Abstract

We demonstrate a robust linearly polarized 365 W, very low amplitude noise, single frequency master oscillator power amplifier at 1064 nm. Power scaling was done through a custom large mode area fiber with a mode field diameter of 30 µm. No evidence of stimulated Brillouin scattering or modal instabilities are observed. The relative intensity noise is reduced down to −160 dBc/Hz between 2 kHz and 10 kHz via a wide band servo loop (1 MHz bandwidth). We achieve 350 W of isolated power, with a power stability < 0.7% RMS over 1100 hours of continuous operation and a near diffraction limited beam (M2 < 1.1).

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
550 W single frequency fiber amplifiers emitting at 1030 nm based on a tapered Yb-doped fiber

Wenchang Lai, Pengfei Ma, Wei Liu, Long Huang, Can Li, Yanxing Ma, and Pu Zhou
Opt. Express 28(14) 20908-20919 (2020)

170 W, single-frequency, single-mode, linearly-polarized, Yb-doped all-fiber amplifier

Lei Zhang, Shuzhen Cui, Chi Liu, Jun Zhou, and Yan Feng
Opt. Express 21(5) 5456-5462 (2013)

15 W high OSNR kHz-linewidth linearly-polarized all-fiber single-frequency MOPA at 1.6 μm

Changsheng Yang, Xianchao Guan, Qilai Zhao, Wei Lin, Can Li, Jiulin Gan, Qi Qian, Zhouming Feng, Zhongmin Yang, and Shanhui Xu
Opt. Express 26(10) 12863-12869 (2018)

References

  • View by:
  • |
  • |
  • |

  1. LIGO Scientific Collaboration, “Advanced Virgo: a second-generation interferometric gravitational wave detector,” Classical Quantum Gravity 32(2), 024001 (2015).
    [Crossref]
  2. LIGO Scientific Collaboration and Virgo Collaboration, “Observation of Gravitational Waves from a Binary Black Hole Merger,” Phys. Rev. Lett. 116(6), 061102 (2016).
    [Crossref]
  3. J. Hu, L. Zhang, H. Liu, K. Liu, Z. Xu, and Y. Feng, “High power room temperature 1014.8 nm Yb fiber amplifier and frequency quadrupling to 253.7 nm for laser cooling of mercury atoms,” Opt. Express 21(25), 30958 (2013).
    [Crossref]
  4. M. Anderlini, P. J. Lee, B. L. Brown, J. Sebby-Strabley, W. D. Phillips, and J. V. Porto, “Controlled exchange interaction between pairs of neutral atoms in an optical lattice,” Nature 448(7152), 452–456 (2007).
    [Crossref]
  5. J. Wu, X. Zhu, H. Wei, K. Wiersma, M. Li, J. Zong, A. Chavez-Pirson, V. Temyanko, L. J. LaComb, R. A. Norwood, and N. Peyghambarian, “Power scalable 10 W 976 nm single-frequency linearly polarized laser source,” Opt. Lett. 43(4), 951 (2018).
    [Crossref]
  6. N. Valero, C. Feral, J. Lhermite, S. Petit, R. Royon, Y.-V. Bardin, J. Boullet, A. Proulx, Y. Taillon, and E. Cormier, “29W diffraction limited monolithic ytterbium doped fiber laser system operating at 976 nm in the continuous wave regime,” in 2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference (2019), Paper Cj_13_4 (Optical Society of America, 2019), p. cj_13_4.
  7. B. Gouhier, S. Rota-Rodrigo, G. Guiraud, N. Traynor, and G. Santarelli, “Low-noise single-frequency 50 W fiber laser operating at 1013 nm,” Laser Phys. Lett. 16(4), 045103 (2019).
    [Crossref]
  8. B. Gouhier, G. Guiraud, S. Rota-Rodrigo, J. Zhao, N. Traynor, and G. Santarelli, “25 W single-frequency, low noise fiber MOPA at 1120 nm,” Opt. Lett. 43(2), 308 (2018).
    [Crossref]
  9. E. A. Shcherbakov, V. V. Fomin, A. A. Abramov, A. A. Ferin, D. V. Mochalov, and V. P. Gapontsev, “Industrial grade 100 kW power CW fiber laser,” in Advanced Solid-State Lasers Congress (OSA, 2013), p. ATh4A.2.
  10. N. A. Brilliant, “Stimulated Brillouin scattering in a dual-clad fiber amplifier,” J. Opt. Soc. Am. B 19(11), 2551–2557 (2002).
    [Crossref]
  11. C. Robin, I. Dajani, and B. Pulford, “Modal instability-suppressing, single-frequency photonic crystal fiber amplifier with 811 W output power,” Opt. Lett. 39(3), 666 (2014).
    [Crossref]
  12. M. Hildebrandt, S. Buesche, P. Wessels, M. Frede, and D. Kracht, “Brillouin scattering spectra in high-power single-frequency ytterbium doped fiber amplifiers,” Opt. Express 16(20), 15970 (2008).
    [Crossref]
  13. L. Huang, H. Wu, R. Li, L. Li, P. Ma, X. Wang, J. Leng, and P. Zhou, “414 W near-diffraction-limited all-fiberized single-frequency polarization-maintained fiber amplifier,” Opt. Lett. 42(1), 1 (2017).
    [Crossref]
  14. A. I. Trikshev, A. S. Kurkov, V. B. Tsvetkov, S. A. Filatova, J. Kertulla, V. Filippov, Y. K. Chamorovskiy, and O. G. Okhotnikov, “A 160 W single-frequency laser based on an active tapered double-clad fiber amplifier,” Laser Phys. Lett. 10(6), 065101 (2013).
    [Crossref]
  15. V. Filippov, Y. Chamorovskii, J. Kerttula, K. Golant, M. Pessa, and O. G. Okhotnikov, “Double clad tapered fiber for high power applications,” Opt. Express 16(3), 1929 (2008).
    [Crossref]
  16. V. Filippov, Y. Chamorovskii, J. Kerttula, A. Kholodkov, and O. G. Okhotnikov, “Single-mode 212 W tapered fiber laser pumped by a low-brightness source,” Opt. Lett. 33(13), 1416 (2008).
    [Crossref]
  17. C. Pierre, G. Guiraud, C. Vinçont, N. Traynor, G. Santarelli, and J. Boullet, “120W single frequency laser based on short active double clad tapered fiber,” in 2017 European Conference on Lasers and Electro-Optics and European Quantum Electronics Conference, (Optical Society of America, 2017), paper CJ_9_3.
  18. P. Ma, P. Zhou, Y. Ma, R. Su, X. Xu, and Z. Liu, “Single-frequency 332 W, linearly polarized Yb-doped all-fiber amplifier with near diffraction-limited beam quality,” Appl. Opt. 52(20), 4854 (2013).
    [Crossref]
  19. A. Buikema, F. Jose, S. J. Augst, P. Fritschel, and N. Mavalvala, “Narrow-linewidth fiber amplifier for gravitational-wave detectors,” Opt. Lett. 44(15), 3833 (2019).
    [Crossref]
  20. F. Wellmann, M. Steinke, F. Meylahn, N. Bode, B. Willke, L. Overmeyer, J. Neumann, and D. Kracht, “High power, single-frequency, monolithic fiber amplifier for the next generation of gravitational wave detectors,” Opt. Express 27(20), 28523 (2019).
    [Crossref]
  21. X. Zhou, Z. Chen, H. Zhou, and J. Hou, “Mode-field adaptor between large-mode-area fiber and single-mode fiber based on fiber tapering and thermally expanded core technique,” Appl. Opt. 53(22), 5053 (2014).
    [Crossref]
  22. P. Hofmann, A. Mafi, C. Jollivet, T. Tiess, N. Peyghambarian, and A. Schulzgen, “Detailed Investigation of Mode-Field Adapters Utilizing Multimode-Interference in Graded Index Fibers,” J. Lightwave Technol. 30(14), 2289–2298 (2012).
    [Crossref]
  23. I. Ricciardi, S. Mosca, P. Maddaloni, L. Santamaria, M. De Rosa, and P. De Natale, “Phase noise analysis of a 10Watt Yb-doped fibre amplifier seeded by a 1-Hz-linewidth laser,” Opt. Express 21(12), 14618–14626 (2013).
    [Crossref]
  24. N. Chiodo, K. Djerroud, O. Acef, A. Clairon, and P. Wolf, “Lasers for coherent optical satellite links with large dynamics,” Appl. Opt. 52(30), 7342 (2013).
    [Crossref]
  25. H. Tünnermann, J. Neumann, D. Kracht, and P. Weßels, “Gain dynamics and refractive index changes in fiber amplifiers: a frequency domain approach,” Opt. Express 20(12), 13539 (2012).
    [Crossref]
  26. J. Zhao, G. Guiraud, F. Floissat, B. Gouhier, S. Rota-Rodrigo, N. Traynor, and G. Santarelli, “Gain dynamics of clad-pumped Yb-fiber amplifier and intensity noise control,” Opt. Express 25(1), 357 (2017).
    [Crossref]
  27. J. Junker, P. Oppermann, and B. Willke, “Shot-noise-limited laser power stabilization for the AEI 10 m Prototype interferometer,” Opt. Lett. 42(4), 755 (2017).
    [Crossref]
  28. P. Kwee, C. Bogan, K. Danzmann, M. Frede, H. Kim, P. King, J. Pöld, O. Puncken, R. L. Savage, F. Seifert, P. Wessels, L. Winkelmann, and B. Willke, “Stabilized high-power laser system for the gravitational wave detector advanced LIGO,” Opt. Express 20(10), 10617 (2012).
    [Crossref]
  29. J. Zhao, G. Guiraud, C. Pierre, F. Floissat, A. Casanova, A. Hreibi, W. Chaibi, N. Traynor, J. Boullet, and G. Santarelli, “High-power all-fiber ultra-low noise laser,” Appl. Phys. B 124(6), 114 (2018).
    [Crossref]
  30. M. E. Gehm, K. M. O’Hara, T. A. Savard, and J. E. Thomas, “Dynamics of noise-induced heating in atom traps,” Phys. Rev. A 58(5), 3914–3921 (1998).
    [Crossref]
  31. H.-J. Otto, F. Stutzki, F. Jansen, T. Eidam, C. Jauregui, J. Limpert, and A. Tünnermann, “Temporal dynamics of mode instabilities in high-power fiber lasers and amplifiers,” Opt. Express 20(14), 15710 (2012).
    [Crossref]
  32. H.-J. Otto, N. Modsching, C. Jauregui, J. Limpert, and A. Tünnermann, “Impact of photodarkening on the mode instability threshold,” Opt. Express 23(12), 15265 (2015).
    [Crossref]
  33. B. Ward, “Theory and modeling of photodarkening-induced quasi static degradation in fiber amplifiers,” Opt. Express 24(4), 3488 (2016).
    [Crossref]
  34. J. Boullet, C. Vinçont, C. Aguergaray, and A. Jolly, “Regime-dependent photo-darkening-induced modal degradation in high power fiber amplifier,” in Lasers Congress 2016 (ASSL, LSC, LAC) (OSA, 2016), p. ATu4A.3.
  35. A. V. Shubin, M. V. Yashkov, M. A. Melkumov, S. A. Smirnov, I. A. Bufetov, and E. M. Dianov, “Photodarkening of alumosilicate and phosphosilicate Yb-doped fibers,” in 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference (2007), pp. 1.
  36. M. N. Zervas, “Transverse mode instability, thermal lensing and power scaling in Yb 3+ -doped high-power fiber amplifiers,” Opt. Express 27(13), 19019 (2019).
    [Crossref]
  37. C. Jauregui, H.-J. Otto, F. Stutzki, J. Limpert, and A. Tünnermann, “Simplified modelling the mode instability threshold of high power fiber amplifiers in the presence of photodarkening,” Opt. Express 23(16), 20203 (2015).
    [Crossref]
  38. M. Karow, H. Tünnermann, J. Neumann, D. Kracht, and P. Weßels, “Beam quality degradation of a single-frequency Yb-doped photonic crystal fiber amplifier with low mode instability threshold power,” Opt. Lett. 37(20), 4242 (2012).
    [Crossref]
  39. D. W. Allan and J. Levine, “A Historical Perspective on the Development of the Allan Variances and Their Strengths and Weaknesses,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 63(4), 513–519 (2016).
    [Crossref]
  40. F. Tricot, D. H. Phung, M. Lours, S. Guérandel, and E. de Clercq, “Power stabilization of a diode laser with an acousto-optic modulator,” Rev. Sci. Instrum. 89(11), 113112 (2018).
    [Crossref]

2019 (4)

2018 (4)

F. Tricot, D. H. Phung, M. Lours, S. Guérandel, and E. de Clercq, “Power stabilization of a diode laser with an acousto-optic modulator,” Rev. Sci. Instrum. 89(11), 113112 (2018).
[Crossref]

J. Zhao, G. Guiraud, C. Pierre, F. Floissat, A. Casanova, A. Hreibi, W. Chaibi, N. Traynor, J. Boullet, and G. Santarelli, “High-power all-fiber ultra-low noise laser,” Appl. Phys. B 124(6), 114 (2018).
[Crossref]

B. Gouhier, G. Guiraud, S. Rota-Rodrigo, J. Zhao, N. Traynor, and G. Santarelli, “25 W single-frequency, low noise fiber MOPA at 1120 nm,” Opt. Lett. 43(2), 308 (2018).
[Crossref]

J. Wu, X. Zhu, H. Wei, K. Wiersma, M. Li, J. Zong, A. Chavez-Pirson, V. Temyanko, L. J. LaComb, R. A. Norwood, and N. Peyghambarian, “Power scalable 10 W 976 nm single-frequency linearly polarized laser source,” Opt. Lett. 43(4), 951 (2018).
[Crossref]

2017 (3)

2016 (3)

D. W. Allan and J. Levine, “A Historical Perspective on the Development of the Allan Variances and Their Strengths and Weaknesses,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 63(4), 513–519 (2016).
[Crossref]

B. Ward, “Theory and modeling of photodarkening-induced quasi static degradation in fiber amplifiers,” Opt. Express 24(4), 3488 (2016).
[Crossref]

LIGO Scientific Collaboration and Virgo Collaboration, “Observation of Gravitational Waves from a Binary Black Hole Merger,” Phys. Rev. Lett. 116(6), 061102 (2016).
[Crossref]

2015 (3)

2014 (2)

2013 (5)

2012 (5)

2008 (3)

2007 (1)

M. Anderlini, P. J. Lee, B. L. Brown, J. Sebby-Strabley, W. D. Phillips, and J. V. Porto, “Controlled exchange interaction between pairs of neutral atoms in an optical lattice,” Nature 448(7152), 452–456 (2007).
[Crossref]

2002 (1)

1998 (1)

M. E. Gehm, K. M. O’Hara, T. A. Savard, and J. E. Thomas, “Dynamics of noise-induced heating in atom traps,” Phys. Rev. A 58(5), 3914–3921 (1998).
[Crossref]

Abramov, A. A.

E. A. Shcherbakov, V. V. Fomin, A. A. Abramov, A. A. Ferin, D. V. Mochalov, and V. P. Gapontsev, “Industrial grade 100 kW power CW fiber laser,” in Advanced Solid-State Lasers Congress (OSA, 2013), p. ATh4A.2.

Acef, O.

Aguergaray, C.

J. Boullet, C. Vinçont, C. Aguergaray, and A. Jolly, “Regime-dependent photo-darkening-induced modal degradation in high power fiber amplifier,” in Lasers Congress 2016 (ASSL, LSC, LAC) (OSA, 2016), p. ATu4A.3.

Allan, D. W.

D. W. Allan and J. Levine, “A Historical Perspective on the Development of the Allan Variances and Their Strengths and Weaknesses,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 63(4), 513–519 (2016).
[Crossref]

Anderlini, M.

M. Anderlini, P. J. Lee, B. L. Brown, J. Sebby-Strabley, W. D. Phillips, and J. V. Porto, “Controlled exchange interaction between pairs of neutral atoms in an optical lattice,” Nature 448(7152), 452–456 (2007).
[Crossref]

Augst, S. J.

Bardin, Y.-V.

N. Valero, C. Feral, J. Lhermite, S. Petit, R. Royon, Y.-V. Bardin, J. Boullet, A. Proulx, Y. Taillon, and E. Cormier, “29W diffraction limited monolithic ytterbium doped fiber laser system operating at 976 nm in the continuous wave regime,” in 2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference (2019), Paper Cj_13_4 (Optical Society of America, 2019), p. cj_13_4.

Bode, N.

Bogan, C.

Boullet, J.

J. Zhao, G. Guiraud, C. Pierre, F. Floissat, A. Casanova, A. Hreibi, W. Chaibi, N. Traynor, J. Boullet, and G. Santarelli, “High-power all-fiber ultra-low noise laser,” Appl. Phys. B 124(6), 114 (2018).
[Crossref]

J. Boullet, C. Vinçont, C. Aguergaray, and A. Jolly, “Regime-dependent photo-darkening-induced modal degradation in high power fiber amplifier,” in Lasers Congress 2016 (ASSL, LSC, LAC) (OSA, 2016), p. ATu4A.3.

C. Pierre, G. Guiraud, C. Vinçont, N. Traynor, G. Santarelli, and J. Boullet, “120W single frequency laser based on short active double clad tapered fiber,” in 2017 European Conference on Lasers and Electro-Optics and European Quantum Electronics Conference, (Optical Society of America, 2017), paper CJ_9_3.

N. Valero, C. Feral, J. Lhermite, S. Petit, R. Royon, Y.-V. Bardin, J. Boullet, A. Proulx, Y. Taillon, and E. Cormier, “29W diffraction limited monolithic ytterbium doped fiber laser system operating at 976 nm in the continuous wave regime,” in 2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference (2019), Paper Cj_13_4 (Optical Society of America, 2019), p. cj_13_4.

Brilliant, N. A.

Brown, B. L.

M. Anderlini, P. J. Lee, B. L. Brown, J. Sebby-Strabley, W. D. Phillips, and J. V. Porto, “Controlled exchange interaction between pairs of neutral atoms in an optical lattice,” Nature 448(7152), 452–456 (2007).
[Crossref]

Buesche, S.

Bufetov, I. A.

A. V. Shubin, M. V. Yashkov, M. A. Melkumov, S. A. Smirnov, I. A. Bufetov, and E. M. Dianov, “Photodarkening of alumosilicate and phosphosilicate Yb-doped fibers,” in 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference (2007), pp. 1.

Buikema, A.

Casanova, A.

J. Zhao, G. Guiraud, C. Pierre, F. Floissat, A. Casanova, A. Hreibi, W. Chaibi, N. Traynor, J. Boullet, and G. Santarelli, “High-power all-fiber ultra-low noise laser,” Appl. Phys. B 124(6), 114 (2018).
[Crossref]

Chaibi, W.

J. Zhao, G. Guiraud, C. Pierre, F. Floissat, A. Casanova, A. Hreibi, W. Chaibi, N. Traynor, J. Boullet, and G. Santarelli, “High-power all-fiber ultra-low noise laser,” Appl. Phys. B 124(6), 114 (2018).
[Crossref]

Chamorovskii, Y.

Chamorovskiy, Y. K.

A. I. Trikshev, A. S. Kurkov, V. B. Tsvetkov, S. A. Filatova, J. Kertulla, V. Filippov, Y. K. Chamorovskiy, and O. G. Okhotnikov, “A 160 W single-frequency laser based on an active tapered double-clad fiber amplifier,” Laser Phys. Lett. 10(6), 065101 (2013).
[Crossref]

Chavez-Pirson, A.

Chen, Z.

Chiodo, N.

Clairon, A.

Cormier, E.

N. Valero, C. Feral, J. Lhermite, S. Petit, R. Royon, Y.-V. Bardin, J. Boullet, A. Proulx, Y. Taillon, and E. Cormier, “29W diffraction limited monolithic ytterbium doped fiber laser system operating at 976 nm in the continuous wave regime,” in 2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference (2019), Paper Cj_13_4 (Optical Society of America, 2019), p. cj_13_4.

Dajani, I.

Danzmann, K.

de Clercq, E.

F. Tricot, D. H. Phung, M. Lours, S. Guérandel, and E. de Clercq, “Power stabilization of a diode laser with an acousto-optic modulator,” Rev. Sci. Instrum. 89(11), 113112 (2018).
[Crossref]

De Natale, P.

De Rosa, M.

Dianov, E. M.

A. V. Shubin, M. V. Yashkov, M. A. Melkumov, S. A. Smirnov, I. A. Bufetov, and E. M. Dianov, “Photodarkening of alumosilicate and phosphosilicate Yb-doped fibers,” in 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference (2007), pp. 1.

Djerroud, K.

Eidam, T.

Feng, Y.

Feral, C.

N. Valero, C. Feral, J. Lhermite, S. Petit, R. Royon, Y.-V. Bardin, J. Boullet, A. Proulx, Y. Taillon, and E. Cormier, “29W diffraction limited monolithic ytterbium doped fiber laser system operating at 976 nm in the continuous wave regime,” in 2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference (2019), Paper Cj_13_4 (Optical Society of America, 2019), p. cj_13_4.

Ferin, A. A.

E. A. Shcherbakov, V. V. Fomin, A. A. Abramov, A. A. Ferin, D. V. Mochalov, and V. P. Gapontsev, “Industrial grade 100 kW power CW fiber laser,” in Advanced Solid-State Lasers Congress (OSA, 2013), p. ATh4A.2.

Filatova, S. A.

A. I. Trikshev, A. S. Kurkov, V. B. Tsvetkov, S. A. Filatova, J. Kertulla, V. Filippov, Y. K. Chamorovskiy, and O. G. Okhotnikov, “A 160 W single-frequency laser based on an active tapered double-clad fiber amplifier,” Laser Phys. Lett. 10(6), 065101 (2013).
[Crossref]

Filippov, V.

Floissat, F.

J. Zhao, G. Guiraud, C. Pierre, F. Floissat, A. Casanova, A. Hreibi, W. Chaibi, N. Traynor, J. Boullet, and G. Santarelli, “High-power all-fiber ultra-low noise laser,” Appl. Phys. B 124(6), 114 (2018).
[Crossref]

J. Zhao, G. Guiraud, F. Floissat, B. Gouhier, S. Rota-Rodrigo, N. Traynor, and G. Santarelli, “Gain dynamics of clad-pumped Yb-fiber amplifier and intensity noise control,” Opt. Express 25(1), 357 (2017).
[Crossref]

Fomin, V. V.

E. A. Shcherbakov, V. V. Fomin, A. A. Abramov, A. A. Ferin, D. V. Mochalov, and V. P. Gapontsev, “Industrial grade 100 kW power CW fiber laser,” in Advanced Solid-State Lasers Congress (OSA, 2013), p. ATh4A.2.

Frede, M.

Fritschel, P.

Gapontsev, V. P.

E. A. Shcherbakov, V. V. Fomin, A. A. Abramov, A. A. Ferin, D. V. Mochalov, and V. P. Gapontsev, “Industrial grade 100 kW power CW fiber laser,” in Advanced Solid-State Lasers Congress (OSA, 2013), p. ATh4A.2.

Gehm, M. E.

M. E. Gehm, K. M. O’Hara, T. A. Savard, and J. E. Thomas, “Dynamics of noise-induced heating in atom traps,” Phys. Rev. A 58(5), 3914–3921 (1998).
[Crossref]

Golant, K.

Gouhier, B.

Guérandel, S.

F. Tricot, D. H. Phung, M. Lours, S. Guérandel, and E. de Clercq, “Power stabilization of a diode laser with an acousto-optic modulator,” Rev. Sci. Instrum. 89(11), 113112 (2018).
[Crossref]

Guiraud, G.

B. Gouhier, S. Rota-Rodrigo, G. Guiraud, N. Traynor, and G. Santarelli, “Low-noise single-frequency 50 W fiber laser operating at 1013 nm,” Laser Phys. Lett. 16(4), 045103 (2019).
[Crossref]

B. Gouhier, G. Guiraud, S. Rota-Rodrigo, J. Zhao, N. Traynor, and G. Santarelli, “25 W single-frequency, low noise fiber MOPA at 1120 nm,” Opt. Lett. 43(2), 308 (2018).
[Crossref]

J. Zhao, G. Guiraud, C. Pierre, F. Floissat, A. Casanova, A. Hreibi, W. Chaibi, N. Traynor, J. Boullet, and G. Santarelli, “High-power all-fiber ultra-low noise laser,” Appl. Phys. B 124(6), 114 (2018).
[Crossref]

J. Zhao, G. Guiraud, F. Floissat, B. Gouhier, S. Rota-Rodrigo, N. Traynor, and G. Santarelli, “Gain dynamics of clad-pumped Yb-fiber amplifier and intensity noise control,” Opt. Express 25(1), 357 (2017).
[Crossref]

C. Pierre, G. Guiraud, C. Vinçont, N. Traynor, G. Santarelli, and J. Boullet, “120W single frequency laser based on short active double clad tapered fiber,” in 2017 European Conference on Lasers and Electro-Optics and European Quantum Electronics Conference, (Optical Society of America, 2017), paper CJ_9_3.

Hildebrandt, M.

Hofmann, P.

Hou, J.

Hreibi, A.

J. Zhao, G. Guiraud, C. Pierre, F. Floissat, A. Casanova, A. Hreibi, W. Chaibi, N. Traynor, J. Boullet, and G. Santarelli, “High-power all-fiber ultra-low noise laser,” Appl. Phys. B 124(6), 114 (2018).
[Crossref]

Hu, J.

Huang, L.

Jansen, F.

Jauregui, C.

Jollivet, C.

Jolly, A.

J. Boullet, C. Vinçont, C. Aguergaray, and A. Jolly, “Regime-dependent photo-darkening-induced modal degradation in high power fiber amplifier,” in Lasers Congress 2016 (ASSL, LSC, LAC) (OSA, 2016), p. ATu4A.3.

Jose, F.

Junker, J.

Karow, M.

Kerttula, J.

Kertulla, J.

A. I. Trikshev, A. S. Kurkov, V. B. Tsvetkov, S. A. Filatova, J. Kertulla, V. Filippov, Y. K. Chamorovskiy, and O. G. Okhotnikov, “A 160 W single-frequency laser based on an active tapered double-clad fiber amplifier,” Laser Phys. Lett. 10(6), 065101 (2013).
[Crossref]

Kholodkov, A.

Kim, H.

King, P.

Kracht, D.

Kurkov, A. S.

A. I. Trikshev, A. S. Kurkov, V. B. Tsvetkov, S. A. Filatova, J. Kertulla, V. Filippov, Y. K. Chamorovskiy, and O. G. Okhotnikov, “A 160 W single-frequency laser based on an active tapered double-clad fiber amplifier,” Laser Phys. Lett. 10(6), 065101 (2013).
[Crossref]

Kwee, P.

LaComb, L. J.

Lee, P. J.

M. Anderlini, P. J. Lee, B. L. Brown, J. Sebby-Strabley, W. D. Phillips, and J. V. Porto, “Controlled exchange interaction between pairs of neutral atoms in an optical lattice,” Nature 448(7152), 452–456 (2007).
[Crossref]

Leng, J.

Levine, J.

D. W. Allan and J. Levine, “A Historical Perspective on the Development of the Allan Variances and Their Strengths and Weaknesses,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 63(4), 513–519 (2016).
[Crossref]

Lhermite, J.

N. Valero, C. Feral, J. Lhermite, S. Petit, R. Royon, Y.-V. Bardin, J. Boullet, A. Proulx, Y. Taillon, and E. Cormier, “29W diffraction limited monolithic ytterbium doped fiber laser system operating at 976 nm in the continuous wave regime,” in 2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference (2019), Paper Cj_13_4 (Optical Society of America, 2019), p. cj_13_4.

Li, L.

Li, M.

Li, R.

Limpert, J.

Liu, H.

Liu, K.

Liu, Z.

Lours, M.

F. Tricot, D. H. Phung, M. Lours, S. Guérandel, and E. de Clercq, “Power stabilization of a diode laser with an acousto-optic modulator,” Rev. Sci. Instrum. 89(11), 113112 (2018).
[Crossref]

Ma, P.

Ma, Y.

Maddaloni, P.

Mafi, A.

Mavalvala, N.

Melkumov, M. A.

A. V. Shubin, M. V. Yashkov, M. A. Melkumov, S. A. Smirnov, I. A. Bufetov, and E. M. Dianov, “Photodarkening of alumosilicate and phosphosilicate Yb-doped fibers,” in 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference (2007), pp. 1.

Meylahn, F.

Mochalov, D. V.

E. A. Shcherbakov, V. V. Fomin, A. A. Abramov, A. A. Ferin, D. V. Mochalov, and V. P. Gapontsev, “Industrial grade 100 kW power CW fiber laser,” in Advanced Solid-State Lasers Congress (OSA, 2013), p. ATh4A.2.

Modsching, N.

Mosca, S.

Neumann, J.

Norwood, R. A.

O’Hara, K. M.

M. E. Gehm, K. M. O’Hara, T. A. Savard, and J. E. Thomas, “Dynamics of noise-induced heating in atom traps,” Phys. Rev. A 58(5), 3914–3921 (1998).
[Crossref]

Okhotnikov, O. G.

Oppermann, P.

Otto, H.-J.

Overmeyer, L.

Pessa, M.

Petit, S.

N. Valero, C. Feral, J. Lhermite, S. Petit, R. Royon, Y.-V. Bardin, J. Boullet, A. Proulx, Y. Taillon, and E. Cormier, “29W diffraction limited monolithic ytterbium doped fiber laser system operating at 976 nm in the continuous wave regime,” in 2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference (2019), Paper Cj_13_4 (Optical Society of America, 2019), p. cj_13_4.

Peyghambarian, N.

Phillips, W. D.

M. Anderlini, P. J. Lee, B. L. Brown, J. Sebby-Strabley, W. D. Phillips, and J. V. Porto, “Controlled exchange interaction between pairs of neutral atoms in an optical lattice,” Nature 448(7152), 452–456 (2007).
[Crossref]

Phung, D. H.

F. Tricot, D. H. Phung, M. Lours, S. Guérandel, and E. de Clercq, “Power stabilization of a diode laser with an acousto-optic modulator,” Rev. Sci. Instrum. 89(11), 113112 (2018).
[Crossref]

Pierre, C.

J. Zhao, G. Guiraud, C. Pierre, F. Floissat, A. Casanova, A. Hreibi, W. Chaibi, N. Traynor, J. Boullet, and G. Santarelli, “High-power all-fiber ultra-low noise laser,” Appl. Phys. B 124(6), 114 (2018).
[Crossref]

C. Pierre, G. Guiraud, C. Vinçont, N. Traynor, G. Santarelli, and J. Boullet, “120W single frequency laser based on short active double clad tapered fiber,” in 2017 European Conference on Lasers and Electro-Optics and European Quantum Electronics Conference, (Optical Society of America, 2017), paper CJ_9_3.

Pöld, J.

Porto, J. V.

M. Anderlini, P. J. Lee, B. L. Brown, J. Sebby-Strabley, W. D. Phillips, and J. V. Porto, “Controlled exchange interaction between pairs of neutral atoms in an optical lattice,” Nature 448(7152), 452–456 (2007).
[Crossref]

Proulx, A.

N. Valero, C. Feral, J. Lhermite, S. Petit, R. Royon, Y.-V. Bardin, J. Boullet, A. Proulx, Y. Taillon, and E. Cormier, “29W diffraction limited monolithic ytterbium doped fiber laser system operating at 976 nm in the continuous wave regime,” in 2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference (2019), Paper Cj_13_4 (Optical Society of America, 2019), p. cj_13_4.

Pulford, B.

Puncken, O.

Ricciardi, I.

Robin, C.

Rota-Rodrigo, S.

Royon, R.

N. Valero, C. Feral, J. Lhermite, S. Petit, R. Royon, Y.-V. Bardin, J. Boullet, A. Proulx, Y. Taillon, and E. Cormier, “29W diffraction limited monolithic ytterbium doped fiber laser system operating at 976 nm in the continuous wave regime,” in 2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference (2019), Paper Cj_13_4 (Optical Society of America, 2019), p. cj_13_4.

Santamaria, L.

Santarelli, G.

B. Gouhier, S. Rota-Rodrigo, G. Guiraud, N. Traynor, and G. Santarelli, “Low-noise single-frequency 50 W fiber laser operating at 1013 nm,” Laser Phys. Lett. 16(4), 045103 (2019).
[Crossref]

B. Gouhier, G. Guiraud, S. Rota-Rodrigo, J. Zhao, N. Traynor, and G. Santarelli, “25 W single-frequency, low noise fiber MOPA at 1120 nm,” Opt. Lett. 43(2), 308 (2018).
[Crossref]

J. Zhao, G. Guiraud, C. Pierre, F. Floissat, A. Casanova, A. Hreibi, W. Chaibi, N. Traynor, J. Boullet, and G. Santarelli, “High-power all-fiber ultra-low noise laser,” Appl. Phys. B 124(6), 114 (2018).
[Crossref]

J. Zhao, G. Guiraud, F. Floissat, B. Gouhier, S. Rota-Rodrigo, N. Traynor, and G. Santarelli, “Gain dynamics of clad-pumped Yb-fiber amplifier and intensity noise control,” Opt. Express 25(1), 357 (2017).
[Crossref]

C. Pierre, G. Guiraud, C. Vinçont, N. Traynor, G. Santarelli, and J. Boullet, “120W single frequency laser based on short active double clad tapered fiber,” in 2017 European Conference on Lasers and Electro-Optics and European Quantum Electronics Conference, (Optical Society of America, 2017), paper CJ_9_3.

Savage, R. L.

Savard, T. A.

M. E. Gehm, K. M. O’Hara, T. A. Savard, and J. E. Thomas, “Dynamics of noise-induced heating in atom traps,” Phys. Rev. A 58(5), 3914–3921 (1998).
[Crossref]

Schulzgen, A.

Sebby-Strabley, J.

M. Anderlini, P. J. Lee, B. L. Brown, J. Sebby-Strabley, W. D. Phillips, and J. V. Porto, “Controlled exchange interaction between pairs of neutral atoms in an optical lattice,” Nature 448(7152), 452–456 (2007).
[Crossref]

Seifert, F.

Shcherbakov, E. A.

E. A. Shcherbakov, V. V. Fomin, A. A. Abramov, A. A. Ferin, D. V. Mochalov, and V. P. Gapontsev, “Industrial grade 100 kW power CW fiber laser,” in Advanced Solid-State Lasers Congress (OSA, 2013), p. ATh4A.2.

Shubin, A. V.

A. V. Shubin, M. V. Yashkov, M. A. Melkumov, S. A. Smirnov, I. A. Bufetov, and E. M. Dianov, “Photodarkening of alumosilicate and phosphosilicate Yb-doped fibers,” in 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference (2007), pp. 1.

Smirnov, S. A.

A. V. Shubin, M. V. Yashkov, M. A. Melkumov, S. A. Smirnov, I. A. Bufetov, and E. M. Dianov, “Photodarkening of alumosilicate and phosphosilicate Yb-doped fibers,” in 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference (2007), pp. 1.

Steinke, M.

Stutzki, F.

Su, R.

Taillon, Y.

N. Valero, C. Feral, J. Lhermite, S. Petit, R. Royon, Y.-V. Bardin, J. Boullet, A. Proulx, Y. Taillon, and E. Cormier, “29W diffraction limited monolithic ytterbium doped fiber laser system operating at 976 nm in the continuous wave regime,” in 2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference (2019), Paper Cj_13_4 (Optical Society of America, 2019), p. cj_13_4.

Temyanko, V.

Thomas, J. E.

M. E. Gehm, K. M. O’Hara, T. A. Savard, and J. E. Thomas, “Dynamics of noise-induced heating in atom traps,” Phys. Rev. A 58(5), 3914–3921 (1998).
[Crossref]

Tiess, T.

Traynor, N.

B. Gouhier, S. Rota-Rodrigo, G. Guiraud, N. Traynor, and G. Santarelli, “Low-noise single-frequency 50 W fiber laser operating at 1013 nm,” Laser Phys. Lett. 16(4), 045103 (2019).
[Crossref]

B. Gouhier, G. Guiraud, S. Rota-Rodrigo, J. Zhao, N. Traynor, and G. Santarelli, “25 W single-frequency, low noise fiber MOPA at 1120 nm,” Opt. Lett. 43(2), 308 (2018).
[Crossref]

J. Zhao, G. Guiraud, C. Pierre, F. Floissat, A. Casanova, A. Hreibi, W. Chaibi, N. Traynor, J. Boullet, and G. Santarelli, “High-power all-fiber ultra-low noise laser,” Appl. Phys. B 124(6), 114 (2018).
[Crossref]

J. Zhao, G. Guiraud, F. Floissat, B. Gouhier, S. Rota-Rodrigo, N. Traynor, and G. Santarelli, “Gain dynamics of clad-pumped Yb-fiber amplifier and intensity noise control,” Opt. Express 25(1), 357 (2017).
[Crossref]

C. Pierre, G. Guiraud, C. Vinçont, N. Traynor, G. Santarelli, and J. Boullet, “120W single frequency laser based on short active double clad tapered fiber,” in 2017 European Conference on Lasers and Electro-Optics and European Quantum Electronics Conference, (Optical Society of America, 2017), paper CJ_9_3.

Tricot, F.

F. Tricot, D. H. Phung, M. Lours, S. Guérandel, and E. de Clercq, “Power stabilization of a diode laser with an acousto-optic modulator,” Rev. Sci. Instrum. 89(11), 113112 (2018).
[Crossref]

Trikshev, A. I.

A. I. Trikshev, A. S. Kurkov, V. B. Tsvetkov, S. A. Filatova, J. Kertulla, V. Filippov, Y. K. Chamorovskiy, and O. G. Okhotnikov, “A 160 W single-frequency laser based on an active tapered double-clad fiber amplifier,” Laser Phys. Lett. 10(6), 065101 (2013).
[Crossref]

Tsvetkov, V. B.

A. I. Trikshev, A. S. Kurkov, V. B. Tsvetkov, S. A. Filatova, J. Kertulla, V. Filippov, Y. K. Chamorovskiy, and O. G. Okhotnikov, “A 160 W single-frequency laser based on an active tapered double-clad fiber amplifier,” Laser Phys. Lett. 10(6), 065101 (2013).
[Crossref]

Tünnermann, A.

Tünnermann, H.

Valero, N.

N. Valero, C. Feral, J. Lhermite, S. Petit, R. Royon, Y.-V. Bardin, J. Boullet, A. Proulx, Y. Taillon, and E. Cormier, “29W diffraction limited monolithic ytterbium doped fiber laser system operating at 976 nm in the continuous wave regime,” in 2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference (2019), Paper Cj_13_4 (Optical Society of America, 2019), p. cj_13_4.

Vinçont, C.

C. Pierre, G. Guiraud, C. Vinçont, N. Traynor, G. Santarelli, and J. Boullet, “120W single frequency laser based on short active double clad tapered fiber,” in 2017 European Conference on Lasers and Electro-Optics and European Quantum Electronics Conference, (Optical Society of America, 2017), paper CJ_9_3.

J. Boullet, C. Vinçont, C. Aguergaray, and A. Jolly, “Regime-dependent photo-darkening-induced modal degradation in high power fiber amplifier,” in Lasers Congress 2016 (ASSL, LSC, LAC) (OSA, 2016), p. ATu4A.3.

Wang, X.

Ward, B.

Wei, H.

Wellmann, F.

Weßels, P.

Wessels, P.

Wiersma, K.

Willke, B.

Winkelmann, L.

Wolf, P.

Wu, H.

Wu, J.

Xu, X.

Xu, Z.

Yashkov, M. V.

A. V. Shubin, M. V. Yashkov, M. A. Melkumov, S. A. Smirnov, I. A. Bufetov, and E. M. Dianov, “Photodarkening of alumosilicate and phosphosilicate Yb-doped fibers,” in 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference (2007), pp. 1.

Zervas, M. N.

Zhang, L.

Zhao, J.

Zhou, H.

Zhou, P.

Zhou, X.

Zhu, X.

Zong, J.

Appl. Opt. (3)

Appl. Phys. B (1)

J. Zhao, G. Guiraud, C. Pierre, F. Floissat, A. Casanova, A. Hreibi, W. Chaibi, N. Traynor, J. Boullet, and G. Santarelli, “High-power all-fiber ultra-low noise laser,” Appl. Phys. B 124(6), 114 (2018).
[Crossref]

Classical Quantum Gravity (1)

LIGO Scientific Collaboration, “Advanced Virgo: a second-generation interferometric gravitational wave detector,” Classical Quantum Gravity 32(2), 024001 (2015).
[Crossref]

IEEE Trans. Ultrason., Ferroelect., Freq. Contr. (1)

D. W. Allan and J. Levine, “A Historical Perspective on the Development of the Allan Variances and Their Strengths and Weaknesses,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 63(4), 513–519 (2016).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Laser Phys. Lett. (2)

B. Gouhier, S. Rota-Rodrigo, G. Guiraud, N. Traynor, and G. Santarelli, “Low-noise single-frequency 50 W fiber laser operating at 1013 nm,” Laser Phys. Lett. 16(4), 045103 (2019).
[Crossref]

A. I. Trikshev, A. S. Kurkov, V. B. Tsvetkov, S. A. Filatova, J. Kertulla, V. Filippov, Y. K. Chamorovskiy, and O. G. Okhotnikov, “A 160 W single-frequency laser based on an active tapered double-clad fiber amplifier,” Laser Phys. Lett. 10(6), 065101 (2013).
[Crossref]

Nature (1)

M. Anderlini, P. J. Lee, B. L. Brown, J. Sebby-Strabley, W. D. Phillips, and J. V. Porto, “Controlled exchange interaction between pairs of neutral atoms in an optical lattice,” Nature 448(7152), 452–456 (2007).
[Crossref]

Opt. Express (13)

V. Filippov, Y. Chamorovskii, J. Kerttula, K. Golant, M. Pessa, and O. G. Okhotnikov, “Double clad tapered fiber for high power applications,” Opt. Express 16(3), 1929 (2008).
[Crossref]

M. Hildebrandt, S. Buesche, P. Wessels, M. Frede, and D. Kracht, “Brillouin scattering spectra in high-power single-frequency ytterbium doped fiber amplifiers,” Opt. Express 16(20), 15970 (2008).
[Crossref]

I. Ricciardi, S. Mosca, P. Maddaloni, L. Santamaria, M. De Rosa, and P. De Natale, “Phase noise analysis of a 10Watt Yb-doped fibre amplifier seeded by a 1-Hz-linewidth laser,” Opt. Express 21(12), 14618–14626 (2013).
[Crossref]

J. Hu, L. Zhang, H. Liu, K. Liu, Z. Xu, and Y. Feng, “High power room temperature 1014.8 nm Yb fiber amplifier and frequency quadrupling to 253.7 nm for laser cooling of mercury atoms,” Opt. Express 21(25), 30958 (2013).
[Crossref]

F. Wellmann, M. Steinke, F. Meylahn, N. Bode, B. Willke, L. Overmeyer, J. Neumann, and D. Kracht, “High power, single-frequency, monolithic fiber amplifier for the next generation of gravitational wave detectors,” Opt. Express 27(20), 28523 (2019).
[Crossref]

H. Tünnermann, J. Neumann, D. Kracht, and P. Weßels, “Gain dynamics and refractive index changes in fiber amplifiers: a frequency domain approach,” Opt. Express 20(12), 13539 (2012).
[Crossref]

J. Zhao, G. Guiraud, F. Floissat, B. Gouhier, S. Rota-Rodrigo, N. Traynor, and G. Santarelli, “Gain dynamics of clad-pumped Yb-fiber amplifier and intensity noise control,” Opt. Express 25(1), 357 (2017).
[Crossref]

M. N. Zervas, “Transverse mode instability, thermal lensing and power scaling in Yb 3+ -doped high-power fiber amplifiers,” Opt. Express 27(13), 19019 (2019).
[Crossref]

C. Jauregui, H.-J. Otto, F. Stutzki, J. Limpert, and A. Tünnermann, “Simplified modelling the mode instability threshold of high power fiber amplifiers in the presence of photodarkening,” Opt. Express 23(16), 20203 (2015).
[Crossref]

H.-J. Otto, F. Stutzki, F. Jansen, T. Eidam, C. Jauregui, J. Limpert, and A. Tünnermann, “Temporal dynamics of mode instabilities in high-power fiber lasers and amplifiers,” Opt. Express 20(14), 15710 (2012).
[Crossref]

H.-J. Otto, N. Modsching, C. Jauregui, J. Limpert, and A. Tünnermann, “Impact of photodarkening on the mode instability threshold,” Opt. Express 23(12), 15265 (2015).
[Crossref]

B. Ward, “Theory and modeling of photodarkening-induced quasi static degradation in fiber amplifiers,” Opt. Express 24(4), 3488 (2016).
[Crossref]

P. Kwee, C. Bogan, K. Danzmann, M. Frede, H. Kim, P. King, J. Pöld, O. Puncken, R. L. Savage, F. Seifert, P. Wessels, L. Winkelmann, and B. Willke, “Stabilized high-power laser system for the gravitational wave detector advanced LIGO,” Opt. Express 20(10), 10617 (2012).
[Crossref]

Opt. Lett. (8)

M. Karow, H. Tünnermann, J. Neumann, D. Kracht, and P. Weßels, “Beam quality degradation of a single-frequency Yb-doped photonic crystal fiber amplifier with low mode instability threshold power,” Opt. Lett. 37(20), 4242 (2012).
[Crossref]

J. Junker, P. Oppermann, and B. Willke, “Shot-noise-limited laser power stabilization for the AEI 10 m Prototype interferometer,” Opt. Lett. 42(4), 755 (2017).
[Crossref]

L. Huang, H. Wu, R. Li, L. Li, P. Ma, X. Wang, J. Leng, and P. Zhou, “414 W near-diffraction-limited all-fiberized single-frequency polarization-maintained fiber amplifier,” Opt. Lett. 42(1), 1 (2017).
[Crossref]

A. Buikema, F. Jose, S. J. Augst, P. Fritschel, and N. Mavalvala, “Narrow-linewidth fiber amplifier for gravitational-wave detectors,” Opt. Lett. 44(15), 3833 (2019).
[Crossref]

V. Filippov, Y. Chamorovskii, J. Kerttula, A. Kholodkov, and O. G. Okhotnikov, “Single-mode 212 W tapered fiber laser pumped by a low-brightness source,” Opt. Lett. 33(13), 1416 (2008).
[Crossref]

J. Wu, X. Zhu, H. Wei, K. Wiersma, M. Li, J. Zong, A. Chavez-Pirson, V. Temyanko, L. J. LaComb, R. A. Norwood, and N. Peyghambarian, “Power scalable 10 W 976 nm single-frequency linearly polarized laser source,” Opt. Lett. 43(4), 951 (2018).
[Crossref]

B. Gouhier, G. Guiraud, S. Rota-Rodrigo, J. Zhao, N. Traynor, and G. Santarelli, “25 W single-frequency, low noise fiber MOPA at 1120 nm,” Opt. Lett. 43(2), 308 (2018).
[Crossref]

C. Robin, I. Dajani, and B. Pulford, “Modal instability-suppressing, single-frequency photonic crystal fiber amplifier with 811 W output power,” Opt. Lett. 39(3), 666 (2014).
[Crossref]

Phys. Rev. A (1)

M. E. Gehm, K. M. O’Hara, T. A. Savard, and J. E. Thomas, “Dynamics of noise-induced heating in atom traps,” Phys. Rev. A 58(5), 3914–3921 (1998).
[Crossref]

Phys. Rev. Lett. (1)

LIGO Scientific Collaboration and Virgo Collaboration, “Observation of Gravitational Waves from a Binary Black Hole Merger,” Phys. Rev. Lett. 116(6), 061102 (2016).
[Crossref]

Rev. Sci. Instrum. (1)

F. Tricot, D. H. Phung, M. Lours, S. Guérandel, and E. de Clercq, “Power stabilization of a diode laser with an acousto-optic modulator,” Rev. Sci. Instrum. 89(11), 113112 (2018).
[Crossref]

Other (5)

N. Valero, C. Feral, J. Lhermite, S. Petit, R. Royon, Y.-V. Bardin, J. Boullet, A. Proulx, Y. Taillon, and E. Cormier, “29W diffraction limited monolithic ytterbium doped fiber laser system operating at 976 nm in the continuous wave regime,” in 2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference (2019), Paper Cj_13_4 (Optical Society of America, 2019), p. cj_13_4.

E. A. Shcherbakov, V. V. Fomin, A. A. Abramov, A. A. Ferin, D. V. Mochalov, and V. P. Gapontsev, “Industrial grade 100 kW power CW fiber laser,” in Advanced Solid-State Lasers Congress (OSA, 2013), p. ATh4A.2.

C. Pierre, G. Guiraud, C. Vinçont, N. Traynor, G. Santarelli, and J. Boullet, “120W single frequency laser based on short active double clad tapered fiber,” in 2017 European Conference on Lasers and Electro-Optics and European Quantum Electronics Conference, (Optical Society of America, 2017), paper CJ_9_3.

J. Boullet, C. Vinçont, C. Aguergaray, and A. Jolly, “Regime-dependent photo-darkening-induced modal degradation in high power fiber amplifier,” in Lasers Congress 2016 (ASSL, LSC, LAC) (OSA, 2016), p. ATu4A.3.

A. V. Shubin, M. V. Yashkov, M. A. Melkumov, S. A. Smirnov, I. A. Bufetov, and E. M. Dianov, “Photodarkening of alumosilicate and phosphosilicate Yb-doped fibers,” in 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference (2007), pp. 1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Global scheme of the amplifier. ISO : optical-fiber isolator ; CLS : cladding-light stripper ; COMB HP : high-power combiner ; CL : collimation lens ; DM : dichroic mirror ; HWP : half-wave plate ; ISO FS : free space isolator ; PM : power meter ; PD1 : out-of-loop photodiode ; PD2 : in-loop photodiode
Fig. 2.
Fig. 2. (a) : on the left, output power versus pump power at the fiber output (black dots) showing 80% efficiency and after the isolator (red dots), (b) : on the right, optical spectra of the laser at 150 W and 365 W exhibiting more than 50 dB of OSNR (0.05 nm bandwidth).
Fig. 3.
Fig. 3. RIN measurements, showing no sign of SBS (lines) (inset) RIN level measured at 5 MHz (red squares) versus output power.
Fig. 4.
Fig. 4. Performance of the feedback loop on the amplifier (green) compared to free-running noise (red) and the noise of the seeder (blue)
Fig. 5.
Fig. 5. (a): on the left, RIN Measurement with a 3-hole mask in front of the photodiode at different output optical powers. (b): on the right, RIN at the output of the isolator at various optical powers
Fig. 6.
Fig. 6. Amplifier M2 measurement at full power with Mx 2 = 1.07 and My 2 = 1.1
Fig. 7.
Fig. 7. Long time power stability measurement after isolator during about 1100 hours.
Fig. 8.
Fig. 8. Log-log plot of the Allan deviation of the power fluctuations expressed in percent of the total optical power.

Metrics