M. C. Hoffmann, K.-L. Yeh, J. Hebling, and K. A. Nelson, “Efficient terahertz generation by optical rectification at 1035 nm,” Opt. Express 15(18), 11706–11713 (2007).
[Crossref]

Yin, M.

M. Yin, H. Li, S. Tang, and W. Ji, “Determination of nonlinear absorption and refraction by single Z-scan method,” Appl. Phys. B 70(4), 587–591 (2000).
[Crossref]

Yin, Y.

Young, J.

Yu, P. Y.

P. Y. Yu and M. Cardona, Fundamentals of semiconductors: physics and materials properties (Springer, 2010).

Yu, X.

K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y. S. Lee, W. C. Hurlbut, V. G. Kozlov, D. Bliss, and C. Lynch, “Terahertz-wave generation in quasi-phase-matched GaAs,” Appl. Phys. Lett. 89(14), 141119 (2006).
[Crossref]

Yumoto, J.

J. Yumoto and K. Otsuka, “Frustrated optical instability: Self-induced periodic and chaotic spatial distribution of polarization in nonlinear optical media,” Phys. Rev. Lett. 54(16), 1806–1809 (1985).
[Crossref]

Zavelishko, V. I.

V. I. Zavelishko, V. A. Martynov, S. M. Saltiel, and V. G. Tunkin, “Optical nonlinear fourth- and fifth-order susceptibilities,” Quantum Electron. 5(11), 1392–1393 (1975).
[Crossref]

Zheludev, N. I.

S. V. Popov, Y. P. Svirko, and N. I. Zheludev, Susceptibility Tensors for Nonlinear Optics (IOP Publishing Ltd., 1995).

Zotova, I. B.

APL Photonics (1)

B.-U. Sohn, M. Kang, J. W. Choi, A. M. Agarwal, K. Richardson, and D. T. H. Tan, “Observation of very high order multi-photon absorption in GeSbS chalcogenide glass,” APL Photonics 4(3), 036102 (2019).
[Crossref]

Appl. Opt. (2)

Appl. Phys. B (1)

M. Yin, H. Li, S. Tang, and W. Ji, “Determination of nonlinear absorption and refraction by single Z-scan method,” Appl. Phys. B 70(4), 587–591 (2000).
[Crossref]

Appl. Phys. Lett. (2)

K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y. S. Lee, W. C. Hurlbut, V. G. Kozlov, D. Bliss, and C. Lynch, “Terahertz-wave generation in quasi-phase-matched GaAs,” Appl. Phys. Lett. 89(14), 141119 (2006).
[Crossref]

F. Blanchard, B. E. Schmidt, X. Ropagnol, N. Thire, T. Ozaki, R. Morandotti, D. G. Cooke, and F. Legare, “Terahertz pulse generation from bulk GaAs by a tilted-pulse-front excitation at 1.8 μm,” Appl. Phys. Lett. 105(24), 241106 (2014).
[Crossref]

IEEE J. Quantum Electron. (1)

M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

G. Polónyi, M. I. Mechler, J. Hebling, and J. A. Fülöp, “Prospects of semiconductor terahertz pulse sources,” IEEE J. Sel. Top. Quantum Electron. 23(4), 1–8 (2017).
[Crossref]

J. Opt. (1)

F. Liu, Y. F. Li, Q. R. Xing, L. Chai, M. L. Hu, C. L. Wang, Y. Q. Deng, Q. Sun, and C. Y. Wang, “Three-photon absorption and kerr nonlinearity in undoped bulk GaP excited by a femtosecond laser at 1040 nm,” J. Opt. 12(9), 095201 (2010).
[Crossref]

J. Opt. Soc. Am. B (3)

J. Phys. B: At., Mol. Opt. Phys. (1)

P. S. Nugraha, G. Krizsán, G. Polónyi, M. I. Mechler, J. Hebling, G. Tóth, and J. A. Fülöp, “Efficient semiconductor multicycle terahertz pulse source,” J. Phys. B: At., Mol. Opt. Phys. 51(9), 094007 (2018).
[Crossref]

Laser Phys. (1)

K. L. Vodopyanov, “Terahertz-wave generation with periodically inverted gallium arsenide,” Laser Phys. 19(2), 305–321 (2009).
[Crossref]

Nat. Comm. (1)

A. D. Koulouklidis, C. Gollner, V. Shumakova, V. Y. Fedorov, A. Pugžlys, A. Baltuška, and S. Tzortzakis, “Observation of extremely efficient terahertz generation from mid-infrared two-color laser filaments,” Nat. Comm. 11, 292 (2020).
[Crossref]

Nature (1)

M. Hohenleutner, F. Langer, O. Schubert, M. Knorr, U. Huttner, S. W. Koch, M. Kira, and R. Huber, “Real-time observation of interfering crystal electrons in high-harmonic generation,” Nature 523(7562), 572–575 (2015).
[Crossref]

Opt. Commun. (1)

Z. Ollmann, J. A. Fülöp, J. Hebling, and G. Almási, “Design of a high-energy terahertz pulse source based on ZnTe contact grating,” Opt. Commun. 315, 159–163 (2014).
[Crossref]

Opt. Express (7)

G. Polónyi, B. Monoszlai, G. Gaumann, E. J. Rohwer, G. Andriukaitis, T. Balciunas, A. Pugzlys, A. Baltuska, T. Feurer, J. Hebling, and J. A. Fülöp, “High-energy terahertz pulses from semiconductors pumped beyond the three-photon absorption edge,” Opt. Express 24(21), 23872–23882 (2016).
[Crossref]

M. C. Hoffmann, K.-L. Yeh, J. Hebling, and K. A. Nelson, “Efficient terahertz generation by optical rectification at 1035 nm,” Opt. Express 15(18), 11706–11713 (2007).
[Crossref]

J. A. Fülöp, L. Pálfalvi, G. Almási, and J. Hebling, “Design of high-energy terahertz sources based on optical rectification,” Opt. Express 18(12), 12311–12327 (2010).
[Crossref]

F. Blanchard, L. Razzari, H. C. Bandulet, G. Sharma, R. Morandotti, J. C. Kieffer, T. Ozaki, M. Reid, H. F. Tiedje, H. K. Haugen, and F. A. Hegmann, “Generation of 1.5 μJ single-cycle terahertz pulses by optical rectification from a large aperture ZnTe crystal,” Opt. Express 15(20), 13212–13220 (2007).
[Crossref]

S. A. Ku, C. M. Tu, W.-C. Chu, C. W. Luo, K. H. Wu, A. Yabushita, C. C. Chi, and T. Kobayashi, “Saturation of the free carrier absorption in ZnTe crystals,” Opt. Express 21(12), 13930 (2013).
[Crossref]

Y. Yin, J. Li, X. Ren, Y. Wang, A. Chew, and Z. Chang, “High-energy two-cycle pulses at 3.2 μm by a broadband-pumped dual-chirped optical parametric amplification,” Opt. Express 24(22), 24989–24998 (2016).
[Crossref]

W.-Q. He, C.-M. Gu, and W.-Z. Shen, “Direct evidence of kerr-like nonlinearity by femtosecond z-scan technique,” Opt. Express 14(12), 5476 (2006).
[Crossref]

Opt. Lett. (4)

Optica (1)

Phys. Rev. B (2)

S. J. Bepko, “Anisotropy of two-photon absorption in GaAs and CdTe,” Phys. Rev. B 12(2), 669–672 (1975).
[Crossref]

J. Hebling, M. C. Hoffmann, H. Y. Hwang, K.-L. Yeh, and K. A. Nelson, “Observation of nonequilibrium carrier distribution in Ge, Si, and GaAs by terahertz pump–terahertz probe measurements,” Phys. Rev. B 81(3), 035201 (2010).
[Crossref]

Phys. Rev. Lett. (1)

J. Yumoto and K. Otsuka, “Frustrated optical instability: Self-induced periodic and chaotic spatial distribution of polarization in nonlinear optical media,” Phys. Rev. Lett. 54(16), 1806–1809 (1985).
[Crossref]

Quantum Electron. (1)

V. I. Zavelishko, V. A. Martynov, S. M. Saltiel, and V. G. Tunkin, “Optical nonlinear fourth- and fifth-order susceptibilities,” Quantum Electron. 5(11), 1392–1393 (1975).
[Crossref]

Science (1)

M. Schultze, K. Ramasesha, C. D. Pemmaraju, S. A. Sato, D. Whitmore, A. Gandman, J. S. Prell, L. J. Borja, D. Prendergast, K. Yabana, D. M. Neumark, and S. R. Leone, “Attosecond band-gap dynamics in silicon,” Science 346(6215), 1348–1352 (2014).
[Crossref]

Other (5)

R. L. Sutherland, D. G. McLean, and S. Kirkpatrick, Handbook of nonlinear optics, 2nd ed. (Marcel Dekker, 2003).

P. Y. Yu and M. Cardona, Fundamentals of semiconductors: physics and materials properties (Springer, 2010).

D. Peceli, P. D. Olszak, C. M. Cirloganu, S. Webster, L. A. Padilha, T. Ensley, H. Hu, G. Nootz, D. J. Hagan, and E. W. Van Stryland, “Three-photon absorption of GaAs and other semiconductors,” in Nonlinear Optics (Optical Society of America, 2013), p. NTu1B.6

D. Jain and O. Bang, “High power mid-infrared fiber based supercontinuum sources: Current status and future perspectives,” in 2018 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), (2018), pp. 1–2.

S. V. Popov, Y. P. Svirko, and N. I. Zheludev, Susceptibility Tensors for Nonlinear Optics (IOP Publishing Ltd., 1995).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Experimental setup. OPA: optical parametric amplifier, DLPF: dichroic long-pass filters, VNDF: variable neutral density filter, BS: beam splitter, PD: reference photodiode, SC: semiconductor crystal, LAPD: large-area photodiode.
Fig. 2.
Fig. 2. Measured z-scan curves at various $I_0$ on-axis peak pump intensity levels for GaP (a) and ZnTe (b).
Fig. 3.
Fig. 3. Examples of symmetrized z-scan curves, measured at different $I_0$ on-axis peak pump intensities (symbols), and the best-fit calculated curves (solid line) in case of GaP. The dashed lines show the antisymmetric parts of the z-scan curves, shifted by 1 for better visibility.
Fig. 4.
Fig. 4. Intensity-dependent 4PA coefficients as function of the on-axis peak pump intensity. The numerical values in the inset table are given in the same units as in the graph.
Fig. 5.
Fig. 5. Estimated free-carrier absorption coefficient as function of the on-axis peak pump intensity.
Fig. 6.
Fig. 6. Measured anisotropy of the 4PA coefficient in GaP (full symbols, left vertical axis) as function of the pump polarization angle. For comparison, the measured (red empty symbols) and calculated (dashed red line) SHG efficiency (right vertical axis) is also shown. The vertical dashed lines indicate the given crystallographic directions.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I ( t , z = 0 , ρ ; z c ) = I 0 w 0 2 w 2 ( z c ) e 4 ln ( 2 ) t 2 τ 2 e 2 ρ 2 w 2 ( z c ) .
A ( t , z , ρ ; z c ) = 2 I ( t , z , ρ ; z c ) ϵ 0 c n 0 ,
d d z I ( t , z , ρ ; z c ) = β 4 I 4 ( t , z , ρ ; z c ) ,
d d z A ( t , z , ρ ; z c ) = 1 16 β 4 ( ϵ 0 c n 0 ) 3 A ( t , z , ρ ; z c ) 7 .
A ( t , z + Δ z , ρ ; z c ) = F 1 [ F [ A ( t , z , ρ ; z c ) ] e i [ n ( ω ) n g ( ω o ) ] ω c Δ z ] .
T ( z c ) = 0 | A ( t , z = L , ρ ; z c | 2 ρ d ρ d t 0 | A ( t , z = 0 , ρ ; z c | 2 ρ d ρ d t .

Metrics