Abstract

A novel fiber Sagnac-like detection system has unique competitive advantages for detecting atomic spin precession in atomic magnetometers. Unfortunately, its operating stability is severely limited by temperature fluctuations. In this paper, we describe a new approach to improve the temperature stability by using the ratio signal as the output instead of the conventional fundamental component. This method can effectively counteract the temperature-caused fluctuations in both light intensity and scale factor of photodetector. For a temperature range from 20°C to 40°C, a relative fluctuation of the ratio output signal of 0.97% was achieved, which was 17.4 times better than the fundamental component output. Moreover, no additional equipment and complex compensation algorithms are required during this process. It is a generic method that can also be applied to improve the stability of other detection schemes used in atomic magnetometers.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Light intensity stabilization based on the second harmonic of the photoelastic modulator detection in the atomic magnetometer

Lihong Duan, Jiancheng Fang, Rujie Li, Liwei Jiang, Ming Ding, and Wei Wang
Opt. Express 23(25) 32481-32489 (2015)

Acousto-optic modulation detection method in an all-optical K-Rb hybrid atomic magnetometer using uniform design method

Han Yao, Yang Li, Danyue Ma, Jiashu Cai, Junpeng Zhao, and Ming Ding
Opt. Express 26(22) 28682-28692 (2018)

Four-channel optically pumped atomic magnetometer for magnetoencephalography

Anthony P. Colombo, Tony R. Carter, Amir Borna, Yuan-Yu Jau, Cort N. Johnson, Amber L. Dagel, and Peter D. D. Schwindt
Opt. Express 24(14) 15403-15416 (2016)

References

  • View by:
  • |
  • |
  • |

  1. H. B. Dang, A. C. Maloof, and M. V. Romalis, “Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer,” Appl. Phys. Lett. 97(15), 151110 (2010).
    [Crossref]
  2. J. Kitching, S. Knappe, and E. A. Donley, “Atomic Sensors - A Review,” IEEE Sens. J. 11(9), 1749–1758 (2011).
    [Crossref]
  3. I. K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422(6932), 596–599 (2003).
    [Crossref]
  4. C. J. Stam, “Use of magnetoencephalography (MEG) to study functional brain networks in neurodegenerative disorders,” J. Neurol. Sci. 289(1-2), 128–134 (2010).
    [Crossref]
  5. T. H. Sander, J. Preusser, R. Mhaskar, J. Kitching, L. Trahms, and S. Knappe, “Magnetoencephalography with a chip-scale atomic magnetometer,” Biomed. Opt. Express 3(5), 981–990 (2012).
    [Crossref]
  6. C. Johnson, P. D. D. Schwindt, and M. Weisend, “Magnetoencephalography with a two-color pump-probe, fiber-coupled atomic magnetometer,” Appl. Phys. Lett. 97(24), 243703 (2010).
    [Crossref]
  7. A. P. Colombo, T. R. Carter, A. Borna, Y. Y. Jau, C. N. Johnson, A. L. Dagel, and P. D. D. Schwindt, “Four-channel optically pumped atomic magnetometer for magnetoencephalography,” Opt. Express 24(14), 15403–15416 (2016).
    [Crossref]
  8. E. Boto, N. Holmes, J. Leggett, G. Roberts, V. Shah, S. S. Meyer, L. D. Munoz, K. J. Mullinger, T. M. Tierney, S. Bestmann, G. R. Barnes, R. Bowtell, and M. J. Brookes, “Moving magnetoencephalography towards real-world applications with a wearable system,” Nature 555(7698), 657–661 (2018).
    [Crossref]
  9. X. J. Liu, Y. H. Yang, M. Ding, W. Quan, Y. H. Hu, Y. Li, W. Jin, and J. C. Fang, “Single-Fiber Sagnac-Like Interferometer for Optical Rotation Measurement in Atomic Spin Precession Detection,” J. Lightwave Technol. 37(4), 1317–1324 (2019).
    [Crossref]
  10. T. Wei, Y. K. Han, Y. J. Li, H. L. Tsai, and H. Xiao, “Temperature-insensitive miniaturized fiber inline Fabry-Perot interferometer for highly sensitive refractive index measurement,” Opt. Express 16(8), 5764–5769 (2008).
    [Crossref]
  11. V. Budinski and D. Donlagic, “Miniature, All-Fiber Rotation Sensor Based on Temperature Compensated Wave Plate,” IEEE Photonics Technol. Lett. 27(1), 85–88 (2015).
    [Crossref]
  12. K. S. Lim, C. H. Pua, S. W. Harun, and H. Ahmad, “Temperature-sensitive dual-segment polarization maintaining fiber Sagnac loop mirror,” Opt. Laser Technol. 42(2), 377–381 (2010).
    [Crossref]
  13. M. Rossetti, L. H. Li, A. Fiore, L. Occhi, C. Velez, S. Mikhrin, and A. Kovsh, “High-power quantum-dot superluminescent diodes with p-doped active region,” IEEE Photonics Technol. Lett. 18(18), 1946–1948 (2006).
    [Crossref]
  14. X. J. Liu, Y. Li, H. W. Cai, M. Ding, J. C. Fang, and W. Jin, “Optical Rotation Detection for Atomic Spin Precession Using a Superluminescent Diode,” Photonic Sens. 9(2), 135–141 (2019).
    [Crossref]
  15. X. Y. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett. 90(15), 151113 (2007).
    [Crossref]
  16. X. Chen, J. Yang, Y. Zhou, and X. Shu, “An improved temperature compensation circuit for SLD light source of fiber-optic gyroscope,” in Journal of Physics Conference Series (Academic, 2017), 012027.
  17. J. H. Cheng, B. Qi, D. D. Chen, and R. Landry, “Modification of an RBF ANN-Based Temperature Compensation Model of Interferometric Fiber Optical Gyroscopes,” Sensors 15(5), 11189–11207 (2015).
    [Crossref]
  18. M. P. Ledbetter, I. M. Savukov, V. M. Acosta, D. Budker, and M. V. Romalis, “Spin-exchange-relaxation-free magnetometry with Cs vapor,” Phys. Rev. A 77(3), 033408 (2008).
    [Crossref]
  19. D. Budker and M. Romalis, “Optical magnetometry,” Nat. Phys. 3(4), 227–234 (2007).
    [Crossref]
  20. S. J. Seltzer and M. V. Romalis, “Unshielded three-axis vector operation of a spin-exchange-relaxation-free atomic magnetometer,” Appl. Phys. Lett. 85(20), 4804–4806 (2004).
    [Crossref]
  21. T. W. Kornack, R. K. Ghosh, and M. V. Romalis, “Nuclear spin gyroscope based on an atomic comagnetometer,” Phys. Rev. Lett. 95(23), 230801 (2005).
    [Crossref]
  22. Y. H. Hu, X. J. Liu, Y. Li, H. Yao, L. L. Dai, B. Y. Yang, and M. Ding, “An atomic spin precession detection method based on electro-optic modulation in an all-optical K-Rb hybrid atomic magnetometer,” J. Phys. D: Appl. Phys. 50(26), 265001 (2017).
    [Crossref]
  23. F. Allmendinger, W. Heil, S. Karpuk, W. Kilian, A. Scharth, U. Schmidt, A. Schnabel, Y. Sobolev, and K. Tullney, “New limit on Lorentz and CPT violating neutron spin interactions using a free precession 3He-129Xe co-magnetometer,” Phys. Rev. Lett. 112(11), 110801 (2014).
    [Crossref]
  24. J. D. Li, W. Quan, B. Q. Zhou, Z. Wang, J. X. Lu, Z. H. Hu, G. Liu, and J. C. Fang, “SERF Atomic Magnetometer-Recent Advances and Applications: A Review,” IEEE Sens. J. 18(20), 8198–8207 (2018).
    [Crossref]
  25. C. C. Cutler, S. A. Newton, and H. J. Shaw, “Limitation of rotation sensing by scattering,” Opt. Lett. 5(11), 488–490 (1980).
    [Crossref]
  26. M. N. Liu and D. F. Xue, “Effect of heating rate on the crystal composition of ferroelectric lithium niobate crystallites,” J. Alloys Compd. 427(1-2), 256–259 (2007).
    [Crossref]

2019 (2)

X. J. Liu, Y. H. Yang, M. Ding, W. Quan, Y. H. Hu, Y. Li, W. Jin, and J. C. Fang, “Single-Fiber Sagnac-Like Interferometer for Optical Rotation Measurement in Atomic Spin Precession Detection,” J. Lightwave Technol. 37(4), 1317–1324 (2019).
[Crossref]

X. J. Liu, Y. Li, H. W. Cai, M. Ding, J. C. Fang, and W. Jin, “Optical Rotation Detection for Atomic Spin Precession Using a Superluminescent Diode,” Photonic Sens. 9(2), 135–141 (2019).
[Crossref]

2018 (2)

J. D. Li, W. Quan, B. Q. Zhou, Z. Wang, J. X. Lu, Z. H. Hu, G. Liu, and J. C. Fang, “SERF Atomic Magnetometer-Recent Advances and Applications: A Review,” IEEE Sens. J. 18(20), 8198–8207 (2018).
[Crossref]

E. Boto, N. Holmes, J. Leggett, G. Roberts, V. Shah, S. S. Meyer, L. D. Munoz, K. J. Mullinger, T. M. Tierney, S. Bestmann, G. R. Barnes, R. Bowtell, and M. J. Brookes, “Moving magnetoencephalography towards real-world applications with a wearable system,” Nature 555(7698), 657–661 (2018).
[Crossref]

2017 (1)

Y. H. Hu, X. J. Liu, Y. Li, H. Yao, L. L. Dai, B. Y. Yang, and M. Ding, “An atomic spin precession detection method based on electro-optic modulation in an all-optical K-Rb hybrid atomic magnetometer,” J. Phys. D: Appl. Phys. 50(26), 265001 (2017).
[Crossref]

2016 (1)

2015 (2)

V. Budinski and D. Donlagic, “Miniature, All-Fiber Rotation Sensor Based on Temperature Compensated Wave Plate,” IEEE Photonics Technol. Lett. 27(1), 85–88 (2015).
[Crossref]

J. H. Cheng, B. Qi, D. D. Chen, and R. Landry, “Modification of an RBF ANN-Based Temperature Compensation Model of Interferometric Fiber Optical Gyroscopes,” Sensors 15(5), 11189–11207 (2015).
[Crossref]

2014 (1)

F. Allmendinger, W. Heil, S. Karpuk, W. Kilian, A. Scharth, U. Schmidt, A. Schnabel, Y. Sobolev, and K. Tullney, “New limit on Lorentz and CPT violating neutron spin interactions using a free precession 3He-129Xe co-magnetometer,” Phys. Rev. Lett. 112(11), 110801 (2014).
[Crossref]

2012 (1)

2011 (1)

J. Kitching, S. Knappe, and E. A. Donley, “Atomic Sensors - A Review,” IEEE Sens. J. 11(9), 1749–1758 (2011).
[Crossref]

2010 (4)

H. B. Dang, A. C. Maloof, and M. V. Romalis, “Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer,” Appl. Phys. Lett. 97(15), 151110 (2010).
[Crossref]

C. J. Stam, “Use of magnetoencephalography (MEG) to study functional brain networks in neurodegenerative disorders,” J. Neurol. Sci. 289(1-2), 128–134 (2010).
[Crossref]

C. Johnson, P. D. D. Schwindt, and M. Weisend, “Magnetoencephalography with a two-color pump-probe, fiber-coupled atomic magnetometer,” Appl. Phys. Lett. 97(24), 243703 (2010).
[Crossref]

K. S. Lim, C. H. Pua, S. W. Harun, and H. Ahmad, “Temperature-sensitive dual-segment polarization maintaining fiber Sagnac loop mirror,” Opt. Laser Technol. 42(2), 377–381 (2010).
[Crossref]

2008 (2)

T. Wei, Y. K. Han, Y. J. Li, H. L. Tsai, and H. Xiao, “Temperature-insensitive miniaturized fiber inline Fabry-Perot interferometer for highly sensitive refractive index measurement,” Opt. Express 16(8), 5764–5769 (2008).
[Crossref]

M. P. Ledbetter, I. M. Savukov, V. M. Acosta, D. Budker, and M. V. Romalis, “Spin-exchange-relaxation-free magnetometry with Cs vapor,” Phys. Rev. A 77(3), 033408 (2008).
[Crossref]

2007 (3)

D. Budker and M. Romalis, “Optical magnetometry,” Nat. Phys. 3(4), 227–234 (2007).
[Crossref]

X. Y. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett. 90(15), 151113 (2007).
[Crossref]

M. N. Liu and D. F. Xue, “Effect of heating rate on the crystal composition of ferroelectric lithium niobate crystallites,” J. Alloys Compd. 427(1-2), 256–259 (2007).
[Crossref]

2006 (1)

M. Rossetti, L. H. Li, A. Fiore, L. Occhi, C. Velez, S. Mikhrin, and A. Kovsh, “High-power quantum-dot superluminescent diodes with p-doped active region,” IEEE Photonics Technol. Lett. 18(18), 1946–1948 (2006).
[Crossref]

2005 (1)

T. W. Kornack, R. K. Ghosh, and M. V. Romalis, “Nuclear spin gyroscope based on an atomic comagnetometer,” Phys. Rev. Lett. 95(23), 230801 (2005).
[Crossref]

2004 (1)

S. J. Seltzer and M. V. Romalis, “Unshielded three-axis vector operation of a spin-exchange-relaxation-free atomic magnetometer,” Appl. Phys. Lett. 85(20), 4804–4806 (2004).
[Crossref]

2003 (1)

I. K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422(6932), 596–599 (2003).
[Crossref]

1980 (1)

Acosta, V. M.

M. P. Ledbetter, I. M. Savukov, V. M. Acosta, D. Budker, and M. V. Romalis, “Spin-exchange-relaxation-free magnetometry with Cs vapor,” Phys. Rev. A 77(3), 033408 (2008).
[Crossref]

Ahmad, H.

K. S. Lim, C. H. Pua, S. W. Harun, and H. Ahmad, “Temperature-sensitive dual-segment polarization maintaining fiber Sagnac loop mirror,” Opt. Laser Technol. 42(2), 377–381 (2010).
[Crossref]

Allmendinger, F.

F. Allmendinger, W. Heil, S. Karpuk, W. Kilian, A. Scharth, U. Schmidt, A. Schnabel, Y. Sobolev, and K. Tullney, “New limit on Lorentz and CPT violating neutron spin interactions using a free precession 3He-129Xe co-magnetometer,” Phys. Rev. Lett. 112(11), 110801 (2014).
[Crossref]

Allred, J. C.

I. K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422(6932), 596–599 (2003).
[Crossref]

Barnes, G. R.

E. Boto, N. Holmes, J. Leggett, G. Roberts, V. Shah, S. S. Meyer, L. D. Munoz, K. J. Mullinger, T. M. Tierney, S. Bestmann, G. R. Barnes, R. Bowtell, and M. J. Brookes, “Moving magnetoencephalography towards real-world applications with a wearable system,” Nature 555(7698), 657–661 (2018).
[Crossref]

Bestmann, S.

E. Boto, N. Holmes, J. Leggett, G. Roberts, V. Shah, S. S. Meyer, L. D. Munoz, K. J. Mullinger, T. M. Tierney, S. Bestmann, G. R. Barnes, R. Bowtell, and M. J. Brookes, “Moving magnetoencephalography towards real-world applications with a wearable system,” Nature 555(7698), 657–661 (2018).
[Crossref]

Borna, A.

Boto, E.

E. Boto, N. Holmes, J. Leggett, G. Roberts, V. Shah, S. S. Meyer, L. D. Munoz, K. J. Mullinger, T. M. Tierney, S. Bestmann, G. R. Barnes, R. Bowtell, and M. J. Brookes, “Moving magnetoencephalography towards real-world applications with a wearable system,” Nature 555(7698), 657–661 (2018).
[Crossref]

Bowtell, R.

E. Boto, N. Holmes, J. Leggett, G. Roberts, V. Shah, S. S. Meyer, L. D. Munoz, K. J. Mullinger, T. M. Tierney, S. Bestmann, G. R. Barnes, R. Bowtell, and M. J. Brookes, “Moving magnetoencephalography towards real-world applications with a wearable system,” Nature 555(7698), 657–661 (2018).
[Crossref]

Brookes, M. J.

E. Boto, N. Holmes, J. Leggett, G. Roberts, V. Shah, S. S. Meyer, L. D. Munoz, K. J. Mullinger, T. M. Tierney, S. Bestmann, G. R. Barnes, R. Bowtell, and M. J. Brookes, “Moving magnetoencephalography towards real-world applications with a wearable system,” Nature 555(7698), 657–661 (2018).
[Crossref]

Budinski, V.

V. Budinski and D. Donlagic, “Miniature, All-Fiber Rotation Sensor Based on Temperature Compensated Wave Plate,” IEEE Photonics Technol. Lett. 27(1), 85–88 (2015).
[Crossref]

Budker, D.

M. P. Ledbetter, I. M. Savukov, V. M. Acosta, D. Budker, and M. V. Romalis, “Spin-exchange-relaxation-free magnetometry with Cs vapor,” Phys. Rev. A 77(3), 033408 (2008).
[Crossref]

D. Budker and M. Romalis, “Optical magnetometry,” Nat. Phys. 3(4), 227–234 (2007).
[Crossref]

Cai, H. W.

X. J. Liu, Y. Li, H. W. Cai, M. Ding, J. C. Fang, and W. Jin, “Optical Rotation Detection for Atomic Spin Precession Using a Superluminescent Diode,” Photonic Sens. 9(2), 135–141 (2019).
[Crossref]

Carter, T. R.

Chen, D. D.

J. H. Cheng, B. Qi, D. D. Chen, and R. Landry, “Modification of an RBF ANN-Based Temperature Compensation Model of Interferometric Fiber Optical Gyroscopes,” Sensors 15(5), 11189–11207 (2015).
[Crossref]

Chen, X.

X. Chen, J. Yang, Y. Zhou, and X. Shu, “An improved temperature compensation circuit for SLD light source of fiber-optic gyroscope,” in Journal of Physics Conference Series (Academic, 2017), 012027.

Cheng, J. H.

J. H. Cheng, B. Qi, D. D. Chen, and R. Landry, “Modification of an RBF ANN-Based Temperature Compensation Model of Interferometric Fiber Optical Gyroscopes,” Sensors 15(5), 11189–11207 (2015).
[Crossref]

Colombo, A. P.

Cutler, C. C.

Dagel, A. L.

Dai, L. L.

Y. H. Hu, X. J. Liu, Y. Li, H. Yao, L. L. Dai, B. Y. Yang, and M. Ding, “An atomic spin precession detection method based on electro-optic modulation in an all-optical K-Rb hybrid atomic magnetometer,” J. Phys. D: Appl. Phys. 50(26), 265001 (2017).
[Crossref]

Dang, H. B.

H. B. Dang, A. C. Maloof, and M. V. Romalis, “Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer,” Appl. Phys. Lett. 97(15), 151110 (2010).
[Crossref]

Ding, M.

X. J. Liu, Y. Li, H. W. Cai, M. Ding, J. C. Fang, and W. Jin, “Optical Rotation Detection for Atomic Spin Precession Using a Superluminescent Diode,” Photonic Sens. 9(2), 135–141 (2019).
[Crossref]

X. J. Liu, Y. H. Yang, M. Ding, W. Quan, Y. H. Hu, Y. Li, W. Jin, and J. C. Fang, “Single-Fiber Sagnac-Like Interferometer for Optical Rotation Measurement in Atomic Spin Precession Detection,” J. Lightwave Technol. 37(4), 1317–1324 (2019).
[Crossref]

Y. H. Hu, X. J. Liu, Y. Li, H. Yao, L. L. Dai, B. Y. Yang, and M. Ding, “An atomic spin precession detection method based on electro-optic modulation in an all-optical K-Rb hybrid atomic magnetometer,” J. Phys. D: Appl. Phys. 50(26), 265001 (2017).
[Crossref]

Dong, X. Y.

X. Y. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett. 90(15), 151113 (2007).
[Crossref]

Donlagic, D.

V. Budinski and D. Donlagic, “Miniature, All-Fiber Rotation Sensor Based on Temperature Compensated Wave Plate,” IEEE Photonics Technol. Lett. 27(1), 85–88 (2015).
[Crossref]

Donley, E. A.

J. Kitching, S. Knappe, and E. A. Donley, “Atomic Sensors - A Review,” IEEE Sens. J. 11(9), 1749–1758 (2011).
[Crossref]

Fang, J. C.

X. J. Liu, Y. Li, H. W. Cai, M. Ding, J. C. Fang, and W. Jin, “Optical Rotation Detection for Atomic Spin Precession Using a Superluminescent Diode,” Photonic Sens. 9(2), 135–141 (2019).
[Crossref]

X. J. Liu, Y. H. Yang, M. Ding, W. Quan, Y. H. Hu, Y. Li, W. Jin, and J. C. Fang, “Single-Fiber Sagnac-Like Interferometer for Optical Rotation Measurement in Atomic Spin Precession Detection,” J. Lightwave Technol. 37(4), 1317–1324 (2019).
[Crossref]

J. D. Li, W. Quan, B. Q. Zhou, Z. Wang, J. X. Lu, Z. H. Hu, G. Liu, and J. C. Fang, “SERF Atomic Magnetometer-Recent Advances and Applications: A Review,” IEEE Sens. J. 18(20), 8198–8207 (2018).
[Crossref]

Fiore, A.

M. Rossetti, L. H. Li, A. Fiore, L. Occhi, C. Velez, S. Mikhrin, and A. Kovsh, “High-power quantum-dot superluminescent diodes with p-doped active region,” IEEE Photonics Technol. Lett. 18(18), 1946–1948 (2006).
[Crossref]

Ghosh, R. K.

T. W. Kornack, R. K. Ghosh, and M. V. Romalis, “Nuclear spin gyroscope based on an atomic comagnetometer,” Phys. Rev. Lett. 95(23), 230801 (2005).
[Crossref]

Han, Y. K.

Harun, S. W.

K. S. Lim, C. H. Pua, S. W. Harun, and H. Ahmad, “Temperature-sensitive dual-segment polarization maintaining fiber Sagnac loop mirror,” Opt. Laser Technol. 42(2), 377–381 (2010).
[Crossref]

Heil, W.

F. Allmendinger, W. Heil, S. Karpuk, W. Kilian, A. Scharth, U. Schmidt, A. Schnabel, Y. Sobolev, and K. Tullney, “New limit on Lorentz and CPT violating neutron spin interactions using a free precession 3He-129Xe co-magnetometer,” Phys. Rev. Lett. 112(11), 110801 (2014).
[Crossref]

Holmes, N.

E. Boto, N. Holmes, J. Leggett, G. Roberts, V. Shah, S. S. Meyer, L. D. Munoz, K. J. Mullinger, T. M. Tierney, S. Bestmann, G. R. Barnes, R. Bowtell, and M. J. Brookes, “Moving magnetoencephalography towards real-world applications with a wearable system,” Nature 555(7698), 657–661 (2018).
[Crossref]

Hu, Y. H.

X. J. Liu, Y. H. Yang, M. Ding, W. Quan, Y. H. Hu, Y. Li, W. Jin, and J. C. Fang, “Single-Fiber Sagnac-Like Interferometer for Optical Rotation Measurement in Atomic Spin Precession Detection,” J. Lightwave Technol. 37(4), 1317–1324 (2019).
[Crossref]

Y. H. Hu, X. J. Liu, Y. Li, H. Yao, L. L. Dai, B. Y. Yang, and M. Ding, “An atomic spin precession detection method based on electro-optic modulation in an all-optical K-Rb hybrid atomic magnetometer,” J. Phys. D: Appl. Phys. 50(26), 265001 (2017).
[Crossref]

Hu, Z. H.

J. D. Li, W. Quan, B. Q. Zhou, Z. Wang, J. X. Lu, Z. H. Hu, G. Liu, and J. C. Fang, “SERF Atomic Magnetometer-Recent Advances and Applications: A Review,” IEEE Sens. J. 18(20), 8198–8207 (2018).
[Crossref]

Jau, Y. Y.

Jin, W.

X. J. Liu, Y. H. Yang, M. Ding, W. Quan, Y. H. Hu, Y. Li, W. Jin, and J. C. Fang, “Single-Fiber Sagnac-Like Interferometer for Optical Rotation Measurement in Atomic Spin Precession Detection,” J. Lightwave Technol. 37(4), 1317–1324 (2019).
[Crossref]

X. J. Liu, Y. Li, H. W. Cai, M. Ding, J. C. Fang, and W. Jin, “Optical Rotation Detection for Atomic Spin Precession Using a Superluminescent Diode,” Photonic Sens. 9(2), 135–141 (2019).
[Crossref]

Johnson, C.

C. Johnson, P. D. D. Schwindt, and M. Weisend, “Magnetoencephalography with a two-color pump-probe, fiber-coupled atomic magnetometer,” Appl. Phys. Lett. 97(24), 243703 (2010).
[Crossref]

Johnson, C. N.

Karpuk, S.

F. Allmendinger, W. Heil, S. Karpuk, W. Kilian, A. Scharth, U. Schmidt, A. Schnabel, Y. Sobolev, and K. Tullney, “New limit on Lorentz and CPT violating neutron spin interactions using a free precession 3He-129Xe co-magnetometer,” Phys. Rev. Lett. 112(11), 110801 (2014).
[Crossref]

Kilian, W.

F. Allmendinger, W. Heil, S. Karpuk, W. Kilian, A. Scharth, U. Schmidt, A. Schnabel, Y. Sobolev, and K. Tullney, “New limit on Lorentz and CPT violating neutron spin interactions using a free precession 3He-129Xe co-magnetometer,” Phys. Rev. Lett. 112(11), 110801 (2014).
[Crossref]

Kitching, J.

Knappe, S.

Kominis, I. K.

I. K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422(6932), 596–599 (2003).
[Crossref]

Kornack, T. W.

T. W. Kornack, R. K. Ghosh, and M. V. Romalis, “Nuclear spin gyroscope based on an atomic comagnetometer,” Phys. Rev. Lett. 95(23), 230801 (2005).
[Crossref]

I. K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422(6932), 596–599 (2003).
[Crossref]

Kovsh, A.

M. Rossetti, L. H. Li, A. Fiore, L. Occhi, C. Velez, S. Mikhrin, and A. Kovsh, “High-power quantum-dot superluminescent diodes with p-doped active region,” IEEE Photonics Technol. Lett. 18(18), 1946–1948 (2006).
[Crossref]

Landry, R.

J. H. Cheng, B. Qi, D. D. Chen, and R. Landry, “Modification of an RBF ANN-Based Temperature Compensation Model of Interferometric Fiber Optical Gyroscopes,” Sensors 15(5), 11189–11207 (2015).
[Crossref]

Ledbetter, M. P.

M. P. Ledbetter, I. M. Savukov, V. M. Acosta, D. Budker, and M. V. Romalis, “Spin-exchange-relaxation-free magnetometry with Cs vapor,” Phys. Rev. A 77(3), 033408 (2008).
[Crossref]

Leggett, J.

E. Boto, N. Holmes, J. Leggett, G. Roberts, V. Shah, S. S. Meyer, L. D. Munoz, K. J. Mullinger, T. M. Tierney, S. Bestmann, G. R. Barnes, R. Bowtell, and M. J. Brookes, “Moving magnetoencephalography towards real-world applications with a wearable system,” Nature 555(7698), 657–661 (2018).
[Crossref]

Li, J. D.

J. D. Li, W. Quan, B. Q. Zhou, Z. Wang, J. X. Lu, Z. H. Hu, G. Liu, and J. C. Fang, “SERF Atomic Magnetometer-Recent Advances and Applications: A Review,” IEEE Sens. J. 18(20), 8198–8207 (2018).
[Crossref]

Li, L. H.

M. Rossetti, L. H. Li, A. Fiore, L. Occhi, C. Velez, S. Mikhrin, and A. Kovsh, “High-power quantum-dot superluminescent diodes with p-doped active region,” IEEE Photonics Technol. Lett. 18(18), 1946–1948 (2006).
[Crossref]

Li, Y.

X. J. Liu, Y. Li, H. W. Cai, M. Ding, J. C. Fang, and W. Jin, “Optical Rotation Detection for Atomic Spin Precession Using a Superluminescent Diode,” Photonic Sens. 9(2), 135–141 (2019).
[Crossref]

X. J. Liu, Y. H. Yang, M. Ding, W. Quan, Y. H. Hu, Y. Li, W. Jin, and J. C. Fang, “Single-Fiber Sagnac-Like Interferometer for Optical Rotation Measurement in Atomic Spin Precession Detection,” J. Lightwave Technol. 37(4), 1317–1324 (2019).
[Crossref]

Y. H. Hu, X. J. Liu, Y. Li, H. Yao, L. L. Dai, B. Y. Yang, and M. Ding, “An atomic spin precession detection method based on electro-optic modulation in an all-optical K-Rb hybrid atomic magnetometer,” J. Phys. D: Appl. Phys. 50(26), 265001 (2017).
[Crossref]

Li, Y. J.

Lim, K. S.

K. S. Lim, C. H. Pua, S. W. Harun, and H. Ahmad, “Temperature-sensitive dual-segment polarization maintaining fiber Sagnac loop mirror,” Opt. Laser Technol. 42(2), 377–381 (2010).
[Crossref]

Liu, G.

J. D. Li, W. Quan, B. Q. Zhou, Z. Wang, J. X. Lu, Z. H. Hu, G. Liu, and J. C. Fang, “SERF Atomic Magnetometer-Recent Advances and Applications: A Review,” IEEE Sens. J. 18(20), 8198–8207 (2018).
[Crossref]

Liu, M. N.

M. N. Liu and D. F. Xue, “Effect of heating rate on the crystal composition of ferroelectric lithium niobate crystallites,” J. Alloys Compd. 427(1-2), 256–259 (2007).
[Crossref]

Liu, X. J.

X. J. Liu, Y. Li, H. W. Cai, M. Ding, J. C. Fang, and W. Jin, “Optical Rotation Detection for Atomic Spin Precession Using a Superluminescent Diode,” Photonic Sens. 9(2), 135–141 (2019).
[Crossref]

X. J. Liu, Y. H. Yang, M. Ding, W. Quan, Y. H. Hu, Y. Li, W. Jin, and J. C. Fang, “Single-Fiber Sagnac-Like Interferometer for Optical Rotation Measurement in Atomic Spin Precession Detection,” J. Lightwave Technol. 37(4), 1317–1324 (2019).
[Crossref]

Y. H. Hu, X. J. Liu, Y. Li, H. Yao, L. L. Dai, B. Y. Yang, and M. Ding, “An atomic spin precession detection method based on electro-optic modulation in an all-optical K-Rb hybrid atomic magnetometer,” J. Phys. D: Appl. Phys. 50(26), 265001 (2017).
[Crossref]

Lu, J. X.

J. D. Li, W. Quan, B. Q. Zhou, Z. Wang, J. X. Lu, Z. H. Hu, G. Liu, and J. C. Fang, “SERF Atomic Magnetometer-Recent Advances and Applications: A Review,” IEEE Sens. J. 18(20), 8198–8207 (2018).
[Crossref]

Maloof, A. C.

H. B. Dang, A. C. Maloof, and M. V. Romalis, “Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer,” Appl. Phys. Lett. 97(15), 151110 (2010).
[Crossref]

Meyer, S. S.

E. Boto, N. Holmes, J. Leggett, G. Roberts, V. Shah, S. S. Meyer, L. D. Munoz, K. J. Mullinger, T. M. Tierney, S. Bestmann, G. R. Barnes, R. Bowtell, and M. J. Brookes, “Moving magnetoencephalography towards real-world applications with a wearable system,” Nature 555(7698), 657–661 (2018).
[Crossref]

Mhaskar, R.

Mikhrin, S.

M. Rossetti, L. H. Li, A. Fiore, L. Occhi, C. Velez, S. Mikhrin, and A. Kovsh, “High-power quantum-dot superluminescent diodes with p-doped active region,” IEEE Photonics Technol. Lett. 18(18), 1946–1948 (2006).
[Crossref]

Mullinger, K. J.

E. Boto, N. Holmes, J. Leggett, G. Roberts, V. Shah, S. S. Meyer, L. D. Munoz, K. J. Mullinger, T. M. Tierney, S. Bestmann, G. R. Barnes, R. Bowtell, and M. J. Brookes, “Moving magnetoencephalography towards real-world applications with a wearable system,” Nature 555(7698), 657–661 (2018).
[Crossref]

Munoz, L. D.

E. Boto, N. Holmes, J. Leggett, G. Roberts, V. Shah, S. S. Meyer, L. D. Munoz, K. J. Mullinger, T. M. Tierney, S. Bestmann, G. R. Barnes, R. Bowtell, and M. J. Brookes, “Moving magnetoencephalography towards real-world applications with a wearable system,” Nature 555(7698), 657–661 (2018).
[Crossref]

Newton, S. A.

Occhi, L.

M. Rossetti, L. H. Li, A. Fiore, L. Occhi, C. Velez, S. Mikhrin, and A. Kovsh, “High-power quantum-dot superluminescent diodes with p-doped active region,” IEEE Photonics Technol. Lett. 18(18), 1946–1948 (2006).
[Crossref]

Preusser, J.

Pua, C. H.

K. S. Lim, C. H. Pua, S. W. Harun, and H. Ahmad, “Temperature-sensitive dual-segment polarization maintaining fiber Sagnac loop mirror,” Opt. Laser Technol. 42(2), 377–381 (2010).
[Crossref]

Qi, B.

J. H. Cheng, B. Qi, D. D. Chen, and R. Landry, “Modification of an RBF ANN-Based Temperature Compensation Model of Interferometric Fiber Optical Gyroscopes,” Sensors 15(5), 11189–11207 (2015).
[Crossref]

Quan, W.

X. J. Liu, Y. H. Yang, M. Ding, W. Quan, Y. H. Hu, Y. Li, W. Jin, and J. C. Fang, “Single-Fiber Sagnac-Like Interferometer for Optical Rotation Measurement in Atomic Spin Precession Detection,” J. Lightwave Technol. 37(4), 1317–1324 (2019).
[Crossref]

J. D. Li, W. Quan, B. Q. Zhou, Z. Wang, J. X. Lu, Z. H. Hu, G. Liu, and J. C. Fang, “SERF Atomic Magnetometer-Recent Advances and Applications: A Review,” IEEE Sens. J. 18(20), 8198–8207 (2018).
[Crossref]

Roberts, G.

E. Boto, N. Holmes, J. Leggett, G. Roberts, V. Shah, S. S. Meyer, L. D. Munoz, K. J. Mullinger, T. M. Tierney, S. Bestmann, G. R. Barnes, R. Bowtell, and M. J. Brookes, “Moving magnetoencephalography towards real-world applications with a wearable system,” Nature 555(7698), 657–661 (2018).
[Crossref]

Romalis, M.

D. Budker and M. Romalis, “Optical magnetometry,” Nat. Phys. 3(4), 227–234 (2007).
[Crossref]

Romalis, M. V.

H. B. Dang, A. C. Maloof, and M. V. Romalis, “Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer,” Appl. Phys. Lett. 97(15), 151110 (2010).
[Crossref]

M. P. Ledbetter, I. M. Savukov, V. M. Acosta, D. Budker, and M. V. Romalis, “Spin-exchange-relaxation-free magnetometry with Cs vapor,” Phys. Rev. A 77(3), 033408 (2008).
[Crossref]

T. W. Kornack, R. K. Ghosh, and M. V. Romalis, “Nuclear spin gyroscope based on an atomic comagnetometer,” Phys. Rev. Lett. 95(23), 230801 (2005).
[Crossref]

S. J. Seltzer and M. V. Romalis, “Unshielded three-axis vector operation of a spin-exchange-relaxation-free atomic magnetometer,” Appl. Phys. Lett. 85(20), 4804–4806 (2004).
[Crossref]

I. K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422(6932), 596–599 (2003).
[Crossref]

Rossetti, M.

M. Rossetti, L. H. Li, A. Fiore, L. Occhi, C. Velez, S. Mikhrin, and A. Kovsh, “High-power quantum-dot superluminescent diodes with p-doped active region,” IEEE Photonics Technol. Lett. 18(18), 1946–1948 (2006).
[Crossref]

Sander, T. H.

Savukov, I. M.

M. P. Ledbetter, I. M. Savukov, V. M. Acosta, D. Budker, and M. V. Romalis, “Spin-exchange-relaxation-free magnetometry with Cs vapor,” Phys. Rev. A 77(3), 033408 (2008).
[Crossref]

Scharth, A.

F. Allmendinger, W. Heil, S. Karpuk, W. Kilian, A. Scharth, U. Schmidt, A. Schnabel, Y. Sobolev, and K. Tullney, “New limit on Lorentz and CPT violating neutron spin interactions using a free precession 3He-129Xe co-magnetometer,” Phys. Rev. Lett. 112(11), 110801 (2014).
[Crossref]

Schmidt, U.

F. Allmendinger, W. Heil, S. Karpuk, W. Kilian, A. Scharth, U. Schmidt, A. Schnabel, Y. Sobolev, and K. Tullney, “New limit on Lorentz and CPT violating neutron spin interactions using a free precession 3He-129Xe co-magnetometer,” Phys. Rev. Lett. 112(11), 110801 (2014).
[Crossref]

Schnabel, A.

F. Allmendinger, W. Heil, S. Karpuk, W. Kilian, A. Scharth, U. Schmidt, A. Schnabel, Y. Sobolev, and K. Tullney, “New limit on Lorentz and CPT violating neutron spin interactions using a free precession 3He-129Xe co-magnetometer,” Phys. Rev. Lett. 112(11), 110801 (2014).
[Crossref]

Schwindt, P. D. D.

A. P. Colombo, T. R. Carter, A. Borna, Y. Y. Jau, C. N. Johnson, A. L. Dagel, and P. D. D. Schwindt, “Four-channel optically pumped atomic magnetometer for magnetoencephalography,” Opt. Express 24(14), 15403–15416 (2016).
[Crossref]

C. Johnson, P. D. D. Schwindt, and M. Weisend, “Magnetoencephalography with a two-color pump-probe, fiber-coupled atomic magnetometer,” Appl. Phys. Lett. 97(24), 243703 (2010).
[Crossref]

Seltzer, S. J.

S. J. Seltzer and M. V. Romalis, “Unshielded three-axis vector operation of a spin-exchange-relaxation-free atomic magnetometer,” Appl. Phys. Lett. 85(20), 4804–4806 (2004).
[Crossref]

Shah, V.

E. Boto, N. Holmes, J. Leggett, G. Roberts, V. Shah, S. S. Meyer, L. D. Munoz, K. J. Mullinger, T. M. Tierney, S. Bestmann, G. R. Barnes, R. Bowtell, and M. J. Brookes, “Moving magnetoencephalography towards real-world applications with a wearable system,” Nature 555(7698), 657–661 (2018).
[Crossref]

Shaw, H. J.

Shu, X.

X. Chen, J. Yang, Y. Zhou, and X. Shu, “An improved temperature compensation circuit for SLD light source of fiber-optic gyroscope,” in Journal of Physics Conference Series (Academic, 2017), 012027.

Shum, P.

X. Y. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett. 90(15), 151113 (2007).
[Crossref]

Sobolev, Y.

F. Allmendinger, W. Heil, S. Karpuk, W. Kilian, A. Scharth, U. Schmidt, A. Schnabel, Y. Sobolev, and K. Tullney, “New limit on Lorentz and CPT violating neutron spin interactions using a free precession 3He-129Xe co-magnetometer,” Phys. Rev. Lett. 112(11), 110801 (2014).
[Crossref]

Stam, C. J.

C. J. Stam, “Use of magnetoencephalography (MEG) to study functional brain networks in neurodegenerative disorders,” J. Neurol. Sci. 289(1-2), 128–134 (2010).
[Crossref]

Tam, H. Y.

X. Y. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett. 90(15), 151113 (2007).
[Crossref]

Tierney, T. M.

E. Boto, N. Holmes, J. Leggett, G. Roberts, V. Shah, S. S. Meyer, L. D. Munoz, K. J. Mullinger, T. M. Tierney, S. Bestmann, G. R. Barnes, R. Bowtell, and M. J. Brookes, “Moving magnetoencephalography towards real-world applications with a wearable system,” Nature 555(7698), 657–661 (2018).
[Crossref]

Trahms, L.

Tsai, H. L.

Tullney, K.

F. Allmendinger, W. Heil, S. Karpuk, W. Kilian, A. Scharth, U. Schmidt, A. Schnabel, Y. Sobolev, and K. Tullney, “New limit on Lorentz and CPT violating neutron spin interactions using a free precession 3He-129Xe co-magnetometer,” Phys. Rev. Lett. 112(11), 110801 (2014).
[Crossref]

Velez, C.

M. Rossetti, L. H. Li, A. Fiore, L. Occhi, C. Velez, S. Mikhrin, and A. Kovsh, “High-power quantum-dot superluminescent diodes with p-doped active region,” IEEE Photonics Technol. Lett. 18(18), 1946–1948 (2006).
[Crossref]

Wang, Z.

J. D. Li, W. Quan, B. Q. Zhou, Z. Wang, J. X. Lu, Z. H. Hu, G. Liu, and J. C. Fang, “SERF Atomic Magnetometer-Recent Advances and Applications: A Review,” IEEE Sens. J. 18(20), 8198–8207 (2018).
[Crossref]

Wei, T.

Weisend, M.

C. Johnson, P. D. D. Schwindt, and M. Weisend, “Magnetoencephalography with a two-color pump-probe, fiber-coupled atomic magnetometer,” Appl. Phys. Lett. 97(24), 243703 (2010).
[Crossref]

Xiao, H.

Xue, D. F.

M. N. Liu and D. F. Xue, “Effect of heating rate on the crystal composition of ferroelectric lithium niobate crystallites,” J. Alloys Compd. 427(1-2), 256–259 (2007).
[Crossref]

Yang, B. Y.

Y. H. Hu, X. J. Liu, Y. Li, H. Yao, L. L. Dai, B. Y. Yang, and M. Ding, “An atomic spin precession detection method based on electro-optic modulation in an all-optical K-Rb hybrid atomic magnetometer,” J. Phys. D: Appl. Phys. 50(26), 265001 (2017).
[Crossref]

Yang, J.

X. Chen, J. Yang, Y. Zhou, and X. Shu, “An improved temperature compensation circuit for SLD light source of fiber-optic gyroscope,” in Journal of Physics Conference Series (Academic, 2017), 012027.

Yang, Y. H.

Yao, H.

Y. H. Hu, X. J. Liu, Y. Li, H. Yao, L. L. Dai, B. Y. Yang, and M. Ding, “An atomic spin precession detection method based on electro-optic modulation in an all-optical K-Rb hybrid atomic magnetometer,” J. Phys. D: Appl. Phys. 50(26), 265001 (2017).
[Crossref]

Zhou, B. Q.

J. D. Li, W. Quan, B. Q. Zhou, Z. Wang, J. X. Lu, Z. H. Hu, G. Liu, and J. C. Fang, “SERF Atomic Magnetometer-Recent Advances and Applications: A Review,” IEEE Sens. J. 18(20), 8198–8207 (2018).
[Crossref]

Zhou, Y.

X. Chen, J. Yang, Y. Zhou, and X. Shu, “An improved temperature compensation circuit for SLD light source of fiber-optic gyroscope,” in Journal of Physics Conference Series (Academic, 2017), 012027.

Appl. Phys. Lett. (4)

H. B. Dang, A. C. Maloof, and M. V. Romalis, “Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer,” Appl. Phys. Lett. 97(15), 151110 (2010).
[Crossref]

C. Johnson, P. D. D. Schwindt, and M. Weisend, “Magnetoencephalography with a two-color pump-probe, fiber-coupled atomic magnetometer,” Appl. Phys. Lett. 97(24), 243703 (2010).
[Crossref]

X. Y. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett. 90(15), 151113 (2007).
[Crossref]

S. J. Seltzer and M. V. Romalis, “Unshielded three-axis vector operation of a spin-exchange-relaxation-free atomic magnetometer,” Appl. Phys. Lett. 85(20), 4804–4806 (2004).
[Crossref]

Biomed. Opt. Express (1)

IEEE Photonics Technol. Lett. (2)

V. Budinski and D. Donlagic, “Miniature, All-Fiber Rotation Sensor Based on Temperature Compensated Wave Plate,” IEEE Photonics Technol. Lett. 27(1), 85–88 (2015).
[Crossref]

M. Rossetti, L. H. Li, A. Fiore, L. Occhi, C. Velez, S. Mikhrin, and A. Kovsh, “High-power quantum-dot superluminescent diodes with p-doped active region,” IEEE Photonics Technol. Lett. 18(18), 1946–1948 (2006).
[Crossref]

IEEE Sens. J. (2)

J. Kitching, S. Knappe, and E. A. Donley, “Atomic Sensors - A Review,” IEEE Sens. J. 11(9), 1749–1758 (2011).
[Crossref]

J. D. Li, W. Quan, B. Q. Zhou, Z. Wang, J. X. Lu, Z. H. Hu, G. Liu, and J. C. Fang, “SERF Atomic Magnetometer-Recent Advances and Applications: A Review,” IEEE Sens. J. 18(20), 8198–8207 (2018).
[Crossref]

J. Alloys Compd. (1)

M. N. Liu and D. F. Xue, “Effect of heating rate on the crystal composition of ferroelectric lithium niobate crystallites,” J. Alloys Compd. 427(1-2), 256–259 (2007).
[Crossref]

J. Lightwave Technol. (1)

J. Neurol. Sci. (1)

C. J. Stam, “Use of magnetoencephalography (MEG) to study functional brain networks in neurodegenerative disorders,” J. Neurol. Sci. 289(1-2), 128–134 (2010).
[Crossref]

J. Phys. D: Appl. Phys. (1)

Y. H. Hu, X. J. Liu, Y. Li, H. Yao, L. L. Dai, B. Y. Yang, and M. Ding, “An atomic spin precession detection method based on electro-optic modulation in an all-optical K-Rb hybrid atomic magnetometer,” J. Phys. D: Appl. Phys. 50(26), 265001 (2017).
[Crossref]

Nat. Phys. (1)

D. Budker and M. Romalis, “Optical magnetometry,” Nat. Phys. 3(4), 227–234 (2007).
[Crossref]

Nature (2)

I. K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422(6932), 596–599 (2003).
[Crossref]

E. Boto, N. Holmes, J. Leggett, G. Roberts, V. Shah, S. S. Meyer, L. D. Munoz, K. J. Mullinger, T. M. Tierney, S. Bestmann, G. R. Barnes, R. Bowtell, and M. J. Brookes, “Moving magnetoencephalography towards real-world applications with a wearable system,” Nature 555(7698), 657–661 (2018).
[Crossref]

Opt. Express (2)

Opt. Laser Technol. (1)

K. S. Lim, C. H. Pua, S. W. Harun, and H. Ahmad, “Temperature-sensitive dual-segment polarization maintaining fiber Sagnac loop mirror,” Opt. Laser Technol. 42(2), 377–381 (2010).
[Crossref]

Opt. Lett. (1)

Photonic Sens. (1)

X. J. Liu, Y. Li, H. W. Cai, M. Ding, J. C. Fang, and W. Jin, “Optical Rotation Detection for Atomic Spin Precession Using a Superluminescent Diode,” Photonic Sens. 9(2), 135–141 (2019).
[Crossref]

Phys. Rev. A (1)

M. P. Ledbetter, I. M. Savukov, V. M. Acosta, D. Budker, and M. V. Romalis, “Spin-exchange-relaxation-free magnetometry with Cs vapor,” Phys. Rev. A 77(3), 033408 (2008).
[Crossref]

Phys. Rev. Lett. (2)

T. W. Kornack, R. K. Ghosh, and M. V. Romalis, “Nuclear spin gyroscope based on an atomic comagnetometer,” Phys. Rev. Lett. 95(23), 230801 (2005).
[Crossref]

F. Allmendinger, W. Heil, S. Karpuk, W. Kilian, A. Scharth, U. Schmidt, A. Schnabel, Y. Sobolev, and K. Tullney, “New limit on Lorentz and CPT violating neutron spin interactions using a free precession 3He-129Xe co-magnetometer,” Phys. Rev. Lett. 112(11), 110801 (2014).
[Crossref]

Sensors (1)

J. H. Cheng, B. Qi, D. D. Chen, and R. Landry, “Modification of an RBF ANN-Based Temperature Compensation Model of Interferometric Fiber Optical Gyroscopes,” Sensors 15(5), 11189–11207 (2015).
[Crossref]

Other (1)

X. Chen, J. Yang, Y. Zhou, and X. Shu, “An improved temperature compensation circuit for SLD light source of fiber-optic gyroscope,” in Journal of Physics Conference Series (Academic, 2017), 012027.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Schematic of the fiber Sagnac-like detection system in the atomic magnetometer. Pump laser: external cavity diode laser; Col: collimator; P: linear polarizer; λ/4: quarter waveplate; Cell: K atomic vapor cell; R: reflector; Shields: magnetic shielding cylinder; Oven: atomic vapor cell oven; SLD: superluminescent diode; Cir: circulator; Polarizer: fiber linear polarizer; PM: phase modulator; PMF Coil: polarization-maintaining fiber coil; PD: photodetector; Lock-in Amp: lock-in amplifier; DAQ: data acquisition system. The dashed box marks the thermostat for temperature tests of the internal fiber components.
Fig. 2.
Fig. 2. Independent temperature-stability test for each component of the fiber Sagnac-like detection system. These curves reflect the variation trends with temperature of the modulation amplitude of the PM (a), the output-light intensity of the SLD source (b), the scale factor of PD (c), the output power of the fiber coil (d), and the coupling loss of the fiber polarizer (e), respectively. All experimental data were normalized by average value. The error bars are defined by one standard deviation of uncertainty.
Fig. 3.
Fig. 3. The attenuation trend of the fundamental component and the second harmonic component as a function of ambient temperature from 20°C to 40°C. The black line and the red line denote the fundamental component and the second harmonic component, respectively. The error bars are defined by one standard deviation of uncertainty.
Fig. 4.
Fig. 4. Temperature stability comparison of the fundamental component signal and the ratio output signal of the fiber Sagnac-like detection system. The black line denotes the fundamental component of the demodulated signal, while the red line indicates the ratio output signal of the fundamental component to the second harmonic component. The error bars are defined by one standard deviation of uncertainty.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I o u t = K I 0 2 { 1 + cos [ 4 θ Δ ϕ ( t ) + Δ ϕ ( t τ ) ] }
I o u t = K I 0 [ 1 sin 2 ( 4 θ Δ ϕ ( t ) + Δ ϕ ( t τ ) 2 ) ] = K I 0 K I 0 4 [ 4 θ Δ ϕ ( t ) + Δ ϕ ( t τ ) ] 2
I o u t = K I 0 K I 0 4 [ 16 θ 2 + 2 a 2 sin 2 ( ω τ 2 ) + 16 θ a sin ( ω τ 2 ) sin ω ( t τ 2 ) 2 a 2 sin 2 ( ω τ 2 ) cos 2 ω ( t τ 2 ) ]
I ω = 4 K I 0 a θ
I 2 ω = 1 2 K I 0 a 2
I ω I 2 ω = 8 θ a

Metrics