Abstract

The properties of injection-locking chaos synchronization and communication in closed-loop external-cavity semiconductor lasers (ECSL) subject to phase-conjugate feedback (PCF) are investigated systematically. We theoretically analyze the general conditions for the injection-locking, and numerically investigate the properties of injection-locking chaos synchronization in the phase and intensity domains, the influences of frequency detuning and intrinsic parameter mismatch on the injection-locking chaos synchronization, as well as the performance of injection-locking chaos synchronization-based communication in closed-loop PCF-ECSL systems. The numerical results demonstrate that with respect to the conventional optical feedback (COF) scenario, the injection-locking chaos synchronization in a PCF-ECSLs configuration shows a significantly wider high-quality synchronization region and excellent feasibility, and the performance of chaos communication can also be enhanced.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Chaos synchronization and communication in closed-loop semiconductor lasers subject to common chaotic phase-modulated feedback

Ning Jiang, Anke Zhao, Shiqin Liu, Chenpeng Xue, and Kun Qiu
Opt. Express 26(25) 32404-32416 (2018)

Wideband complex-enhanced chaos generation using a semiconductor laser subject to delay-interfered self-phase-modulated feedback

Anke Zhao, Ning Jiang, Shiqin Liu, Chenpeng Xue, Jianming Tang, and Kun Qiu
Opt. Express 27(9) 12336-12348 (2019)

Synchronization of bandwidth-enhanced chaos in semiconductor lasers with optical feedback and injection

Hiroyuki Someya, Isao Oowada, Haruka Okumura, Takahiko Kida, and Atsushi Uchida
Opt. Express 17(22) 19536-19543 (2009)

References

  • View by:
  • |
  • |
  • |

  1. C. R. Mirasso, P. Colet, and P. García-Fernández, “Synchronization of chaotic semiconductor lasers: Application to encoded communications,” IEEE Photonics Technol. Lett. 8(2), 299–301 (1996).
    [Crossref]
  2. G. D. Vanwiggeren and R. Roy, “Communication with chaotic lasers,” Science 279(5354), 1198–1200 (1998).
    [Crossref]
  3. N. Jiang, A. K. Zhao, C. P. Xue, J. M. Tang, and K. Qiu, “Physical secure optical communication based on private chaotic spectral phase encryption/decryption,” Opt. Lett. 44(7), 1536–1539 (2019).
    [Crossref]
  4. N. Li, W. Pan, A. Locquet, and D. S. Citrin, “Time-delay concealment and complexity enhancement of an external-cavity laser through optical injection,” Opt. Lett. 40(19), 4416–4419 (2015).
    [Crossref]
  5. D. Rontani, A. Locquet, M. Sciamanna, D. S. Citrin, and S. Ortin, “Time-delay identification in a chaotic semiconductor laser with optical feedback: a dynamical point of view,” IEEE J. Quantum Electron. 45(7), 879–1891 (2009).
    [Crossref]
  6. N. Jiang, Y. Wang, A. Zhao, S. Liu, Y. Zhang, L. Chen, B. Li, and K. Qiu, “Simultaneous bandwidth-enhanced and time delay signature-suppressed chaos generation in semiconductor laser subject to feedback from parallel coupling ring resonators,” Opt. Express 28(2), 1999–2009 (2020).
    [Crossref]
  7. A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fiber-optic links,” Nature 438(7066), 343–346 (2005).
    [Crossref]
  8. J. X. Ke, L. L. Yi, G. Q. Xia, and W. Hu, “Chaotic optical communications over 100-km fiber transmission at 30-Gb/s bit rate,” Opt. Lett. 43(6), 1323–1326 (2018).
    [Crossref]
  9. T. Deng, G. Q. Xia, L. P. Cao, J. G. Chen, X. D. Lin, and Z. M. Wu, “Bidirectional chaos synchronization and communication in semiconductor lasers with optoelectronic feedback,” Opt. Commun. 282(11), 2243–2249 (2009).
    [Crossref]
  10. C. Xue, N. Jiang, Y. Lv, C. Wang, G. Li, S. Lin, and K. Qiu, “Security-enhanced chaos communication with time-delay signature suppression and phase encryption,” Opt. Lett. 41(16), 3690–3693 (2016).
    [Crossref]
  11. J. Ohtsubo, “Chaos synchronization and chaotic signal masking in semiconductor lasers with optical feedback,” IEEE J. Quantum Electron. 38(9), 1141–1154 (2002).
    [Crossref]
  12. X. F. Li, W. Pan, B. Luo, and D. Ma, “Mismatch robustness and security of chaotic optical communications based on injection-locking chaos synchronization,” IEEE J. Quantum Electron. 42(9), 953–960 (2006).
    [Crossref]
  13. Y. H. Hong, M. W. Lee, J. Paul, P. S. Spencer, and K. A. Shore, “Enhanced chaos synchronization in unidirectionally coupled vertical-cavity surface-emitting semiconductor lasers with polarization-preserved injection,” Opt. Lett. 33(6), 587–589 (2008).
    [Crossref]
  14. S. Y. Xiang, A. J. Wen, and W. Pan, “Synchronization regime of star-type laser network with heterogeneous coupling delays,” IEEE Photonics Technol. Lett. 28(18), 1988–1991 (2016).
    [Crossref]
  15. N. Jiang, W. Pan, B. Luo, L. Yan, S. Xiang, L. Yang, D. Zheng, and N. Li, “Properties of leader-laggard chaos synchronization in mutually coupled external-cavity semiconductor lasers,” Phys. Rev. E 81(6), 066217 (2010).
    [Crossref]
  16. J. G. Wu, Z. M. Wu, G. Q. Xia, T. Deng, X. D. Lin, X. Tang, and G. Feng, “Isochronous synchronization between chaotic semiconductor lasers over 40-km fiber links,” IEEE Photonics Technol. Lett. 23(24), 1854–1856 (2011).
    [Crossref]
  17. B. Krauskopf, G. R. Gray, and D. Lenstra, “Semiconductor laser with phase-conjugate feedback: Dynamics and bifurcations,” Phys. Rev. E 58(6), 7190–7197 (1998).
    [Crossref]
  18. J. S. Lawrence and D. M. Kane, “Contrasting conventional optical and phase-conjugate feedback in laser diodes,” Phys. Rev. A 63(3), 033805 (2001).
    [Crossref]
  19. É. Mercier, D. Wolfersberger, and M. Sciamanna, “High-frequency chaotic dynamics enabled by optical phase-conjugation,” Sci. Rep. 6(1), 18988 (2016).
    [Crossref]
  20. D. Rontani, É. Mercier, D. Wolfersberger, and M. Sciamanna, “Enhanced complexity of optical chaos in a laser diode with phase-conjugate feedback,” Opt. Lett. 41(20), 4637–4640 (2016).
    [Crossref]
  21. A. Locquet, F. Rogister, M. Sciamanna, and P. Megret, “Synchronization of chaotic semiconductor lasers with phase-conjugate feedback,” in Pacific Rim Conference on Lasers and Electro-Optics, II-388–II-389 (2001).
  22. R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16(3), 347–355 (1980).
    [Crossref]
  23. F. Mogensen, H. Olesen, and G. Jacobsen, “Locking conditions and stability properties for a semiconductor laser with external light injection,” IEEE J. Quantum Electron. 21(7), 784–793 (1985).
    [Crossref]
  24. A. Murakami, “Phase locking and chaos synchronization in injection-locked semiconductor lasers,” IEEE J. Quantum Electron. 39(3), 438–447 (2003).
    [Crossref]
  25. N. Li, R. M. Nguimdo, A. Locquet, and D. S. Citrin, “Enhancing optical-feedback-induced chaotic dynamics in semiconductor ring lasers via optical injection,” Nonlinear Dyn. 92(2), 315–324 (2018).
    [Crossref]
  26. M. F. Xu, W. Pan, S. H. Xiang, and L. Zhang, “Cluster synchronization in symmetric VCSELs networks with variable-polarization optical feedback,” Opt. Express 26(8), 10754–10761 (2018).
    [Crossref]
  27. N. Jiang, A. K. Zhao, S. Q. Liu, C. P. Xue, and K. Qiu, “Chaos synchronization and communication in closed-loop semiconductor lasers subject to common chaotic phase-modulated feedback,” Opt. Express 26(25), 32404–32416 (2018).
    [Crossref]
  28. D. Kanakidis, A. Argyris, A. Bogris, and D. Syvridis, “Influence of the decoding process on the performance of chaos encrypted optical communication systems,” J. Lightwave Technol. 24(1), 335–341 (2006).
    [Crossref]
  29. A. Bogris, P. Rizomiliotis, K. E. Chlouverakis, A. Argyris, and D. Syvridis, “Feedback phase in optically generated chaos: A sceret key for cryptographic applications,” IEEE J. Quantum Electron. 44(2), 119–124 (2008).
    [Crossref]
  30. D. Kanakidis, A. Bogris, A. Argyris, and D. Syvridis, “Numerical investigation of fiber transmission of a chaotic encrypted message using dispersion compensation schemes,” J. Lightwave Technol. 22(10), 2256–2263 (2004).
    [Crossref]
  31. N. Li, W. Pan, S. Xiang, B. Luo, L. Yan, and X. Zou, “Hybrid chaos-based communication system consisting of three chaotic semiconductor ring lasers,” Appl. Opt. 52(7), 1523–1530 (2013).
    [Crossref]
  32. N. Jiang, A. K. Zhao, Y. J. Wang, S. Q. Liu, J. M. Tang, and K. Qiu, “Security-enhanced chaotic communications with optical temporal encryption based on phase modulation and phase-to-intensity conversion,” OSA Continuum 2(12), 3422–3437 (2019).
    [Crossref]

2020 (1)

2019 (2)

2018 (4)

2016 (4)

C. Xue, N. Jiang, Y. Lv, C. Wang, G. Li, S. Lin, and K. Qiu, “Security-enhanced chaos communication with time-delay signature suppression and phase encryption,” Opt. Lett. 41(16), 3690–3693 (2016).
[Crossref]

S. Y. Xiang, A. J. Wen, and W. Pan, “Synchronization regime of star-type laser network with heterogeneous coupling delays,” IEEE Photonics Technol. Lett. 28(18), 1988–1991 (2016).
[Crossref]

É. Mercier, D. Wolfersberger, and M. Sciamanna, “High-frequency chaotic dynamics enabled by optical phase-conjugation,” Sci. Rep. 6(1), 18988 (2016).
[Crossref]

D. Rontani, É. Mercier, D. Wolfersberger, and M. Sciamanna, “Enhanced complexity of optical chaos in a laser diode with phase-conjugate feedback,” Opt. Lett. 41(20), 4637–4640 (2016).
[Crossref]

2015 (1)

2013 (1)

2011 (1)

J. G. Wu, Z. M. Wu, G. Q. Xia, T. Deng, X. D. Lin, X. Tang, and G. Feng, “Isochronous synchronization between chaotic semiconductor lasers over 40-km fiber links,” IEEE Photonics Technol. Lett. 23(24), 1854–1856 (2011).
[Crossref]

2010 (1)

N. Jiang, W. Pan, B. Luo, L. Yan, S. Xiang, L. Yang, D. Zheng, and N. Li, “Properties of leader-laggard chaos synchronization in mutually coupled external-cavity semiconductor lasers,” Phys. Rev. E 81(6), 066217 (2010).
[Crossref]

2009 (2)

D. Rontani, A. Locquet, M. Sciamanna, D. S. Citrin, and S. Ortin, “Time-delay identification in a chaotic semiconductor laser with optical feedback: a dynamical point of view,” IEEE J. Quantum Electron. 45(7), 879–1891 (2009).
[Crossref]

T. Deng, G. Q. Xia, L. P. Cao, J. G. Chen, X. D. Lin, and Z. M. Wu, “Bidirectional chaos synchronization and communication in semiconductor lasers with optoelectronic feedback,” Opt. Commun. 282(11), 2243–2249 (2009).
[Crossref]

2008 (2)

Y. H. Hong, M. W. Lee, J. Paul, P. S. Spencer, and K. A. Shore, “Enhanced chaos synchronization in unidirectionally coupled vertical-cavity surface-emitting semiconductor lasers with polarization-preserved injection,” Opt. Lett. 33(6), 587–589 (2008).
[Crossref]

A. Bogris, P. Rizomiliotis, K. E. Chlouverakis, A. Argyris, and D. Syvridis, “Feedback phase in optically generated chaos: A sceret key for cryptographic applications,” IEEE J. Quantum Electron. 44(2), 119–124 (2008).
[Crossref]

2006 (2)

D. Kanakidis, A. Argyris, A. Bogris, and D. Syvridis, “Influence of the decoding process on the performance of chaos encrypted optical communication systems,” J. Lightwave Technol. 24(1), 335–341 (2006).
[Crossref]

X. F. Li, W. Pan, B. Luo, and D. Ma, “Mismatch robustness and security of chaotic optical communications based on injection-locking chaos synchronization,” IEEE J. Quantum Electron. 42(9), 953–960 (2006).
[Crossref]

2005 (1)

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fiber-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref]

2004 (1)

2003 (1)

A. Murakami, “Phase locking and chaos synchronization in injection-locked semiconductor lasers,” IEEE J. Quantum Electron. 39(3), 438–447 (2003).
[Crossref]

2002 (1)

J. Ohtsubo, “Chaos synchronization and chaotic signal masking in semiconductor lasers with optical feedback,” IEEE J. Quantum Electron. 38(9), 1141–1154 (2002).
[Crossref]

2001 (1)

J. S. Lawrence and D. M. Kane, “Contrasting conventional optical and phase-conjugate feedback in laser diodes,” Phys. Rev. A 63(3), 033805 (2001).
[Crossref]

1998 (2)

B. Krauskopf, G. R. Gray, and D. Lenstra, “Semiconductor laser with phase-conjugate feedback: Dynamics and bifurcations,” Phys. Rev. E 58(6), 7190–7197 (1998).
[Crossref]

G. D. Vanwiggeren and R. Roy, “Communication with chaotic lasers,” Science 279(5354), 1198–1200 (1998).
[Crossref]

1996 (1)

C. R. Mirasso, P. Colet, and P. García-Fernández, “Synchronization of chaotic semiconductor lasers: Application to encoded communications,” IEEE Photonics Technol. Lett. 8(2), 299–301 (1996).
[Crossref]

1985 (1)

F. Mogensen, H. Olesen, and G. Jacobsen, “Locking conditions and stability properties for a semiconductor laser with external light injection,” IEEE J. Quantum Electron. 21(7), 784–793 (1985).
[Crossref]

1980 (1)

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16(3), 347–355 (1980).
[Crossref]

Annovazzi-Lodi, V.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fiber-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref]

Argyris, A.

A. Bogris, P. Rizomiliotis, K. E. Chlouverakis, A. Argyris, and D. Syvridis, “Feedback phase in optically generated chaos: A sceret key for cryptographic applications,” IEEE J. Quantum Electron. 44(2), 119–124 (2008).
[Crossref]

D. Kanakidis, A. Argyris, A. Bogris, and D. Syvridis, “Influence of the decoding process on the performance of chaos encrypted optical communication systems,” J. Lightwave Technol. 24(1), 335–341 (2006).
[Crossref]

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fiber-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref]

D. Kanakidis, A. Bogris, A. Argyris, and D. Syvridis, “Numerical investigation of fiber transmission of a chaotic encrypted message using dispersion compensation schemes,” J. Lightwave Technol. 22(10), 2256–2263 (2004).
[Crossref]

Bogris, A.

Cao, L. P.

T. Deng, G. Q. Xia, L. P. Cao, J. G. Chen, X. D. Lin, and Z. M. Wu, “Bidirectional chaos synchronization and communication in semiconductor lasers with optoelectronic feedback,” Opt. Commun. 282(11), 2243–2249 (2009).
[Crossref]

Chen, J. G.

T. Deng, G. Q. Xia, L. P. Cao, J. G. Chen, X. D. Lin, and Z. M. Wu, “Bidirectional chaos synchronization and communication in semiconductor lasers with optoelectronic feedback,” Opt. Commun. 282(11), 2243–2249 (2009).
[Crossref]

Chen, L.

Chlouverakis, K. E.

A. Bogris, P. Rizomiliotis, K. E. Chlouverakis, A. Argyris, and D. Syvridis, “Feedback phase in optically generated chaos: A sceret key for cryptographic applications,” IEEE J. Quantum Electron. 44(2), 119–124 (2008).
[Crossref]

Citrin, D. S.

N. Li, R. M. Nguimdo, A. Locquet, and D. S. Citrin, “Enhancing optical-feedback-induced chaotic dynamics in semiconductor ring lasers via optical injection,” Nonlinear Dyn. 92(2), 315–324 (2018).
[Crossref]

N. Li, W. Pan, A. Locquet, and D. S. Citrin, “Time-delay concealment and complexity enhancement of an external-cavity laser through optical injection,” Opt. Lett. 40(19), 4416–4419 (2015).
[Crossref]

D. Rontani, A. Locquet, M. Sciamanna, D. S. Citrin, and S. Ortin, “Time-delay identification in a chaotic semiconductor laser with optical feedback: a dynamical point of view,” IEEE J. Quantum Electron. 45(7), 879–1891 (2009).
[Crossref]

Colet, P.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fiber-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref]

C. R. Mirasso, P. Colet, and P. García-Fernández, “Synchronization of chaotic semiconductor lasers: Application to encoded communications,” IEEE Photonics Technol. Lett. 8(2), 299–301 (1996).
[Crossref]

Deng, T.

J. G. Wu, Z. M. Wu, G. Q. Xia, T. Deng, X. D. Lin, X. Tang, and G. Feng, “Isochronous synchronization between chaotic semiconductor lasers over 40-km fiber links,” IEEE Photonics Technol. Lett. 23(24), 1854–1856 (2011).
[Crossref]

T. Deng, G. Q. Xia, L. P. Cao, J. G. Chen, X. D. Lin, and Z. M. Wu, “Bidirectional chaos synchronization and communication in semiconductor lasers with optoelectronic feedback,” Opt. Commun. 282(11), 2243–2249 (2009).
[Crossref]

Feng, G.

J. G. Wu, Z. M. Wu, G. Q. Xia, T. Deng, X. D. Lin, X. Tang, and G. Feng, “Isochronous synchronization between chaotic semiconductor lasers over 40-km fiber links,” IEEE Photonics Technol. Lett. 23(24), 1854–1856 (2011).
[Crossref]

Fischer, I.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fiber-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref]

García-Fernández, P.

C. R. Mirasso, P. Colet, and P. García-Fernández, “Synchronization of chaotic semiconductor lasers: Application to encoded communications,” IEEE Photonics Technol. Lett. 8(2), 299–301 (1996).
[Crossref]

Garcia-Ojalvo, J.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fiber-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref]

Gray, G. R.

B. Krauskopf, G. R. Gray, and D. Lenstra, “Semiconductor laser with phase-conjugate feedback: Dynamics and bifurcations,” Phys. Rev. E 58(6), 7190–7197 (1998).
[Crossref]

Hong, Y. H.

Hu, W.

Jacobsen, G.

F. Mogensen, H. Olesen, and G. Jacobsen, “Locking conditions and stability properties for a semiconductor laser with external light injection,” IEEE J. Quantum Electron. 21(7), 784–793 (1985).
[Crossref]

Jiang, N.

Kanakidis, D.

Kane, D. M.

J. S. Lawrence and D. M. Kane, “Contrasting conventional optical and phase-conjugate feedback in laser diodes,” Phys. Rev. A 63(3), 033805 (2001).
[Crossref]

Ke, J. X.

Kobayashi, K.

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16(3), 347–355 (1980).
[Crossref]

Krauskopf, B.

B. Krauskopf, G. R. Gray, and D. Lenstra, “Semiconductor laser with phase-conjugate feedback: Dynamics and bifurcations,” Phys. Rev. E 58(6), 7190–7197 (1998).
[Crossref]

Lang, R.

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16(3), 347–355 (1980).
[Crossref]

Larger, L.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fiber-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref]

Lawrence, J. S.

J. S. Lawrence and D. M. Kane, “Contrasting conventional optical and phase-conjugate feedback in laser diodes,” Phys. Rev. A 63(3), 033805 (2001).
[Crossref]

Lee, M. W.

Lenstra, D.

B. Krauskopf, G. R. Gray, and D. Lenstra, “Semiconductor laser with phase-conjugate feedback: Dynamics and bifurcations,” Phys. Rev. E 58(6), 7190–7197 (1998).
[Crossref]

Li, B.

Li, G.

Li, N.

N. Li, R. M. Nguimdo, A. Locquet, and D. S. Citrin, “Enhancing optical-feedback-induced chaotic dynamics in semiconductor ring lasers via optical injection,” Nonlinear Dyn. 92(2), 315–324 (2018).
[Crossref]

N. Li, W. Pan, A. Locquet, and D. S. Citrin, “Time-delay concealment and complexity enhancement of an external-cavity laser through optical injection,” Opt. Lett. 40(19), 4416–4419 (2015).
[Crossref]

N. Li, W. Pan, S. Xiang, B. Luo, L. Yan, and X. Zou, “Hybrid chaos-based communication system consisting of three chaotic semiconductor ring lasers,” Appl. Opt. 52(7), 1523–1530 (2013).
[Crossref]

N. Jiang, W. Pan, B. Luo, L. Yan, S. Xiang, L. Yang, D. Zheng, and N. Li, “Properties of leader-laggard chaos synchronization in mutually coupled external-cavity semiconductor lasers,” Phys. Rev. E 81(6), 066217 (2010).
[Crossref]

Li, X. F.

X. F. Li, W. Pan, B. Luo, and D. Ma, “Mismatch robustness and security of chaotic optical communications based on injection-locking chaos synchronization,” IEEE J. Quantum Electron. 42(9), 953–960 (2006).
[Crossref]

Lin, S.

Lin, X. D.

J. G. Wu, Z. M. Wu, G. Q. Xia, T. Deng, X. D. Lin, X. Tang, and G. Feng, “Isochronous synchronization between chaotic semiconductor lasers over 40-km fiber links,” IEEE Photonics Technol. Lett. 23(24), 1854–1856 (2011).
[Crossref]

T. Deng, G. Q. Xia, L. P. Cao, J. G. Chen, X. D. Lin, and Z. M. Wu, “Bidirectional chaos synchronization and communication in semiconductor lasers with optoelectronic feedback,” Opt. Commun. 282(11), 2243–2249 (2009).
[Crossref]

Liu, S.

Liu, S. Q.

Locquet, A.

N. Li, R. M. Nguimdo, A. Locquet, and D. S. Citrin, “Enhancing optical-feedback-induced chaotic dynamics in semiconductor ring lasers via optical injection,” Nonlinear Dyn. 92(2), 315–324 (2018).
[Crossref]

N. Li, W. Pan, A. Locquet, and D. S. Citrin, “Time-delay concealment and complexity enhancement of an external-cavity laser through optical injection,” Opt. Lett. 40(19), 4416–4419 (2015).
[Crossref]

D. Rontani, A. Locquet, M. Sciamanna, D. S. Citrin, and S. Ortin, “Time-delay identification in a chaotic semiconductor laser with optical feedback: a dynamical point of view,” IEEE J. Quantum Electron. 45(7), 879–1891 (2009).
[Crossref]

A. Locquet, F. Rogister, M. Sciamanna, and P. Megret, “Synchronization of chaotic semiconductor lasers with phase-conjugate feedback,” in Pacific Rim Conference on Lasers and Electro-Optics, II-388–II-389 (2001).

Luo, B.

N. Li, W. Pan, S. Xiang, B. Luo, L. Yan, and X. Zou, “Hybrid chaos-based communication system consisting of three chaotic semiconductor ring lasers,” Appl. Opt. 52(7), 1523–1530 (2013).
[Crossref]

N. Jiang, W. Pan, B. Luo, L. Yan, S. Xiang, L. Yang, D. Zheng, and N. Li, “Properties of leader-laggard chaos synchronization in mutually coupled external-cavity semiconductor lasers,” Phys. Rev. E 81(6), 066217 (2010).
[Crossref]

X. F. Li, W. Pan, B. Luo, and D. Ma, “Mismatch robustness and security of chaotic optical communications based on injection-locking chaos synchronization,” IEEE J. Quantum Electron. 42(9), 953–960 (2006).
[Crossref]

Lv, Y.

Ma, D.

X. F. Li, W. Pan, B. Luo, and D. Ma, “Mismatch robustness and security of chaotic optical communications based on injection-locking chaos synchronization,” IEEE J. Quantum Electron. 42(9), 953–960 (2006).
[Crossref]

Megret, P.

A. Locquet, F. Rogister, M. Sciamanna, and P. Megret, “Synchronization of chaotic semiconductor lasers with phase-conjugate feedback,” in Pacific Rim Conference on Lasers and Electro-Optics, II-388–II-389 (2001).

Mercier, É.

É. Mercier, D. Wolfersberger, and M. Sciamanna, “High-frequency chaotic dynamics enabled by optical phase-conjugation,” Sci. Rep. 6(1), 18988 (2016).
[Crossref]

D. Rontani, É. Mercier, D. Wolfersberger, and M. Sciamanna, “Enhanced complexity of optical chaos in a laser diode with phase-conjugate feedback,” Opt. Lett. 41(20), 4637–4640 (2016).
[Crossref]

Mirasso, C. R.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fiber-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref]

C. R. Mirasso, P. Colet, and P. García-Fernández, “Synchronization of chaotic semiconductor lasers: Application to encoded communications,” IEEE Photonics Technol. Lett. 8(2), 299–301 (1996).
[Crossref]

Mogensen, F.

F. Mogensen, H. Olesen, and G. Jacobsen, “Locking conditions and stability properties for a semiconductor laser with external light injection,” IEEE J. Quantum Electron. 21(7), 784–793 (1985).
[Crossref]

Murakami, A.

A. Murakami, “Phase locking and chaos synchronization in injection-locked semiconductor lasers,” IEEE J. Quantum Electron. 39(3), 438–447 (2003).
[Crossref]

Nguimdo, R. M.

N. Li, R. M. Nguimdo, A. Locquet, and D. S. Citrin, “Enhancing optical-feedback-induced chaotic dynamics in semiconductor ring lasers via optical injection,” Nonlinear Dyn. 92(2), 315–324 (2018).
[Crossref]

Ohtsubo, J.

J. Ohtsubo, “Chaos synchronization and chaotic signal masking in semiconductor lasers with optical feedback,” IEEE J. Quantum Electron. 38(9), 1141–1154 (2002).
[Crossref]

Olesen, H.

F. Mogensen, H. Olesen, and G. Jacobsen, “Locking conditions and stability properties for a semiconductor laser with external light injection,” IEEE J. Quantum Electron. 21(7), 784–793 (1985).
[Crossref]

Ortin, S.

D. Rontani, A. Locquet, M. Sciamanna, D. S. Citrin, and S. Ortin, “Time-delay identification in a chaotic semiconductor laser with optical feedback: a dynamical point of view,” IEEE J. Quantum Electron. 45(7), 879–1891 (2009).
[Crossref]

Pan, W.

M. F. Xu, W. Pan, S. H. Xiang, and L. Zhang, “Cluster synchronization in symmetric VCSELs networks with variable-polarization optical feedback,” Opt. Express 26(8), 10754–10761 (2018).
[Crossref]

S. Y. Xiang, A. J. Wen, and W. Pan, “Synchronization regime of star-type laser network with heterogeneous coupling delays,” IEEE Photonics Technol. Lett. 28(18), 1988–1991 (2016).
[Crossref]

N. Li, W. Pan, A. Locquet, and D. S. Citrin, “Time-delay concealment and complexity enhancement of an external-cavity laser through optical injection,” Opt. Lett. 40(19), 4416–4419 (2015).
[Crossref]

N. Li, W. Pan, S. Xiang, B. Luo, L. Yan, and X. Zou, “Hybrid chaos-based communication system consisting of three chaotic semiconductor ring lasers,” Appl. Opt. 52(7), 1523–1530 (2013).
[Crossref]

N. Jiang, W. Pan, B. Luo, L. Yan, S. Xiang, L. Yang, D. Zheng, and N. Li, “Properties of leader-laggard chaos synchronization in mutually coupled external-cavity semiconductor lasers,” Phys. Rev. E 81(6), 066217 (2010).
[Crossref]

X. F. Li, W. Pan, B. Luo, and D. Ma, “Mismatch robustness and security of chaotic optical communications based on injection-locking chaos synchronization,” IEEE J. Quantum Electron. 42(9), 953–960 (2006).
[Crossref]

Paul, J.

Pesquera, L.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fiber-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref]

Qiu, K.

Rizomiliotis, P.

A. Bogris, P. Rizomiliotis, K. E. Chlouverakis, A. Argyris, and D. Syvridis, “Feedback phase in optically generated chaos: A sceret key for cryptographic applications,” IEEE J. Quantum Electron. 44(2), 119–124 (2008).
[Crossref]

Rogister, F.

A. Locquet, F. Rogister, M. Sciamanna, and P. Megret, “Synchronization of chaotic semiconductor lasers with phase-conjugate feedback,” in Pacific Rim Conference on Lasers and Electro-Optics, II-388–II-389 (2001).

Rontani, D.

D. Rontani, É. Mercier, D. Wolfersberger, and M. Sciamanna, “Enhanced complexity of optical chaos in a laser diode with phase-conjugate feedback,” Opt. Lett. 41(20), 4637–4640 (2016).
[Crossref]

D. Rontani, A. Locquet, M. Sciamanna, D. S. Citrin, and S. Ortin, “Time-delay identification in a chaotic semiconductor laser with optical feedback: a dynamical point of view,” IEEE J. Quantum Electron. 45(7), 879–1891 (2009).
[Crossref]

Roy, R.

G. D. Vanwiggeren and R. Roy, “Communication with chaotic lasers,” Science 279(5354), 1198–1200 (1998).
[Crossref]

Sciamanna, M.

D. Rontani, É. Mercier, D. Wolfersberger, and M. Sciamanna, “Enhanced complexity of optical chaos in a laser diode with phase-conjugate feedback,” Opt. Lett. 41(20), 4637–4640 (2016).
[Crossref]

É. Mercier, D. Wolfersberger, and M. Sciamanna, “High-frequency chaotic dynamics enabled by optical phase-conjugation,” Sci. Rep. 6(1), 18988 (2016).
[Crossref]

D. Rontani, A. Locquet, M. Sciamanna, D. S. Citrin, and S. Ortin, “Time-delay identification in a chaotic semiconductor laser with optical feedback: a dynamical point of view,” IEEE J. Quantum Electron. 45(7), 879–1891 (2009).
[Crossref]

A. Locquet, F. Rogister, M. Sciamanna, and P. Megret, “Synchronization of chaotic semiconductor lasers with phase-conjugate feedback,” in Pacific Rim Conference on Lasers and Electro-Optics, II-388–II-389 (2001).

Shore, K. A.

Y. H. Hong, M. W. Lee, J. Paul, P. S. Spencer, and K. A. Shore, “Enhanced chaos synchronization in unidirectionally coupled vertical-cavity surface-emitting semiconductor lasers with polarization-preserved injection,” Opt. Lett. 33(6), 587–589 (2008).
[Crossref]

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fiber-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref]

Spencer, P. S.

Syvridis, D.

A. Bogris, P. Rizomiliotis, K. E. Chlouverakis, A. Argyris, and D. Syvridis, “Feedback phase in optically generated chaos: A sceret key for cryptographic applications,” IEEE J. Quantum Electron. 44(2), 119–124 (2008).
[Crossref]

D. Kanakidis, A. Argyris, A. Bogris, and D. Syvridis, “Influence of the decoding process on the performance of chaos encrypted optical communication systems,” J. Lightwave Technol. 24(1), 335–341 (2006).
[Crossref]

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fiber-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref]

D. Kanakidis, A. Bogris, A. Argyris, and D. Syvridis, “Numerical investigation of fiber transmission of a chaotic encrypted message using dispersion compensation schemes,” J. Lightwave Technol. 22(10), 2256–2263 (2004).
[Crossref]

Tang, J. M.

Tang, X.

J. G. Wu, Z. M. Wu, G. Q. Xia, T. Deng, X. D. Lin, X. Tang, and G. Feng, “Isochronous synchronization between chaotic semiconductor lasers over 40-km fiber links,” IEEE Photonics Technol. Lett. 23(24), 1854–1856 (2011).
[Crossref]

Vanwiggeren, G. D.

G. D. Vanwiggeren and R. Roy, “Communication with chaotic lasers,” Science 279(5354), 1198–1200 (1998).
[Crossref]

Wang, C.

Wang, Y.

Wang, Y. J.

Wen, A. J.

S. Y. Xiang, A. J. Wen, and W. Pan, “Synchronization regime of star-type laser network with heterogeneous coupling delays,” IEEE Photonics Technol. Lett. 28(18), 1988–1991 (2016).
[Crossref]

Wolfersberger, D.

D. Rontani, É. Mercier, D. Wolfersberger, and M. Sciamanna, “Enhanced complexity of optical chaos in a laser diode with phase-conjugate feedback,” Opt. Lett. 41(20), 4637–4640 (2016).
[Crossref]

É. Mercier, D. Wolfersberger, and M. Sciamanna, “High-frequency chaotic dynamics enabled by optical phase-conjugation,” Sci. Rep. 6(1), 18988 (2016).
[Crossref]

Wu, J. G.

J. G. Wu, Z. M. Wu, G. Q. Xia, T. Deng, X. D. Lin, X. Tang, and G. Feng, “Isochronous synchronization between chaotic semiconductor lasers over 40-km fiber links,” IEEE Photonics Technol. Lett. 23(24), 1854–1856 (2011).
[Crossref]

Wu, Z. M.

J. G. Wu, Z. M. Wu, G. Q. Xia, T. Deng, X. D. Lin, X. Tang, and G. Feng, “Isochronous synchronization between chaotic semiconductor lasers over 40-km fiber links,” IEEE Photonics Technol. Lett. 23(24), 1854–1856 (2011).
[Crossref]

T. Deng, G. Q. Xia, L. P. Cao, J. G. Chen, X. D. Lin, and Z. M. Wu, “Bidirectional chaos synchronization and communication in semiconductor lasers with optoelectronic feedback,” Opt. Commun. 282(11), 2243–2249 (2009).
[Crossref]

Xia, G. Q.

J. X. Ke, L. L. Yi, G. Q. Xia, and W. Hu, “Chaotic optical communications over 100-km fiber transmission at 30-Gb/s bit rate,” Opt. Lett. 43(6), 1323–1326 (2018).
[Crossref]

J. G. Wu, Z. M. Wu, G. Q. Xia, T. Deng, X. D. Lin, X. Tang, and G. Feng, “Isochronous synchronization between chaotic semiconductor lasers over 40-km fiber links,” IEEE Photonics Technol. Lett. 23(24), 1854–1856 (2011).
[Crossref]

T. Deng, G. Q. Xia, L. P. Cao, J. G. Chen, X. D. Lin, and Z. M. Wu, “Bidirectional chaos synchronization and communication in semiconductor lasers with optoelectronic feedback,” Opt. Commun. 282(11), 2243–2249 (2009).
[Crossref]

Xiang, S.

N. Li, W. Pan, S. Xiang, B. Luo, L. Yan, and X. Zou, “Hybrid chaos-based communication system consisting of three chaotic semiconductor ring lasers,” Appl. Opt. 52(7), 1523–1530 (2013).
[Crossref]

N. Jiang, W. Pan, B. Luo, L. Yan, S. Xiang, L. Yang, D. Zheng, and N. Li, “Properties of leader-laggard chaos synchronization in mutually coupled external-cavity semiconductor lasers,” Phys. Rev. E 81(6), 066217 (2010).
[Crossref]

Xiang, S. H.

Xiang, S. Y.

S. Y. Xiang, A. J. Wen, and W. Pan, “Synchronization regime of star-type laser network with heterogeneous coupling delays,” IEEE Photonics Technol. Lett. 28(18), 1988–1991 (2016).
[Crossref]

Xu, M. F.

Xue, C.

Xue, C. P.

Yan, L.

N. Li, W. Pan, S. Xiang, B. Luo, L. Yan, and X. Zou, “Hybrid chaos-based communication system consisting of three chaotic semiconductor ring lasers,” Appl. Opt. 52(7), 1523–1530 (2013).
[Crossref]

N. Jiang, W. Pan, B. Luo, L. Yan, S. Xiang, L. Yang, D. Zheng, and N. Li, “Properties of leader-laggard chaos synchronization in mutually coupled external-cavity semiconductor lasers,” Phys. Rev. E 81(6), 066217 (2010).
[Crossref]

Yang, L.

N. Jiang, W. Pan, B. Luo, L. Yan, S. Xiang, L. Yang, D. Zheng, and N. Li, “Properties of leader-laggard chaos synchronization in mutually coupled external-cavity semiconductor lasers,” Phys. Rev. E 81(6), 066217 (2010).
[Crossref]

Yi, L. L.

Zhang, L.

Zhang, Y.

Zhao, A.

Zhao, A. K.

Zheng, D.

N. Jiang, W. Pan, B. Luo, L. Yan, S. Xiang, L. Yang, D. Zheng, and N. Li, “Properties of leader-laggard chaos synchronization in mutually coupled external-cavity semiconductor lasers,” Phys. Rev. E 81(6), 066217 (2010).
[Crossref]

Zou, X.

Appl. Opt. (1)

IEEE J. Quantum Electron. (7)

A. Bogris, P. Rizomiliotis, K. E. Chlouverakis, A. Argyris, and D. Syvridis, “Feedback phase in optically generated chaos: A sceret key for cryptographic applications,” IEEE J. Quantum Electron. 44(2), 119–124 (2008).
[Crossref]

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16(3), 347–355 (1980).
[Crossref]

F. Mogensen, H. Olesen, and G. Jacobsen, “Locking conditions and stability properties for a semiconductor laser with external light injection,” IEEE J. Quantum Electron. 21(7), 784–793 (1985).
[Crossref]

A. Murakami, “Phase locking and chaos synchronization in injection-locked semiconductor lasers,” IEEE J. Quantum Electron. 39(3), 438–447 (2003).
[Crossref]

D. Rontani, A. Locquet, M. Sciamanna, D. S. Citrin, and S. Ortin, “Time-delay identification in a chaotic semiconductor laser with optical feedback: a dynamical point of view,” IEEE J. Quantum Electron. 45(7), 879–1891 (2009).
[Crossref]

J. Ohtsubo, “Chaos synchronization and chaotic signal masking in semiconductor lasers with optical feedback,” IEEE J. Quantum Electron. 38(9), 1141–1154 (2002).
[Crossref]

X. F. Li, W. Pan, B. Luo, and D. Ma, “Mismatch robustness and security of chaotic optical communications based on injection-locking chaos synchronization,” IEEE J. Quantum Electron. 42(9), 953–960 (2006).
[Crossref]

IEEE Photonics Technol. Lett. (3)

S. Y. Xiang, A. J. Wen, and W. Pan, “Synchronization regime of star-type laser network with heterogeneous coupling delays,” IEEE Photonics Technol. Lett. 28(18), 1988–1991 (2016).
[Crossref]

J. G. Wu, Z. M. Wu, G. Q. Xia, T. Deng, X. D. Lin, X. Tang, and G. Feng, “Isochronous synchronization between chaotic semiconductor lasers over 40-km fiber links,” IEEE Photonics Technol. Lett. 23(24), 1854–1856 (2011).
[Crossref]

C. R. Mirasso, P. Colet, and P. García-Fernández, “Synchronization of chaotic semiconductor lasers: Application to encoded communications,” IEEE Photonics Technol. Lett. 8(2), 299–301 (1996).
[Crossref]

J. Lightwave Technol. (2)

Nature (1)

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fiber-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref]

Nonlinear Dyn. (1)

N. Li, R. M. Nguimdo, A. Locquet, and D. S. Citrin, “Enhancing optical-feedback-induced chaotic dynamics in semiconductor ring lasers via optical injection,” Nonlinear Dyn. 92(2), 315–324 (2018).
[Crossref]

Opt. Commun. (1)

T. Deng, G. Q. Xia, L. P. Cao, J. G. Chen, X. D. Lin, and Z. M. Wu, “Bidirectional chaos synchronization and communication in semiconductor lasers with optoelectronic feedback,” Opt. Commun. 282(11), 2243–2249 (2009).
[Crossref]

Opt. Express (3)

Opt. Lett. (6)

OSA Continuum (1)

Phys. Rev. A (1)

J. S. Lawrence and D. M. Kane, “Contrasting conventional optical and phase-conjugate feedback in laser diodes,” Phys. Rev. A 63(3), 033805 (2001).
[Crossref]

Phys. Rev. E (2)

B. Krauskopf, G. R. Gray, and D. Lenstra, “Semiconductor laser with phase-conjugate feedback: Dynamics and bifurcations,” Phys. Rev. E 58(6), 7190–7197 (1998).
[Crossref]

N. Jiang, W. Pan, B. Luo, L. Yan, S. Xiang, L. Yang, D. Zheng, and N. Li, “Properties of leader-laggard chaos synchronization in mutually coupled external-cavity semiconductor lasers,” Phys. Rev. E 81(6), 066217 (2010).
[Crossref]

Sci. Rep. (1)

É. Mercier, D. Wolfersberger, and M. Sciamanna, “High-frequency chaotic dynamics enabled by optical phase-conjugation,” Sci. Rep. 6(1), 18988 (2016).
[Crossref]

Science (1)

G. D. Vanwiggeren and R. Roy, “Communication with chaotic lasers,” Science 279(5354), 1198–1200 (1998).
[Crossref]

Other (1)

A. Locquet, F. Rogister, M. Sciamanna, and P. Megret, “Synchronization of chaotic semiconductor lasers with phase-conjugate feedback,” in Pacific Rim Conference on Lasers and Electro-Optics, II-388–II-389 (2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Schematic of the closed-loop PCF-ECSL system. MSL, Master semiconductor laser; SSL, slave semiconductor laser; PCM: phase-conjugate mirror, OC: optical coupler, OI: optical isolator, PS: phase shifter, M: modulator, PD: photodetector.
Fig. 2.
Fig. 2. (a) Phase-locking characteristic versus the variation of ki in the closed-loop PCF-ECSLs system, (b) variation of the synchronization quality as a function of tuning phase difference ϕPS (normalized in [0∼2π]) with zero frequency detuning in SSL. Lines in (a) denote the analytical results of the phase ϕL defined in Eq. (11), while the marks stand for the numerical simulation results for Δϕ.
Fig. 3.
Fig. 3. Distributions of injection-locking synchronization quality as a function of the injection strength and feedback strength, for the cases of PCF with (a) ϕPS1, (b) ϕPS2, and (c) COF.
Fig. 4.
Fig. 4. Synchronization quality between MSL and SSL as functions of the frequency detuning (a), and the intrinsic parameters mismatch (b) in PCF and COF closed-loop schemes. The injection strength is set as 80ns−1.
Fig. 5.
Fig. 5. Illustrations of chaos communication in the closed-loop PCF-ECSL system for the cases of PCF with ϕPS1 (first row) and ϕPS2 (second row). The dark curves denote the original messages, while the red and blue ones denote the decrypted messages. The bit rates for message transmissions shown in the first and second columns are 2.5 Gbit/s and 5 Gbit/s, respectively. The horizontal axes have been properly shifted.
Fig. 6.
Fig. 6. (a) Comparison of communication performance (Q-factor) in the closed-loop PCF-ECSL and COF-ECSL configurations as a function of the bit rate of message, (b) effective bandwidth (GHz) of chaotic carrier generated by PCF-ECSL and COF-ECSL versus the strength of feedback.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

d E M ( t ) d t = 1 + i α 2 [ G M ( t ) 1 τ p ] E M ( t ) + k f E M ( t τ f ) exp ( i ϕ P C M M ) + 2 β N M ( t ) χ M ( t )
d N M ( t ) d t = I q N M ( t ) τ e G M ( t ) | E M ( t ) | 2
d E S ( t ) d t = 1 + i α 2 [ G S ( t ) 1 τ p ] E S ( t ) + k f E S ( t τ f ) exp ( i ϕ P C M S ) + k i E M ( t τ i ) exp ( i ω M τ i ) exp ( i Δ ω t ) + 2 β N S ( t ) χ S ( t )
d N S ( t ) d t = I q N S ( t ) τ e G S ( t ) | E S ( t ) | 2
d A M , S ( t ) d t = 1 2 [ G M , S ( t ) 1 τ p ] A M , S ( t ) + k f A M , S ( t ) A M , S ( t τ f ) cos [ θ f M , f S ( t ) ] + k i A S ( t ) A M ( t τ i ) cos [ θ i ( t ) ]
d ϕ M , S ( t ) d t = α 2 [ G M , S ( t ) 1 τ p ] k f A M , S ( t τ f ) A M , S ( t ) sin [ θ f M , f S ( t ) ] k i A M ( t τ i ) A S ( t ) sin [ θ i ( t ) ]
d N M , S ( t ) d t = I q N M , S ( t ) τ e G M , S ( t ) | A M , S ( t ) | 2
θ f M , f S ( t ) = ϕ M , S ( t ) + ϕ M , S ( t τ f ) ϕ P C M M , P C M S
θ i ( t ) = ω M τ i + ϕ S ( t ) ϕ M ( t τ i ) Δ ω t
ϕ S ( t ) ϕ M ( t ) = Δ ω t + ϕ L ,
ϕ L = sin 1 { Δ ω k i 1 + α 2 } tan 1 α .
ϕ M ( t ) + ϕ M ( t τ f ) ϕ P C M M = ϕ S ( t ) + ϕ S ( t τ f ) ϕ P C M S
ϕ M ( t ) ϕ S ( t ) + ϕ M ( t τ f ) ϕ S ( t τ f ) ϕ P C M M + ϕ P C M S = 0
2 ϕ L + 2 Δ ω t Δ ω τ f Δ ϕ P C M = 0
ϕ P S 1 = 2 ϕ L + 2 Δ ω t Δ ω τ f Δ ϕ P C M
ϕ S ( t ) ϕ M ( t ) = Δ ω t + ϕ P S 2 + ϕ L .
ϕ P S 2 = ϕ L Δ ω t + 1 2 Δ ω τ f + 1 2 Δ ϕ P C M
ρ ( τ ) = [ P M ( t τ ) P M ( t τ ) ] [ P S ( t ) P S ( t ) ] [ P M ( t τ ) P M ( t τ ) ] 2 [ P S ( t ) P S ( t ) ] 2

Metrics