Abstract

The weak plasmonic coupling intensity in an aluminum (Al) nanostructure has limited potential applications in excellent low-cost surface-enhanced Raman scattering (SERS) substrates and light harvesting. In this report, we aim to elevate the plasmonic coupling intensity by fabricating an Al nanoparticle (NP)−film system. In the system, the Al NP are fabricated directly on different Al film layers, and the nanoscale-thick alumina interlayer obtained between neighboring Al films acts as natural dielectric gaps. Interestingly, as the number of Al film layers increase, the plasmonic couplings generated between the Al NP and Al film increase as well. It is demonstrated that the confined gap plasmon modes stimulated in the nanoscale-thick alumina region between the adjacent Al films contribute significantly to elevating the plasmonic coupling intensity. The finite-difference time-domain (FDTD) method is used to carry out the simulations and verifies this result.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Wafer-scale 3D cloud-like aluminum hierarchical nanostructure for NIR SERS

Nan Zhao, Hefu Li, Zhenshan Yang, Cunwei Tian, Yanru Xie, Zhenbao Feng, Zongliang Wang, Xunling Yan, Wenjun Wang, and Huishan Yu
Opt. Mater. Express 9(8) 3546-3556 (2019)

Electrochemically fabricated self-aligned 2-D silver/alumina arrays as reliable SERS sensors

Chen-Han Huang, Hsing-Ying Lin, Shihtse Chen, Chih-Yi Liu, Hsiang-Chen Chui, and Yonhua Tzeng
Opt. Express 19(12) 11441-11450 (2011)

SERS study on the synergistic effects of electric field enhancement and charge transfer in an Ag2S quantum dots/plasmonic bowtie nanoantenna composite system

Bin Wang, Chen Zhao, Huanyu Lu, Tingting Zou, Subhash C. Singh, Zhi Yu, Chaonan Yao, Xin Zheng, Jun Xing, Yuting Zou, Cunzhu Tong, Weili Yu, Bo Zhao, and Chunlei Guo
Photon. Res. 8(4) 548-563 (2020)

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [Crossref]
  2. S. Linic, U. Aslam, C. Boerigter, and M. Morabito, “Photochemical transformations on plasmonic metal nanoparticles,” Nat. Mater. 14(6), 567–576 (2015).
    [Crossref]
  3. S. Linic, P. Christopher, and D. B. Ingram, “Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy,” Nat. Mater. 10(12), 911–921 (2011).
    [Crossref]
  4. T. Xue, W. Liang, Y. Li, Y. Sun, Y. Xiang, Y. Zhang, and B. N. Shivananju, “Ultrasensitive detection of miRNA with an antimonene-based surface plasmon resonance sensor,” Nat. Commun. 10(1), 28 (2019).
    [Crossref]
  5. Z. Li, S. Z. Jiang, Y. Y. Huo, T. Y. Ning, A. H. Liu, C. Zhang, Y. He, M. H. Wang, and C. H. Li, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
    [Crossref]
  6. C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
    [Crossref]
  7. Z. Xie, C. Xing, W. Huang, T. Fan, Z. Li, J. Zhao, and B. Dong, “Ultrathin 2D Nonlayered Tellurium Nanosheets: Facile Liquid-Phase Exfoliation, Characterization, and Photoresponse with High Performance and Enhanced Stability,” Adv. Funct. Mater. 28(16), 1705833 (2018).
    [Crossref]
  8. R. Pilot, R. Signorini, C. Durante, L. Orian, M. Bhamidipati, and L. Fabris, “A review on surface-enhanced Raman scattering,” Biosensors 9(2), 57 (2019).
    [Crossref]
  9. C. H. Li, Y. Jing, S. C. Xu, S. Z. Jiang, X. W. Xiu, C. S. Chen, A. H. Liu, T. F. Wu, B. Y. Man, and C. Zhang, “Constructing 3D and Flexible Plasmonic Structure for High-Performance SERS Application,” Adv. Mater. Technol. 3(11), 1800174 (2018).
    [Crossref]
  10. Z. Li, S. Z. Jiang, Y. Y. Huo, M. Liu, C. Yang, C. Zhang, X. Y. Liu, Y. Q. Sheng, C. H. Li, and B. Y. Man, “Controlled-layer and large-area MoS2 films encapsulated Au nanoparticle hybrids for SERS,” Opt. Express 24(23), 26097–26108 (2016).
    [Crossref]
  11. X. H. Li, X. G. Ren, Y. X. Zhang, W. C. H. Choy, and B. Q. Wei, “An all-copper plasmonic sandwich system obtained through directly depositing copper NPs on a CVD grown graphene/copper film and its application in SERS,” Nanoscale 7(26), 11291–11299 (2015).
    [Crossref]
  12. Z. Li, M. H. Wang, Y. Jiao, A. H. Liu, S. Y. Wang, C. Zhang, C. Yang, Y. Y. Xu, C. H. Li, and B. Y. Man, “Different number of silver nanoparticles layers for surface enhanced raman spectroscopy analysis,” Sens. Actuators, B 255, 374–383 (2018).
    [Crossref]
  13. S. K. Yang, X. M. Dai, B. B. Stogin, and T. S. Wong, “Ultrasensitive surface-enhanced Raman scattering detection in common fluids,” Proc. Natl. Acad. Sci. U. S. A. 113(2), 268–273 (2016).
    [Crossref]
  14. Z. S. Wang, L. Feng, D. Y. Xiao, N. Li, Y. Li, D. F. Cao, Z. S. Shi, Z. C. Cui, and N. A. Lu, “A silver nanoislands on silica spheres platform: enriching trace amounts of analytes for ultrasensitive and reproducible SERS detection,” Nanoscale 9(43), 16749–16754 (2017).
    [Crossref]
  15. L. N. Zhou, C. Zhang, M. J. McClain, A. Manjavacas, C. M. Krauter, S. Tian, and F. Berg, “Aluminum nanocrystals as a plasmonic photocatalyst for hydrogen dissociation,” Nano Lett. 16(2), 1478–1484 (2016).
    [Crossref]
  16. Y. Ekinci, H. H. Solak, and J. F. Löffler, “Plasmon resonances of aluminum nanoparticles and nanorods,” J. Appl. Phys. 104(8), 083107 (2008).
    [Crossref]
  17. M. W. Knight, N. S. King, L. F. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
    [Crossref]
  18. M. W. Knight, L. F. Liu, Y. M. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett. 12(11), 6000–6004 (2012).
    [Crossref]
  19. L. Christoph, M. Schwind, B. Kasemo, and I. Zoric, “Localized surface plasmon resonances in aluminum nanodisks,” Nano Lett. 8(5), 1461–1471 (2008).
    [Crossref]
  20. K. M. McPeak, C. D. V. Engers, S. Bianchi, A. Rossinelli, L. V. Poulikakos, L. Bernard, and S. Herrmann, “Ultraviolet Plasmonic Chirality from Colloidal Aluminum Nanoparticles Exhibiting Charge-Selective Protein Detection,” Adv. Mater. 27(40), 6244–6250 (2015).
    [Crossref]
  21. S. Tian, O. Neumann, M. J. McClain, X. Yang, L. N. Zhou, C. Zhang, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals: a sustainable substrate for quantitative SERS-based DNA detection,” Nano Lett. 17(8), 5071–5077 (2017).
    [Crossref]
  22. Z. L. Yang, Q. H. Li, B. Ren, and Z. Q. Tian, “Tunable SERS from aluminium nanohole arrays in the ultraviolet region,” Chem. Commun. 47(13), 3909–3911 (2011).
    [Crossref]
  23. T. Ding, D. O. Sigle, L. O. Herrmann, D. Wolverson, and J. J. Baumberg, “Nanoimprint lithography of Al nanovoids for deep-UV SERS,” ACS Appl. Mater. Interfaces 6(20), 17358–17363 (2014).
    [Crossref]
  24. S. K. Jha, Z. Ahmed, M. Agio, Y. Ekinci, and J. F. Löffler, “Deep-UV surface-enhanced resonance Raman scattering of adenine on aluminum nanoparticle arrays,” J. Am. Chem. Soc. 134(4), 1966–1969 (2012).
    [Crossref]
  25. X. M. Li, M. H. Bi, L. Cui, Y. Z. Zhou, X. W. Du, S. Z. Qiao, and J. Yang, “3D Aluminum Hybrid Plasmonic Nanostructures with Large Areas of Dense Hot Spots and Long-Term Stability,” Adv. Funct. Mater. 27(10), 1605703 (2017).
    [Crossref]
  26. T. Dörfer, M. Schmitt, and J. Popp, “Deep-UV surface-enhanced Raman scattering,” J. Raman Spectrosc. 38(11), 1379–1382 (2007).
    [Crossref]
  27. C. L. Lay, C. S. L. Koh, J. Wang, Y. H. Lee, R. Jiang, Y. Yang, and X. Y. Ling, “Aluminum nanostructures with strong visible-range SERS activity for versatile micropatterning of molecular security labels,” Nanoscale 10(2), 575–581 (2018).
    [Crossref]
  28. H. Robatjazi, H. Q. Zhao, D. F. Swearer, N. J. Hogan, L. N. Zhou, A. Alabastri, M. J. McClain, P. Nordlander, and N. J. Halas, “Plasmon-induced selective carbon dioxide conversion on earth-abundant aluminum-cuprous oxide antenna-reactor nanoparticles,” Nat. Commun. 8(1), 27 (2017).
    [Crossref]
  29. L. Li, S. F. Lim, A. A. Puretzky, R. Riehn, and H. D. Hallen, “Near-field enhanced ultraviolet resonance Raman spectroscopy using aluminum bow-tie nano-antenna,” Appl. Phys. Lett. 101(11), 113116 (2012).
    [Crossref]
  30. D. O. Sigle, E. Perkins, J. J. Baumberg, and S. Mahajan, “Reproducible deep-UV SERRS on aluminum nanovoids,” J. Phys. Chem. Lett. 4(9), 1449–1452 (2013).
    [Crossref]
  31. F. Cheng, P. H. Su, J. Choi, S. Gwo, X. Q. Li, and C. K. Shih, “Epitaxial growth of atomically smooth aluminum on silicon and its intrinsic optical properties,” ACS Nano 10(11), 9852–9860 (2016).
    [Crossref]
  32. I. Lachebi, A. Fedala, T. Djenizian, T. Hadjersi, and M. Kechouane, “Morphological and optical properties of aluminum nanoparticles deposited by thermal evaporation on heated substrates,” Surf. Coat. Tech. 343, 160–165 (2018).
    [Crossref]
  33. A. Sobhani, A. Manjavacas, Y. Cao, M. J. McClain, F. J. G. Abajo, P. Nordlander, and N. J. Halas, “Pronounced linewidth narrowing of an aluminum nanoparticle plasmon resonance by interaction with an aluminum metallic film,” Nano Lett. 15(10), 6946–6951 (2015).
    [Crossref]
  34. E. D. Palik, “Handbook of optical constants of solids,” Academic Press, 3 (1998).
  35. B. Sharma, M. F. Cardinal, M. B. Ross, A. B. Zrimsek, S. V. Bykov, D. Punihaole, S. A. Asher, G. C. Schatz, and R. P. V. Duyne, “Aluminum film-over-nanosphere substrates for deep-uv surface-enhanced resonance raman spectroscopy,” Nano Lett. 16(12), 7968–7973 (2016).
    [Crossref]
  36. J. W. Jeong, M. M. Arnob, P. K. Min Baek, S. Y. Lee, W. C. Shih, and Y. S. Jung, “3D Cross-Point Plasmonic Nanoarchitectures Containing Dense and Regular Hot Spots for Surface-Enhanced Raman Spectroscopy Analysis,” Adv. Mater. 28(39), 8695–8704 (2016).
    [Crossref]
  37. C. Ma, M. J. Trujillo, and J. P. Camden, “Nanoporous silver film fabricated by oxygen plasma: A facile approach for SERS substrates,” ACS Appl. Mater. Interfaces 8(36), 23978–23984 (2016).
    [Crossref]
  38. S. Su, C. Zhang, L. Yuwen, J. Chao, X. Zuo, X. Liu, and L. Wang, “Creating SERS hot spots on MoS2 nanosheets with in situ grown gold nanoparticles,” ACS Appl. Mater. Interfaces 6(21), 18735–18741 (2014).
    [Crossref]

2019 (2)

R. Pilot, R. Signorini, C. Durante, L. Orian, M. Bhamidipati, and L. Fabris, “A review on surface-enhanced Raman scattering,” Biosensors 9(2), 57 (2019).
[Crossref]

T. Xue, W. Liang, Y. Li, Y. Sun, Y. Xiang, Y. Zhang, and B. N. Shivananju, “Ultrasensitive detection of miRNA with an antimonene-based surface plasmon resonance sensor,” Nat. Commun. 10(1), 28 (2019).
[Crossref]

2018 (6)

Z. Li, S. Z. Jiang, Y. Y. Huo, T. Y. Ning, A. H. Liu, C. Zhang, Y. He, M. H. Wang, and C. H. Li, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref]

C. H. Li, Y. Jing, S. C. Xu, S. Z. Jiang, X. W. Xiu, C. S. Chen, A. H. Liu, T. F. Wu, B. Y. Man, and C. Zhang, “Constructing 3D and Flexible Plasmonic Structure for High-Performance SERS Application,” Adv. Mater. Technol. 3(11), 1800174 (2018).
[Crossref]

Z. Xie, C. Xing, W. Huang, T. Fan, Z. Li, J. Zhao, and B. Dong, “Ultrathin 2D Nonlayered Tellurium Nanosheets: Facile Liquid-Phase Exfoliation, Characterization, and Photoresponse with High Performance and Enhanced Stability,” Adv. Funct. Mater. 28(16), 1705833 (2018).
[Crossref]

I. Lachebi, A. Fedala, T. Djenizian, T. Hadjersi, and M. Kechouane, “Morphological and optical properties of aluminum nanoparticles deposited by thermal evaporation on heated substrates,” Surf. Coat. Tech. 343, 160–165 (2018).
[Crossref]

C. L. Lay, C. S. L. Koh, J. Wang, Y. H. Lee, R. Jiang, Y. Yang, and X. Y. Ling, “Aluminum nanostructures with strong visible-range SERS activity for versatile micropatterning of molecular security labels,” Nanoscale 10(2), 575–581 (2018).
[Crossref]

Z. Li, M. H. Wang, Y. Jiao, A. H. Liu, S. Y. Wang, C. Zhang, C. Yang, Y. Y. Xu, C. H. Li, and B. Y. Man, “Different number of silver nanoparticles layers for surface enhanced raman spectroscopy analysis,” Sens. Actuators, B 255, 374–383 (2018).
[Crossref]

2017 (4)

Z. S. Wang, L. Feng, D. Y. Xiao, N. Li, Y. Li, D. F. Cao, Z. S. Shi, Z. C. Cui, and N. A. Lu, “A silver nanoislands on silica spheres platform: enriching trace amounts of analytes for ultrasensitive and reproducible SERS detection,” Nanoscale 9(43), 16749–16754 (2017).
[Crossref]

X. M. Li, M. H. Bi, L. Cui, Y. Z. Zhou, X. W. Du, S. Z. Qiao, and J. Yang, “3D Aluminum Hybrid Plasmonic Nanostructures with Large Areas of Dense Hot Spots and Long-Term Stability,” Adv. Funct. Mater. 27(10), 1605703 (2017).
[Crossref]

S. Tian, O. Neumann, M. J. McClain, X. Yang, L. N. Zhou, C. Zhang, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals: a sustainable substrate for quantitative SERS-based DNA detection,” Nano Lett. 17(8), 5071–5077 (2017).
[Crossref]

H. Robatjazi, H. Q. Zhao, D. F. Swearer, N. J. Hogan, L. N. Zhou, A. Alabastri, M. J. McClain, P. Nordlander, and N. J. Halas, “Plasmon-induced selective carbon dioxide conversion on earth-abundant aluminum-cuprous oxide antenna-reactor nanoparticles,” Nat. Commun. 8(1), 27 (2017).
[Crossref]

2016 (7)

S. K. Yang, X. M. Dai, B. B. Stogin, and T. S. Wong, “Ultrasensitive surface-enhanced Raman scattering detection in common fluids,” Proc. Natl. Acad. Sci. U. S. A. 113(2), 268–273 (2016).
[Crossref]

L. N. Zhou, C. Zhang, M. J. McClain, A. Manjavacas, C. M. Krauter, S. Tian, and F. Berg, “Aluminum nanocrystals as a plasmonic photocatalyst for hydrogen dissociation,” Nano Lett. 16(2), 1478–1484 (2016).
[Crossref]

J. W. Jeong, M. M. Arnob, P. K. Min Baek, S. Y. Lee, W. C. Shih, and Y. S. Jung, “3D Cross-Point Plasmonic Nanoarchitectures Containing Dense and Regular Hot Spots for Surface-Enhanced Raman Spectroscopy Analysis,” Adv. Mater. 28(39), 8695–8704 (2016).
[Crossref]

C. Ma, M. J. Trujillo, and J. P. Camden, “Nanoporous silver film fabricated by oxygen plasma: A facile approach for SERS substrates,” ACS Appl. Mater. Interfaces 8(36), 23978–23984 (2016).
[Crossref]

B. Sharma, M. F. Cardinal, M. B. Ross, A. B. Zrimsek, S. V. Bykov, D. Punihaole, S. A. Asher, G. C. Schatz, and R. P. V. Duyne, “Aluminum film-over-nanosphere substrates for deep-uv surface-enhanced resonance raman spectroscopy,” Nano Lett. 16(12), 7968–7973 (2016).
[Crossref]

Z. Li, S. Z. Jiang, Y. Y. Huo, M. Liu, C. Yang, C. Zhang, X. Y. Liu, Y. Q. Sheng, C. H. Li, and B. Y. Man, “Controlled-layer and large-area MoS2 films encapsulated Au nanoparticle hybrids for SERS,” Opt. Express 24(23), 26097–26108 (2016).
[Crossref]

F. Cheng, P. H. Su, J. Choi, S. Gwo, X. Q. Li, and C. K. Shih, “Epitaxial growth of atomically smooth aluminum on silicon and its intrinsic optical properties,” ACS Nano 10(11), 9852–9860 (2016).
[Crossref]

2015 (5)

C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref]

K. M. McPeak, C. D. V. Engers, S. Bianchi, A. Rossinelli, L. V. Poulikakos, L. Bernard, and S. Herrmann, “Ultraviolet Plasmonic Chirality from Colloidal Aluminum Nanoparticles Exhibiting Charge-Selective Protein Detection,” Adv. Mater. 27(40), 6244–6250 (2015).
[Crossref]

A. Sobhani, A. Manjavacas, Y. Cao, M. J. McClain, F. J. G. Abajo, P. Nordlander, and N. J. Halas, “Pronounced linewidth narrowing of an aluminum nanoparticle plasmon resonance by interaction with an aluminum metallic film,” Nano Lett. 15(10), 6946–6951 (2015).
[Crossref]

S. Linic, U. Aslam, C. Boerigter, and M. Morabito, “Photochemical transformations on plasmonic metal nanoparticles,” Nat. Mater. 14(6), 567–576 (2015).
[Crossref]

X. H. Li, X. G. Ren, Y. X. Zhang, W. C. H. Choy, and B. Q. Wei, “An all-copper plasmonic sandwich system obtained through directly depositing copper NPs on a CVD grown graphene/copper film and its application in SERS,” Nanoscale 7(26), 11291–11299 (2015).
[Crossref]

2014 (3)

T. Ding, D. O. Sigle, L. O. Herrmann, D. Wolverson, and J. J. Baumberg, “Nanoimprint lithography of Al nanovoids for deep-UV SERS,” ACS Appl. Mater. Interfaces 6(20), 17358–17363 (2014).
[Crossref]

S. Su, C. Zhang, L. Yuwen, J. Chao, X. Zuo, X. Liu, and L. Wang, “Creating SERS hot spots on MoS2 nanosheets with in situ grown gold nanoparticles,” ACS Appl. Mater. Interfaces 6(21), 18735–18741 (2014).
[Crossref]

M. W. Knight, N. S. King, L. F. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref]

2013 (1)

D. O. Sigle, E. Perkins, J. J. Baumberg, and S. Mahajan, “Reproducible deep-UV SERRS on aluminum nanovoids,” J. Phys. Chem. Lett. 4(9), 1449–1452 (2013).
[Crossref]

2012 (3)

S. K. Jha, Z. Ahmed, M. Agio, Y. Ekinci, and J. F. Löffler, “Deep-UV surface-enhanced resonance Raman scattering of adenine on aluminum nanoparticle arrays,” J. Am. Chem. Soc. 134(4), 1966–1969 (2012).
[Crossref]

L. Li, S. F. Lim, A. A. Puretzky, R. Riehn, and H. D. Hallen, “Near-field enhanced ultraviolet resonance Raman spectroscopy using aluminum bow-tie nano-antenna,” Appl. Phys. Lett. 101(11), 113116 (2012).
[Crossref]

M. W. Knight, L. F. Liu, Y. M. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett. 12(11), 6000–6004 (2012).
[Crossref]

2011 (2)

S. Linic, P. Christopher, and D. B. Ingram, “Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy,” Nat. Mater. 10(12), 911–921 (2011).
[Crossref]

Z. L. Yang, Q. H. Li, B. Ren, and Z. Q. Tian, “Tunable SERS from aluminium nanohole arrays in the ultraviolet region,” Chem. Commun. 47(13), 3909–3911 (2011).
[Crossref]

2008 (2)

L. Christoph, M. Schwind, B. Kasemo, and I. Zoric, “Localized surface plasmon resonances in aluminum nanodisks,” Nano Lett. 8(5), 1461–1471 (2008).
[Crossref]

Y. Ekinci, H. H. Solak, and J. F. Löffler, “Plasmon resonances of aluminum nanoparticles and nanorods,” J. Appl. Phys. 104(8), 083107 (2008).
[Crossref]

2007 (1)

T. Dörfer, M. Schmitt, and J. Popp, “Deep-UV surface-enhanced Raman scattering,” J. Raman Spectrosc. 38(11), 1379–1382 (2007).
[Crossref]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref]

Abajo, F. J. G.

A. Sobhani, A. Manjavacas, Y. Cao, M. J. McClain, F. J. G. Abajo, P. Nordlander, and N. J. Halas, “Pronounced linewidth narrowing of an aluminum nanoparticle plasmon resonance by interaction with an aluminum metallic film,” Nano Lett. 15(10), 6946–6951 (2015).
[Crossref]

Agio, M.

S. K. Jha, Z. Ahmed, M. Agio, Y. Ekinci, and J. F. Löffler, “Deep-UV surface-enhanced resonance Raman scattering of adenine on aluminum nanoparticle arrays,” J. Am. Chem. Soc. 134(4), 1966–1969 (2012).
[Crossref]

Ahmed, Z.

S. K. Jha, Z. Ahmed, M. Agio, Y. Ekinci, and J. F. Löffler, “Deep-UV surface-enhanced resonance Raman scattering of adenine on aluminum nanoparticle arrays,” J. Am. Chem. Soc. 134(4), 1966–1969 (2012).
[Crossref]

Alabastri, A.

H. Robatjazi, H. Q. Zhao, D. F. Swearer, N. J. Hogan, L. N. Zhou, A. Alabastri, M. J. McClain, P. Nordlander, and N. J. Halas, “Plasmon-induced selective carbon dioxide conversion on earth-abundant aluminum-cuprous oxide antenna-reactor nanoparticles,” Nat. Commun. 8(1), 27 (2017).
[Crossref]

Arnob, M. M.

J. W. Jeong, M. M. Arnob, P. K. Min Baek, S. Y. Lee, W. C. Shih, and Y. S. Jung, “3D Cross-Point Plasmonic Nanoarchitectures Containing Dense and Regular Hot Spots for Surface-Enhanced Raman Spectroscopy Analysis,” Adv. Mater. 28(39), 8695–8704 (2016).
[Crossref]

Asher, S. A.

B. Sharma, M. F. Cardinal, M. B. Ross, A. B. Zrimsek, S. V. Bykov, D. Punihaole, S. A. Asher, G. C. Schatz, and R. P. V. Duyne, “Aluminum film-over-nanosphere substrates for deep-uv surface-enhanced resonance raman spectroscopy,” Nano Lett. 16(12), 7968–7973 (2016).
[Crossref]

Aslam, U.

S. Linic, U. Aslam, C. Boerigter, and M. Morabito, “Photochemical transformations on plasmonic metal nanoparticles,” Nat. Mater. 14(6), 567–576 (2015).
[Crossref]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref]

Baumberg, J. J.

T. Ding, D. O. Sigle, L. O. Herrmann, D. Wolverson, and J. J. Baumberg, “Nanoimprint lithography of Al nanovoids for deep-UV SERS,” ACS Appl. Mater. Interfaces 6(20), 17358–17363 (2014).
[Crossref]

D. O. Sigle, E. Perkins, J. J. Baumberg, and S. Mahajan, “Reproducible deep-UV SERRS on aluminum nanovoids,” J. Phys. Chem. Lett. 4(9), 1449–1452 (2013).
[Crossref]

Berg, F.

L. N. Zhou, C. Zhang, M. J. McClain, A. Manjavacas, C. M. Krauter, S. Tian, and F. Berg, “Aluminum nanocrystals as a plasmonic photocatalyst for hydrogen dissociation,” Nano Lett. 16(2), 1478–1484 (2016).
[Crossref]

Bernard, L.

K. M. McPeak, C. D. V. Engers, S. Bianchi, A. Rossinelli, L. V. Poulikakos, L. Bernard, and S. Herrmann, “Ultraviolet Plasmonic Chirality from Colloidal Aluminum Nanoparticles Exhibiting Charge-Selective Protein Detection,” Adv. Mater. 27(40), 6244–6250 (2015).
[Crossref]

Bhamidipati, M.

R. Pilot, R. Signorini, C. Durante, L. Orian, M. Bhamidipati, and L. Fabris, “A review on surface-enhanced Raman scattering,” Biosensors 9(2), 57 (2019).
[Crossref]

Bi, M. H.

X. M. Li, M. H. Bi, L. Cui, Y. Z. Zhou, X. W. Du, S. Z. Qiao, and J. Yang, “3D Aluminum Hybrid Plasmonic Nanostructures with Large Areas of Dense Hot Spots and Long-Term Stability,” Adv. Funct. Mater. 27(10), 1605703 (2017).
[Crossref]

Bianchi, S.

K. M. McPeak, C. D. V. Engers, S. Bianchi, A. Rossinelli, L. V. Poulikakos, L. Bernard, and S. Herrmann, “Ultraviolet Plasmonic Chirality from Colloidal Aluminum Nanoparticles Exhibiting Charge-Selective Protein Detection,” Adv. Mater. 27(40), 6244–6250 (2015).
[Crossref]

Boerigter, C.

S. Linic, U. Aslam, C. Boerigter, and M. Morabito, “Photochemical transformations on plasmonic metal nanoparticles,” Nat. Mater. 14(6), 567–576 (2015).
[Crossref]

Brown, L.

M. W. Knight, L. F. Liu, Y. M. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett. 12(11), 6000–6004 (2012).
[Crossref]

Bykov, S. V.

B. Sharma, M. F. Cardinal, M. B. Ross, A. B. Zrimsek, S. V. Bykov, D. Punihaole, S. A. Asher, G. C. Schatz, and R. P. V. Duyne, “Aluminum film-over-nanosphere substrates for deep-uv surface-enhanced resonance raman spectroscopy,” Nano Lett. 16(12), 7968–7973 (2016).
[Crossref]

Camden, J. P.

C. Ma, M. J. Trujillo, and J. P. Camden, “Nanoporous silver film fabricated by oxygen plasma: A facile approach for SERS substrates,” ACS Appl. Mater. Interfaces 8(36), 23978–23984 (2016).
[Crossref]

Cao, D. F.

Z. S. Wang, L. Feng, D. Y. Xiao, N. Li, Y. Li, D. F. Cao, Z. S. Shi, Z. C. Cui, and N. A. Lu, “A silver nanoislands on silica spheres platform: enriching trace amounts of analytes for ultrasensitive and reproducible SERS detection,” Nanoscale 9(43), 16749–16754 (2017).
[Crossref]

Cao, Y.

A. Sobhani, A. Manjavacas, Y. Cao, M. J. McClain, F. J. G. Abajo, P. Nordlander, and N. J. Halas, “Pronounced linewidth narrowing of an aluminum nanoparticle plasmon resonance by interaction with an aluminum metallic film,” Nano Lett. 15(10), 6946–6951 (2015).
[Crossref]

Cardinal, M. F.

B. Sharma, M. F. Cardinal, M. B. Ross, A. B. Zrimsek, S. V. Bykov, D. Punihaole, S. A. Asher, G. C. Schatz, and R. P. V. Duyne, “Aluminum film-over-nanosphere substrates for deep-uv surface-enhanced resonance raman spectroscopy,” Nano Lett. 16(12), 7968–7973 (2016).
[Crossref]

Chao, J.

S. Su, C. Zhang, L. Yuwen, J. Chao, X. Zuo, X. Liu, and L. Wang, “Creating SERS hot spots on MoS2 nanosheets with in situ grown gold nanoparticles,” ACS Appl. Mater. Interfaces 6(21), 18735–18741 (2014).
[Crossref]

Chen, C. S.

C. H. Li, Y. Jing, S. C. Xu, S. Z. Jiang, X. W. Xiu, C. S. Chen, A. H. Liu, T. F. Wu, B. Y. Man, and C. Zhang, “Constructing 3D and Flexible Plasmonic Structure for High-Performance SERS Application,” Adv. Mater. Technol. 3(11), 1800174 (2018).
[Crossref]

Cheng, F.

F. Cheng, P. H. Su, J. Choi, S. Gwo, X. Q. Li, and C. K. Shih, “Epitaxial growth of atomically smooth aluminum on silicon and its intrinsic optical properties,” ACS Nano 10(11), 9852–9860 (2016).
[Crossref]

Choi, J.

F. Cheng, P. H. Su, J. Choi, S. Gwo, X. Q. Li, and C. K. Shih, “Epitaxial growth of atomically smooth aluminum on silicon and its intrinsic optical properties,” ACS Nano 10(11), 9852–9860 (2016).
[Crossref]

Choy, W. C. H.

X. H. Li, X. G. Ren, Y. X. Zhang, W. C. H. Choy, and B. Q. Wei, “An all-copper plasmonic sandwich system obtained through directly depositing copper NPs on a CVD grown graphene/copper film and its application in SERS,” Nanoscale 7(26), 11291–11299 (2015).
[Crossref]

Christoph, L.

L. Christoph, M. Schwind, B. Kasemo, and I. Zoric, “Localized surface plasmon resonances in aluminum nanodisks,” Nano Lett. 8(5), 1461–1471 (2008).
[Crossref]

Christopher, P.

S. Linic, P. Christopher, and D. B. Ingram, “Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy,” Nat. Mater. 10(12), 911–921 (2011).
[Crossref]

Cui, L.

X. M. Li, M. H. Bi, L. Cui, Y. Z. Zhou, X. W. Du, S. Z. Qiao, and J. Yang, “3D Aluminum Hybrid Plasmonic Nanostructures with Large Areas of Dense Hot Spots and Long-Term Stability,” Adv. Funct. Mater. 27(10), 1605703 (2017).
[Crossref]

Cui, Z. C.

Z. S. Wang, L. Feng, D. Y. Xiao, N. Li, Y. Li, D. F. Cao, Z. S. Shi, Z. C. Cui, and N. A. Lu, “A silver nanoislands on silica spheres platform: enriching trace amounts of analytes for ultrasensitive and reproducible SERS detection,” Nanoscale 9(43), 16749–16754 (2017).
[Crossref]

Dai, X. M.

S. K. Yang, X. M. Dai, B. B. Stogin, and T. S. Wong, “Ultrasensitive surface-enhanced Raman scattering detection in common fluids,” Proc. Natl. Acad. Sci. U. S. A. 113(2), 268–273 (2016).
[Crossref]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref]

Ding, T.

T. Ding, D. O. Sigle, L. O. Herrmann, D. Wolverson, and J. J. Baumberg, “Nanoimprint lithography of Al nanovoids for deep-UV SERS,” ACS Appl. Mater. Interfaces 6(20), 17358–17363 (2014).
[Crossref]

Djenizian, T.

I. Lachebi, A. Fedala, T. Djenizian, T. Hadjersi, and M. Kechouane, “Morphological and optical properties of aluminum nanoparticles deposited by thermal evaporation on heated substrates,” Surf. Coat. Tech. 343, 160–165 (2018).
[Crossref]

Dong, B.

Z. Xie, C. Xing, W. Huang, T. Fan, Z. Li, J. Zhao, and B. Dong, “Ultrathin 2D Nonlayered Tellurium Nanosheets: Facile Liquid-Phase Exfoliation, Characterization, and Photoresponse with High Performance and Enhanced Stability,” Adv. Funct. Mater. 28(16), 1705833 (2018).
[Crossref]

Dörfer, T.

T. Dörfer, M. Schmitt, and J. Popp, “Deep-UV surface-enhanced Raman scattering,” J. Raman Spectrosc. 38(11), 1379–1382 (2007).
[Crossref]

Du, X. W.

X. M. Li, M. H. Bi, L. Cui, Y. Z. Zhou, X. W. Du, S. Z. Qiao, and J. Yang, “3D Aluminum Hybrid Plasmonic Nanostructures with Large Areas of Dense Hot Spots and Long-Term Stability,” Adv. Funct. Mater. 27(10), 1605703 (2017).
[Crossref]

Durante, C.

R. Pilot, R. Signorini, C. Durante, L. Orian, M. Bhamidipati, and L. Fabris, “A review on surface-enhanced Raman scattering,” Biosensors 9(2), 57 (2019).
[Crossref]

Duyne, R. P. V.

B. Sharma, M. F. Cardinal, M. B. Ross, A. B. Zrimsek, S. V. Bykov, D. Punihaole, S. A. Asher, G. C. Schatz, and R. P. V. Duyne, “Aluminum film-over-nanosphere substrates for deep-uv surface-enhanced resonance raman spectroscopy,” Nano Lett. 16(12), 7968–7973 (2016).
[Crossref]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref]

Ekinci, Y.

S. K. Jha, Z. Ahmed, M. Agio, Y. Ekinci, and J. F. Löffler, “Deep-UV surface-enhanced resonance Raman scattering of adenine on aluminum nanoparticle arrays,” J. Am. Chem. Soc. 134(4), 1966–1969 (2012).
[Crossref]

Y. Ekinci, H. H. Solak, and J. F. Löffler, “Plasmon resonances of aluminum nanoparticles and nanorods,” J. Appl. Phys. 104(8), 083107 (2008).
[Crossref]

Engers, C. D. V.

K. M. McPeak, C. D. V. Engers, S. Bianchi, A. Rossinelli, L. V. Poulikakos, L. Bernard, and S. Herrmann, “Ultraviolet Plasmonic Chirality from Colloidal Aluminum Nanoparticles Exhibiting Charge-Selective Protein Detection,” Adv. Mater. 27(40), 6244–6250 (2015).
[Crossref]

Everitt, H. O.

M. W. Knight, N. S. King, L. F. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref]

M. W. Knight, L. F. Liu, Y. M. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett. 12(11), 6000–6004 (2012).
[Crossref]

Fabris, L.

R. Pilot, R. Signorini, C. Durante, L. Orian, M. Bhamidipati, and L. Fabris, “A review on surface-enhanced Raman scattering,” Biosensors 9(2), 57 (2019).
[Crossref]

Fan, T.

Z. Xie, C. Xing, W. Huang, T. Fan, Z. Li, J. Zhao, and B. Dong, “Ultrathin 2D Nonlayered Tellurium Nanosheets: Facile Liquid-Phase Exfoliation, Characterization, and Photoresponse with High Performance and Enhanced Stability,” Adv. Funct. Mater. 28(16), 1705833 (2018).
[Crossref]

Fedala, A.

I. Lachebi, A. Fedala, T. Djenizian, T. Hadjersi, and M. Kechouane, “Morphological and optical properties of aluminum nanoparticles deposited by thermal evaporation on heated substrates,” Surf. Coat. Tech. 343, 160–165 (2018).
[Crossref]

Feng, L.

Z. S. Wang, L. Feng, D. Y. Xiao, N. Li, Y. Li, D. F. Cao, Z. S. Shi, Z. C. Cui, and N. A. Lu, “A silver nanoislands on silica spheres platform: enriching trace amounts of analytes for ultrasensitive and reproducible SERS detection,” Nanoscale 9(43), 16749–16754 (2017).
[Crossref]

Gwo, S.

F. Cheng, P. H. Su, J. Choi, S. Gwo, X. Q. Li, and C. K. Shih, “Epitaxial growth of atomically smooth aluminum on silicon and its intrinsic optical properties,” ACS Nano 10(11), 9852–9860 (2016).
[Crossref]

Hadjersi, T.

I. Lachebi, A. Fedala, T. Djenizian, T. Hadjersi, and M. Kechouane, “Morphological and optical properties of aluminum nanoparticles deposited by thermal evaporation on heated substrates,” Surf. Coat. Tech. 343, 160–165 (2018).
[Crossref]

Halas, N. J.

H. Robatjazi, H. Q. Zhao, D. F. Swearer, N. J. Hogan, L. N. Zhou, A. Alabastri, M. J. McClain, P. Nordlander, and N. J. Halas, “Plasmon-induced selective carbon dioxide conversion on earth-abundant aluminum-cuprous oxide antenna-reactor nanoparticles,” Nat. Commun. 8(1), 27 (2017).
[Crossref]

S. Tian, O. Neumann, M. J. McClain, X. Yang, L. N. Zhou, C. Zhang, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals: a sustainable substrate for quantitative SERS-based DNA detection,” Nano Lett. 17(8), 5071–5077 (2017).
[Crossref]

A. Sobhani, A. Manjavacas, Y. Cao, M. J. McClain, F. J. G. Abajo, P. Nordlander, and N. J. Halas, “Pronounced linewidth narrowing of an aluminum nanoparticle plasmon resonance by interaction with an aluminum metallic film,” Nano Lett. 15(10), 6946–6951 (2015).
[Crossref]

M. W. Knight, N. S. King, L. F. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref]

M. W. Knight, L. F. Liu, Y. M. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett. 12(11), 6000–6004 (2012).
[Crossref]

Hallen, H. D.

L. Li, S. F. Lim, A. A. Puretzky, R. Riehn, and H. D. Hallen, “Near-field enhanced ultraviolet resonance Raman spectroscopy using aluminum bow-tie nano-antenna,” Appl. Phys. Lett. 101(11), 113116 (2012).
[Crossref]

He, Y.

Z. Li, S. Z. Jiang, Y. Y. Huo, T. Y. Ning, A. H. Liu, C. Zhang, Y. He, M. H. Wang, and C. H. Li, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref]

Herrmann, L. O.

T. Ding, D. O. Sigle, L. O. Herrmann, D. Wolverson, and J. J. Baumberg, “Nanoimprint lithography of Al nanovoids for deep-UV SERS,” ACS Appl. Mater. Interfaces 6(20), 17358–17363 (2014).
[Crossref]

Herrmann, S.

K. M. McPeak, C. D. V. Engers, S. Bianchi, A. Rossinelli, L. V. Poulikakos, L. Bernard, and S. Herrmann, “Ultraviolet Plasmonic Chirality from Colloidal Aluminum Nanoparticles Exhibiting Charge-Selective Protein Detection,” Adv. Mater. 27(40), 6244–6250 (2015).
[Crossref]

Hogan, N. J.

H. Robatjazi, H. Q. Zhao, D. F. Swearer, N. J. Hogan, L. N. Zhou, A. Alabastri, M. J. McClain, P. Nordlander, and N. J. Halas, “Plasmon-induced selective carbon dioxide conversion on earth-abundant aluminum-cuprous oxide antenna-reactor nanoparticles,” Nat. Commun. 8(1), 27 (2017).
[Crossref]

Huang, W.

Z. Xie, C. Xing, W. Huang, T. Fan, Z. Li, J. Zhao, and B. Dong, “Ultrathin 2D Nonlayered Tellurium Nanosheets: Facile Liquid-Phase Exfoliation, Characterization, and Photoresponse with High Performance and Enhanced Stability,” Adv. Funct. Mater. 28(16), 1705833 (2018).
[Crossref]

Huo, Y. Y.

Ingram, D. B.

S. Linic, P. Christopher, and D. B. Ingram, “Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy,” Nat. Mater. 10(12), 911–921 (2011).
[Crossref]

Jeong, J. W.

J. W. Jeong, M. M. Arnob, P. K. Min Baek, S. Y. Lee, W. C. Shih, and Y. S. Jung, “3D Cross-Point Plasmonic Nanoarchitectures Containing Dense and Regular Hot Spots for Surface-Enhanced Raman Spectroscopy Analysis,” Adv. Mater. 28(39), 8695–8704 (2016).
[Crossref]

Jha, S. K.

S. K. Jha, Z. Ahmed, M. Agio, Y. Ekinci, and J. F. Löffler, “Deep-UV surface-enhanced resonance Raman scattering of adenine on aluminum nanoparticle arrays,” J. Am. Chem. Soc. 134(4), 1966–1969 (2012).
[Crossref]

Jiang, R.

C. L. Lay, C. S. L. Koh, J. Wang, Y. H. Lee, R. Jiang, Y. Yang, and X. Y. Ling, “Aluminum nanostructures with strong visible-range SERS activity for versatile micropatterning of molecular security labels,” Nanoscale 10(2), 575–581 (2018).
[Crossref]

Jiang, S. Z.

Z. Li, S. Z. Jiang, Y. Y. Huo, T. Y. Ning, A. H. Liu, C. Zhang, Y. He, M. H. Wang, and C. H. Li, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref]

C. H. Li, Y. Jing, S. C. Xu, S. Z. Jiang, X. W. Xiu, C. S. Chen, A. H. Liu, T. F. Wu, B. Y. Man, and C. Zhang, “Constructing 3D and Flexible Plasmonic Structure for High-Performance SERS Application,” Adv. Mater. Technol. 3(11), 1800174 (2018).
[Crossref]

Z. Li, S. Z. Jiang, Y. Y. Huo, M. Liu, C. Yang, C. Zhang, X. Y. Liu, Y. Q. Sheng, C. H. Li, and B. Y. Man, “Controlled-layer and large-area MoS2 films encapsulated Au nanoparticle hybrids for SERS,” Opt. Express 24(23), 26097–26108 (2016).
[Crossref]

C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref]

Jiao, Y.

Z. Li, M. H. Wang, Y. Jiao, A. H. Liu, S. Y. Wang, C. Zhang, C. Yang, Y. Y. Xu, C. H. Li, and B. Y. Man, “Different number of silver nanoparticles layers for surface enhanced raman spectroscopy analysis,” Sens. Actuators, B 255, 374–383 (2018).
[Crossref]

Jing, Y.

C. H. Li, Y. Jing, S. C. Xu, S. Z. Jiang, X. W. Xiu, C. S. Chen, A. H. Liu, T. F. Wu, B. Y. Man, and C. Zhang, “Constructing 3D and Flexible Plasmonic Structure for High-Performance SERS Application,” Adv. Mater. Technol. 3(11), 1800174 (2018).
[Crossref]

Jung, Y. S.

J. W. Jeong, M. M. Arnob, P. K. Min Baek, S. Y. Lee, W. C. Shih, and Y. S. Jung, “3D Cross-Point Plasmonic Nanoarchitectures Containing Dense and Regular Hot Spots for Surface-Enhanced Raman Spectroscopy Analysis,” Adv. Mater. 28(39), 8695–8704 (2016).
[Crossref]

Kasemo, B.

L. Christoph, M. Schwind, B. Kasemo, and I. Zoric, “Localized surface plasmon resonances in aluminum nanodisks,” Nano Lett. 8(5), 1461–1471 (2008).
[Crossref]

Kechouane, M.

I. Lachebi, A. Fedala, T. Djenizian, T. Hadjersi, and M. Kechouane, “Morphological and optical properties of aluminum nanoparticles deposited by thermal evaporation on heated substrates,” Surf. Coat. Tech. 343, 160–165 (2018).
[Crossref]

King, N. S.

M. W. Knight, N. S. King, L. F. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref]

M. W. Knight, L. F. Liu, Y. M. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett. 12(11), 6000–6004 (2012).
[Crossref]

Knight, M. W.

M. W. Knight, N. S. King, L. F. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref]

M. W. Knight, L. F. Liu, Y. M. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett. 12(11), 6000–6004 (2012).
[Crossref]

Koh, C. S. L.

C. L. Lay, C. S. L. Koh, J. Wang, Y. H. Lee, R. Jiang, Y. Yang, and X. Y. Ling, “Aluminum nanostructures with strong visible-range SERS activity for versatile micropatterning of molecular security labels,” Nanoscale 10(2), 575–581 (2018).
[Crossref]

Krauter, C. M.

L. N. Zhou, C. Zhang, M. J. McClain, A. Manjavacas, C. M. Krauter, S. Tian, and F. Berg, “Aluminum nanocrystals as a plasmonic photocatalyst for hydrogen dissociation,” Nano Lett. 16(2), 1478–1484 (2016).
[Crossref]

Lachebi, I.

I. Lachebi, A. Fedala, T. Djenizian, T. Hadjersi, and M. Kechouane, “Morphological and optical properties of aluminum nanoparticles deposited by thermal evaporation on heated substrates,” Surf. Coat. Tech. 343, 160–165 (2018).
[Crossref]

Lay, C. L.

C. L. Lay, C. S. L. Koh, J. Wang, Y. H. Lee, R. Jiang, Y. Yang, and X. Y. Ling, “Aluminum nanostructures with strong visible-range SERS activity for versatile micropatterning of molecular security labels,” Nanoscale 10(2), 575–581 (2018).
[Crossref]

Lee, S. Y.

J. W. Jeong, M. M. Arnob, P. K. Min Baek, S. Y. Lee, W. C. Shih, and Y. S. Jung, “3D Cross-Point Plasmonic Nanoarchitectures Containing Dense and Regular Hot Spots for Surface-Enhanced Raman Spectroscopy Analysis,” Adv. Mater. 28(39), 8695–8704 (2016).
[Crossref]

Lee, Y. H.

C. L. Lay, C. S. L. Koh, J. Wang, Y. H. Lee, R. Jiang, Y. Yang, and X. Y. Ling, “Aluminum nanostructures with strong visible-range SERS activity for versatile micropatterning of molecular security labels,” Nanoscale 10(2), 575–581 (2018).
[Crossref]

Li, C. H.

Z. Li, M. H. Wang, Y. Jiao, A. H. Liu, S. Y. Wang, C. Zhang, C. Yang, Y. Y. Xu, C. H. Li, and B. Y. Man, “Different number of silver nanoparticles layers for surface enhanced raman spectroscopy analysis,” Sens. Actuators, B 255, 374–383 (2018).
[Crossref]

C. H. Li, Y. Jing, S. C. Xu, S. Z. Jiang, X. W. Xiu, C. S. Chen, A. H. Liu, T. F. Wu, B. Y. Man, and C. Zhang, “Constructing 3D and Flexible Plasmonic Structure for High-Performance SERS Application,” Adv. Mater. Technol. 3(11), 1800174 (2018).
[Crossref]

Z. Li, S. Z. Jiang, Y. Y. Huo, T. Y. Ning, A. H. Liu, C. Zhang, Y. He, M. H. Wang, and C. H. Li, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref]

Z. Li, S. Z. Jiang, Y. Y. Huo, M. Liu, C. Yang, C. Zhang, X. Y. Liu, Y. Q. Sheng, C. H. Li, and B. Y. Man, “Controlled-layer and large-area MoS2 films encapsulated Au nanoparticle hybrids for SERS,” Opt. Express 24(23), 26097–26108 (2016).
[Crossref]

Li, L.

L. Li, S. F. Lim, A. A. Puretzky, R. Riehn, and H. D. Hallen, “Near-field enhanced ultraviolet resonance Raman spectroscopy using aluminum bow-tie nano-antenna,” Appl. Phys. Lett. 101(11), 113116 (2012).
[Crossref]

Li, N.

Z. S. Wang, L. Feng, D. Y. Xiao, N. Li, Y. Li, D. F. Cao, Z. S. Shi, Z. C. Cui, and N. A. Lu, “A silver nanoislands on silica spheres platform: enriching trace amounts of analytes for ultrasensitive and reproducible SERS detection,” Nanoscale 9(43), 16749–16754 (2017).
[Crossref]

Li, Q. H.

Z. L. Yang, Q. H. Li, B. Ren, and Z. Q. Tian, “Tunable SERS from aluminium nanohole arrays in the ultraviolet region,” Chem. Commun. 47(13), 3909–3911 (2011).
[Crossref]

Li, X. H.

X. H. Li, X. G. Ren, Y. X. Zhang, W. C. H. Choy, and B. Q. Wei, “An all-copper plasmonic sandwich system obtained through directly depositing copper NPs on a CVD grown graphene/copper film and its application in SERS,” Nanoscale 7(26), 11291–11299 (2015).
[Crossref]

Li, X. M.

X. M. Li, M. H. Bi, L. Cui, Y. Z. Zhou, X. W. Du, S. Z. Qiao, and J. Yang, “3D Aluminum Hybrid Plasmonic Nanostructures with Large Areas of Dense Hot Spots and Long-Term Stability,” Adv. Funct. Mater. 27(10), 1605703 (2017).
[Crossref]

Li, X. Q.

F. Cheng, P. H. Su, J. Choi, S. Gwo, X. Q. Li, and C. K. Shih, “Epitaxial growth of atomically smooth aluminum on silicon and its intrinsic optical properties,” ACS Nano 10(11), 9852–9860 (2016).
[Crossref]

Li, Y.

T. Xue, W. Liang, Y. Li, Y. Sun, Y. Xiang, Y. Zhang, and B. N. Shivananju, “Ultrasensitive detection of miRNA with an antimonene-based surface plasmon resonance sensor,” Nat. Commun. 10(1), 28 (2019).
[Crossref]

Z. S. Wang, L. Feng, D. Y. Xiao, N. Li, Y. Li, D. F. Cao, Z. S. Shi, Z. C. Cui, and N. A. Lu, “A silver nanoislands on silica spheres platform: enriching trace amounts of analytes for ultrasensitive and reproducible SERS detection,” Nanoscale 9(43), 16749–16754 (2017).
[Crossref]

Li, Z.

Z. Li, M. H. Wang, Y. Jiao, A. H. Liu, S. Y. Wang, C. Zhang, C. Yang, Y. Y. Xu, C. H. Li, and B. Y. Man, “Different number of silver nanoparticles layers for surface enhanced raman spectroscopy analysis,” Sens. Actuators, B 255, 374–383 (2018).
[Crossref]

Z. Li, S. Z. Jiang, Y. Y. Huo, T. Y. Ning, A. H. Liu, C. Zhang, Y. He, M. H. Wang, and C. H. Li, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref]

Z. Xie, C. Xing, W. Huang, T. Fan, Z. Li, J. Zhao, and B. Dong, “Ultrathin 2D Nonlayered Tellurium Nanosheets: Facile Liquid-Phase Exfoliation, Characterization, and Photoresponse with High Performance and Enhanced Stability,” Adv. Funct. Mater. 28(16), 1705833 (2018).
[Crossref]

Z. Li, S. Z. Jiang, Y. Y. Huo, M. Liu, C. Yang, C. Zhang, X. Y. Liu, Y. Q. Sheng, C. H. Li, and B. Y. Man, “Controlled-layer and large-area MoS2 films encapsulated Au nanoparticle hybrids for SERS,” Opt. Express 24(23), 26097–26108 (2016).
[Crossref]

C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref]

Liang, W.

T. Xue, W. Liang, Y. Li, Y. Sun, Y. Xiang, Y. Zhang, and B. N. Shivananju, “Ultrasensitive detection of miRNA with an antimonene-based surface plasmon resonance sensor,” Nat. Commun. 10(1), 28 (2019).
[Crossref]

Lim, S. F.

L. Li, S. F. Lim, A. A. Puretzky, R. Riehn, and H. D. Hallen, “Near-field enhanced ultraviolet resonance Raman spectroscopy using aluminum bow-tie nano-antenna,” Appl. Phys. Lett. 101(11), 113116 (2012).
[Crossref]

Ling, X. Y.

C. L. Lay, C. S. L. Koh, J. Wang, Y. H. Lee, R. Jiang, Y. Yang, and X. Y. Ling, “Aluminum nanostructures with strong visible-range SERS activity for versatile micropatterning of molecular security labels,” Nanoscale 10(2), 575–581 (2018).
[Crossref]

Linic, S.

S. Linic, U. Aslam, C. Boerigter, and M. Morabito, “Photochemical transformations on plasmonic metal nanoparticles,” Nat. Mater. 14(6), 567–576 (2015).
[Crossref]

S. Linic, P. Christopher, and D. B. Ingram, “Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy,” Nat. Mater. 10(12), 911–921 (2011).
[Crossref]

Liu, A. H.

Z. Li, S. Z. Jiang, Y. Y. Huo, T. Y. Ning, A. H. Liu, C. Zhang, Y. He, M. H. Wang, and C. H. Li, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref]

C. H. Li, Y. Jing, S. C. Xu, S. Z. Jiang, X. W. Xiu, C. S. Chen, A. H. Liu, T. F. Wu, B. Y. Man, and C. Zhang, “Constructing 3D and Flexible Plasmonic Structure for High-Performance SERS Application,” Adv. Mater. Technol. 3(11), 1800174 (2018).
[Crossref]

Z. Li, M. H. Wang, Y. Jiao, A. H. Liu, S. Y. Wang, C. Zhang, C. Yang, Y. Y. Xu, C. H. Li, and B. Y. Man, “Different number of silver nanoparticles layers for surface enhanced raman spectroscopy analysis,” Sens. Actuators, B 255, 374–383 (2018).
[Crossref]

C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref]

Liu, L. F.

M. W. Knight, N. S. King, L. F. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref]

M. W. Knight, L. F. Liu, Y. M. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett. 12(11), 6000–6004 (2012).
[Crossref]

Liu, M.

Liu, X.

S. Su, C. Zhang, L. Yuwen, J. Chao, X. Zuo, X. Liu, and L. Wang, “Creating SERS hot spots on MoS2 nanosheets with in situ grown gold nanoparticles,” ACS Appl. Mater. Interfaces 6(21), 18735–18741 (2014).
[Crossref]

Liu, X. Y.

Löffler, J. F.

S. K. Jha, Z. Ahmed, M. Agio, Y. Ekinci, and J. F. Löffler, “Deep-UV surface-enhanced resonance Raman scattering of adenine on aluminum nanoparticle arrays,” J. Am. Chem. Soc. 134(4), 1966–1969 (2012).
[Crossref]

Y. Ekinci, H. H. Solak, and J. F. Löffler, “Plasmon resonances of aluminum nanoparticles and nanorods,” J. Appl. Phys. 104(8), 083107 (2008).
[Crossref]

Lu, N. A.

Z. S. Wang, L. Feng, D. Y. Xiao, N. Li, Y. Li, D. F. Cao, Z. S. Shi, Z. C. Cui, and N. A. Lu, “A silver nanoislands on silica spheres platform: enriching trace amounts of analytes for ultrasensitive and reproducible SERS detection,” Nanoscale 9(43), 16749–16754 (2017).
[Crossref]

Ma, C.

C. Ma, M. J. Trujillo, and J. P. Camden, “Nanoporous silver film fabricated by oxygen plasma: A facile approach for SERS substrates,” ACS Appl. Mater. Interfaces 8(36), 23978–23984 (2016).
[Crossref]

Mahajan, S.

D. O. Sigle, E. Perkins, J. J. Baumberg, and S. Mahajan, “Reproducible deep-UV SERRS on aluminum nanovoids,” J. Phys. Chem. Lett. 4(9), 1449–1452 (2013).
[Crossref]

Man, B. Y.

Z. Li, M. H. Wang, Y. Jiao, A. H. Liu, S. Y. Wang, C. Zhang, C. Yang, Y. Y. Xu, C. H. Li, and B. Y. Man, “Different number of silver nanoparticles layers for surface enhanced raman spectroscopy analysis,” Sens. Actuators, B 255, 374–383 (2018).
[Crossref]

C. H. Li, Y. Jing, S. C. Xu, S. Z. Jiang, X. W. Xiu, C. S. Chen, A. H. Liu, T. F. Wu, B. Y. Man, and C. Zhang, “Constructing 3D and Flexible Plasmonic Structure for High-Performance SERS Application,” Adv. Mater. Technol. 3(11), 1800174 (2018).
[Crossref]

Z. Li, S. Z. Jiang, Y. Y. Huo, M. Liu, C. Yang, C. Zhang, X. Y. Liu, Y. Q. Sheng, C. H. Li, and B. Y. Man, “Controlled-layer and large-area MoS2 films encapsulated Au nanoparticle hybrids for SERS,” Opt. Express 24(23), 26097–26108 (2016).
[Crossref]

C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref]

Manjavacas, A.

L. N. Zhou, C. Zhang, M. J. McClain, A. Manjavacas, C. M. Krauter, S. Tian, and F. Berg, “Aluminum nanocrystals as a plasmonic photocatalyst for hydrogen dissociation,” Nano Lett. 16(2), 1478–1484 (2016).
[Crossref]

A. Sobhani, A. Manjavacas, Y. Cao, M. J. McClain, F. J. G. Abajo, P. Nordlander, and N. J. Halas, “Pronounced linewidth narrowing of an aluminum nanoparticle plasmon resonance by interaction with an aluminum metallic film,” Nano Lett. 15(10), 6946–6951 (2015).
[Crossref]

McClain, M. J.

H. Robatjazi, H. Q. Zhao, D. F. Swearer, N. J. Hogan, L. N. Zhou, A. Alabastri, M. J. McClain, P. Nordlander, and N. J. Halas, “Plasmon-induced selective carbon dioxide conversion on earth-abundant aluminum-cuprous oxide antenna-reactor nanoparticles,” Nat. Commun. 8(1), 27 (2017).
[Crossref]

S. Tian, O. Neumann, M. J. McClain, X. Yang, L. N. Zhou, C. Zhang, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals: a sustainable substrate for quantitative SERS-based DNA detection,” Nano Lett. 17(8), 5071–5077 (2017).
[Crossref]

L. N. Zhou, C. Zhang, M. J. McClain, A. Manjavacas, C. M. Krauter, S. Tian, and F. Berg, “Aluminum nanocrystals as a plasmonic photocatalyst for hydrogen dissociation,” Nano Lett. 16(2), 1478–1484 (2016).
[Crossref]

A. Sobhani, A. Manjavacas, Y. Cao, M. J. McClain, F. J. G. Abajo, P. Nordlander, and N. J. Halas, “Pronounced linewidth narrowing of an aluminum nanoparticle plasmon resonance by interaction with an aluminum metallic film,” Nano Lett. 15(10), 6946–6951 (2015).
[Crossref]

McPeak, K. M.

K. M. McPeak, C. D. V. Engers, S. Bianchi, A. Rossinelli, L. V. Poulikakos, L. Bernard, and S. Herrmann, “Ultraviolet Plasmonic Chirality from Colloidal Aluminum Nanoparticles Exhibiting Charge-Selective Protein Detection,” Adv. Mater. 27(40), 6244–6250 (2015).
[Crossref]

Min Baek, P. K.

J. W. Jeong, M. M. Arnob, P. K. Min Baek, S. Y. Lee, W. C. Shih, and Y. S. Jung, “3D Cross-Point Plasmonic Nanoarchitectures Containing Dense and Regular Hot Spots for Surface-Enhanced Raman Spectroscopy Analysis,” Adv. Mater. 28(39), 8695–8704 (2016).
[Crossref]

Morabito, M.

S. Linic, U. Aslam, C. Boerigter, and M. Morabito, “Photochemical transformations on plasmonic metal nanoparticles,” Nat. Mater. 14(6), 567–576 (2015).
[Crossref]

Mukherjee, S.

M. W. Knight, L. F. Liu, Y. M. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett. 12(11), 6000–6004 (2012).
[Crossref]

Neumann, O.

S. Tian, O. Neumann, M. J. McClain, X. Yang, L. N. Zhou, C. Zhang, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals: a sustainable substrate for quantitative SERS-based DNA detection,” Nano Lett. 17(8), 5071–5077 (2017).
[Crossref]

Ning, T. Y.

Z. Li, S. Z. Jiang, Y. Y. Huo, T. Y. Ning, A. H. Liu, C. Zhang, Y. He, M. H. Wang, and C. H. Li, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref]

Nordlander, P.

H. Robatjazi, H. Q. Zhao, D. F. Swearer, N. J. Hogan, L. N. Zhou, A. Alabastri, M. J. McClain, P. Nordlander, and N. J. Halas, “Plasmon-induced selective carbon dioxide conversion on earth-abundant aluminum-cuprous oxide antenna-reactor nanoparticles,” Nat. Commun. 8(1), 27 (2017).
[Crossref]

S. Tian, O. Neumann, M. J. McClain, X. Yang, L. N. Zhou, C. Zhang, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals: a sustainable substrate for quantitative SERS-based DNA detection,” Nano Lett. 17(8), 5071–5077 (2017).
[Crossref]

A. Sobhani, A. Manjavacas, Y. Cao, M. J. McClain, F. J. G. Abajo, P. Nordlander, and N. J. Halas, “Pronounced linewidth narrowing of an aluminum nanoparticle plasmon resonance by interaction with an aluminum metallic film,” Nano Lett. 15(10), 6946–6951 (2015).
[Crossref]

M. W. Knight, N. S. King, L. F. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref]

M. W. Knight, L. F. Liu, Y. M. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett. 12(11), 6000–6004 (2012).
[Crossref]

Orian, L.

R. Pilot, R. Signorini, C. Durante, L. Orian, M. Bhamidipati, and L. Fabris, “A review on surface-enhanced Raman scattering,” Biosensors 9(2), 57 (2019).
[Crossref]

Palik, E. D.

E. D. Palik, “Handbook of optical constants of solids,” Academic Press, 3 (1998).

Perkins, E.

D. O. Sigle, E. Perkins, J. J. Baumberg, and S. Mahajan, “Reproducible deep-UV SERRS on aluminum nanovoids,” J. Phys. Chem. Lett. 4(9), 1449–1452 (2013).
[Crossref]

Pilot, R.

R. Pilot, R. Signorini, C. Durante, L. Orian, M. Bhamidipati, and L. Fabris, “A review on surface-enhanced Raman scattering,” Biosensors 9(2), 57 (2019).
[Crossref]

Popp, J.

T. Dörfer, M. Schmitt, and J. Popp, “Deep-UV surface-enhanced Raman scattering,” J. Raman Spectrosc. 38(11), 1379–1382 (2007).
[Crossref]

Poulikakos, L. V.

K. M. McPeak, C. D. V. Engers, S. Bianchi, A. Rossinelli, L. V. Poulikakos, L. Bernard, and S. Herrmann, “Ultraviolet Plasmonic Chirality from Colloidal Aluminum Nanoparticles Exhibiting Charge-Selective Protein Detection,” Adv. Mater. 27(40), 6244–6250 (2015).
[Crossref]

Punihaole, D.

B. Sharma, M. F. Cardinal, M. B. Ross, A. B. Zrimsek, S. V. Bykov, D. Punihaole, S. A. Asher, G. C. Schatz, and R. P. V. Duyne, “Aluminum film-over-nanosphere substrates for deep-uv surface-enhanced resonance raman spectroscopy,” Nano Lett. 16(12), 7968–7973 (2016).
[Crossref]

Puretzky, A. A.

L. Li, S. F. Lim, A. A. Puretzky, R. Riehn, and H. D. Hallen, “Near-field enhanced ultraviolet resonance Raman spectroscopy using aluminum bow-tie nano-antenna,” Appl. Phys. Lett. 101(11), 113116 (2012).
[Crossref]

Qiao, S. Z.

X. M. Li, M. H. Bi, L. Cui, Y. Z. Zhou, X. W. Du, S. Z. Qiao, and J. Yang, “3D Aluminum Hybrid Plasmonic Nanostructures with Large Areas of Dense Hot Spots and Long-Term Stability,” Adv. Funct. Mater. 27(10), 1605703 (2017).
[Crossref]

Ren, B.

Z. L. Yang, Q. H. Li, B. Ren, and Z. Q. Tian, “Tunable SERS from aluminium nanohole arrays in the ultraviolet region,” Chem. Commun. 47(13), 3909–3911 (2011).
[Crossref]

Ren, X. G.

X. H. Li, X. G. Ren, Y. X. Zhang, W. C. H. Choy, and B. Q. Wei, “An all-copper plasmonic sandwich system obtained through directly depositing copper NPs on a CVD grown graphene/copper film and its application in SERS,” Nanoscale 7(26), 11291–11299 (2015).
[Crossref]

Riehn, R.

L. Li, S. F. Lim, A. A. Puretzky, R. Riehn, and H. D. Hallen, “Near-field enhanced ultraviolet resonance Raman spectroscopy using aluminum bow-tie nano-antenna,” Appl. Phys. Lett. 101(11), 113116 (2012).
[Crossref]

Robatjazi, H.

H. Robatjazi, H. Q. Zhao, D. F. Swearer, N. J. Hogan, L. N. Zhou, A. Alabastri, M. J. McClain, P. Nordlander, and N. J. Halas, “Plasmon-induced selective carbon dioxide conversion on earth-abundant aluminum-cuprous oxide antenna-reactor nanoparticles,” Nat. Commun. 8(1), 27 (2017).
[Crossref]

Ross, M. B.

B. Sharma, M. F. Cardinal, M. B. Ross, A. B. Zrimsek, S. V. Bykov, D. Punihaole, S. A. Asher, G. C. Schatz, and R. P. V. Duyne, “Aluminum film-over-nanosphere substrates for deep-uv surface-enhanced resonance raman spectroscopy,” Nano Lett. 16(12), 7968–7973 (2016).
[Crossref]

Rossinelli, A.

K. M. McPeak, C. D. V. Engers, S. Bianchi, A. Rossinelli, L. V. Poulikakos, L. Bernard, and S. Herrmann, “Ultraviolet Plasmonic Chirality from Colloidal Aluminum Nanoparticles Exhibiting Charge-Selective Protein Detection,” Adv. Mater. 27(40), 6244–6250 (2015).
[Crossref]

Schatz, G. C.

B. Sharma, M. F. Cardinal, M. B. Ross, A. B. Zrimsek, S. V. Bykov, D. Punihaole, S. A. Asher, G. C. Schatz, and R. P. V. Duyne, “Aluminum film-over-nanosphere substrates for deep-uv surface-enhanced resonance raman spectroscopy,” Nano Lett. 16(12), 7968–7973 (2016).
[Crossref]

Schmitt, M.

T. Dörfer, M. Schmitt, and J. Popp, “Deep-UV surface-enhanced Raman scattering,” J. Raman Spectrosc. 38(11), 1379–1382 (2007).
[Crossref]

Schwind, M.

L. Christoph, M. Schwind, B. Kasemo, and I. Zoric, “Localized surface plasmon resonances in aluminum nanodisks,” Nano Lett. 8(5), 1461–1471 (2008).
[Crossref]

Sharma, B.

B. Sharma, M. F. Cardinal, M. B. Ross, A. B. Zrimsek, S. V. Bykov, D. Punihaole, S. A. Asher, G. C. Schatz, and R. P. V. Duyne, “Aluminum film-over-nanosphere substrates for deep-uv surface-enhanced resonance raman spectroscopy,” Nano Lett. 16(12), 7968–7973 (2016).
[Crossref]

Sheng, Y. Q.

Shi, Z. S.

Z. S. Wang, L. Feng, D. Y. Xiao, N. Li, Y. Li, D. F. Cao, Z. S. Shi, Z. C. Cui, and N. A. Lu, “A silver nanoislands on silica spheres platform: enriching trace amounts of analytes for ultrasensitive and reproducible SERS detection,” Nanoscale 9(43), 16749–16754 (2017).
[Crossref]

Shih, C. K.

F. Cheng, P. H. Su, J. Choi, S. Gwo, X. Q. Li, and C. K. Shih, “Epitaxial growth of atomically smooth aluminum on silicon and its intrinsic optical properties,” ACS Nano 10(11), 9852–9860 (2016).
[Crossref]

Shih, W. C.

J. W. Jeong, M. M. Arnob, P. K. Min Baek, S. Y. Lee, W. C. Shih, and Y. S. Jung, “3D Cross-Point Plasmonic Nanoarchitectures Containing Dense and Regular Hot Spots for Surface-Enhanced Raman Spectroscopy Analysis,” Adv. Mater. 28(39), 8695–8704 (2016).
[Crossref]

Shivananju, B. N.

T. Xue, W. Liang, Y. Li, Y. Sun, Y. Xiang, Y. Zhang, and B. N. Shivananju, “Ultrasensitive detection of miRNA with an antimonene-based surface plasmon resonance sensor,” Nat. Commun. 10(1), 28 (2019).
[Crossref]

Sigle, D. O.

T. Ding, D. O. Sigle, L. O. Herrmann, D. Wolverson, and J. J. Baumberg, “Nanoimprint lithography of Al nanovoids for deep-UV SERS,” ACS Appl. Mater. Interfaces 6(20), 17358–17363 (2014).
[Crossref]

D. O. Sigle, E. Perkins, J. J. Baumberg, and S. Mahajan, “Reproducible deep-UV SERRS on aluminum nanovoids,” J. Phys. Chem. Lett. 4(9), 1449–1452 (2013).
[Crossref]

Signorini, R.

R. Pilot, R. Signorini, C. Durante, L. Orian, M. Bhamidipati, and L. Fabris, “A review on surface-enhanced Raman scattering,” Biosensors 9(2), 57 (2019).
[Crossref]

Sobhani, A.

A. Sobhani, A. Manjavacas, Y. Cao, M. J. McClain, F. J. G. Abajo, P. Nordlander, and N. J. Halas, “Pronounced linewidth narrowing of an aluminum nanoparticle plasmon resonance by interaction with an aluminum metallic film,” Nano Lett. 15(10), 6946–6951 (2015).
[Crossref]

Solak, H. H.

Y. Ekinci, H. H. Solak, and J. F. Löffler, “Plasmon resonances of aluminum nanoparticles and nanorods,” J. Appl. Phys. 104(8), 083107 (2008).
[Crossref]

Stogin, B. B.

S. K. Yang, X. M. Dai, B. B. Stogin, and T. S. Wong, “Ultrasensitive surface-enhanced Raman scattering detection in common fluids,” Proc. Natl. Acad. Sci. U. S. A. 113(2), 268–273 (2016).
[Crossref]

Su, P. H.

F. Cheng, P. H. Su, J. Choi, S. Gwo, X. Q. Li, and C. K. Shih, “Epitaxial growth of atomically smooth aluminum on silicon and its intrinsic optical properties,” ACS Nano 10(11), 9852–9860 (2016).
[Crossref]

Su, S.

S. Su, C. Zhang, L. Yuwen, J. Chao, X. Zuo, X. Liu, and L. Wang, “Creating SERS hot spots on MoS2 nanosheets with in situ grown gold nanoparticles,” ACS Appl. Mater. Interfaces 6(21), 18735–18741 (2014).
[Crossref]

Sun, Y.

T. Xue, W. Liang, Y. Li, Y. Sun, Y. Xiang, Y. Zhang, and B. N. Shivananju, “Ultrasensitive detection of miRNA with an antimonene-based surface plasmon resonance sensor,” Nat. Commun. 10(1), 28 (2019).
[Crossref]

Sun, Z. C.

Swearer, D. F.

H. Robatjazi, H. Q. Zhao, D. F. Swearer, N. J. Hogan, L. N. Zhou, A. Alabastri, M. J. McClain, P. Nordlander, and N. J. Halas, “Plasmon-induced selective carbon dioxide conversion on earth-abundant aluminum-cuprous oxide antenna-reactor nanoparticles,” Nat. Commun. 8(1), 27 (2017).
[Crossref]

Tian, S.

S. Tian, O. Neumann, M. J. McClain, X. Yang, L. N. Zhou, C. Zhang, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals: a sustainable substrate for quantitative SERS-based DNA detection,” Nano Lett. 17(8), 5071–5077 (2017).
[Crossref]

L. N. Zhou, C. Zhang, M. J. McClain, A. Manjavacas, C. M. Krauter, S. Tian, and F. Berg, “Aluminum nanocrystals as a plasmonic photocatalyst for hydrogen dissociation,” Nano Lett. 16(2), 1478–1484 (2016).
[Crossref]

Tian, Z. Q.

Z. L. Yang, Q. H. Li, B. Ren, and Z. Q. Tian, “Tunable SERS from aluminium nanohole arrays in the ultraviolet region,” Chem. Commun. 47(13), 3909–3911 (2011).
[Crossref]

Trujillo, M. J.

C. Ma, M. J. Trujillo, and J. P. Camden, “Nanoporous silver film fabricated by oxygen plasma: A facile approach for SERS substrates,” ACS Appl. Mater. Interfaces 8(36), 23978–23984 (2016).
[Crossref]

Wang, J.

C. L. Lay, C. S. L. Koh, J. Wang, Y. H. Lee, R. Jiang, Y. Yang, and X. Y. Ling, “Aluminum nanostructures with strong visible-range SERS activity for versatile micropatterning of molecular security labels,” Nanoscale 10(2), 575–581 (2018).
[Crossref]

Wang, L.

S. Su, C. Zhang, L. Yuwen, J. Chao, X. Zuo, X. Liu, and L. Wang, “Creating SERS hot spots on MoS2 nanosheets with in situ grown gold nanoparticles,” ACS Appl. Mater. Interfaces 6(21), 18735–18741 (2014).
[Crossref]

Wang, M. H.

Z. Li, M. H. Wang, Y. Jiao, A. H. Liu, S. Y. Wang, C. Zhang, C. Yang, Y. Y. Xu, C. H. Li, and B. Y. Man, “Different number of silver nanoparticles layers for surface enhanced raman spectroscopy analysis,” Sens. Actuators, B 255, 374–383 (2018).
[Crossref]

Z. Li, S. Z. Jiang, Y. Y. Huo, T. Y. Ning, A. H. Liu, C. Zhang, Y. He, M. H. Wang, and C. H. Li, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref]

Wang, S. Y.

Z. Li, M. H. Wang, Y. Jiao, A. H. Liu, S. Y. Wang, C. Zhang, C. Yang, Y. Y. Xu, C. H. Li, and B. Y. Man, “Different number of silver nanoparticles layers for surface enhanced raman spectroscopy analysis,” Sens. Actuators, B 255, 374–383 (2018).
[Crossref]

Wang, Y. M.

M. W. Knight, L. F. Liu, Y. M. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett. 12(11), 6000–6004 (2012).
[Crossref]

Wang, Z. S.

Z. S. Wang, L. Feng, D. Y. Xiao, N. Li, Y. Li, D. F. Cao, Z. S. Shi, Z. C. Cui, and N. A. Lu, “A silver nanoislands on silica spheres platform: enriching trace amounts of analytes for ultrasensitive and reproducible SERS detection,” Nanoscale 9(43), 16749–16754 (2017).
[Crossref]

Wei, B. Q.

X. H. Li, X. G. Ren, Y. X. Zhang, W. C. H. Choy, and B. Q. Wei, “An all-copper plasmonic sandwich system obtained through directly depositing copper NPs on a CVD grown graphene/copper film and its application in SERS,” Nanoscale 7(26), 11291–11299 (2015).
[Crossref]

Wolverson, D.

T. Ding, D. O. Sigle, L. O. Herrmann, D. Wolverson, and J. J. Baumberg, “Nanoimprint lithography of Al nanovoids for deep-UV SERS,” ACS Appl. Mater. Interfaces 6(20), 17358–17363 (2014).
[Crossref]

Wong, T. S.

S. K. Yang, X. M. Dai, B. B. Stogin, and T. S. Wong, “Ultrasensitive surface-enhanced Raman scattering detection in common fluids,” Proc. Natl. Acad. Sci. U. S. A. 113(2), 268–273 (2016).
[Crossref]

Wu, T. F.

C. H. Li, Y. Jing, S. C. Xu, S. Z. Jiang, X. W. Xiu, C. S. Chen, A. H. Liu, T. F. Wu, B. Y. Man, and C. Zhang, “Constructing 3D and Flexible Plasmonic Structure for High-Performance SERS Application,” Adv. Mater. Technol. 3(11), 1800174 (2018).
[Crossref]

Xiang, Y.

T. Xue, W. Liang, Y. Li, Y. Sun, Y. Xiang, Y. Zhang, and B. N. Shivananju, “Ultrasensitive detection of miRNA with an antimonene-based surface plasmon resonance sensor,” Nat. Commun. 10(1), 28 (2019).
[Crossref]

Xiao, D. Y.

Z. S. Wang, L. Feng, D. Y. Xiao, N. Li, Y. Li, D. F. Cao, Z. S. Shi, Z. C. Cui, and N. A. Lu, “A silver nanoislands on silica spheres platform: enriching trace amounts of analytes for ultrasensitive and reproducible SERS detection,” Nanoscale 9(43), 16749–16754 (2017).
[Crossref]

Xie, Z.

Z. Xie, C. Xing, W. Huang, T. Fan, Z. Li, J. Zhao, and B. Dong, “Ultrathin 2D Nonlayered Tellurium Nanosheets: Facile Liquid-Phase Exfoliation, Characterization, and Photoresponse with High Performance and Enhanced Stability,” Adv. Funct. Mater. 28(16), 1705833 (2018).
[Crossref]

Xing, C.

Z. Xie, C. Xing, W. Huang, T. Fan, Z. Li, J. Zhao, and B. Dong, “Ultrathin 2D Nonlayered Tellurium Nanosheets: Facile Liquid-Phase Exfoliation, Characterization, and Photoresponse with High Performance and Enhanced Stability,” Adv. Funct. Mater. 28(16), 1705833 (2018).
[Crossref]

Xiu, X. W.

C. H. Li, Y. Jing, S. C. Xu, S. Z. Jiang, X. W. Xiu, C. S. Chen, A. H. Liu, T. F. Wu, B. Y. Man, and C. Zhang, “Constructing 3D and Flexible Plasmonic Structure for High-Performance SERS Application,” Adv. Mater. Technol. 3(11), 1800174 (2018).
[Crossref]

Xu, S. C.

C. H. Li, Y. Jing, S. C. Xu, S. Z. Jiang, X. W. Xiu, C. S. Chen, A. H. Liu, T. F. Wu, B. Y. Man, and C. Zhang, “Constructing 3D and Flexible Plasmonic Structure for High-Performance SERS Application,” Adv. Mater. Technol. 3(11), 1800174 (2018).
[Crossref]

C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref]

Xu, Y. Y.

Z. Li, M. H. Wang, Y. Jiao, A. H. Liu, S. Y. Wang, C. Zhang, C. Yang, Y. Y. Xu, C. H. Li, and B. Y. Man, “Different number of silver nanoparticles layers for surface enhanced raman spectroscopy analysis,” Sens. Actuators, B 255, 374–383 (2018).
[Crossref]

C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref]

Xue, T.

T. Xue, W. Liang, Y. Li, Y. Sun, Y. Xiang, Y. Zhang, and B. N. Shivananju, “Ultrasensitive detection of miRNA with an antimonene-based surface plasmon resonance sensor,” Nat. Commun. 10(1), 28 (2019).
[Crossref]

Yang, C.

Z. Li, M. H. Wang, Y. Jiao, A. H. Liu, S. Y. Wang, C. Zhang, C. Yang, Y. Y. Xu, C. H. Li, and B. Y. Man, “Different number of silver nanoparticles layers for surface enhanced raman spectroscopy analysis,” Sens. Actuators, B 255, 374–383 (2018).
[Crossref]

Z. Li, S. Z. Jiang, Y. Y. Huo, M. Liu, C. Yang, C. Zhang, X. Y. Liu, Y. Q. Sheng, C. H. Li, and B. Y. Man, “Controlled-layer and large-area MoS2 films encapsulated Au nanoparticle hybrids for SERS,” Opt. Express 24(23), 26097–26108 (2016).
[Crossref]

Yang, J.

X. M. Li, M. H. Bi, L. Cui, Y. Z. Zhou, X. W. Du, S. Z. Qiao, and J. Yang, “3D Aluminum Hybrid Plasmonic Nanostructures with Large Areas of Dense Hot Spots and Long-Term Stability,” Adv. Funct. Mater. 27(10), 1605703 (2017).
[Crossref]

Yang, S. K.

S. K. Yang, X. M. Dai, B. B. Stogin, and T. S. Wong, “Ultrasensitive surface-enhanced Raman scattering detection in common fluids,” Proc. Natl. Acad. Sci. U. S. A. 113(2), 268–273 (2016).
[Crossref]

Yang, X.

S. Tian, O. Neumann, M. J. McClain, X. Yang, L. N. Zhou, C. Zhang, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals: a sustainable substrate for quantitative SERS-based DNA detection,” Nano Lett. 17(8), 5071–5077 (2017).
[Crossref]

Yang, Y.

C. L. Lay, C. S. L. Koh, J. Wang, Y. H. Lee, R. Jiang, Y. Yang, and X. Y. Ling, “Aluminum nanostructures with strong visible-range SERS activity for versatile micropatterning of molecular security labels,” Nanoscale 10(2), 575–581 (2018).
[Crossref]

Yang, Z. L.

Z. L. Yang, Q. H. Li, B. Ren, and Z. Q. Tian, “Tunable SERS from aluminium nanohole arrays in the ultraviolet region,” Chem. Commun. 47(13), 3909–3911 (2011).
[Crossref]

Yuwen, L.

S. Su, C. Zhang, L. Yuwen, J. Chao, X. Zuo, X. Liu, and L. Wang, “Creating SERS hot spots on MoS2 nanosheets with in situ grown gold nanoparticles,” ACS Appl. Mater. Interfaces 6(21), 18735–18741 (2014).
[Crossref]

Zhang, C.

Z. Li, M. H. Wang, Y. Jiao, A. H. Liu, S. Y. Wang, C. Zhang, C. Yang, Y. Y. Xu, C. H. Li, and B. Y. Man, “Different number of silver nanoparticles layers for surface enhanced raman spectroscopy analysis,” Sens. Actuators, B 255, 374–383 (2018).
[Crossref]

C. H. Li, Y. Jing, S. C. Xu, S. Z. Jiang, X. W. Xiu, C. S. Chen, A. H. Liu, T. F. Wu, B. Y. Man, and C. Zhang, “Constructing 3D and Flexible Plasmonic Structure for High-Performance SERS Application,” Adv. Mater. Technol. 3(11), 1800174 (2018).
[Crossref]

Z. Li, S. Z. Jiang, Y. Y. Huo, T. Y. Ning, A. H. Liu, C. Zhang, Y. He, M. H. Wang, and C. H. Li, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref]

S. Tian, O. Neumann, M. J. McClain, X. Yang, L. N. Zhou, C. Zhang, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals: a sustainable substrate for quantitative SERS-based DNA detection,” Nano Lett. 17(8), 5071–5077 (2017).
[Crossref]

L. N. Zhou, C. Zhang, M. J. McClain, A. Manjavacas, C. M. Krauter, S. Tian, and F. Berg, “Aluminum nanocrystals as a plasmonic photocatalyst for hydrogen dissociation,” Nano Lett. 16(2), 1478–1484 (2016).
[Crossref]

Z. Li, S. Z. Jiang, Y. Y. Huo, M. Liu, C. Yang, C. Zhang, X. Y. Liu, Y. Q. Sheng, C. H. Li, and B. Y. Man, “Controlled-layer and large-area MoS2 films encapsulated Au nanoparticle hybrids for SERS,” Opt. Express 24(23), 26097–26108 (2016).
[Crossref]

C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref]

S. Su, C. Zhang, L. Yuwen, J. Chao, X. Zuo, X. Liu, and L. Wang, “Creating SERS hot spots on MoS2 nanosheets with in situ grown gold nanoparticles,” ACS Appl. Mater. Interfaces 6(21), 18735–18741 (2014).
[Crossref]

Zhang, Y.

T. Xue, W. Liang, Y. Li, Y. Sun, Y. Xiang, Y. Zhang, and B. N. Shivananju, “Ultrasensitive detection of miRNA with an antimonene-based surface plasmon resonance sensor,” Nat. Commun. 10(1), 28 (2019).
[Crossref]

Zhang, Y. X.

X. H. Li, X. G. Ren, Y. X. Zhang, W. C. H. Choy, and B. Q. Wei, “An all-copper plasmonic sandwich system obtained through directly depositing copper NPs on a CVD grown graphene/copper film and its application in SERS,” Nanoscale 7(26), 11291–11299 (2015).
[Crossref]

Zhao, H. Q.

H. Robatjazi, H. Q. Zhao, D. F. Swearer, N. J. Hogan, L. N. Zhou, A. Alabastri, M. J. McClain, P. Nordlander, and N. J. Halas, “Plasmon-induced selective carbon dioxide conversion on earth-abundant aluminum-cuprous oxide antenna-reactor nanoparticles,” Nat. Commun. 8(1), 27 (2017).
[Crossref]

Zhao, J.

Z. Xie, C. Xing, W. Huang, T. Fan, Z. Li, J. Zhao, and B. Dong, “Ultrathin 2D Nonlayered Tellurium Nanosheets: Facile Liquid-Phase Exfoliation, Characterization, and Photoresponse with High Performance and Enhanced Stability,” Adv. Funct. Mater. 28(16), 1705833 (2018).
[Crossref]

Zhou, L. N.

S. Tian, O. Neumann, M. J. McClain, X. Yang, L. N. Zhou, C. Zhang, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals: a sustainable substrate for quantitative SERS-based DNA detection,” Nano Lett. 17(8), 5071–5077 (2017).
[Crossref]

H. Robatjazi, H. Q. Zhao, D. F. Swearer, N. J. Hogan, L. N. Zhou, A. Alabastri, M. J. McClain, P. Nordlander, and N. J. Halas, “Plasmon-induced selective carbon dioxide conversion on earth-abundant aluminum-cuprous oxide antenna-reactor nanoparticles,” Nat. Commun. 8(1), 27 (2017).
[Crossref]

L. N. Zhou, C. Zhang, M. J. McClain, A. Manjavacas, C. M. Krauter, S. Tian, and F. Berg, “Aluminum nanocrystals as a plasmonic photocatalyst for hydrogen dissociation,” Nano Lett. 16(2), 1478–1484 (2016).
[Crossref]

Zhou, Y. Z.

X. M. Li, M. H. Bi, L. Cui, Y. Z. Zhou, X. W. Du, S. Z. Qiao, and J. Yang, “3D Aluminum Hybrid Plasmonic Nanostructures with Large Areas of Dense Hot Spots and Long-Term Stability,” Adv. Funct. Mater. 27(10), 1605703 (2017).
[Crossref]

Zoric, I.

L. Christoph, M. Schwind, B. Kasemo, and I. Zoric, “Localized surface plasmon resonances in aluminum nanodisks,” Nano Lett. 8(5), 1461–1471 (2008).
[Crossref]

Zrimsek, A. B.

B. Sharma, M. F. Cardinal, M. B. Ross, A. B. Zrimsek, S. V. Bykov, D. Punihaole, S. A. Asher, G. C. Schatz, and R. P. V. Duyne, “Aluminum film-over-nanosphere substrates for deep-uv surface-enhanced resonance raman spectroscopy,” Nano Lett. 16(12), 7968–7973 (2016).
[Crossref]

Zuo, X.

S. Su, C. Zhang, L. Yuwen, J. Chao, X. Zuo, X. Liu, and L. Wang, “Creating SERS hot spots on MoS2 nanosheets with in situ grown gold nanoparticles,” ACS Appl. Mater. Interfaces 6(21), 18735–18741 (2014).
[Crossref]

ACS Appl. Mater. Interfaces (3)

T. Ding, D. O. Sigle, L. O. Herrmann, D. Wolverson, and J. J. Baumberg, “Nanoimprint lithography of Al nanovoids for deep-UV SERS,” ACS Appl. Mater. Interfaces 6(20), 17358–17363 (2014).
[Crossref]

C. Ma, M. J. Trujillo, and J. P. Camden, “Nanoporous silver film fabricated by oxygen plasma: A facile approach for SERS substrates,” ACS Appl. Mater. Interfaces 8(36), 23978–23984 (2016).
[Crossref]

S. Su, C. Zhang, L. Yuwen, J. Chao, X. Zuo, X. Liu, and L. Wang, “Creating SERS hot spots on MoS2 nanosheets with in situ grown gold nanoparticles,” ACS Appl. Mater. Interfaces 6(21), 18735–18741 (2014).
[Crossref]

ACS Nano (2)

F. Cheng, P. H. Su, J. Choi, S. Gwo, X. Q. Li, and C. K. Shih, “Epitaxial growth of atomically smooth aluminum on silicon and its intrinsic optical properties,” ACS Nano 10(11), 9852–9860 (2016).
[Crossref]

M. W. Knight, N. S. King, L. F. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref]

Adv. Funct. Mater. (2)

X. M. Li, M. H. Bi, L. Cui, Y. Z. Zhou, X. W. Du, S. Z. Qiao, and J. Yang, “3D Aluminum Hybrid Plasmonic Nanostructures with Large Areas of Dense Hot Spots and Long-Term Stability,” Adv. Funct. Mater. 27(10), 1605703 (2017).
[Crossref]

Z. Xie, C. Xing, W. Huang, T. Fan, Z. Li, J. Zhao, and B. Dong, “Ultrathin 2D Nonlayered Tellurium Nanosheets: Facile Liquid-Phase Exfoliation, Characterization, and Photoresponse with High Performance and Enhanced Stability,” Adv. Funct. Mater. 28(16), 1705833 (2018).
[Crossref]

Adv. Mater. (2)

K. M. McPeak, C. D. V. Engers, S. Bianchi, A. Rossinelli, L. V. Poulikakos, L. Bernard, and S. Herrmann, “Ultraviolet Plasmonic Chirality from Colloidal Aluminum Nanoparticles Exhibiting Charge-Selective Protein Detection,” Adv. Mater. 27(40), 6244–6250 (2015).
[Crossref]

J. W. Jeong, M. M. Arnob, P. K. Min Baek, S. Y. Lee, W. C. Shih, and Y. S. Jung, “3D Cross-Point Plasmonic Nanoarchitectures Containing Dense and Regular Hot Spots for Surface-Enhanced Raman Spectroscopy Analysis,” Adv. Mater. 28(39), 8695–8704 (2016).
[Crossref]

Adv. Mater. Technol. (1)

C. H. Li, Y. Jing, S. C. Xu, S. Z. Jiang, X. W. Xiu, C. S. Chen, A. H. Liu, T. F. Wu, B. Y. Man, and C. Zhang, “Constructing 3D and Flexible Plasmonic Structure for High-Performance SERS Application,” Adv. Mater. Technol. 3(11), 1800174 (2018).
[Crossref]

Appl. Phys. Lett. (1)

L. Li, S. F. Lim, A. A. Puretzky, R. Riehn, and H. D. Hallen, “Near-field enhanced ultraviolet resonance Raman spectroscopy using aluminum bow-tie nano-antenna,” Appl. Phys. Lett. 101(11), 113116 (2012).
[Crossref]

Biosensors (1)

R. Pilot, R. Signorini, C. Durante, L. Orian, M. Bhamidipati, and L. Fabris, “A review on surface-enhanced Raman scattering,” Biosensors 9(2), 57 (2019).
[Crossref]

Chem. Commun. (1)

Z. L. Yang, Q. H. Li, B. Ren, and Z. Q. Tian, “Tunable SERS from aluminium nanohole arrays in the ultraviolet region,” Chem. Commun. 47(13), 3909–3911 (2011).
[Crossref]

J. Am. Chem. Soc. (1)

S. K. Jha, Z. Ahmed, M. Agio, Y. Ekinci, and J. F. Löffler, “Deep-UV surface-enhanced resonance Raman scattering of adenine on aluminum nanoparticle arrays,” J. Am. Chem. Soc. 134(4), 1966–1969 (2012).
[Crossref]

J. Appl. Phys. (1)

Y. Ekinci, H. H. Solak, and J. F. Löffler, “Plasmon resonances of aluminum nanoparticles and nanorods,” J. Appl. Phys. 104(8), 083107 (2008).
[Crossref]

J. Phys. Chem. Lett. (1)

D. O. Sigle, E. Perkins, J. J. Baumberg, and S. Mahajan, “Reproducible deep-UV SERRS on aluminum nanovoids,” J. Phys. Chem. Lett. 4(9), 1449–1452 (2013).
[Crossref]

J. Raman Spectrosc. (1)

T. Dörfer, M. Schmitt, and J. Popp, “Deep-UV surface-enhanced Raman scattering,” J. Raman Spectrosc. 38(11), 1379–1382 (2007).
[Crossref]

Nano Lett. (6)

S. Tian, O. Neumann, M. J. McClain, X. Yang, L. N. Zhou, C. Zhang, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals: a sustainable substrate for quantitative SERS-based DNA detection,” Nano Lett. 17(8), 5071–5077 (2017).
[Crossref]

M. W. Knight, L. F. Liu, Y. M. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett. 12(11), 6000–6004 (2012).
[Crossref]

L. Christoph, M. Schwind, B. Kasemo, and I. Zoric, “Localized surface plasmon resonances in aluminum nanodisks,” Nano Lett. 8(5), 1461–1471 (2008).
[Crossref]

A. Sobhani, A. Manjavacas, Y. Cao, M. J. McClain, F. J. G. Abajo, P. Nordlander, and N. J. Halas, “Pronounced linewidth narrowing of an aluminum nanoparticle plasmon resonance by interaction with an aluminum metallic film,” Nano Lett. 15(10), 6946–6951 (2015).
[Crossref]

L. N. Zhou, C. Zhang, M. J. McClain, A. Manjavacas, C. M. Krauter, S. Tian, and F. Berg, “Aluminum nanocrystals as a plasmonic photocatalyst for hydrogen dissociation,” Nano Lett. 16(2), 1478–1484 (2016).
[Crossref]

B. Sharma, M. F. Cardinal, M. B. Ross, A. B. Zrimsek, S. V. Bykov, D. Punihaole, S. A. Asher, G. C. Schatz, and R. P. V. Duyne, “Aluminum film-over-nanosphere substrates for deep-uv surface-enhanced resonance raman spectroscopy,” Nano Lett. 16(12), 7968–7973 (2016).
[Crossref]

Nanoscale (4)

Z. S. Wang, L. Feng, D. Y. Xiao, N. Li, Y. Li, D. F. Cao, Z. S. Shi, Z. C. Cui, and N. A. Lu, “A silver nanoislands on silica spheres platform: enriching trace amounts of analytes for ultrasensitive and reproducible SERS detection,” Nanoscale 9(43), 16749–16754 (2017).
[Crossref]

X. H. Li, X. G. Ren, Y. X. Zhang, W. C. H. Choy, and B. Q. Wei, “An all-copper plasmonic sandwich system obtained through directly depositing copper NPs on a CVD grown graphene/copper film and its application in SERS,” Nanoscale 7(26), 11291–11299 (2015).
[Crossref]

Z. Li, S. Z. Jiang, Y. Y. Huo, T. Y. Ning, A. H. Liu, C. Zhang, Y. He, M. H. Wang, and C. H. Li, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref]

C. L. Lay, C. S. L. Koh, J. Wang, Y. H. Lee, R. Jiang, Y. Yang, and X. Y. Ling, “Aluminum nanostructures with strong visible-range SERS activity for versatile micropatterning of molecular security labels,” Nanoscale 10(2), 575–581 (2018).
[Crossref]

Nat. Commun. (2)

H. Robatjazi, H. Q. Zhao, D. F. Swearer, N. J. Hogan, L. N. Zhou, A. Alabastri, M. J. McClain, P. Nordlander, and N. J. Halas, “Plasmon-induced selective carbon dioxide conversion on earth-abundant aluminum-cuprous oxide antenna-reactor nanoparticles,” Nat. Commun. 8(1), 27 (2017).
[Crossref]

T. Xue, W. Liang, Y. Li, Y. Sun, Y. Xiang, Y. Zhang, and B. N. Shivananju, “Ultrasensitive detection of miRNA with an antimonene-based surface plasmon resonance sensor,” Nat. Commun. 10(1), 28 (2019).
[Crossref]

Nat. Mater. (2)

S. Linic, U. Aslam, C. Boerigter, and M. Morabito, “Photochemical transformations on plasmonic metal nanoparticles,” Nat. Mater. 14(6), 567–576 (2015).
[Crossref]

S. Linic, P. Christopher, and D. B. Ingram, “Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy,” Nat. Mater. 10(12), 911–921 (2011).
[Crossref]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref]

Opt. Express (2)

Proc. Natl. Acad. Sci. U. S. A. (1)

S. K. Yang, X. M. Dai, B. B. Stogin, and T. S. Wong, “Ultrasensitive surface-enhanced Raman scattering detection in common fluids,” Proc. Natl. Acad. Sci. U. S. A. 113(2), 268–273 (2016).
[Crossref]

Sens. Actuators, B (1)

Z. Li, M. H. Wang, Y. Jiao, A. H. Liu, S. Y. Wang, C. Zhang, C. Yang, Y. Y. Xu, C. H. Li, and B. Y. Man, “Different number of silver nanoparticles layers for surface enhanced raman spectroscopy analysis,” Sens. Actuators, B 255, 374–383 (2018).
[Crossref]

Surf. Coat. Tech. (1)

I. Lachebi, A. Fedala, T. Djenizian, T. Hadjersi, and M. Kechouane, “Morphological and optical properties of aluminum nanoparticles deposited by thermal evaporation on heated substrates,” Surf. Coat. Tech. 343, 160–165 (2018).
[Crossref]

Other (1)

E. D. Palik, “Handbook of optical constants of solids,” Academic Press, 3 (1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Schematic illustration of the fabrication process of Al NP−film systems with strong hot spots. Apart from the plasmonic couplings between the Al NP and Al film, the confined gap plasmon modes generated in the nanoscale-thick alumina region between the adjacent Al films also elevate the hot spot intensity effectively.
Fig. 2.
Fig. 2. (a) The Al film with the nanoscale surface oxide layer after the annealing treatment. (b) The obtained Al NP−film systems using the oxide layer as nanometer spacer. Inset is the high-magnification SEM image. (c) The corresponding diameter distribution histogram of the resulting Al NP. (d) AFM side-views of Al NP−film systems. (e) The corresponding height profile of the bottom Al film from the white line drawn in the inset. (f) TEM image of the Al NP. Inset is the high-magnification TEM image (arrows indicate the oxide shell).
Fig. 3.
Fig. 3. (a) Absorption spectrum obtained from the Al NP−film systems with different Al film layers. (b) Absorption spectrum collected from the Al NP/ two-layer Al film and two-layer Al film, for comparison. (c) Absorption spectrum collected from the Al NP/ three-layer Al film and three-layer Al film, for comparison. (d) Absorption spectrum collected from the Al NP/ four-layer Al film and four-layer Al film, for comparison.
Fig. 4.
Fig. 4. (a) The simplified simulation setup of the Al NP−film systems. (b) The y–z plane of electric field distribution of Al NP on SiO2 substrate. The y–z views of electric field distribution of Al NP−film systems with (c) one-layer Al film, (d) two-layer Al films, (e) three-layer Al films and (f) four-layer Al films under the 325 nm incident laser beam. (g) Electric field enhancement (E/E0) of Al NP−film systems with different Al film layers. (h) SERS spectra of 1 mM adenine aqueous solution collected from Al NP on SiO2 and the Al NP−film systems with different Al film layers. Intensity scale bar: 500
Fig. 5.
Fig. 5. (a) UVSERS spectra collected from 10−2 M to 10−6 M adenine deposited onto the Al NP−film systems. Intensity scale bar: 500 (b) Calibration plot of SERS intensity at 1327 cm−1 as a function of adenine concentrations. The error bars indicate the standard deviation from ten different spectra. (c) SERS spectra collected from 10−3 M to 10−7 M CV deposited onto the Al NP−film systems. Intensity scale bar: 1000 (d) Calibration plot of SERS intensity at 1616 cm−1 as a function of CV concentrations. The error bars indicate the standard deviation from ten different spectra. (e) The SERS spectra of 10−6 M adenine (10−7 M CV) collected on Al NP−film systems and 10−1 M adenine (CV) obtained on SiO2 substrate for comparison. (f) The long time stability of the adenine SERS spectra measured from the Al NP−film systems stored for different time period.

Tables (1)

Tables Icon

Table 1. Comparison between the Al NP−film systems and noble-metal or Al nanostructures in terms of the non-resonant SERS enhancement factor.

Metrics