Abstract

In this paper, we present a shutter-based electro-optical modulator made of two parallel nanoelectromechanical silicon nitride string resonators. These strings are covered with electrically connected gold electrodes and actuated either by Lorentz or electrostatic forces. The in-plane string vibrations modulate the width of the gap between the strings. The gold electrodes on both sides of the gap act as a mobile mirror that modulate the laser light that is focused in the middle of this gap. These electro-optical modulators can achieve an optical modulation depth of almost 100% for a driving voltage lower than 1 mV at a frequency of 314 kHz. The frequency range is determined by the string resonance frequency, which can take values of the order of a few hundred kilohertz to several megahertz. The strings are driven in the strongly nonlinear regime, which allows a frequency tuning of several kilohertz without significant effect on the optical modulation depth.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Triply resonant coupled-cavity electro-optic modulators for RF to optical signal conversion

Hayk Gevorgyan, Anatol Khilo, Yossef Ehrlichman, and Miloš A. Popović
Opt. Express 28(1) 788-815 (2020)

Electro-optic polymer cladding ring resonator modulators

Bruce A. Block, Todd R. Younkin, Paul S. Davids, Miriam R. Reshotko, Peter Chang, Brent M. Polishak, Su Huang, Jingdong Luo, and Alex K. Y. Jen
Opt. Express 16(22) 18326-18333 (2008)

Plasmonic Bragg microcavity as an efficient electro-optic modulator

Ayda Aray and Saeed Ghavami Sabouri
Opt. Express 28(14) 20523-20531 (2020)

References

  • View by:
  • |
  • |
  • |

  1. I. Favero and K. Karrai, “Optomechanics of Deformable Optical Cavities,” Nat. Photonics 3(4), 201–205 (2009).
    [Crossref]
  2. J. Gomis-Bresco, D. Navarro-Urrios, M. Oudich, S. El-Jallal, A. Griol, D. Puerto, E. Chavez, Y. Pennec, B. Djafari-Rouhani, F. Alzina, A. Martínez, and C. M. S. Torres, “A 1D Optomechanical Crystal with a Complete Phononic Band Gap,” Nat. Commun. 5(1), 4452 (2014).
    [Crossref]
  3. M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity Optomechanics,” Rev. Mod. Phys. 86(4), 1391–1452 (2014).
    [Crossref]
  4. T. Bagci, A. Simonsen, S. Schmid, L. G. Villanueva, E. Zeuthen, J. Appel, J. M. Taylor, A. Sorensen, K. Usami, A. Schliesser, and E. S. Polzik, “Optical Detection of Radio Waves Through a Nanomechanical Transducer,” Nature 507(7490), 81–85 (2014).
    [Crossref]
  5. M. Piller, N. Luhmann, M.-H. Chien, and S. Schmid, “Nanoelectromechanical infrared detector,” in Optical Sensing, Imaging, and Photon Counting: From X-Rays to THz 2019, vol. 11088O. Mitrofanov, ed., International Society for Optics and Photonics (SPIE, 2019), pp. 9–15.
  6. J.-Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol. 8(4), 252–255 (2013).
    [Crossref]
  7. J.-Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “Giant Nonlinearity of an Optically Reconfigurable Plasmonic Metamaterial,” Adv. Mater. 28(4), 729–733 (2016).
    [Crossref]
  8. B. Dong, X. Chen, F. Zhou, C. Wang, H. F. Zhang, and C. Sun, “Gigahertz all-optical modulation using reconfigurable nanophotonic metamolecules,” Nano Lett. 16(12), 7690–7695 (2016).
    [Crossref]
  9. J. Valente, J.-Y. Ou, E. Plum, I. J. Youngs, and N. I. Zheludev, “A magneto-electro-optical effect in a plasmonic nanowire material,” Nat. Commun. 6(1), 7021–7027 (2015).
    [Crossref]
  10. N. I. Zheludev and E. Plum, “Reconfigurable Nanomechanical Photonic Metamaterials,” Nat. Nanotechnol. 11(1), 16–22 (2016).
    [Crossref]
  11. A. Karvounis, B. Gholipour, K. F. MacDonald, and N. I. Zheludev, “Giant Electro-Optical Effect through Electrostriction in a Nanomechanical Metamaterial,” Adv. Mater. 31(1), 1804801 (2019).
    [Crossref]
  12. R. Thijssen, E. Verhagen, T. J. Kippenberg, and A. Polman, “Plasmon Nanomechanical Coupling for Nanoscale Transduction,” Nano Lett. 13(7), 3293–3297 (2013).
    [Crossref]
  13. R. Thijssen, T. J. Kippenberg, A. Polman, and E. Verhagen, “Parallel Transduction of Nanomechanical Motion Using Plasmonic Resonators,” ACS Photonics 1(11), 1181–1188 (2014).
    [Crossref]
  14. R. Thijssen, T. J. Kippenberg, A. Polman, and E. Verhagen, “Plasmomechanical Resonators Based on Dimer Nanoantennas,” Nano Lett. 15(6), 3971–3976 (2015).
    [Crossref]
  15. S. Schmid, K. Wu, P. E. Larsen, T. Rindzevicius, and A. Boisen, “Low-Power Photothermal Probing of Single Plasmonic Nanostructures with Nanomechanical String Resonators,” Nano Lett. 14(5), 2318–2321 (2014).
    [Crossref]
  16. D. Naumenko, V. Toffoli, S. Greco, S. Dal Zilio, A. Bek, and M. Lazzarino, “A Micromechanical Switchable Hotspot for SERS Applications,” Appl. Phys. Lett. 109(13), 131108 (2016).
    [Crossref]
  17. L. O. Herrmann, A. Olziersky, C. Gruber, G. Puebla-Hellmann, U. Drechsler, T. von Arx, K. Venkatesan, L. Novotny, and E. Lörtscher, “Fabrication of NEMS Actuated Plasmonic Antenna Platform for the Study of Optical Forces and Field Enhancements in Hotspots,” in Asia Communications and Photonics Conference 2016, (Optical Society of America, 2016).
  18. B. J. Roxworthy and V. A. Aksyuk, “Nanomechanical Motion Transduction with a Scalable Localized Gap Plasmon Architecture,” Nat. Commun. 7(1), 13746 (2016).
    [Crossref]
  19. D. J. Wilson, C. A. Regal, S. B. Papp, and H. J. Kimble, “Cavity Optomechanics with Stoichiometric SiN Films,” Phys. Rev. Lett. 103(20), 207204 (2009).
    [Crossref]
  20. S. Yamada, S. Schmid, T. Larsen, O. Hansen, and A. Boisen, “Photothermal Infrared Spectroscopy of Airborne Samples with Mechanical String Resonators,” Anal. Chem. 85(21), 10531–10535 (2013).
    [Crossref]
  21. S. Schmid, T. Bagci, E. Zeuthen, J. M. Taylor, P. K. Herring, M. C. Cassidy, C. M. Marcus, L. Guillermo Villanueva, B. Amato, A. Boisen, Y. C. Shin, J. Kong, A. S. Sørensen, K. Usami, and E. S. Polzik, “Single-layer graphene on silicon nitride micromembrane resonators,” J. Appl. Phys. 115(5), 054513 (2014).
    [Crossref]
  22. E. Gavartin, P. Verlot, and T. J. Kippenberg, “A Hybrid On-Chip Optomechanical Transducer for Ultrasensitive Force Measurements,” Nat. Nanotechnol. 7(8), 509–514 (2012).
    [Crossref]
  23. T. Larsen, S. Schmid, L. G. Villanueva, and A. Boisen, “Photothermal Analysis of Individual Nanoparticulate Samples Using Micromechanical Resonators,” ACS Nano 7(7), 6188–6193 (2013).
    [Crossref]
  24. V. P. Jaecklin, C. Linder, N. F. de Rooij, J. . Moret, and R. Vuilleumier, “Optical microshutters and torsional micromirrors for light modulator arrays,” in [1993] Proceedings IEEE Micro Electro Mechanical Systems, (1993), pp. 124–127.
  25. M. T. Ching, R. A. Brennen, and R. M. White, “Microfabricated optical chopper,” Opt. Eng. 33(11), 3634–3642 (1994).
    [Crossref]
  26. G. Perregaux, P. Weiss, B. Kloeck, H. Vuilliomenet, and J. P. Thiebaud, “High-speed micro-electromechanical light modulation arrays,” in International Conference on Solid-State Sensors and Actuators, Proceedings, (1997), pp. 71–74.
  27. H. Toshiyoshi, H. Fujita, and T. Ueda, “A Piezoelectrically Operated Optical Chopper by Quartz Micromachining,” J. Microelectromech. Syst. 4(1), 3–9 (1995).
    [Crossref]
  28. H. Mao, J. Ke, P. Xing, and Z. Lai, “Characterization of micromechanical optical modulator,” J. Microelectromech. Syst. 10(4), 589–592 (2001).
    [Crossref]
  29. T. K. Chan and J. E. Ford, “Retroreflecting optical modulator using an MEMS deformable micromirror array,” J. Lightwave Technol. 24(1), 516–525 (2006).
    [Crossref]
  30. A. J. Andersen, S. Yamada, E. Pramodkumar, T. L. Andresen, A. Boisen, and S. Schmid, “Nanomechanical ir spectroscopy for fast analysis of liquid-dispersed engineered nanomaterials,” Sens. Actuators, B 233, 667–673 (2016).
    [Crossref]
  31. F. Kanal, S. Keiber, R. Eck, and T. Brixner, “100-khz shot-to-shot broadband data acquisition for high-repetition-rate pump–probe spectroscopy,” Opt. Express 22(14), 16965–16975 (2014).
    [Crossref]
  32. R. Lishitz and M. Cross, Nonlinear Dynamics of Nanomechanical Resonators (Wiley-VCH, 2010).
  33. O. Loebich, “The Optical Properties of Gold,” Gold Bull. 5(1), 2–10 (1972).
    [Crossref]
  34. O. Brand, I. Dufour, S. Heinrich, and F. Josse, Resonant MEMS: Fundamentals, Implementation and Applications (Wiley-Blackwell, 2015).

2019 (1)

A. Karvounis, B. Gholipour, K. F. MacDonald, and N. I. Zheludev, “Giant Electro-Optical Effect through Electrostriction in a Nanomechanical Metamaterial,” Adv. Mater. 31(1), 1804801 (2019).
[Crossref]

2016 (6)

D. Naumenko, V. Toffoli, S. Greco, S. Dal Zilio, A. Bek, and M. Lazzarino, “A Micromechanical Switchable Hotspot for SERS Applications,” Appl. Phys. Lett. 109(13), 131108 (2016).
[Crossref]

B. J. Roxworthy and V. A. Aksyuk, “Nanomechanical Motion Transduction with a Scalable Localized Gap Plasmon Architecture,” Nat. Commun. 7(1), 13746 (2016).
[Crossref]

J.-Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “Giant Nonlinearity of an Optically Reconfigurable Plasmonic Metamaterial,” Adv. Mater. 28(4), 729–733 (2016).
[Crossref]

N. I. Zheludev and E. Plum, “Reconfigurable Nanomechanical Photonic Metamaterials,” Nat. Nanotechnol. 11(1), 16–22 (2016).
[Crossref]

B. Dong, X. Chen, F. Zhou, C. Wang, H. F. Zhang, and C. Sun, “Gigahertz all-optical modulation using reconfigurable nanophotonic metamolecules,” Nano Lett. 16(12), 7690–7695 (2016).
[Crossref]

A. J. Andersen, S. Yamada, E. Pramodkumar, T. L. Andresen, A. Boisen, and S. Schmid, “Nanomechanical ir spectroscopy for fast analysis of liquid-dispersed engineered nanomaterials,” Sens. Actuators, B 233, 667–673 (2016).
[Crossref]

2015 (2)

R. Thijssen, T. J. Kippenberg, A. Polman, and E. Verhagen, “Plasmomechanical Resonators Based on Dimer Nanoantennas,” Nano Lett. 15(6), 3971–3976 (2015).
[Crossref]

J. Valente, J.-Y. Ou, E. Plum, I. J. Youngs, and N. I. Zheludev, “A magneto-electro-optical effect in a plasmonic nanowire material,” Nat. Commun. 6(1), 7021–7027 (2015).
[Crossref]

2014 (7)

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity Optomechanics,” Rev. Mod. Phys. 86(4), 1391–1452 (2014).
[Crossref]

F. Kanal, S. Keiber, R. Eck, and T. Brixner, “100-khz shot-to-shot broadband data acquisition for high-repetition-rate pump–probe spectroscopy,” Opt. Express 22(14), 16965–16975 (2014).
[Crossref]

R. Thijssen, T. J. Kippenberg, A. Polman, and E. Verhagen, “Parallel Transduction of Nanomechanical Motion Using Plasmonic Resonators,” ACS Photonics 1(11), 1181–1188 (2014).
[Crossref]

S. Schmid, K. Wu, P. E. Larsen, T. Rindzevicius, and A. Boisen, “Low-Power Photothermal Probing of Single Plasmonic Nanostructures with Nanomechanical String Resonators,” Nano Lett. 14(5), 2318–2321 (2014).
[Crossref]

J. Gomis-Bresco, D. Navarro-Urrios, M. Oudich, S. El-Jallal, A. Griol, D. Puerto, E. Chavez, Y. Pennec, B. Djafari-Rouhani, F. Alzina, A. Martínez, and C. M. S. Torres, “A 1D Optomechanical Crystal with a Complete Phononic Band Gap,” Nat. Commun. 5(1), 4452 (2014).
[Crossref]

T. Bagci, A. Simonsen, S. Schmid, L. G. Villanueva, E. Zeuthen, J. Appel, J. M. Taylor, A. Sorensen, K. Usami, A. Schliesser, and E. S. Polzik, “Optical Detection of Radio Waves Through a Nanomechanical Transducer,” Nature 507(7490), 81–85 (2014).
[Crossref]

S. Schmid, T. Bagci, E. Zeuthen, J. M. Taylor, P. K. Herring, M. C. Cassidy, C. M. Marcus, L. Guillermo Villanueva, B. Amato, A. Boisen, Y. C. Shin, J. Kong, A. S. Sørensen, K. Usami, and E. S. Polzik, “Single-layer graphene on silicon nitride micromembrane resonators,” J. Appl. Phys. 115(5), 054513 (2014).
[Crossref]

2013 (4)

T. Larsen, S. Schmid, L. G. Villanueva, and A. Boisen, “Photothermal Analysis of Individual Nanoparticulate Samples Using Micromechanical Resonators,” ACS Nano 7(7), 6188–6193 (2013).
[Crossref]

J.-Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol. 8(4), 252–255 (2013).
[Crossref]

R. Thijssen, E. Verhagen, T. J. Kippenberg, and A. Polman, “Plasmon Nanomechanical Coupling for Nanoscale Transduction,” Nano Lett. 13(7), 3293–3297 (2013).
[Crossref]

S. Yamada, S. Schmid, T. Larsen, O. Hansen, and A. Boisen, “Photothermal Infrared Spectroscopy of Airborne Samples with Mechanical String Resonators,” Anal. Chem. 85(21), 10531–10535 (2013).
[Crossref]

2012 (1)

E. Gavartin, P. Verlot, and T. J. Kippenberg, “A Hybrid On-Chip Optomechanical Transducer for Ultrasensitive Force Measurements,” Nat. Nanotechnol. 7(8), 509–514 (2012).
[Crossref]

2009 (2)

I. Favero and K. Karrai, “Optomechanics of Deformable Optical Cavities,” Nat. Photonics 3(4), 201–205 (2009).
[Crossref]

D. J. Wilson, C. A. Regal, S. B. Papp, and H. J. Kimble, “Cavity Optomechanics with Stoichiometric SiN Films,” Phys. Rev. Lett. 103(20), 207204 (2009).
[Crossref]

2006 (1)

2001 (1)

H. Mao, J. Ke, P. Xing, and Z. Lai, “Characterization of micromechanical optical modulator,” J. Microelectromech. Syst. 10(4), 589–592 (2001).
[Crossref]

1995 (1)

H. Toshiyoshi, H. Fujita, and T. Ueda, “A Piezoelectrically Operated Optical Chopper by Quartz Micromachining,” J. Microelectromech. Syst. 4(1), 3–9 (1995).
[Crossref]

1994 (1)

M. T. Ching, R. A. Brennen, and R. M. White, “Microfabricated optical chopper,” Opt. Eng. 33(11), 3634–3642 (1994).
[Crossref]

1972 (1)

O. Loebich, “The Optical Properties of Gold,” Gold Bull. 5(1), 2–10 (1972).
[Crossref]

. Moret, J.

V. P. Jaecklin, C. Linder, N. F. de Rooij, J. . Moret, and R. Vuilleumier, “Optical microshutters and torsional micromirrors for light modulator arrays,” in [1993] Proceedings IEEE Micro Electro Mechanical Systems, (1993), pp. 124–127.

Aksyuk, V. A.

B. J. Roxworthy and V. A. Aksyuk, “Nanomechanical Motion Transduction with a Scalable Localized Gap Plasmon Architecture,” Nat. Commun. 7(1), 13746 (2016).
[Crossref]

Alzina, F.

J. Gomis-Bresco, D. Navarro-Urrios, M. Oudich, S. El-Jallal, A. Griol, D. Puerto, E. Chavez, Y. Pennec, B. Djafari-Rouhani, F. Alzina, A. Martínez, and C. M. S. Torres, “A 1D Optomechanical Crystal with a Complete Phononic Band Gap,” Nat. Commun. 5(1), 4452 (2014).
[Crossref]

Amato, B.

S. Schmid, T. Bagci, E. Zeuthen, J. M. Taylor, P. K. Herring, M. C. Cassidy, C. M. Marcus, L. Guillermo Villanueva, B. Amato, A. Boisen, Y. C. Shin, J. Kong, A. S. Sørensen, K. Usami, and E. S. Polzik, “Single-layer graphene on silicon nitride micromembrane resonators,” J. Appl. Phys. 115(5), 054513 (2014).
[Crossref]

Andersen, A. J.

A. J. Andersen, S. Yamada, E. Pramodkumar, T. L. Andresen, A. Boisen, and S. Schmid, “Nanomechanical ir spectroscopy for fast analysis of liquid-dispersed engineered nanomaterials,” Sens. Actuators, B 233, 667–673 (2016).
[Crossref]

Andresen, T. L.

A. J. Andersen, S. Yamada, E. Pramodkumar, T. L. Andresen, A. Boisen, and S. Schmid, “Nanomechanical ir spectroscopy for fast analysis of liquid-dispersed engineered nanomaterials,” Sens. Actuators, B 233, 667–673 (2016).
[Crossref]

Appel, J.

T. Bagci, A. Simonsen, S. Schmid, L. G. Villanueva, E. Zeuthen, J. Appel, J. M. Taylor, A. Sorensen, K. Usami, A. Schliesser, and E. S. Polzik, “Optical Detection of Radio Waves Through a Nanomechanical Transducer,” Nature 507(7490), 81–85 (2014).
[Crossref]

Aspelmeyer, M.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity Optomechanics,” Rev. Mod. Phys. 86(4), 1391–1452 (2014).
[Crossref]

Bagci, T.

T. Bagci, A. Simonsen, S. Schmid, L. G. Villanueva, E. Zeuthen, J. Appel, J. M. Taylor, A. Sorensen, K. Usami, A. Schliesser, and E. S. Polzik, “Optical Detection of Radio Waves Through a Nanomechanical Transducer,” Nature 507(7490), 81–85 (2014).
[Crossref]

S. Schmid, T. Bagci, E. Zeuthen, J. M. Taylor, P. K. Herring, M. C. Cassidy, C. M. Marcus, L. Guillermo Villanueva, B. Amato, A. Boisen, Y. C. Shin, J. Kong, A. S. Sørensen, K. Usami, and E. S. Polzik, “Single-layer graphene on silicon nitride micromembrane resonators,” J. Appl. Phys. 115(5), 054513 (2014).
[Crossref]

Bek, A.

D. Naumenko, V. Toffoli, S. Greco, S. Dal Zilio, A. Bek, and M. Lazzarino, “A Micromechanical Switchable Hotspot for SERS Applications,” Appl. Phys. Lett. 109(13), 131108 (2016).
[Crossref]

Boisen, A.

A. J. Andersen, S. Yamada, E. Pramodkumar, T. L. Andresen, A. Boisen, and S. Schmid, “Nanomechanical ir spectroscopy for fast analysis of liquid-dispersed engineered nanomaterials,” Sens. Actuators, B 233, 667–673 (2016).
[Crossref]

S. Schmid, K. Wu, P. E. Larsen, T. Rindzevicius, and A. Boisen, “Low-Power Photothermal Probing of Single Plasmonic Nanostructures with Nanomechanical String Resonators,” Nano Lett. 14(5), 2318–2321 (2014).
[Crossref]

S. Schmid, T. Bagci, E. Zeuthen, J. M. Taylor, P. K. Herring, M. C. Cassidy, C. M. Marcus, L. Guillermo Villanueva, B. Amato, A. Boisen, Y. C. Shin, J. Kong, A. S. Sørensen, K. Usami, and E. S. Polzik, “Single-layer graphene on silicon nitride micromembrane resonators,” J. Appl. Phys. 115(5), 054513 (2014).
[Crossref]

T. Larsen, S. Schmid, L. G. Villanueva, and A. Boisen, “Photothermal Analysis of Individual Nanoparticulate Samples Using Micromechanical Resonators,” ACS Nano 7(7), 6188–6193 (2013).
[Crossref]

S. Yamada, S. Schmid, T. Larsen, O. Hansen, and A. Boisen, “Photothermal Infrared Spectroscopy of Airborne Samples with Mechanical String Resonators,” Anal. Chem. 85(21), 10531–10535 (2013).
[Crossref]

Brand, O.

O. Brand, I. Dufour, S. Heinrich, and F. Josse, Resonant MEMS: Fundamentals, Implementation and Applications (Wiley-Blackwell, 2015).

Brennen, R. A.

M. T. Ching, R. A. Brennen, and R. M. White, “Microfabricated optical chopper,” Opt. Eng. 33(11), 3634–3642 (1994).
[Crossref]

Brixner, T.

Cassidy, M. C.

S. Schmid, T. Bagci, E. Zeuthen, J. M. Taylor, P. K. Herring, M. C. Cassidy, C. M. Marcus, L. Guillermo Villanueva, B. Amato, A. Boisen, Y. C. Shin, J. Kong, A. S. Sørensen, K. Usami, and E. S. Polzik, “Single-layer graphene on silicon nitride micromembrane resonators,” J. Appl. Phys. 115(5), 054513 (2014).
[Crossref]

Chan, T. K.

Chavez, E.

J. Gomis-Bresco, D. Navarro-Urrios, M. Oudich, S. El-Jallal, A. Griol, D. Puerto, E. Chavez, Y. Pennec, B. Djafari-Rouhani, F. Alzina, A. Martínez, and C. M. S. Torres, “A 1D Optomechanical Crystal with a Complete Phononic Band Gap,” Nat. Commun. 5(1), 4452 (2014).
[Crossref]

Chen, X.

B. Dong, X. Chen, F. Zhou, C. Wang, H. F. Zhang, and C. Sun, “Gigahertz all-optical modulation using reconfigurable nanophotonic metamolecules,” Nano Lett. 16(12), 7690–7695 (2016).
[Crossref]

Chien, M.-H.

M. Piller, N. Luhmann, M.-H. Chien, and S. Schmid, “Nanoelectromechanical infrared detector,” in Optical Sensing, Imaging, and Photon Counting: From X-Rays to THz 2019, vol. 11088O. Mitrofanov, ed., International Society for Optics and Photonics (SPIE, 2019), pp. 9–15.

Ching, M. T.

M. T. Ching, R. A. Brennen, and R. M. White, “Microfabricated optical chopper,” Opt. Eng. 33(11), 3634–3642 (1994).
[Crossref]

Cross, M.

R. Lishitz and M. Cross, Nonlinear Dynamics of Nanomechanical Resonators (Wiley-VCH, 2010).

Dal Zilio, S.

D. Naumenko, V. Toffoli, S. Greco, S. Dal Zilio, A. Bek, and M. Lazzarino, “A Micromechanical Switchable Hotspot for SERS Applications,” Appl. Phys. Lett. 109(13), 131108 (2016).
[Crossref]

de Rooij, N. F.

V. P. Jaecklin, C. Linder, N. F. de Rooij, J. . Moret, and R. Vuilleumier, “Optical microshutters and torsional micromirrors for light modulator arrays,” in [1993] Proceedings IEEE Micro Electro Mechanical Systems, (1993), pp. 124–127.

Djafari-Rouhani, B.

J. Gomis-Bresco, D. Navarro-Urrios, M. Oudich, S. El-Jallal, A. Griol, D. Puerto, E. Chavez, Y. Pennec, B. Djafari-Rouhani, F. Alzina, A. Martínez, and C. M. S. Torres, “A 1D Optomechanical Crystal with a Complete Phononic Band Gap,” Nat. Commun. 5(1), 4452 (2014).
[Crossref]

Dong, B.

B. Dong, X. Chen, F. Zhou, C. Wang, H. F. Zhang, and C. Sun, “Gigahertz all-optical modulation using reconfigurable nanophotonic metamolecules,” Nano Lett. 16(12), 7690–7695 (2016).
[Crossref]

Drechsler, U.

L. O. Herrmann, A. Olziersky, C. Gruber, G. Puebla-Hellmann, U. Drechsler, T. von Arx, K. Venkatesan, L. Novotny, and E. Lörtscher, “Fabrication of NEMS Actuated Plasmonic Antenna Platform for the Study of Optical Forces and Field Enhancements in Hotspots,” in Asia Communications and Photonics Conference 2016, (Optical Society of America, 2016).

Dufour, I.

O. Brand, I. Dufour, S. Heinrich, and F. Josse, Resonant MEMS: Fundamentals, Implementation and Applications (Wiley-Blackwell, 2015).

Eck, R.

El-Jallal, S.

J. Gomis-Bresco, D. Navarro-Urrios, M. Oudich, S. El-Jallal, A. Griol, D. Puerto, E. Chavez, Y. Pennec, B. Djafari-Rouhani, F. Alzina, A. Martínez, and C. M. S. Torres, “A 1D Optomechanical Crystal with a Complete Phononic Band Gap,” Nat. Commun. 5(1), 4452 (2014).
[Crossref]

Favero, I.

I. Favero and K. Karrai, “Optomechanics of Deformable Optical Cavities,” Nat. Photonics 3(4), 201–205 (2009).
[Crossref]

Ford, J. E.

Fujita, H.

H. Toshiyoshi, H. Fujita, and T. Ueda, “A Piezoelectrically Operated Optical Chopper by Quartz Micromachining,” J. Microelectromech. Syst. 4(1), 3–9 (1995).
[Crossref]

Gavartin, E.

E. Gavartin, P. Verlot, and T. J. Kippenberg, “A Hybrid On-Chip Optomechanical Transducer for Ultrasensitive Force Measurements,” Nat. Nanotechnol. 7(8), 509–514 (2012).
[Crossref]

Gholipour, B.

A. Karvounis, B. Gholipour, K. F. MacDonald, and N. I. Zheludev, “Giant Electro-Optical Effect through Electrostriction in a Nanomechanical Metamaterial,” Adv. Mater. 31(1), 1804801 (2019).
[Crossref]

Gomis-Bresco, J.

J. Gomis-Bresco, D. Navarro-Urrios, M. Oudich, S. El-Jallal, A. Griol, D. Puerto, E. Chavez, Y. Pennec, B. Djafari-Rouhani, F. Alzina, A. Martínez, and C. M. S. Torres, “A 1D Optomechanical Crystal with a Complete Phononic Band Gap,” Nat. Commun. 5(1), 4452 (2014).
[Crossref]

Greco, S.

D. Naumenko, V. Toffoli, S. Greco, S. Dal Zilio, A. Bek, and M. Lazzarino, “A Micromechanical Switchable Hotspot for SERS Applications,” Appl. Phys. Lett. 109(13), 131108 (2016).
[Crossref]

Griol, A.

J. Gomis-Bresco, D. Navarro-Urrios, M. Oudich, S. El-Jallal, A. Griol, D. Puerto, E. Chavez, Y. Pennec, B. Djafari-Rouhani, F. Alzina, A. Martínez, and C. M. S. Torres, “A 1D Optomechanical Crystal with a Complete Phononic Band Gap,” Nat. Commun. 5(1), 4452 (2014).
[Crossref]

Gruber, C.

L. O. Herrmann, A. Olziersky, C. Gruber, G. Puebla-Hellmann, U. Drechsler, T. von Arx, K. Venkatesan, L. Novotny, and E. Lörtscher, “Fabrication of NEMS Actuated Plasmonic Antenna Platform for the Study of Optical Forces and Field Enhancements in Hotspots,” in Asia Communications and Photonics Conference 2016, (Optical Society of America, 2016).

Guillermo Villanueva, L.

S. Schmid, T. Bagci, E. Zeuthen, J. M. Taylor, P. K. Herring, M. C. Cassidy, C. M. Marcus, L. Guillermo Villanueva, B. Amato, A. Boisen, Y. C. Shin, J. Kong, A. S. Sørensen, K. Usami, and E. S. Polzik, “Single-layer graphene on silicon nitride micromembrane resonators,” J. Appl. Phys. 115(5), 054513 (2014).
[Crossref]

Hansen, O.

S. Yamada, S. Schmid, T. Larsen, O. Hansen, and A. Boisen, “Photothermal Infrared Spectroscopy of Airborne Samples with Mechanical String Resonators,” Anal. Chem. 85(21), 10531–10535 (2013).
[Crossref]

Heinrich, S.

O. Brand, I. Dufour, S. Heinrich, and F. Josse, Resonant MEMS: Fundamentals, Implementation and Applications (Wiley-Blackwell, 2015).

Herring, P. K.

S. Schmid, T. Bagci, E. Zeuthen, J. M. Taylor, P. K. Herring, M. C. Cassidy, C. M. Marcus, L. Guillermo Villanueva, B. Amato, A. Boisen, Y. C. Shin, J. Kong, A. S. Sørensen, K. Usami, and E. S. Polzik, “Single-layer graphene on silicon nitride micromembrane resonators,” J. Appl. Phys. 115(5), 054513 (2014).
[Crossref]

Herrmann, L. O.

L. O. Herrmann, A. Olziersky, C. Gruber, G. Puebla-Hellmann, U. Drechsler, T. von Arx, K. Venkatesan, L. Novotny, and E. Lörtscher, “Fabrication of NEMS Actuated Plasmonic Antenna Platform for the Study of Optical Forces and Field Enhancements in Hotspots,” in Asia Communications and Photonics Conference 2016, (Optical Society of America, 2016).

Jaecklin, V. P.

V. P. Jaecklin, C. Linder, N. F. de Rooij, J. . Moret, and R. Vuilleumier, “Optical microshutters and torsional micromirrors for light modulator arrays,” in [1993] Proceedings IEEE Micro Electro Mechanical Systems, (1993), pp. 124–127.

Josse, F.

O. Brand, I. Dufour, S. Heinrich, and F. Josse, Resonant MEMS: Fundamentals, Implementation and Applications (Wiley-Blackwell, 2015).

Kanal, F.

Karrai, K.

I. Favero and K. Karrai, “Optomechanics of Deformable Optical Cavities,” Nat. Photonics 3(4), 201–205 (2009).
[Crossref]

Karvounis, A.

A. Karvounis, B. Gholipour, K. F. MacDonald, and N. I. Zheludev, “Giant Electro-Optical Effect through Electrostriction in a Nanomechanical Metamaterial,” Adv. Mater. 31(1), 1804801 (2019).
[Crossref]

Ke, J.

H. Mao, J. Ke, P. Xing, and Z. Lai, “Characterization of micromechanical optical modulator,” J. Microelectromech. Syst. 10(4), 589–592 (2001).
[Crossref]

Keiber, S.

Kimble, H. J.

D. J. Wilson, C. A. Regal, S. B. Papp, and H. J. Kimble, “Cavity Optomechanics with Stoichiometric SiN Films,” Phys. Rev. Lett. 103(20), 207204 (2009).
[Crossref]

Kippenberg, T. J.

R. Thijssen, T. J. Kippenberg, A. Polman, and E. Verhagen, “Plasmomechanical Resonators Based on Dimer Nanoantennas,” Nano Lett. 15(6), 3971–3976 (2015).
[Crossref]

R. Thijssen, T. J. Kippenberg, A. Polman, and E. Verhagen, “Parallel Transduction of Nanomechanical Motion Using Plasmonic Resonators,” ACS Photonics 1(11), 1181–1188 (2014).
[Crossref]

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity Optomechanics,” Rev. Mod. Phys. 86(4), 1391–1452 (2014).
[Crossref]

R. Thijssen, E. Verhagen, T. J. Kippenberg, and A. Polman, “Plasmon Nanomechanical Coupling for Nanoscale Transduction,” Nano Lett. 13(7), 3293–3297 (2013).
[Crossref]

E. Gavartin, P. Verlot, and T. J. Kippenberg, “A Hybrid On-Chip Optomechanical Transducer for Ultrasensitive Force Measurements,” Nat. Nanotechnol. 7(8), 509–514 (2012).
[Crossref]

Kloeck, B.

G. Perregaux, P. Weiss, B. Kloeck, H. Vuilliomenet, and J. P. Thiebaud, “High-speed micro-electromechanical light modulation arrays,” in International Conference on Solid-State Sensors and Actuators, Proceedings, (1997), pp. 71–74.

Kong, J.

S. Schmid, T. Bagci, E. Zeuthen, J. M. Taylor, P. K. Herring, M. C. Cassidy, C. M. Marcus, L. Guillermo Villanueva, B. Amato, A. Boisen, Y. C. Shin, J. Kong, A. S. Sørensen, K. Usami, and E. S. Polzik, “Single-layer graphene on silicon nitride micromembrane resonators,” J. Appl. Phys. 115(5), 054513 (2014).
[Crossref]

Lai, Z.

H. Mao, J. Ke, P. Xing, and Z. Lai, “Characterization of micromechanical optical modulator,” J. Microelectromech. Syst. 10(4), 589–592 (2001).
[Crossref]

Larsen, P. E.

S. Schmid, K. Wu, P. E. Larsen, T. Rindzevicius, and A. Boisen, “Low-Power Photothermal Probing of Single Plasmonic Nanostructures with Nanomechanical String Resonators,” Nano Lett. 14(5), 2318–2321 (2014).
[Crossref]

Larsen, T.

T. Larsen, S. Schmid, L. G. Villanueva, and A. Boisen, “Photothermal Analysis of Individual Nanoparticulate Samples Using Micromechanical Resonators,” ACS Nano 7(7), 6188–6193 (2013).
[Crossref]

S. Yamada, S. Schmid, T. Larsen, O. Hansen, and A. Boisen, “Photothermal Infrared Spectroscopy of Airborne Samples with Mechanical String Resonators,” Anal. Chem. 85(21), 10531–10535 (2013).
[Crossref]

Lazzarino, M.

D. Naumenko, V. Toffoli, S. Greco, S. Dal Zilio, A. Bek, and M. Lazzarino, “A Micromechanical Switchable Hotspot for SERS Applications,” Appl. Phys. Lett. 109(13), 131108 (2016).
[Crossref]

Linder, C.

V. P. Jaecklin, C. Linder, N. F. de Rooij, J. . Moret, and R. Vuilleumier, “Optical microshutters and torsional micromirrors for light modulator arrays,” in [1993] Proceedings IEEE Micro Electro Mechanical Systems, (1993), pp. 124–127.

Lishitz, R.

R. Lishitz and M. Cross, Nonlinear Dynamics of Nanomechanical Resonators (Wiley-VCH, 2010).

Loebich, O.

O. Loebich, “The Optical Properties of Gold,” Gold Bull. 5(1), 2–10 (1972).
[Crossref]

Lörtscher, E.

L. O. Herrmann, A. Olziersky, C. Gruber, G. Puebla-Hellmann, U. Drechsler, T. von Arx, K. Venkatesan, L. Novotny, and E. Lörtscher, “Fabrication of NEMS Actuated Plasmonic Antenna Platform for the Study of Optical Forces and Field Enhancements in Hotspots,” in Asia Communications and Photonics Conference 2016, (Optical Society of America, 2016).

Luhmann, N.

M. Piller, N. Luhmann, M.-H. Chien, and S. Schmid, “Nanoelectromechanical infrared detector,” in Optical Sensing, Imaging, and Photon Counting: From X-Rays to THz 2019, vol. 11088O. Mitrofanov, ed., International Society for Optics and Photonics (SPIE, 2019), pp. 9–15.

MacDonald, K. F.

A. Karvounis, B. Gholipour, K. F. MacDonald, and N. I. Zheludev, “Giant Electro-Optical Effect through Electrostriction in a Nanomechanical Metamaterial,” Adv. Mater. 31(1), 1804801 (2019).
[Crossref]

Mao, H.

H. Mao, J. Ke, P. Xing, and Z. Lai, “Characterization of micromechanical optical modulator,” J. Microelectromech. Syst. 10(4), 589–592 (2001).
[Crossref]

Marcus, C. M.

S. Schmid, T. Bagci, E. Zeuthen, J. M. Taylor, P. K. Herring, M. C. Cassidy, C. M. Marcus, L. Guillermo Villanueva, B. Amato, A. Boisen, Y. C. Shin, J. Kong, A. S. Sørensen, K. Usami, and E. S. Polzik, “Single-layer graphene on silicon nitride micromembrane resonators,” J. Appl. Phys. 115(5), 054513 (2014).
[Crossref]

Marquardt, F.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity Optomechanics,” Rev. Mod. Phys. 86(4), 1391–1452 (2014).
[Crossref]

Martínez, A.

J. Gomis-Bresco, D. Navarro-Urrios, M. Oudich, S. El-Jallal, A. Griol, D. Puerto, E. Chavez, Y. Pennec, B. Djafari-Rouhani, F. Alzina, A. Martínez, and C. M. S. Torres, “A 1D Optomechanical Crystal with a Complete Phononic Band Gap,” Nat. Commun. 5(1), 4452 (2014).
[Crossref]

Naumenko, D.

D. Naumenko, V. Toffoli, S. Greco, S. Dal Zilio, A. Bek, and M. Lazzarino, “A Micromechanical Switchable Hotspot for SERS Applications,” Appl. Phys. Lett. 109(13), 131108 (2016).
[Crossref]

Navarro-Urrios, D.

J. Gomis-Bresco, D. Navarro-Urrios, M. Oudich, S. El-Jallal, A. Griol, D. Puerto, E. Chavez, Y. Pennec, B. Djafari-Rouhani, F. Alzina, A. Martínez, and C. M. S. Torres, “A 1D Optomechanical Crystal with a Complete Phononic Band Gap,” Nat. Commun. 5(1), 4452 (2014).
[Crossref]

Novotny, L.

L. O. Herrmann, A. Olziersky, C. Gruber, G. Puebla-Hellmann, U. Drechsler, T. von Arx, K. Venkatesan, L. Novotny, and E. Lörtscher, “Fabrication of NEMS Actuated Plasmonic Antenna Platform for the Study of Optical Forces and Field Enhancements in Hotspots,” in Asia Communications and Photonics Conference 2016, (Optical Society of America, 2016).

Olziersky, A.

L. O. Herrmann, A. Olziersky, C. Gruber, G. Puebla-Hellmann, U. Drechsler, T. von Arx, K. Venkatesan, L. Novotny, and E. Lörtscher, “Fabrication of NEMS Actuated Plasmonic Antenna Platform for the Study of Optical Forces and Field Enhancements in Hotspots,” in Asia Communications and Photonics Conference 2016, (Optical Society of America, 2016).

Ou, J.-Y.

J.-Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “Giant Nonlinearity of an Optically Reconfigurable Plasmonic Metamaterial,” Adv. Mater. 28(4), 729–733 (2016).
[Crossref]

J. Valente, J.-Y. Ou, E. Plum, I. J. Youngs, and N. I. Zheludev, “A magneto-electro-optical effect in a plasmonic nanowire material,” Nat. Commun. 6(1), 7021–7027 (2015).
[Crossref]

J.-Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol. 8(4), 252–255 (2013).
[Crossref]

Oudich, M.

J. Gomis-Bresco, D. Navarro-Urrios, M. Oudich, S. El-Jallal, A. Griol, D. Puerto, E. Chavez, Y. Pennec, B. Djafari-Rouhani, F. Alzina, A. Martínez, and C. M. S. Torres, “A 1D Optomechanical Crystal with a Complete Phononic Band Gap,” Nat. Commun. 5(1), 4452 (2014).
[Crossref]

Papp, S. B.

D. J. Wilson, C. A. Regal, S. B. Papp, and H. J. Kimble, “Cavity Optomechanics with Stoichiometric SiN Films,” Phys. Rev. Lett. 103(20), 207204 (2009).
[Crossref]

Pennec, Y.

J. Gomis-Bresco, D. Navarro-Urrios, M. Oudich, S. El-Jallal, A. Griol, D. Puerto, E. Chavez, Y. Pennec, B. Djafari-Rouhani, F. Alzina, A. Martínez, and C. M. S. Torres, “A 1D Optomechanical Crystal with a Complete Phononic Band Gap,” Nat. Commun. 5(1), 4452 (2014).
[Crossref]

Perregaux, G.

G. Perregaux, P. Weiss, B. Kloeck, H. Vuilliomenet, and J. P. Thiebaud, “High-speed micro-electromechanical light modulation arrays,” in International Conference on Solid-State Sensors and Actuators, Proceedings, (1997), pp. 71–74.

Piller, M.

M. Piller, N. Luhmann, M.-H. Chien, and S. Schmid, “Nanoelectromechanical infrared detector,” in Optical Sensing, Imaging, and Photon Counting: From X-Rays to THz 2019, vol. 11088O. Mitrofanov, ed., International Society for Optics and Photonics (SPIE, 2019), pp. 9–15.

Plum, E.

J.-Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “Giant Nonlinearity of an Optically Reconfigurable Plasmonic Metamaterial,” Adv. Mater. 28(4), 729–733 (2016).
[Crossref]

N. I. Zheludev and E. Plum, “Reconfigurable Nanomechanical Photonic Metamaterials,” Nat. Nanotechnol. 11(1), 16–22 (2016).
[Crossref]

J. Valente, J.-Y. Ou, E. Plum, I. J. Youngs, and N. I. Zheludev, “A magneto-electro-optical effect in a plasmonic nanowire material,” Nat. Commun. 6(1), 7021–7027 (2015).
[Crossref]

J.-Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol. 8(4), 252–255 (2013).
[Crossref]

Polman, A.

R. Thijssen, T. J. Kippenberg, A. Polman, and E. Verhagen, “Plasmomechanical Resonators Based on Dimer Nanoantennas,” Nano Lett. 15(6), 3971–3976 (2015).
[Crossref]

R. Thijssen, T. J. Kippenberg, A. Polman, and E. Verhagen, “Parallel Transduction of Nanomechanical Motion Using Plasmonic Resonators,” ACS Photonics 1(11), 1181–1188 (2014).
[Crossref]

R. Thijssen, E. Verhagen, T. J. Kippenberg, and A. Polman, “Plasmon Nanomechanical Coupling for Nanoscale Transduction,” Nano Lett. 13(7), 3293–3297 (2013).
[Crossref]

Polzik, E. S.

T. Bagci, A. Simonsen, S. Schmid, L. G. Villanueva, E. Zeuthen, J. Appel, J. M. Taylor, A. Sorensen, K. Usami, A. Schliesser, and E. S. Polzik, “Optical Detection of Radio Waves Through a Nanomechanical Transducer,” Nature 507(7490), 81–85 (2014).
[Crossref]

S. Schmid, T. Bagci, E. Zeuthen, J. M. Taylor, P. K. Herring, M. C. Cassidy, C. M. Marcus, L. Guillermo Villanueva, B. Amato, A. Boisen, Y. C. Shin, J. Kong, A. S. Sørensen, K. Usami, and E. S. Polzik, “Single-layer graphene on silicon nitride micromembrane resonators,” J. Appl. Phys. 115(5), 054513 (2014).
[Crossref]

Pramodkumar, E.

A. J. Andersen, S. Yamada, E. Pramodkumar, T. L. Andresen, A. Boisen, and S. Schmid, “Nanomechanical ir spectroscopy for fast analysis of liquid-dispersed engineered nanomaterials,” Sens. Actuators, B 233, 667–673 (2016).
[Crossref]

Puebla-Hellmann, G.

L. O. Herrmann, A. Olziersky, C. Gruber, G. Puebla-Hellmann, U. Drechsler, T. von Arx, K. Venkatesan, L. Novotny, and E. Lörtscher, “Fabrication of NEMS Actuated Plasmonic Antenna Platform for the Study of Optical Forces and Field Enhancements in Hotspots,” in Asia Communications and Photonics Conference 2016, (Optical Society of America, 2016).

Puerto, D.

J. Gomis-Bresco, D. Navarro-Urrios, M. Oudich, S. El-Jallal, A. Griol, D. Puerto, E. Chavez, Y. Pennec, B. Djafari-Rouhani, F. Alzina, A. Martínez, and C. M. S. Torres, “A 1D Optomechanical Crystal with a Complete Phononic Band Gap,” Nat. Commun. 5(1), 4452 (2014).
[Crossref]

Regal, C. A.

D. J. Wilson, C. A. Regal, S. B. Papp, and H. J. Kimble, “Cavity Optomechanics with Stoichiometric SiN Films,” Phys. Rev. Lett. 103(20), 207204 (2009).
[Crossref]

Rindzevicius, T.

S. Schmid, K. Wu, P. E. Larsen, T. Rindzevicius, and A. Boisen, “Low-Power Photothermal Probing of Single Plasmonic Nanostructures with Nanomechanical String Resonators,” Nano Lett. 14(5), 2318–2321 (2014).
[Crossref]

Roxworthy, B. J.

B. J. Roxworthy and V. A. Aksyuk, “Nanomechanical Motion Transduction with a Scalable Localized Gap Plasmon Architecture,” Nat. Commun. 7(1), 13746 (2016).
[Crossref]

Schliesser, A.

T. Bagci, A. Simonsen, S. Schmid, L. G. Villanueva, E. Zeuthen, J. Appel, J. M. Taylor, A. Sorensen, K. Usami, A. Schliesser, and E. S. Polzik, “Optical Detection of Radio Waves Through a Nanomechanical Transducer,” Nature 507(7490), 81–85 (2014).
[Crossref]

Schmid, S.

A. J. Andersen, S. Yamada, E. Pramodkumar, T. L. Andresen, A. Boisen, and S. Schmid, “Nanomechanical ir spectroscopy for fast analysis of liquid-dispersed engineered nanomaterials,” Sens. Actuators, B 233, 667–673 (2016).
[Crossref]

T. Bagci, A. Simonsen, S. Schmid, L. G. Villanueva, E. Zeuthen, J. Appel, J. M. Taylor, A. Sorensen, K. Usami, A. Schliesser, and E. S. Polzik, “Optical Detection of Radio Waves Through a Nanomechanical Transducer,” Nature 507(7490), 81–85 (2014).
[Crossref]

S. Schmid, K. Wu, P. E. Larsen, T. Rindzevicius, and A. Boisen, “Low-Power Photothermal Probing of Single Plasmonic Nanostructures with Nanomechanical String Resonators,” Nano Lett. 14(5), 2318–2321 (2014).
[Crossref]

S. Schmid, T. Bagci, E. Zeuthen, J. M. Taylor, P. K. Herring, M. C. Cassidy, C. M. Marcus, L. Guillermo Villanueva, B. Amato, A. Boisen, Y. C. Shin, J. Kong, A. S. Sørensen, K. Usami, and E. S. Polzik, “Single-layer graphene on silicon nitride micromembrane resonators,” J. Appl. Phys. 115(5), 054513 (2014).
[Crossref]

S. Yamada, S. Schmid, T. Larsen, O. Hansen, and A. Boisen, “Photothermal Infrared Spectroscopy of Airborne Samples with Mechanical String Resonators,” Anal. Chem. 85(21), 10531–10535 (2013).
[Crossref]

T. Larsen, S. Schmid, L. G. Villanueva, and A. Boisen, “Photothermal Analysis of Individual Nanoparticulate Samples Using Micromechanical Resonators,” ACS Nano 7(7), 6188–6193 (2013).
[Crossref]

M. Piller, N. Luhmann, M.-H. Chien, and S. Schmid, “Nanoelectromechanical infrared detector,” in Optical Sensing, Imaging, and Photon Counting: From X-Rays to THz 2019, vol. 11088O. Mitrofanov, ed., International Society for Optics and Photonics (SPIE, 2019), pp. 9–15.

Shin, Y. C.

S. Schmid, T. Bagci, E. Zeuthen, J. M. Taylor, P. K. Herring, M. C. Cassidy, C. M. Marcus, L. Guillermo Villanueva, B. Amato, A. Boisen, Y. C. Shin, J. Kong, A. S. Sørensen, K. Usami, and E. S. Polzik, “Single-layer graphene on silicon nitride micromembrane resonators,” J. Appl. Phys. 115(5), 054513 (2014).
[Crossref]

Simonsen, A.

T. Bagci, A. Simonsen, S. Schmid, L. G. Villanueva, E. Zeuthen, J. Appel, J. M. Taylor, A. Sorensen, K. Usami, A. Schliesser, and E. S. Polzik, “Optical Detection of Radio Waves Through a Nanomechanical Transducer,” Nature 507(7490), 81–85 (2014).
[Crossref]

Sorensen, A.

T. Bagci, A. Simonsen, S. Schmid, L. G. Villanueva, E. Zeuthen, J. Appel, J. M. Taylor, A. Sorensen, K. Usami, A. Schliesser, and E. S. Polzik, “Optical Detection of Radio Waves Through a Nanomechanical Transducer,” Nature 507(7490), 81–85 (2014).
[Crossref]

Sørensen, A. S.

S. Schmid, T. Bagci, E. Zeuthen, J. M. Taylor, P. K. Herring, M. C. Cassidy, C. M. Marcus, L. Guillermo Villanueva, B. Amato, A. Boisen, Y. C. Shin, J. Kong, A. S. Sørensen, K. Usami, and E. S. Polzik, “Single-layer graphene on silicon nitride micromembrane resonators,” J. Appl. Phys. 115(5), 054513 (2014).
[Crossref]

Sun, C.

B. Dong, X. Chen, F. Zhou, C. Wang, H. F. Zhang, and C. Sun, “Gigahertz all-optical modulation using reconfigurable nanophotonic metamolecules,” Nano Lett. 16(12), 7690–7695 (2016).
[Crossref]

Taylor, J. M.

T. Bagci, A. Simonsen, S. Schmid, L. G. Villanueva, E. Zeuthen, J. Appel, J. M. Taylor, A. Sorensen, K. Usami, A. Schliesser, and E. S. Polzik, “Optical Detection of Radio Waves Through a Nanomechanical Transducer,” Nature 507(7490), 81–85 (2014).
[Crossref]

S. Schmid, T. Bagci, E. Zeuthen, J. M. Taylor, P. K. Herring, M. C. Cassidy, C. M. Marcus, L. Guillermo Villanueva, B. Amato, A. Boisen, Y. C. Shin, J. Kong, A. S. Sørensen, K. Usami, and E. S. Polzik, “Single-layer graphene on silicon nitride micromembrane resonators,” J. Appl. Phys. 115(5), 054513 (2014).
[Crossref]

Thiebaud, J. P.

G. Perregaux, P. Weiss, B. Kloeck, H. Vuilliomenet, and J. P. Thiebaud, “High-speed micro-electromechanical light modulation arrays,” in International Conference on Solid-State Sensors and Actuators, Proceedings, (1997), pp. 71–74.

Thijssen, R.

R. Thijssen, T. J. Kippenberg, A. Polman, and E. Verhagen, “Plasmomechanical Resonators Based on Dimer Nanoantennas,” Nano Lett. 15(6), 3971–3976 (2015).
[Crossref]

R. Thijssen, T. J. Kippenberg, A. Polman, and E. Verhagen, “Parallel Transduction of Nanomechanical Motion Using Plasmonic Resonators,” ACS Photonics 1(11), 1181–1188 (2014).
[Crossref]

R. Thijssen, E. Verhagen, T. J. Kippenberg, and A. Polman, “Plasmon Nanomechanical Coupling for Nanoscale Transduction,” Nano Lett. 13(7), 3293–3297 (2013).
[Crossref]

Toffoli, V.

D. Naumenko, V. Toffoli, S. Greco, S. Dal Zilio, A. Bek, and M. Lazzarino, “A Micromechanical Switchable Hotspot for SERS Applications,” Appl. Phys. Lett. 109(13), 131108 (2016).
[Crossref]

Torres, C. M. S.

J. Gomis-Bresco, D. Navarro-Urrios, M. Oudich, S. El-Jallal, A. Griol, D. Puerto, E. Chavez, Y. Pennec, B. Djafari-Rouhani, F. Alzina, A. Martínez, and C. M. S. Torres, “A 1D Optomechanical Crystal with a Complete Phononic Band Gap,” Nat. Commun. 5(1), 4452 (2014).
[Crossref]

Toshiyoshi, H.

H. Toshiyoshi, H. Fujita, and T. Ueda, “A Piezoelectrically Operated Optical Chopper by Quartz Micromachining,” J. Microelectromech. Syst. 4(1), 3–9 (1995).
[Crossref]

Ueda, T.

H. Toshiyoshi, H. Fujita, and T. Ueda, “A Piezoelectrically Operated Optical Chopper by Quartz Micromachining,” J. Microelectromech. Syst. 4(1), 3–9 (1995).
[Crossref]

Usami, K.

S. Schmid, T. Bagci, E. Zeuthen, J. M. Taylor, P. K. Herring, M. C. Cassidy, C. M. Marcus, L. Guillermo Villanueva, B. Amato, A. Boisen, Y. C. Shin, J. Kong, A. S. Sørensen, K. Usami, and E. S. Polzik, “Single-layer graphene on silicon nitride micromembrane resonators,” J. Appl. Phys. 115(5), 054513 (2014).
[Crossref]

T. Bagci, A. Simonsen, S. Schmid, L. G. Villanueva, E. Zeuthen, J. Appel, J. M. Taylor, A. Sorensen, K. Usami, A. Schliesser, and E. S. Polzik, “Optical Detection of Radio Waves Through a Nanomechanical Transducer,” Nature 507(7490), 81–85 (2014).
[Crossref]

Valente, J.

J. Valente, J.-Y. Ou, E. Plum, I. J. Youngs, and N. I. Zheludev, “A magneto-electro-optical effect in a plasmonic nanowire material,” Nat. Commun. 6(1), 7021–7027 (2015).
[Crossref]

Venkatesan, K.

L. O. Herrmann, A. Olziersky, C. Gruber, G. Puebla-Hellmann, U. Drechsler, T. von Arx, K. Venkatesan, L. Novotny, and E. Lörtscher, “Fabrication of NEMS Actuated Plasmonic Antenna Platform for the Study of Optical Forces and Field Enhancements in Hotspots,” in Asia Communications and Photonics Conference 2016, (Optical Society of America, 2016).

Verhagen, E.

R. Thijssen, T. J. Kippenberg, A. Polman, and E. Verhagen, “Plasmomechanical Resonators Based on Dimer Nanoantennas,” Nano Lett. 15(6), 3971–3976 (2015).
[Crossref]

R. Thijssen, T. J. Kippenberg, A. Polman, and E. Verhagen, “Parallel Transduction of Nanomechanical Motion Using Plasmonic Resonators,” ACS Photonics 1(11), 1181–1188 (2014).
[Crossref]

R. Thijssen, E. Verhagen, T. J. Kippenberg, and A. Polman, “Plasmon Nanomechanical Coupling for Nanoscale Transduction,” Nano Lett. 13(7), 3293–3297 (2013).
[Crossref]

Verlot, P.

E. Gavartin, P. Verlot, and T. J. Kippenberg, “A Hybrid On-Chip Optomechanical Transducer for Ultrasensitive Force Measurements,” Nat. Nanotechnol. 7(8), 509–514 (2012).
[Crossref]

Villanueva, L. G.

T. Bagci, A. Simonsen, S. Schmid, L. G. Villanueva, E. Zeuthen, J. Appel, J. M. Taylor, A. Sorensen, K. Usami, A. Schliesser, and E. S. Polzik, “Optical Detection of Radio Waves Through a Nanomechanical Transducer,” Nature 507(7490), 81–85 (2014).
[Crossref]

T. Larsen, S. Schmid, L. G. Villanueva, and A. Boisen, “Photothermal Analysis of Individual Nanoparticulate Samples Using Micromechanical Resonators,” ACS Nano 7(7), 6188–6193 (2013).
[Crossref]

von Arx, T.

L. O. Herrmann, A. Olziersky, C. Gruber, G. Puebla-Hellmann, U. Drechsler, T. von Arx, K. Venkatesan, L. Novotny, and E. Lörtscher, “Fabrication of NEMS Actuated Plasmonic Antenna Platform for the Study of Optical Forces and Field Enhancements in Hotspots,” in Asia Communications and Photonics Conference 2016, (Optical Society of America, 2016).

Vuilleumier, R.

V. P. Jaecklin, C. Linder, N. F. de Rooij, J. . Moret, and R. Vuilleumier, “Optical microshutters and torsional micromirrors for light modulator arrays,” in [1993] Proceedings IEEE Micro Electro Mechanical Systems, (1993), pp. 124–127.

Vuilliomenet, H.

G. Perregaux, P. Weiss, B. Kloeck, H. Vuilliomenet, and J. P. Thiebaud, “High-speed micro-electromechanical light modulation arrays,” in International Conference on Solid-State Sensors and Actuators, Proceedings, (1997), pp. 71–74.

Wang, C.

B. Dong, X. Chen, F. Zhou, C. Wang, H. F. Zhang, and C. Sun, “Gigahertz all-optical modulation using reconfigurable nanophotonic metamolecules,” Nano Lett. 16(12), 7690–7695 (2016).
[Crossref]

Weiss, P.

G. Perregaux, P. Weiss, B. Kloeck, H. Vuilliomenet, and J. P. Thiebaud, “High-speed micro-electromechanical light modulation arrays,” in International Conference on Solid-State Sensors and Actuators, Proceedings, (1997), pp. 71–74.

White, R. M.

M. T. Ching, R. A. Brennen, and R. M. White, “Microfabricated optical chopper,” Opt. Eng. 33(11), 3634–3642 (1994).
[Crossref]

Wilson, D. J.

D. J. Wilson, C. A. Regal, S. B. Papp, and H. J. Kimble, “Cavity Optomechanics with Stoichiometric SiN Films,” Phys. Rev. Lett. 103(20), 207204 (2009).
[Crossref]

Wu, K.

S. Schmid, K. Wu, P. E. Larsen, T. Rindzevicius, and A. Boisen, “Low-Power Photothermal Probing of Single Plasmonic Nanostructures with Nanomechanical String Resonators,” Nano Lett. 14(5), 2318–2321 (2014).
[Crossref]

Xing, P.

H. Mao, J. Ke, P. Xing, and Z. Lai, “Characterization of micromechanical optical modulator,” J. Microelectromech. Syst. 10(4), 589–592 (2001).
[Crossref]

Yamada, S.

A. J. Andersen, S. Yamada, E. Pramodkumar, T. L. Andresen, A. Boisen, and S. Schmid, “Nanomechanical ir spectroscopy for fast analysis of liquid-dispersed engineered nanomaterials,” Sens. Actuators, B 233, 667–673 (2016).
[Crossref]

S. Yamada, S. Schmid, T. Larsen, O. Hansen, and A. Boisen, “Photothermal Infrared Spectroscopy of Airborne Samples with Mechanical String Resonators,” Anal. Chem. 85(21), 10531–10535 (2013).
[Crossref]

Youngs, I. J.

J. Valente, J.-Y. Ou, E. Plum, I. J. Youngs, and N. I. Zheludev, “A magneto-electro-optical effect in a plasmonic nanowire material,” Nat. Commun. 6(1), 7021–7027 (2015).
[Crossref]

Zeuthen, E.

T. Bagci, A. Simonsen, S. Schmid, L. G. Villanueva, E. Zeuthen, J. Appel, J. M. Taylor, A. Sorensen, K. Usami, A. Schliesser, and E. S. Polzik, “Optical Detection of Radio Waves Through a Nanomechanical Transducer,” Nature 507(7490), 81–85 (2014).
[Crossref]

S. Schmid, T. Bagci, E. Zeuthen, J. M. Taylor, P. K. Herring, M. C. Cassidy, C. M. Marcus, L. Guillermo Villanueva, B. Amato, A. Boisen, Y. C. Shin, J. Kong, A. S. Sørensen, K. Usami, and E. S. Polzik, “Single-layer graphene on silicon nitride micromembrane resonators,” J. Appl. Phys. 115(5), 054513 (2014).
[Crossref]

Zhang, H. F.

B. Dong, X. Chen, F. Zhou, C. Wang, H. F. Zhang, and C. Sun, “Gigahertz all-optical modulation using reconfigurable nanophotonic metamolecules,” Nano Lett. 16(12), 7690–7695 (2016).
[Crossref]

Zhang, J.

J.-Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “Giant Nonlinearity of an Optically Reconfigurable Plasmonic Metamaterial,” Adv. Mater. 28(4), 729–733 (2016).
[Crossref]

J.-Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol. 8(4), 252–255 (2013).
[Crossref]

Zheludev, N. I.

A. Karvounis, B. Gholipour, K. F. MacDonald, and N. I. Zheludev, “Giant Electro-Optical Effect through Electrostriction in a Nanomechanical Metamaterial,” Adv. Mater. 31(1), 1804801 (2019).
[Crossref]

N. I. Zheludev and E. Plum, “Reconfigurable Nanomechanical Photonic Metamaterials,” Nat. Nanotechnol. 11(1), 16–22 (2016).
[Crossref]

J.-Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “Giant Nonlinearity of an Optically Reconfigurable Plasmonic Metamaterial,” Adv. Mater. 28(4), 729–733 (2016).
[Crossref]

J. Valente, J.-Y. Ou, E. Plum, I. J. Youngs, and N. I. Zheludev, “A magneto-electro-optical effect in a plasmonic nanowire material,” Nat. Commun. 6(1), 7021–7027 (2015).
[Crossref]

J.-Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol. 8(4), 252–255 (2013).
[Crossref]

Zhou, F.

B. Dong, X. Chen, F. Zhou, C. Wang, H. F. Zhang, and C. Sun, “Gigahertz all-optical modulation using reconfigurable nanophotonic metamolecules,” Nano Lett. 16(12), 7690–7695 (2016).
[Crossref]

ACS Nano (1)

T. Larsen, S. Schmid, L. G. Villanueva, and A. Boisen, “Photothermal Analysis of Individual Nanoparticulate Samples Using Micromechanical Resonators,” ACS Nano 7(7), 6188–6193 (2013).
[Crossref]

ACS Photonics (1)

R. Thijssen, T. J. Kippenberg, A. Polman, and E. Verhagen, “Parallel Transduction of Nanomechanical Motion Using Plasmonic Resonators,” ACS Photonics 1(11), 1181–1188 (2014).
[Crossref]

Adv. Mater. (2)

A. Karvounis, B. Gholipour, K. F. MacDonald, and N. I. Zheludev, “Giant Electro-Optical Effect through Electrostriction in a Nanomechanical Metamaterial,” Adv. Mater. 31(1), 1804801 (2019).
[Crossref]

J.-Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “Giant Nonlinearity of an Optically Reconfigurable Plasmonic Metamaterial,” Adv. Mater. 28(4), 729–733 (2016).
[Crossref]

Anal. Chem. (1)

S. Yamada, S. Schmid, T. Larsen, O. Hansen, and A. Boisen, “Photothermal Infrared Spectroscopy of Airborne Samples with Mechanical String Resonators,” Anal. Chem. 85(21), 10531–10535 (2013).
[Crossref]

Appl. Phys. Lett. (1)

D. Naumenko, V. Toffoli, S. Greco, S. Dal Zilio, A. Bek, and M. Lazzarino, “A Micromechanical Switchable Hotspot for SERS Applications,” Appl. Phys. Lett. 109(13), 131108 (2016).
[Crossref]

Gold Bull. (1)

O. Loebich, “The Optical Properties of Gold,” Gold Bull. 5(1), 2–10 (1972).
[Crossref]

J. Appl. Phys. (1)

S. Schmid, T. Bagci, E. Zeuthen, J. M. Taylor, P. K. Herring, M. C. Cassidy, C. M. Marcus, L. Guillermo Villanueva, B. Amato, A. Boisen, Y. C. Shin, J. Kong, A. S. Sørensen, K. Usami, and E. S. Polzik, “Single-layer graphene on silicon nitride micromembrane resonators,” J. Appl. Phys. 115(5), 054513 (2014).
[Crossref]

J. Lightwave Technol. (1)

J. Microelectromech. Syst. (2)

H. Toshiyoshi, H. Fujita, and T. Ueda, “A Piezoelectrically Operated Optical Chopper by Quartz Micromachining,” J. Microelectromech. Syst. 4(1), 3–9 (1995).
[Crossref]

H. Mao, J. Ke, P. Xing, and Z. Lai, “Characterization of micromechanical optical modulator,” J. Microelectromech. Syst. 10(4), 589–592 (2001).
[Crossref]

Nano Lett. (4)

R. Thijssen, T. J. Kippenberg, A. Polman, and E. Verhagen, “Plasmomechanical Resonators Based on Dimer Nanoantennas,” Nano Lett. 15(6), 3971–3976 (2015).
[Crossref]

S. Schmid, K. Wu, P. E. Larsen, T. Rindzevicius, and A. Boisen, “Low-Power Photothermal Probing of Single Plasmonic Nanostructures with Nanomechanical String Resonators,” Nano Lett. 14(5), 2318–2321 (2014).
[Crossref]

R. Thijssen, E. Verhagen, T. J. Kippenberg, and A. Polman, “Plasmon Nanomechanical Coupling for Nanoscale Transduction,” Nano Lett. 13(7), 3293–3297 (2013).
[Crossref]

B. Dong, X. Chen, F. Zhou, C. Wang, H. F. Zhang, and C. Sun, “Gigahertz all-optical modulation using reconfigurable nanophotonic metamolecules,” Nano Lett. 16(12), 7690–7695 (2016).
[Crossref]

Nat. Commun. (3)

J. Valente, J.-Y. Ou, E. Plum, I. J. Youngs, and N. I. Zheludev, “A magneto-electro-optical effect in a plasmonic nanowire material,” Nat. Commun. 6(1), 7021–7027 (2015).
[Crossref]

J. Gomis-Bresco, D. Navarro-Urrios, M. Oudich, S. El-Jallal, A. Griol, D. Puerto, E. Chavez, Y. Pennec, B. Djafari-Rouhani, F. Alzina, A. Martínez, and C. M. S. Torres, “A 1D Optomechanical Crystal with a Complete Phononic Band Gap,” Nat. Commun. 5(1), 4452 (2014).
[Crossref]

B. J. Roxworthy and V. A. Aksyuk, “Nanomechanical Motion Transduction with a Scalable Localized Gap Plasmon Architecture,” Nat. Commun. 7(1), 13746 (2016).
[Crossref]

Nat. Nanotechnol. (3)

E. Gavartin, P. Verlot, and T. J. Kippenberg, “A Hybrid On-Chip Optomechanical Transducer for Ultrasensitive Force Measurements,” Nat. Nanotechnol. 7(8), 509–514 (2012).
[Crossref]

N. I. Zheludev and E. Plum, “Reconfigurable Nanomechanical Photonic Metamaterials,” Nat. Nanotechnol. 11(1), 16–22 (2016).
[Crossref]

J.-Y. Ou, E. Plum, J. Zhang, and N. I. Zheludev, “An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared,” Nat. Nanotechnol. 8(4), 252–255 (2013).
[Crossref]

Nat. Photonics (1)

I. Favero and K. Karrai, “Optomechanics of Deformable Optical Cavities,” Nat. Photonics 3(4), 201–205 (2009).
[Crossref]

Nature (1)

T. Bagci, A. Simonsen, S. Schmid, L. G. Villanueva, E. Zeuthen, J. Appel, J. M. Taylor, A. Sorensen, K. Usami, A. Schliesser, and E. S. Polzik, “Optical Detection of Radio Waves Through a Nanomechanical Transducer,” Nature 507(7490), 81–85 (2014).
[Crossref]

Opt. Eng. (1)

M. T. Ching, R. A. Brennen, and R. M. White, “Microfabricated optical chopper,” Opt. Eng. 33(11), 3634–3642 (1994).
[Crossref]

Opt. Express (1)

Phys. Rev. Lett. (1)

D. J. Wilson, C. A. Regal, S. B. Papp, and H. J. Kimble, “Cavity Optomechanics with Stoichiometric SiN Films,” Phys. Rev. Lett. 103(20), 207204 (2009).
[Crossref]

Rev. Mod. Phys. (1)

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity Optomechanics,” Rev. Mod. Phys. 86(4), 1391–1452 (2014).
[Crossref]

Sens. Actuators, B (1)

A. J. Andersen, S. Yamada, E. Pramodkumar, T. L. Andresen, A. Boisen, and S. Schmid, “Nanomechanical ir spectroscopy for fast analysis of liquid-dispersed engineered nanomaterials,” Sens. Actuators, B 233, 667–673 (2016).
[Crossref]

Other (6)

R. Lishitz and M. Cross, Nonlinear Dynamics of Nanomechanical Resonators (Wiley-VCH, 2010).

O. Brand, I. Dufour, S. Heinrich, and F. Josse, Resonant MEMS: Fundamentals, Implementation and Applications (Wiley-Blackwell, 2015).

G. Perregaux, P. Weiss, B. Kloeck, H. Vuilliomenet, and J. P. Thiebaud, “High-speed micro-electromechanical light modulation arrays,” in International Conference on Solid-State Sensors and Actuators, Proceedings, (1997), pp. 71–74.

V. P. Jaecklin, C. Linder, N. F. de Rooij, J. . Moret, and R. Vuilleumier, “Optical microshutters and torsional micromirrors for light modulator arrays,” in [1993] Proceedings IEEE Micro Electro Mechanical Systems, (1993), pp. 124–127.

M. Piller, N. Luhmann, M.-H. Chien, and S. Schmid, “Nanoelectromechanical infrared detector,” in Optical Sensing, Imaging, and Photon Counting: From X-Rays to THz 2019, vol. 11088O. Mitrofanov, ed., International Society for Optics and Photonics (SPIE, 2019), pp. 9–15.

L. O. Herrmann, A. Olziersky, C. Gruber, G. Puebla-Hellmann, U. Drechsler, T. von Arx, K. Venkatesan, L. Novotny, and E. Lörtscher, “Fabrication of NEMS Actuated Plasmonic Antenna Platform for the Study of Optical Forces and Field Enhancements in Hotspots,” in Asia Communications and Photonics Conference 2016, (Optical Society of America, 2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1. (a) SEM Image of the opto-mechanical resonator, made of two SiN strings covered with electrically-connected gold electrodes. The width of the gap at the center of the strings is between 0.55 ${\mu }$m and 1.65 ${\mu }$m depending on the sample measured. (b) The experimental setup used for our optical measurements. The strings are placed in a vacuum chamber with a static magnetic field (200 mT), and an oscillating current is sent through one of the strings. This will create Lorentz forces that will excite the in-plane mode of the string, changing the width of the gap between the strings. A tunable Ti-Sapphire laser, focused on the center of the gap between the strings, is then used to detect the string vibration through the modulation of the laser reflection on the moving mirror. A waveplate and two linear polarizers are used to adjust the laser power and its polarisation. The sample is kept in a vacuum chamber with the neodymium magnets used to create the static magnetic field. A silicon avalanche photodetector (Si APD) is used to detect the reflected optical signal. Both the APD and the sample are connected to a lock-in amplifier used to send the electrical current through the SiN string and to visualize the resulting changes in the reflected laser optical power measured by the APD.
Fig. 2.
Fig. 2. (a) The mechanical resonance peak of the fundamental in-plane mode of one of the 100 $\mu$m long strings, as measured from the change in the reflected laser power when an alternating driving voltage is applied to the string. The resonance peak becomes strongly nonlinear for higher driving currents, which is typical of mechanical string resonators. However, there seems to be a maximal driving voltage (15 mV here) above which the shape and amplitude of the resonance peak no longer change significantly, maybe corresponding to the voltage where the gap between the strings is completely closed. (b) The nanoelectromechanical modulation of the reflected laser power as a function of time, when driven at a frequency close to the resonance peak maximum, for the three samples we measured. These samples have different string lengths and therefore different resonance frequencies and maximal driving voltages. For the 100 $\mu$m string, we have a quasi-sinusoidal signal and an optical modulation depth of 31${\%}$. For the 300 $\mu$m and 500 $\mu$m strings, we are able to achieve an optical modulation depth of close to 100${\%}$ with a driving voltage below 1 mV, but the modulated signal is no longer quasi-sinusoidal.
Fig. 3.
Fig. 3. (a) SEM image of the opto-mechanical resonator with with comb-drives actuators. The width of the gap at the center of the strings is 1.25 ${\mu }$m. (b) The electro-optical modulation of the reflected laser power as a function of time, when this resonator is driven at a frequency close to its resonance peak maximum, for different driving voltages. The optical modulation depth here is of 82.3${\%}$ for $V_{AC}$ = 250 mV.

Metrics