Abstract

A simple and practical apparatus enabling repetition rate (frep) noise, carrier-envelope frequency (fceo) noise and nth optical comb mode (νn) noise spectra measurements with high precision is established. The frep and νn noise spectra are measured by a fiber delay line interferometer, while fceo noise spectrum is measured by an f-2f interferometer. We utilize this apparatus to characterize the noise performance of an Er-fiber optical frequency comb (OFC) and analyze the origin of dominant noise sources. Moreover, this apparatus provides a powerful tool for diagnosing noise dynamics intrinsic in mode-locked lasers and OFCs. To this end, we uncover the anti-correlation between frep and fceo noise as well as the impact of servo loops on noise characteristics in the stabilized OFC.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Frequency noise correlation between the offset frequency and the mode spacing in a mid-infrared quantum cascade laser frequency comb

Atif Shehzad, Pierre Brochard, Renaud Matthey, Filippos Kapsalidis, Mehran Shahmohammadi, Mattias Beck, Andreas Hugi, Pierre Jouy, Jérôme Faist, Thomas Südmeyer, and Stéphane Schilt
Opt. Express 28(6) 8200-8210 (2020)

Ultra-low noise all polarization-maintaining Er fiber-based optical frequency combs facilitated with a graphene modulator

N. Kuse, C.-C. Lee, J. Jiang, C. Mohr, T. R. Schibli, and M.E. Fermann
Opt. Express 23(19) 24342-24350 (2015)

Frequency stability of a femtosecond optical parametric oscillator frequency comb

Teresa I. Ferreiro, Jinghua Sun, and Derryck T. Reid
Opt. Express 19(24) 24159-24164 (2011)

References

  • View by:
  • |
  • |
  • |

  1. T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2008).
    [Crossref]
  2. A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
    [Crossref]
  3. I. Coddington, N. Newbury, and W. Swann, “Dual-comb spectroscopy,” Optica 3(4), 414–426 (2016).
    [Crossref]
  4. H. Timmers, A. Kowligy, A. Lind, F. C. Cruz, N. Nader, M. Silfies, G. Ycas, T. K. Allision, P. G. Schunemann, S. B. Papp, and S. A. Diddams, “Molecular fingerprinting with bright, broadband infrared frequency combs,” Optica 5(6), 727–732 (2018).
    [Crossref]
  5. F. R. Giorgetta, W. C. Swann, L. C. Sinclair, E. Baumann, I. Coddington, and N. R. Newbury, “Optical two-way time and frequency transfer over free space,” Nat. Photonics 7(6), 434–438 (2013).
    [Crossref]
  6. J. D. Deschênes, L. C. Sinclair, F. R. Giorgetta, W. C. Swann, E. Baumann, H. Bergeron, M. Cermak, I. Coddington, and N. R. Newbury, “Synchronization of distant optical clocks at the femtosecond level,” Phys. Rev. X 6(2), 021016 (2016).
    [Crossref]
  7. J. Kim and Y. Song, “Ultralow-noise mode-locked fiber lasers and frequency combs: principles, status, and applications,” Adv. Opt. Photonics 8(3), 465–540 (2016).
    [Crossref]
  8. M. Endo, T. D. Shoji, and T. R. Schibli, “Ultralow Noise Optical Frequency Combs,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–13 (2018).
    [Crossref]
  9. D. Hou, C.-C. Lee, Z. Yang, and T. R. Schibli, “Timing jitter characterization of mode-locked lasers with< 1 zs/√ Hz resolution using a simple optical heterodyne technique,” Opt. Lett. 40(13), 2985–2988 (2015).
    [Crossref]
  10. T. K. Kim, Y. Song, K. Jung, C. Kim, H. Kim, C. H. Nam, and J. Kim, “Sub-100-as timing jitter optical pulse trains from mode-locked Er-fiber lasers,” Opt. Lett. 36(22), 4443–4445 (2011).
    [Crossref]
  11. B. Borchers, S. Koke, A. Husakou, J. Herrmann, and G. Steinmeyer, “Carrier-envelope phase stabilization with sub-10 as residual timing jitter,” Opt. Lett. 36(21), 4146–4148 (2011).
    [Crossref]
  12. S. Fang, H. Chen, T. Wang, Y. Jiang, Z. Bi, and L. Ma, “Optical frequency comb with an absolute linewidth of 0.6 Hz–1.2 Hz over an octave spectrum,” Appl. Phys. Lett. 102(23), 231118 (2013).
    [Crossref]
  13. J. Kim, J. Chen, J. Cox, and F. X. Kärtner, “Attosecond-resolution timing jitter characterization of free-running mode-locked lasers,” Opt. Lett. 32(24), 3519–3521 (2007).
    [Crossref]
  14. P. Brochard, V. J. Wittwer, S. Bilicki, B. Resan, K. J. Weiningarten, S. Schilt, and T. Südmeyer, “Frequency noise characterization of a 25-GHz diode-pumped mode-locked laser with indirect carrier-envelope offset noise assessment,” IEEE Photonics J. 10(1), 1–10 (2018).
    [Crossref]
  15. T. R. Schibli, J. Kim, O. Kuzucu, J. T. Gopinath, S. N. Tandon, G. S. Petrich, L. A. Kolodziejski, J. G. Fujimoto, E. P. Ippen, and F. X. Kaertner, “Attosecond active synchronization of passively mode-locked lasers by balanced cross correlation,” Opt. Lett. 28(11), 947–949 (2003).
    [Crossref]
  16. Y. Song, C. Kim, K. Jung, H. Kim, and J. Kim, “Timing jitter optimization of mode-locked Yb-fiber lasers toward the attosecond regime,” Opt. Express 19(15), 14518–14525 (2011).
    [Crossref]
  17. N. Kuse, J. Jiang, C.-C. Lee, T. R. Schibli, and M. E. Fermann, “All polarization-maintaining Er fiber-based optical frequency combs with nonlinear amplifying loop mirror,” Opt. Express 24(3), 3095–3102 (2016).
    [Crossref]
  18. Y. Wang, H. Tian, Y. Ma, Y. Song, and Z. Zhang, “Timing jitter of high-repetition-rate mode-locked fiber lasers,” Opt. Lett. 43(18), 4382–4385 (2018).
    [Crossref]
  19. A. J. Benedick, J. G. Fujimoto, and F. X. Kärtner, “Optical flywheels with attosecond jitter,” Nat. Photonics 6(2), 97–100 (2012).
    [Crossref]
  20. E. Portuondo-Campa, R. Paschotta, and S. Lecomte, “Sub-100 attosecond timing jitter from low-noise passively mode-locked solid-state laser at telecom wavelength,” Opt. Lett. 38(15), 2650–2653 (2013).
    [Crossref]
  21. H. Yang, H. Kim, J. Shin, C. Kim, S. Y. Choi, G.-H. Kim, F. Rotermund, and J. Kim, “Gigahertz repetition rate, sub-femtosecond timing jitter optical pulse train directly generated from a mode-locked Yb: KYW laser,” Opt. Lett. 39(1), 56–59 (2014).
    [Crossref]
  22. K. Jung and J. Kim, “All-fibre photonic signal generator for attosecond timing and ultralow-noise microwave,” Sci. Rep. 5(1), 16250 (2015).
    [Crossref]
  23. D. Kwon, C.-G. Jeon, J. Shin, M.-S. Heo, S. E. Park, Y. Song, and J. Kim, “Reference-free, high-resolution measurement method of timing jitter spectra of optical frequency combs,” Sci. Rep. 7(1), 40917 (2017).
    [Crossref]
  24. N. R. Newbury and W. C. Swann, “Low-noise fiber-laser frequency combs (Invited),” J. Opt. Soc. Am. B 24(8), 1756–1770 (2007).
    [Crossref]
  25. L. C. Sinclair, J.-D. Deschênes, L. Sonderhouse, W. C. Swann, I. H. Khader, E. Baumann, N. R. Newbury, and I. Coddington, “Invited Article: A compact optically coherent fiber frequency comb,” Rev. Sci. Instrum. 86(8), 081301 (2015).
    [Crossref]
  26. Y. Ma, B. Xu, H. Ishii, F. Meng, Y. Nakajima, I. Matsushima, T. R. Schibli, Z. Zhang, and K. Minoshima, “Low-noise 750 MHz spaced ytterbium fiber frequency combs,” Opt. Lett. 43(17), 4136–4139 (2018).
    [Crossref]
  27. A. Liehl, D. Fehrenbacher, P. Sulzer, A. Leitenstorfer, and D. V. Seletskiy, “Ultrabroadband out-of-loop characterization of the carrier-envelope phase noise of an offset-free Er:fiber frequency comb,” Opt. Lett. 42(10), 2050–2053 (2017).
    [Crossref]
  28. B. Borchers, A. Anderson, and G. Steinmeyer, “On the role of shot noise in carrier-envelope phase stabilization,” Laser Photonics Rev. 8(2), 303–315 (2014).
    [Crossref]
  29. P. Brochard, S. Schilt, V. J. Wittwer, and T. Südmeyer, “Characterizing the carrier-envelope offset in an optical frequency comb without traditional f-to-2f interferometry,” Opt. Lett. 40(23), 5522–5525 (2015).
    [Crossref]
  30. Y.-J. Kim, I. Coddington, W. C. Swann, N. R. Newbury, J. Lee, S. Kim, and S.-W. Kim, “Time-domain stabilization of carrier-envelope phase in femtosecond light pulses,” Opt. Express 22(10), 11788–11796 (2014).
    [Crossref]
  31. T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16(16), 630–631 (1980).
    [Crossref]
  32. J. W. Dawson, N. Park, and K. J. Vahala, “An improved delayed self-heterodyne interferometer for linewidth measurements,” IEEE Photonics Technol. Lett 4(9), 1063–1066 (1992).
    [Crossref]
  33. M. O. Sahni, S. Trebaol, L. Bramerie, M. Joindot, SPÓ Dúill, S. G. Murdoch, L. P. Barry, and P. Besnard, “Frequency noise reduction performance of a feed-forward heterodyne technique: application to an actively mode-locked laser diode,” Opt. Lett. 42(19), 4000–4003 (2017).
    [Crossref]
  34. F. K. Fatemi, J. W. Lou, and T. F. Carruthers, “Frequency comb linewidth of an actively mode-locked fiber laser,” Opt. Lett. 29(9), 944–946 (2004).
    [Crossref]
  35. M. I. Kayes and M. Rochette, “Optical frequency comb generation with ultra-narrow spectral lines,” Opt. Lett. 42(14), 2718–2721 (2017).
    [Crossref]
  36. N. Coluccelli, M. Cassinerio, A. Gambetta, P. Laporta, and G. Galzerano, “Frequency-noise measurements of optical frequency combs by multiple fringe-side discriminator,” Sci. Rep. 5(1), 16338 (2015).
    [Crossref]
  37. R. Paschotta, “Noise of mode-locked lasers (Part II): timing jitter and other fluctuations,” Appl. Phys. B 79(2), 163–173 (2004).
    [Crossref]
  38. H. R. Telle, B. Lipphardt, and J. Stenger, “Kerr-lens, mode-locked lasers as transfer oscillators for optical frequency measurements,” Appl. Phys. B 74(1), 1–6 (2002).
    [Crossref]
  39. R. Li, H. Shi, H. Tian, Y. Li, B. Liu, Y. Song, and M. Hu, “All-polarization-maintaining dual-wavelength mode-locked fiber laser based on Sagnac loop filter,” Opt. Express 26(22), 28302–28311 (2018).
    [Crossref]
  40. D. Kwon and J. Kim, “All-fiber interferometer-based repetition-rate stabilization of mode-locked lasers to 10−14-level frequency instability and 1-fs-level jitter over 1  s,” Opt. Lett. 42(24), 5186–5189 (2017).
    [Crossref]
  41. H. A. Haus and A. Mecozzi, “Noise of mode-locked lasers,” IEEE J. Quantum Electron. 29(3), 983–996 (1993).
    [Crossref]
  42. B. R. Washburn, W. C. Swann, and N. R. Newbury, “Response dynamics of the frequency comb output from a femtosecond fiber laser,” Opt. Express 13(26), 10622–10633 (2005).
    [Crossref]
  43. V. Dolgovskiy, N. Bucalovic, P. Thomann, C. Schori, G. D. Domenico, and S. Schilt, “Cross-influence between the two servo loops of a fully stabilized Er: fiber optical frequency comb,” J. Opt. Soc. Am. B 29(10), 2944–2957 (2012).
    [Crossref]
  44. N. Haverkamp, H. Hundertmark, C. Fallnich, and H. R. Telle, “Frequency stabilization of mode-locked Erbium fiber lasers using pump power control,” Appl. Phys. B 78(3-4), 321–324 (2004).
    [Crossref]
  45. D. Fehrenbacher, P. Sulzer, A. Liehl, T. Kälberer, C. Riek, D. V. Seletskiy, and A. Leitenstorfer, “Free-running performance and full control of a passively phase-stable Er:fiber frequency comb,” Optica 2(10), 917–923 (2015).
    [Crossref]

2018 (6)

2017 (5)

2016 (4)

N. Kuse, J. Jiang, C.-C. Lee, T. R. Schibli, and M. E. Fermann, “All polarization-maintaining Er fiber-based optical frequency combs with nonlinear amplifying loop mirror,” Opt. Express 24(3), 3095–3102 (2016).
[Crossref]

I. Coddington, N. Newbury, and W. Swann, “Dual-comb spectroscopy,” Optica 3(4), 414–426 (2016).
[Crossref]

J. D. Deschênes, L. C. Sinclair, F. R. Giorgetta, W. C. Swann, E. Baumann, H. Bergeron, M. Cermak, I. Coddington, and N. R. Newbury, “Synchronization of distant optical clocks at the femtosecond level,” Phys. Rev. X 6(2), 021016 (2016).
[Crossref]

J. Kim and Y. Song, “Ultralow-noise mode-locked fiber lasers and frequency combs: principles, status, and applications,” Adv. Opt. Photonics 8(3), 465–540 (2016).
[Crossref]

2015 (6)

D. Hou, C.-C. Lee, Z. Yang, and T. R. Schibli, “Timing jitter characterization of mode-locked lasers with< 1 zs/√ Hz resolution using a simple optical heterodyne technique,” Opt. Lett. 40(13), 2985–2988 (2015).
[Crossref]

K. Jung and J. Kim, “All-fibre photonic signal generator for attosecond timing and ultralow-noise microwave,” Sci. Rep. 5(1), 16250 (2015).
[Crossref]

L. C. Sinclair, J.-D. Deschênes, L. Sonderhouse, W. C. Swann, I. H. Khader, E. Baumann, N. R. Newbury, and I. Coddington, “Invited Article: A compact optically coherent fiber frequency comb,” Rev. Sci. Instrum. 86(8), 081301 (2015).
[Crossref]

P. Brochard, S. Schilt, V. J. Wittwer, and T. Südmeyer, “Characterizing the carrier-envelope offset in an optical frequency comb without traditional f-to-2f interferometry,” Opt. Lett. 40(23), 5522–5525 (2015).
[Crossref]

N. Coluccelli, M. Cassinerio, A. Gambetta, P. Laporta, and G. Galzerano, “Frequency-noise measurements of optical frequency combs by multiple fringe-side discriminator,” Sci. Rep. 5(1), 16338 (2015).
[Crossref]

D. Fehrenbacher, P. Sulzer, A. Liehl, T. Kälberer, C. Riek, D. V. Seletskiy, and A. Leitenstorfer, “Free-running performance and full control of a passively phase-stable Er:fiber frequency comb,” Optica 2(10), 917–923 (2015).
[Crossref]

2014 (3)

2013 (3)

E. Portuondo-Campa, R. Paschotta, and S. Lecomte, “Sub-100 attosecond timing jitter from low-noise passively mode-locked solid-state laser at telecom wavelength,” Opt. Lett. 38(15), 2650–2653 (2013).
[Crossref]

F. R. Giorgetta, W. C. Swann, L. C. Sinclair, E. Baumann, I. Coddington, and N. R. Newbury, “Optical two-way time and frequency transfer over free space,” Nat. Photonics 7(6), 434–438 (2013).
[Crossref]

S. Fang, H. Chen, T. Wang, Y. Jiang, Z. Bi, and L. Ma, “Optical frequency comb with an absolute linewidth of 0.6 Hz–1.2 Hz over an octave spectrum,” Appl. Phys. Lett. 102(23), 231118 (2013).
[Crossref]

2012 (3)

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

A. J. Benedick, J. G. Fujimoto, and F. X. Kärtner, “Optical flywheels with attosecond jitter,” Nat. Photonics 6(2), 97–100 (2012).
[Crossref]

V. Dolgovskiy, N. Bucalovic, P. Thomann, C. Schori, G. D. Domenico, and S. Schilt, “Cross-influence between the two servo loops of a fully stabilized Er: fiber optical frequency comb,” J. Opt. Soc. Am. B 29(10), 2944–2957 (2012).
[Crossref]

2011 (3)

2008 (1)

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2008).
[Crossref]

2007 (2)

2005 (1)

2004 (3)

N. Haverkamp, H. Hundertmark, C. Fallnich, and H. R. Telle, “Frequency stabilization of mode-locked Erbium fiber lasers using pump power control,” Appl. Phys. B 78(3-4), 321–324 (2004).
[Crossref]

R. Paschotta, “Noise of mode-locked lasers (Part II): timing jitter and other fluctuations,” Appl. Phys. B 79(2), 163–173 (2004).
[Crossref]

F. K. Fatemi, J. W. Lou, and T. F. Carruthers, “Frequency comb linewidth of an actively mode-locked fiber laser,” Opt. Lett. 29(9), 944–946 (2004).
[Crossref]

2003 (1)

2002 (1)

H. R. Telle, B. Lipphardt, and J. Stenger, “Kerr-lens, mode-locked lasers as transfer oscillators for optical frequency measurements,” Appl. Phys. B 74(1), 1–6 (2002).
[Crossref]

1993 (1)

H. A. Haus and A. Mecozzi, “Noise of mode-locked lasers,” IEEE J. Quantum Electron. 29(3), 983–996 (1993).
[Crossref]

1992 (1)

J. W. Dawson, N. Park, and K. J. Vahala, “An improved delayed self-heterodyne interferometer for linewidth measurements,” IEEE Photonics Technol. Lett 4(9), 1063–1066 (1992).
[Crossref]

1980 (1)

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16(16), 630–631 (1980).
[Crossref]

Allision, T. K.

Anderson, A.

B. Borchers, A. Anderson, and G. Steinmeyer, “On the role of shot noise in carrier-envelope phase stabilization,” Laser Photonics Rev. 8(2), 303–315 (2014).
[Crossref]

Barry, L. P.

Baumann, E.

J. D. Deschênes, L. C. Sinclair, F. R. Giorgetta, W. C. Swann, E. Baumann, H. Bergeron, M. Cermak, I. Coddington, and N. R. Newbury, “Synchronization of distant optical clocks at the femtosecond level,” Phys. Rev. X 6(2), 021016 (2016).
[Crossref]

L. C. Sinclair, J.-D. Deschênes, L. Sonderhouse, W. C. Swann, I. H. Khader, E. Baumann, N. R. Newbury, and I. Coddington, “Invited Article: A compact optically coherent fiber frequency comb,” Rev. Sci. Instrum. 86(8), 081301 (2015).
[Crossref]

F. R. Giorgetta, W. C. Swann, L. C. Sinclair, E. Baumann, I. Coddington, and N. R. Newbury, “Optical two-way time and frequency transfer over free space,” Nat. Photonics 7(6), 434–438 (2013).
[Crossref]

Benedick, A. J.

A. J. Benedick, J. G. Fujimoto, and F. X. Kärtner, “Optical flywheels with attosecond jitter,” Nat. Photonics 6(2), 97–100 (2012).
[Crossref]

Bergeron, H.

J. D. Deschênes, L. C. Sinclair, F. R. Giorgetta, W. C. Swann, E. Baumann, H. Bergeron, M. Cermak, I. Coddington, and N. R. Newbury, “Synchronization of distant optical clocks at the femtosecond level,” Phys. Rev. X 6(2), 021016 (2016).
[Crossref]

Besnard, P.

Bi, Z.

S. Fang, H. Chen, T. Wang, Y. Jiang, Z. Bi, and L. Ma, “Optical frequency comb with an absolute linewidth of 0.6 Hz–1.2 Hz over an octave spectrum,” Appl. Phys. Lett. 102(23), 231118 (2013).
[Crossref]

Bilicki, S.

P. Brochard, V. J. Wittwer, S. Bilicki, B. Resan, K. J. Weiningarten, S. Schilt, and T. Südmeyer, “Frequency noise characterization of a 25-GHz diode-pumped mode-locked laser with indirect carrier-envelope offset noise assessment,” IEEE Photonics J. 10(1), 1–10 (2018).
[Crossref]

Borchers, B.

B. Borchers, A. Anderson, and G. Steinmeyer, “On the role of shot noise in carrier-envelope phase stabilization,” Laser Photonics Rev. 8(2), 303–315 (2014).
[Crossref]

B. Borchers, S. Koke, A. Husakou, J. Herrmann, and G. Steinmeyer, “Carrier-envelope phase stabilization with sub-10 as residual timing jitter,” Opt. Lett. 36(21), 4146–4148 (2011).
[Crossref]

Bramerie, L.

Brochard, P.

P. Brochard, V. J. Wittwer, S. Bilicki, B. Resan, K. J. Weiningarten, S. Schilt, and T. Südmeyer, “Frequency noise characterization of a 25-GHz diode-pumped mode-locked laser with indirect carrier-envelope offset noise assessment,” IEEE Photonics J. 10(1), 1–10 (2018).
[Crossref]

P. Brochard, S. Schilt, V. J. Wittwer, and T. Südmeyer, “Characterizing the carrier-envelope offset in an optical frequency comb without traditional f-to-2f interferometry,” Opt. Lett. 40(23), 5522–5525 (2015).
[Crossref]

Bucalovic, N.

Carruthers, T. F.

Cassinerio, M.

N. Coluccelli, M. Cassinerio, A. Gambetta, P. Laporta, and G. Galzerano, “Frequency-noise measurements of optical frequency combs by multiple fringe-side discriminator,” Sci. Rep. 5(1), 16338 (2015).
[Crossref]

Cermak, M.

J. D. Deschênes, L. C. Sinclair, F. R. Giorgetta, W. C. Swann, E. Baumann, H. Bergeron, M. Cermak, I. Coddington, and N. R. Newbury, “Synchronization of distant optical clocks at the femtosecond level,” Phys. Rev. X 6(2), 021016 (2016).
[Crossref]

Chen, H.

S. Fang, H. Chen, T. Wang, Y. Jiang, Z. Bi, and L. Ma, “Optical frequency comb with an absolute linewidth of 0.6 Hz–1.2 Hz over an octave spectrum,” Appl. Phys. Lett. 102(23), 231118 (2013).
[Crossref]

Chen, J.

Choi, S. Y.

Coddington, I.

J. D. Deschênes, L. C. Sinclair, F. R. Giorgetta, W. C. Swann, E. Baumann, H. Bergeron, M. Cermak, I. Coddington, and N. R. Newbury, “Synchronization of distant optical clocks at the femtosecond level,” Phys. Rev. X 6(2), 021016 (2016).
[Crossref]

I. Coddington, N. Newbury, and W. Swann, “Dual-comb spectroscopy,” Optica 3(4), 414–426 (2016).
[Crossref]

L. C. Sinclair, J.-D. Deschênes, L. Sonderhouse, W. C. Swann, I. H. Khader, E. Baumann, N. R. Newbury, and I. Coddington, “Invited Article: A compact optically coherent fiber frequency comb,” Rev. Sci. Instrum. 86(8), 081301 (2015).
[Crossref]

Y.-J. Kim, I. Coddington, W. C. Swann, N. R. Newbury, J. Lee, S. Kim, and S.-W. Kim, “Time-domain stabilization of carrier-envelope phase in femtosecond light pulses,” Opt. Express 22(10), 11788–11796 (2014).
[Crossref]

F. R. Giorgetta, W. C. Swann, L. C. Sinclair, E. Baumann, I. Coddington, and N. R. Newbury, “Optical two-way time and frequency transfer over free space,” Nat. Photonics 7(6), 434–438 (2013).
[Crossref]

Coluccelli, N.

N. Coluccelli, M. Cassinerio, A. Gambetta, P. Laporta, and G. Galzerano, “Frequency-noise measurements of optical frequency combs by multiple fringe-side discriminator,” Sci. Rep. 5(1), 16338 (2015).
[Crossref]

Cox, J.

Cruz, F. C.

Dawson, J. W.

J. W. Dawson, N. Park, and K. J. Vahala, “An improved delayed self-heterodyne interferometer for linewidth measurements,” IEEE Photonics Technol. Lett 4(9), 1063–1066 (1992).
[Crossref]

Deschênes, J. D.

J. D. Deschênes, L. C. Sinclair, F. R. Giorgetta, W. C. Swann, E. Baumann, H. Bergeron, M. Cermak, I. Coddington, and N. R. Newbury, “Synchronization of distant optical clocks at the femtosecond level,” Phys. Rev. X 6(2), 021016 (2016).
[Crossref]

Deschênes, J.-D.

L. C. Sinclair, J.-D. Deschênes, L. Sonderhouse, W. C. Swann, I. H. Khader, E. Baumann, N. R. Newbury, and I. Coddington, “Invited Article: A compact optically coherent fiber frequency comb,” Rev. Sci. Instrum. 86(8), 081301 (2015).
[Crossref]

Diddams, S. A.

Dolgovskiy, V.

Domenico, G. D.

Dúill, SPÓ

Endo, M.

M. Endo, T. D. Shoji, and T. R. Schibli, “Ultralow Noise Optical Frequency Combs,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–13 (2018).
[Crossref]

Fallnich, C.

N. Haverkamp, H. Hundertmark, C. Fallnich, and H. R. Telle, “Frequency stabilization of mode-locked Erbium fiber lasers using pump power control,” Appl. Phys. B 78(3-4), 321–324 (2004).
[Crossref]

Fang, S.

S. Fang, H. Chen, T. Wang, Y. Jiang, Z. Bi, and L. Ma, “Optical frequency comb with an absolute linewidth of 0.6 Hz–1.2 Hz over an octave spectrum,” Appl. Phys. Lett. 102(23), 231118 (2013).
[Crossref]

Fatemi, F. K.

Fehrenbacher, D.

Fermann, M. E.

Fujimoto, J. G.

Galzerano, G.

N. Coluccelli, M. Cassinerio, A. Gambetta, P. Laporta, and G. Galzerano, “Frequency-noise measurements of optical frequency combs by multiple fringe-side discriminator,” Sci. Rep. 5(1), 16338 (2015).
[Crossref]

Gambetta, A.

N. Coluccelli, M. Cassinerio, A. Gambetta, P. Laporta, and G. Galzerano, “Frequency-noise measurements of optical frequency combs by multiple fringe-side discriminator,” Sci. Rep. 5(1), 16338 (2015).
[Crossref]

Giorgetta, F. R.

J. D. Deschênes, L. C. Sinclair, F. R. Giorgetta, W. C. Swann, E. Baumann, H. Bergeron, M. Cermak, I. Coddington, and N. R. Newbury, “Synchronization of distant optical clocks at the femtosecond level,” Phys. Rev. X 6(2), 021016 (2016).
[Crossref]

F. R. Giorgetta, W. C. Swann, L. C. Sinclair, E. Baumann, I. Coddington, and N. R. Newbury, “Optical two-way time and frequency transfer over free space,” Nat. Photonics 7(6), 434–438 (2013).
[Crossref]

Gopinath, J. T.

Hänsch, T. W.

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2008).
[Crossref]

Haus, H. A.

H. A. Haus and A. Mecozzi, “Noise of mode-locked lasers,” IEEE J. Quantum Electron. 29(3), 983–996 (1993).
[Crossref]

Haverkamp, N.

N. Haverkamp, H. Hundertmark, C. Fallnich, and H. R. Telle, “Frequency stabilization of mode-locked Erbium fiber lasers using pump power control,” Appl. Phys. B 78(3-4), 321–324 (2004).
[Crossref]

Heo, M.-S.

D. Kwon, C.-G. Jeon, J. Shin, M.-S. Heo, S. E. Park, Y. Song, and J. Kim, “Reference-free, high-resolution measurement method of timing jitter spectra of optical frequency combs,” Sci. Rep. 7(1), 40917 (2017).
[Crossref]

Herrmann, J.

Holzwarth, R.

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2008).
[Crossref]

Hou, D.

Hu, M.

Hundertmark, H.

N. Haverkamp, H. Hundertmark, C. Fallnich, and H. R. Telle, “Frequency stabilization of mode-locked Erbium fiber lasers using pump power control,” Appl. Phys. B 78(3-4), 321–324 (2004).
[Crossref]

Husakou, A.

Ippen, E. P.

Ishii, H.

Jeon, C.-G.

D. Kwon, C.-G. Jeon, J. Shin, M.-S. Heo, S. E. Park, Y. Song, and J. Kim, “Reference-free, high-resolution measurement method of timing jitter spectra of optical frequency combs,” Sci. Rep. 7(1), 40917 (2017).
[Crossref]

Jiang, J.

Jiang, Y.

S. Fang, H. Chen, T. Wang, Y. Jiang, Z. Bi, and L. Ma, “Optical frequency comb with an absolute linewidth of 0.6 Hz–1.2 Hz over an octave spectrum,” Appl. Phys. Lett. 102(23), 231118 (2013).
[Crossref]

Joindot, M.

Jung, K.

Kaertner, F. X.

Kälberer, T.

Kärtner, F. X.

A. J. Benedick, J. G. Fujimoto, and F. X. Kärtner, “Optical flywheels with attosecond jitter,” Nat. Photonics 6(2), 97–100 (2012).
[Crossref]

J. Kim, J. Chen, J. Cox, and F. X. Kärtner, “Attosecond-resolution timing jitter characterization of free-running mode-locked lasers,” Opt. Lett. 32(24), 3519–3521 (2007).
[Crossref]

Kayes, M. I.

Khader, I. H.

L. C. Sinclair, J.-D. Deschênes, L. Sonderhouse, W. C. Swann, I. H. Khader, E. Baumann, N. R. Newbury, and I. Coddington, “Invited Article: A compact optically coherent fiber frequency comb,” Rev. Sci. Instrum. 86(8), 081301 (2015).
[Crossref]

Kikuchi, K.

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16(16), 630–631 (1980).
[Crossref]

Kim, C.

Kim, G.-H.

Kim, H.

Kim, J.

D. Kwon, C.-G. Jeon, J. Shin, M.-S. Heo, S. E. Park, Y. Song, and J. Kim, “Reference-free, high-resolution measurement method of timing jitter spectra of optical frequency combs,” Sci. Rep. 7(1), 40917 (2017).
[Crossref]

D. Kwon and J. Kim, “All-fiber interferometer-based repetition-rate stabilization of mode-locked lasers to 10−14-level frequency instability and 1-fs-level jitter over 1  s,” Opt. Lett. 42(24), 5186–5189 (2017).
[Crossref]

J. Kim and Y. Song, “Ultralow-noise mode-locked fiber lasers and frequency combs: principles, status, and applications,” Adv. Opt. Photonics 8(3), 465–540 (2016).
[Crossref]

K. Jung and J. Kim, “All-fibre photonic signal generator for attosecond timing and ultralow-noise microwave,” Sci. Rep. 5(1), 16250 (2015).
[Crossref]

H. Yang, H. Kim, J. Shin, C. Kim, S. Y. Choi, G.-H. Kim, F. Rotermund, and J. Kim, “Gigahertz repetition rate, sub-femtosecond timing jitter optical pulse train directly generated from a mode-locked Yb: KYW laser,” Opt. Lett. 39(1), 56–59 (2014).
[Crossref]

Y. Song, C. Kim, K. Jung, H. Kim, and J. Kim, “Timing jitter optimization of mode-locked Yb-fiber lasers toward the attosecond regime,” Opt. Express 19(15), 14518–14525 (2011).
[Crossref]

T. K. Kim, Y. Song, K. Jung, C. Kim, H. Kim, C. H. Nam, and J. Kim, “Sub-100-as timing jitter optical pulse trains from mode-locked Er-fiber lasers,” Opt. Lett. 36(22), 4443–4445 (2011).
[Crossref]

J. Kim, J. Chen, J. Cox, and F. X. Kärtner, “Attosecond-resolution timing jitter characterization of free-running mode-locked lasers,” Opt. Lett. 32(24), 3519–3521 (2007).
[Crossref]

T. R. Schibli, J. Kim, O. Kuzucu, J. T. Gopinath, S. N. Tandon, G. S. Petrich, L. A. Kolodziejski, J. G. Fujimoto, E. P. Ippen, and F. X. Kaertner, “Attosecond active synchronization of passively mode-locked lasers by balanced cross correlation,” Opt. Lett. 28(11), 947–949 (2003).
[Crossref]

Kim, S.

Kim, S.-W.

Kim, T. K.

Kim, Y.-J.

Koke, S.

Kolodziejski, L. A.

Kowligy, A.

Kuse, N.

Kuzucu, O.

Kwon, D.

D. Kwon, C.-G. Jeon, J. Shin, M.-S. Heo, S. E. Park, Y. Song, and J. Kim, “Reference-free, high-resolution measurement method of timing jitter spectra of optical frequency combs,” Sci. Rep. 7(1), 40917 (2017).
[Crossref]

D. Kwon and J. Kim, “All-fiber interferometer-based repetition-rate stabilization of mode-locked lasers to 10−14-level frequency instability and 1-fs-level jitter over 1  s,” Opt. Lett. 42(24), 5186–5189 (2017).
[Crossref]

Laporta, P.

N. Coluccelli, M. Cassinerio, A. Gambetta, P. Laporta, and G. Galzerano, “Frequency-noise measurements of optical frequency combs by multiple fringe-side discriminator,” Sci. Rep. 5(1), 16338 (2015).
[Crossref]

Lecomte, S.

Lee, C.-C.

Lee, J.

Leitenstorfer, A.

Li, R.

Li, Y.

Liehl, A.

Lind, A.

Lipphardt, B.

H. R. Telle, B. Lipphardt, and J. Stenger, “Kerr-lens, mode-locked lasers as transfer oscillators for optical frequency measurements,” Appl. Phys. B 74(1), 1–6 (2002).
[Crossref]

Liu, B.

Lou, J. W.

Ma, L.

S. Fang, H. Chen, T. Wang, Y. Jiang, Z. Bi, and L. Ma, “Optical frequency comb with an absolute linewidth of 0.6 Hz–1.2 Hz over an octave spectrum,” Appl. Phys. Lett. 102(23), 231118 (2013).
[Crossref]

Ma, Y.

Matsushima, I.

Mecozzi, A.

H. A. Haus and A. Mecozzi, “Noise of mode-locked lasers,” IEEE J. Quantum Electron. 29(3), 983–996 (1993).
[Crossref]

Meng, F.

Minoshima, K.

Murdoch, S. G.

Nader, N.

Nakajima, Y.

Nakayama, A.

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16(16), 630–631 (1980).
[Crossref]

Nam, C. H.

Newbury, N.

Newbury, N. R.

J. D. Deschênes, L. C. Sinclair, F. R. Giorgetta, W. C. Swann, E. Baumann, H. Bergeron, M. Cermak, I. Coddington, and N. R. Newbury, “Synchronization of distant optical clocks at the femtosecond level,” Phys. Rev. X 6(2), 021016 (2016).
[Crossref]

L. C. Sinclair, J.-D. Deschênes, L. Sonderhouse, W. C. Swann, I. H. Khader, E. Baumann, N. R. Newbury, and I. Coddington, “Invited Article: A compact optically coherent fiber frequency comb,” Rev. Sci. Instrum. 86(8), 081301 (2015).
[Crossref]

Y.-J. Kim, I. Coddington, W. C. Swann, N. R. Newbury, J. Lee, S. Kim, and S.-W. Kim, “Time-domain stabilization of carrier-envelope phase in femtosecond light pulses,” Opt. Express 22(10), 11788–11796 (2014).
[Crossref]

F. R. Giorgetta, W. C. Swann, L. C. Sinclair, E. Baumann, I. Coddington, and N. R. Newbury, “Optical two-way time and frequency transfer over free space,” Nat. Photonics 7(6), 434–438 (2013).
[Crossref]

N. R. Newbury and W. C. Swann, “Low-noise fiber-laser frequency combs (Invited),” J. Opt. Soc. Am. B 24(8), 1756–1770 (2007).
[Crossref]

B. R. Washburn, W. C. Swann, and N. R. Newbury, “Response dynamics of the frequency comb output from a femtosecond fiber laser,” Opt. Express 13(26), 10622–10633 (2005).
[Crossref]

Okoshi, T.

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16(16), 630–631 (1980).
[Crossref]

Papp, S. B.

Park, N.

J. W. Dawson, N. Park, and K. J. Vahala, “An improved delayed self-heterodyne interferometer for linewidth measurements,” IEEE Photonics Technol. Lett 4(9), 1063–1066 (1992).
[Crossref]

Park, S. E.

D. Kwon, C.-G. Jeon, J. Shin, M.-S. Heo, S. E. Park, Y. Song, and J. Kim, “Reference-free, high-resolution measurement method of timing jitter spectra of optical frequency combs,” Sci. Rep. 7(1), 40917 (2017).
[Crossref]

Paschotta, R.

Petrich, G. S.

Picqué, N.

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

Portuondo-Campa, E.

Resan, B.

P. Brochard, V. J. Wittwer, S. Bilicki, B. Resan, K. J. Weiningarten, S. Schilt, and T. Südmeyer, “Frequency noise characterization of a 25-GHz diode-pumped mode-locked laser with indirect carrier-envelope offset noise assessment,” IEEE Photonics J. 10(1), 1–10 (2018).
[Crossref]

Riek, C.

Rochette, M.

Rotermund, F.

Sahni, M. O.

Schibli, T. R.

Schilt, S.

Schliesser, A.

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

Schori, C.

Schunemann, P. G.

Seletskiy, D. V.

Shi, H.

Shin, J.

D. Kwon, C.-G. Jeon, J. Shin, M.-S. Heo, S. E. Park, Y. Song, and J. Kim, “Reference-free, high-resolution measurement method of timing jitter spectra of optical frequency combs,” Sci. Rep. 7(1), 40917 (2017).
[Crossref]

H. Yang, H. Kim, J. Shin, C. Kim, S. Y. Choi, G.-H. Kim, F. Rotermund, and J. Kim, “Gigahertz repetition rate, sub-femtosecond timing jitter optical pulse train directly generated from a mode-locked Yb: KYW laser,” Opt. Lett. 39(1), 56–59 (2014).
[Crossref]

Shoji, T. D.

M. Endo, T. D. Shoji, and T. R. Schibli, “Ultralow Noise Optical Frequency Combs,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–13 (2018).
[Crossref]

Silfies, M.

Sinclair, L. C.

J. D. Deschênes, L. C. Sinclair, F. R. Giorgetta, W. C. Swann, E. Baumann, H. Bergeron, M. Cermak, I. Coddington, and N. R. Newbury, “Synchronization of distant optical clocks at the femtosecond level,” Phys. Rev. X 6(2), 021016 (2016).
[Crossref]

L. C. Sinclair, J.-D. Deschênes, L. Sonderhouse, W. C. Swann, I. H. Khader, E. Baumann, N. R. Newbury, and I. Coddington, “Invited Article: A compact optically coherent fiber frequency comb,” Rev. Sci. Instrum. 86(8), 081301 (2015).
[Crossref]

F. R. Giorgetta, W. C. Swann, L. C. Sinclair, E. Baumann, I. Coddington, and N. R. Newbury, “Optical two-way time and frequency transfer over free space,” Nat. Photonics 7(6), 434–438 (2013).
[Crossref]

Sonderhouse, L.

L. C. Sinclair, J.-D. Deschênes, L. Sonderhouse, W. C. Swann, I. H. Khader, E. Baumann, N. R. Newbury, and I. Coddington, “Invited Article: A compact optically coherent fiber frequency comb,” Rev. Sci. Instrum. 86(8), 081301 (2015).
[Crossref]

Song, Y.

Steinmeyer, G.

B. Borchers, A. Anderson, and G. Steinmeyer, “On the role of shot noise in carrier-envelope phase stabilization,” Laser Photonics Rev. 8(2), 303–315 (2014).
[Crossref]

B. Borchers, S. Koke, A. Husakou, J. Herrmann, and G. Steinmeyer, “Carrier-envelope phase stabilization with sub-10 as residual timing jitter,” Opt. Lett. 36(21), 4146–4148 (2011).
[Crossref]

Stenger, J.

H. R. Telle, B. Lipphardt, and J. Stenger, “Kerr-lens, mode-locked lasers as transfer oscillators for optical frequency measurements,” Appl. Phys. B 74(1), 1–6 (2002).
[Crossref]

Südmeyer, T.

P. Brochard, V. J. Wittwer, S. Bilicki, B. Resan, K. J. Weiningarten, S. Schilt, and T. Südmeyer, “Frequency noise characterization of a 25-GHz diode-pumped mode-locked laser with indirect carrier-envelope offset noise assessment,” IEEE Photonics J. 10(1), 1–10 (2018).
[Crossref]

P. Brochard, S. Schilt, V. J. Wittwer, and T. Südmeyer, “Characterizing the carrier-envelope offset in an optical frequency comb without traditional f-to-2f interferometry,” Opt. Lett. 40(23), 5522–5525 (2015).
[Crossref]

Sulzer, P.

Swann, W.

Swann, W. C.

J. D. Deschênes, L. C. Sinclair, F. R. Giorgetta, W. C. Swann, E. Baumann, H. Bergeron, M. Cermak, I. Coddington, and N. R. Newbury, “Synchronization of distant optical clocks at the femtosecond level,” Phys. Rev. X 6(2), 021016 (2016).
[Crossref]

L. C. Sinclair, J.-D. Deschênes, L. Sonderhouse, W. C. Swann, I. H. Khader, E. Baumann, N. R. Newbury, and I. Coddington, “Invited Article: A compact optically coherent fiber frequency comb,” Rev. Sci. Instrum. 86(8), 081301 (2015).
[Crossref]

Y.-J. Kim, I. Coddington, W. C. Swann, N. R. Newbury, J. Lee, S. Kim, and S.-W. Kim, “Time-domain stabilization of carrier-envelope phase in femtosecond light pulses,” Opt. Express 22(10), 11788–11796 (2014).
[Crossref]

F. R. Giorgetta, W. C. Swann, L. C. Sinclair, E. Baumann, I. Coddington, and N. R. Newbury, “Optical two-way time and frequency transfer over free space,” Nat. Photonics 7(6), 434–438 (2013).
[Crossref]

N. R. Newbury and W. C. Swann, “Low-noise fiber-laser frequency combs (Invited),” J. Opt. Soc. Am. B 24(8), 1756–1770 (2007).
[Crossref]

B. R. Washburn, W. C. Swann, and N. R. Newbury, “Response dynamics of the frequency comb output from a femtosecond fiber laser,” Opt. Express 13(26), 10622–10633 (2005).
[Crossref]

Tandon, S. N.

Telle, H. R.

N. Haverkamp, H. Hundertmark, C. Fallnich, and H. R. Telle, “Frequency stabilization of mode-locked Erbium fiber lasers using pump power control,” Appl. Phys. B 78(3-4), 321–324 (2004).
[Crossref]

H. R. Telle, B. Lipphardt, and J. Stenger, “Kerr-lens, mode-locked lasers as transfer oscillators for optical frequency measurements,” Appl. Phys. B 74(1), 1–6 (2002).
[Crossref]

Thomann, P.

Tian, H.

Timmers, H.

Trebaol, S.

Udem, T.

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2008).
[Crossref]

Vahala, K. J.

J. W. Dawson, N. Park, and K. J. Vahala, “An improved delayed self-heterodyne interferometer for linewidth measurements,” IEEE Photonics Technol. Lett 4(9), 1063–1066 (1992).
[Crossref]

Wang, T.

S. Fang, H. Chen, T. Wang, Y. Jiang, Z. Bi, and L. Ma, “Optical frequency comb with an absolute linewidth of 0.6 Hz–1.2 Hz over an octave spectrum,” Appl. Phys. Lett. 102(23), 231118 (2013).
[Crossref]

Wang, Y.

Washburn, B. R.

Weiningarten, K. J.

P. Brochard, V. J. Wittwer, S. Bilicki, B. Resan, K. J. Weiningarten, S. Schilt, and T. Südmeyer, “Frequency noise characterization of a 25-GHz diode-pumped mode-locked laser with indirect carrier-envelope offset noise assessment,” IEEE Photonics J. 10(1), 1–10 (2018).
[Crossref]

Wittwer, V. J.

P. Brochard, V. J. Wittwer, S. Bilicki, B. Resan, K. J. Weiningarten, S. Schilt, and T. Südmeyer, “Frequency noise characterization of a 25-GHz diode-pumped mode-locked laser with indirect carrier-envelope offset noise assessment,” IEEE Photonics J. 10(1), 1–10 (2018).
[Crossref]

P. Brochard, S. Schilt, V. J. Wittwer, and T. Südmeyer, “Characterizing the carrier-envelope offset in an optical frequency comb without traditional f-to-2f interferometry,” Opt. Lett. 40(23), 5522–5525 (2015).
[Crossref]

Xu, B.

Yang, H.

Yang, Z.

Ycas, G.

Zhang, Z.

Adv. Opt. Photonics (1)

J. Kim and Y. Song, “Ultralow-noise mode-locked fiber lasers and frequency combs: principles, status, and applications,” Adv. Opt. Photonics 8(3), 465–540 (2016).
[Crossref]

Appl. Phys. B (3)

R. Paschotta, “Noise of mode-locked lasers (Part II): timing jitter and other fluctuations,” Appl. Phys. B 79(2), 163–173 (2004).
[Crossref]

H. R. Telle, B. Lipphardt, and J. Stenger, “Kerr-lens, mode-locked lasers as transfer oscillators for optical frequency measurements,” Appl. Phys. B 74(1), 1–6 (2002).
[Crossref]

N. Haverkamp, H. Hundertmark, C. Fallnich, and H. R. Telle, “Frequency stabilization of mode-locked Erbium fiber lasers using pump power control,” Appl. Phys. B 78(3-4), 321–324 (2004).
[Crossref]

Appl. Phys. Lett. (1)

S. Fang, H. Chen, T. Wang, Y. Jiang, Z. Bi, and L. Ma, “Optical frequency comb with an absolute linewidth of 0.6 Hz–1.2 Hz over an octave spectrum,” Appl. Phys. Lett. 102(23), 231118 (2013).
[Crossref]

Electron. Lett. (1)

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16(16), 630–631 (1980).
[Crossref]

IEEE J. Quantum Electron. (1)

H. A. Haus and A. Mecozzi, “Noise of mode-locked lasers,” IEEE J. Quantum Electron. 29(3), 983–996 (1993).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Endo, T. D. Shoji, and T. R. Schibli, “Ultralow Noise Optical Frequency Combs,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–13 (2018).
[Crossref]

IEEE Photonics J. (1)

P. Brochard, V. J. Wittwer, S. Bilicki, B. Resan, K. J. Weiningarten, S. Schilt, and T. Südmeyer, “Frequency noise characterization of a 25-GHz diode-pumped mode-locked laser with indirect carrier-envelope offset noise assessment,” IEEE Photonics J. 10(1), 1–10 (2018).
[Crossref]

IEEE Photonics Technol. Lett (1)

J. W. Dawson, N. Park, and K. J. Vahala, “An improved delayed self-heterodyne interferometer for linewidth measurements,” IEEE Photonics Technol. Lett 4(9), 1063–1066 (1992).
[Crossref]

J. Opt. Soc. Am. B (2)

Laser Photonics Rev. (1)

B. Borchers, A. Anderson, and G. Steinmeyer, “On the role of shot noise in carrier-envelope phase stabilization,” Laser Photonics Rev. 8(2), 303–315 (2014).
[Crossref]

Nat. Photonics (3)

A. J. Benedick, J. G. Fujimoto, and F. X. Kärtner, “Optical flywheels with attosecond jitter,” Nat. Photonics 6(2), 97–100 (2012).
[Crossref]

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

F. R. Giorgetta, W. C. Swann, L. C. Sinclair, E. Baumann, I. Coddington, and N. R. Newbury, “Optical two-way time and frequency transfer over free space,” Nat. Photonics 7(6), 434–438 (2013).
[Crossref]

Nature (1)

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2008).
[Crossref]

Opt. Express (5)

Opt. Lett. (15)

P. Brochard, S. Schilt, V. J. Wittwer, and T. Südmeyer, “Characterizing the carrier-envelope offset in an optical frequency comb without traditional f-to-2f interferometry,” Opt. Lett. 40(23), 5522–5525 (2015).
[Crossref]

Y. Ma, B. Xu, H. Ishii, F. Meng, Y. Nakajima, I. Matsushima, T. R. Schibli, Z. Zhang, and K. Minoshima, “Low-noise 750 MHz spaced ytterbium fiber frequency combs,” Opt. Lett. 43(17), 4136–4139 (2018).
[Crossref]

Y. Wang, H. Tian, Y. Ma, Y. Song, and Z. Zhang, “Timing jitter of high-repetition-rate mode-locked fiber lasers,” Opt. Lett. 43(18), 4382–4385 (2018).
[Crossref]

D. Hou, C.-C. Lee, Z. Yang, and T. R. Schibli, “Timing jitter characterization of mode-locked lasers with< 1 zs/√ Hz resolution using a simple optical heterodyne technique,” Opt. Lett. 40(13), 2985–2988 (2015).
[Crossref]

A. Liehl, D. Fehrenbacher, P. Sulzer, A. Leitenstorfer, and D. V. Seletskiy, “Ultrabroadband out-of-loop characterization of the carrier-envelope phase noise of an offset-free Er:fiber frequency comb,” Opt. Lett. 42(10), 2050–2053 (2017).
[Crossref]

M. I. Kayes and M. Rochette, “Optical frequency comb generation with ultra-narrow spectral lines,” Opt. Lett. 42(14), 2718–2721 (2017).
[Crossref]

M. O. Sahni, S. Trebaol, L. Bramerie, M. Joindot, SPÓ Dúill, S. G. Murdoch, L. P. Barry, and P. Besnard, “Frequency noise reduction performance of a feed-forward heterodyne technique: application to an actively mode-locked laser diode,” Opt. Lett. 42(19), 4000–4003 (2017).
[Crossref]

D. Kwon and J. Kim, “All-fiber interferometer-based repetition-rate stabilization of mode-locked lasers to 10−14-level frequency instability and 1-fs-level jitter over 1  s,” Opt. Lett. 42(24), 5186–5189 (2017).
[Crossref]

B. Borchers, S. Koke, A. Husakou, J. Herrmann, and G. Steinmeyer, “Carrier-envelope phase stabilization with sub-10 as residual timing jitter,” Opt. Lett. 36(21), 4146–4148 (2011).
[Crossref]

T. K. Kim, Y. Song, K. Jung, C. Kim, H. Kim, C. H. Nam, and J. Kim, “Sub-100-as timing jitter optical pulse trains from mode-locked Er-fiber lasers,” Opt. Lett. 36(22), 4443–4445 (2011).
[Crossref]

E. Portuondo-Campa, R. Paschotta, and S. Lecomte, “Sub-100 attosecond timing jitter from low-noise passively mode-locked solid-state laser at telecom wavelength,” Opt. Lett. 38(15), 2650–2653 (2013).
[Crossref]

H. Yang, H. Kim, J. Shin, C. Kim, S. Y. Choi, G.-H. Kim, F. Rotermund, and J. Kim, “Gigahertz repetition rate, sub-femtosecond timing jitter optical pulse train directly generated from a mode-locked Yb: KYW laser,” Opt. Lett. 39(1), 56–59 (2014).
[Crossref]

J. Kim, J. Chen, J. Cox, and F. X. Kärtner, “Attosecond-resolution timing jitter characterization of free-running mode-locked lasers,” Opt. Lett. 32(24), 3519–3521 (2007).
[Crossref]

T. R. Schibli, J. Kim, O. Kuzucu, J. T. Gopinath, S. N. Tandon, G. S. Petrich, L. A. Kolodziejski, J. G. Fujimoto, E. P. Ippen, and F. X. Kaertner, “Attosecond active synchronization of passively mode-locked lasers by balanced cross correlation,” Opt. Lett. 28(11), 947–949 (2003).
[Crossref]

F. K. Fatemi, J. W. Lou, and T. F. Carruthers, “Frequency comb linewidth of an actively mode-locked fiber laser,” Opt. Lett. 29(9), 944–946 (2004).
[Crossref]

Optica (3)

Phys. Rev. X (1)

J. D. Deschênes, L. C. Sinclair, F. R. Giorgetta, W. C. Swann, E. Baumann, H. Bergeron, M. Cermak, I. Coddington, and N. R. Newbury, “Synchronization of distant optical clocks at the femtosecond level,” Phys. Rev. X 6(2), 021016 (2016).
[Crossref]

Rev. Sci. Instrum. (1)

L. C. Sinclair, J.-D. Deschênes, L. Sonderhouse, W. C. Swann, I. H. Khader, E. Baumann, N. R. Newbury, and I. Coddington, “Invited Article: A compact optically coherent fiber frequency comb,” Rev. Sci. Instrum. 86(8), 081301 (2015).
[Crossref]

Sci. Rep. (3)

N. Coluccelli, M. Cassinerio, A. Gambetta, P. Laporta, and G. Galzerano, “Frequency-noise measurements of optical frequency combs by multiple fringe-side discriminator,” Sci. Rep. 5(1), 16338 (2015).
[Crossref]

K. Jung and J. Kim, “All-fibre photonic signal generator for attosecond timing and ultralow-noise microwave,” Sci. Rep. 5(1), 16250 (2015).
[Crossref]

D. Kwon, C.-G. Jeon, J. Shin, M.-S. Heo, S. E. Park, Y. Song, and J. Kim, “Reference-free, high-resolution measurement method of timing jitter spectra of optical frequency combs,” Sci. Rep. 7(1), 40917 (2017).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Experimental setup. PZT, piezo-electric transducer; EDFA, Er-doped fiber amplifier; FBG, fiber Bragg grating; FRM, faraday rotating mirror; WDM, 1540/1560 wavelength division multiplexer; VCO, voltage-controlled oscillator; AOFS, acoustic optical frequency shifter (Brimrose, AMF-50-1560-2FP); BPF, bandpass filter; PD, photodetector (Menlo Systems, FPD510); PI: proportional-integral servo (Newfocus, LB1005); HV Amp: high-voltage amplifier; PID, proportional-integral-differential servo (Vescent Photonics, D2-135); DCU, delay control unit.
Fig. 2.
Fig. 2. Frequency noise PSD of n×frep (red curve), fceo (blue curve) and νn noise (black curve).
Fig. 3.
Fig. 3. Converted timing jitter PSD of the laser oscillator. Calculated timing jitter contribution from direct-coupled jitter from ASE (orange curve), Gorden-Haus jitter (Olive curve), RIN coupled jitter by Kramers-Krönig relation (purple curve) and RIN coupled jitter by self-steepening effect (blue curve). The dashed red curve and dashed gray curve in (a) shows the projected phase noise from intensity noise from 100 MHz signal and the measurement noise floor of the photodetector, electrical amplifier, bandpass filter and mixer, respectively.
Fig. 4.
Fig. 4. (a) νn noise and (b) fceo noise spectrum. Calculated frequency noise spectrum contribution from pump noise (red curve), ASE-induced noise (purple curve), environmental length fluctuations (orange curve), environmental loss fluctuations (dark yellow curve) and Shawlow-Townes limit (olive curve). The dashed red curve and dashed gray curve in (a) shows the projected frequency noise from intensity noise from 100 MHz signal and the measurement noise floor of the photodetector, electrical amplifier, bandpass filter and mixer, respectively.
Fig. 5.
Fig. 5. Frequency dependence of sum of the complex coherence among n×frep, fceo and νn frequency noise PSDs.
Fig. 6.
Fig. 6. (a)νn noise spectra of 1540 nm under repetition rate locking Inset: the stabilized n×frep noise spectrum. (b) Noise spectra of n×frep noise when the fceo is stabilized.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

S Δ ν n Δ ν n = S Δ f c e o Δ f c e o + S N Δ f r e p N Δ f r e p + Γ Δ ( ω ) × S Δ f c e o Δ f c e o S N Δ f r e p N Δ f r e p
S Δ t G H ( f ) = 4 D 2 f r e p 2 D ω ( 2 π f ) 2 [ ( 2 π f ) 2 + τ ω c 2 ]
D ω = 2 3 E p τ 2 Θ 2 g T r t h v 0
1 τ ω c = 4 3 g T r t Δ f g 2 τ 2
S Δ t A S E , Q L ( f ) = D T ( 2 π f ) 2
D T = π 2 τ 2 6 E p Θ 2 g T r t h v 0
S Δ t R I N S S = ( φ N L 2 π 2 f T r t ν 0 ) 2 S R I N ( f )
S Δ t R I N K K = ( 1 2 π Δ f g ) 2 S R I N ( f )
S v n X = ( v n v f i x X ) 2 S r X ( f ) ,
S r p u m p ( f ) = B 1 1 + ( f / f 3 d B ) 2 S R I N p u m p
S r l e n g t h ( f ) = ( f r e p v g r o u p L ) 2 S l e n g t h ( f )
S r l o s s ( f ) = B 1 1 + ( f / f 3 d B ) 2 S l o s s ( f )
S r A S E , t i min g ( f ) = 2 f r e p 2 ( ( 1 + n s p ) h v 0 G P c i r c ) × [ t r m s 2 + ( β 2 4 D g ω r m s ) ]
S v n A S E , S T ( f ) = 2 f r e p 2 ( 2 π ) 2 ( ( 1 + n s p ) h v 0 G P c i r c )

Metrics