Abstract

We introduce a system that exploits the screen and front-facing camera of a mobile device to perform three-dimensional deflectometry-based surface measurements. In contrast to current mobile deflectometry systems, our method can capture surfaces with large normal variation and wide field of view (FoV). We achieve this by applying automated multi-view panoramic stitching algorithms to produce a large FoV normal map from a hand-guided capture process without the need for external tracking systems, like robot arms or fiducials. The presented work enables 3D surface measurements of specular objects ’in the wild’ with a system accessible to users with little to no technical imaging experience. We demonstrate high-quality 3D surface measurements without the need for a calibration procedure. We provide experimental results with our prototype Deflectometry system and discuss applications for computer vision tasks such as object detection and recognition.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Modal phase measuring deflectometry

Lei Huang, Junpeng Xue, Bo Gao, Chris McPherson, Jacob Beverage, and Mourad Idir
Opt. Express 24(21) 24649-24664 (2016)

Improved system calibration for specular surface measurement by using reflections from a plane mirror

Tian Zhou, Kun Chen, Haoyun Wei, and Yan Li
Appl. Opt. 55(25) 7018-7028 (2016)

3D shape measurement of discontinuous specular objects based on advanced PMD with bi-telecentric lens

Zhenqi Niu, Nan Gao, Zonghua Zhang, Feng Gao, and Xiangqian Jiang
Opt. Express 26(2) 1615-1632 (2018)

References

  • View by:
  • |
  • |
  • |

  1. R. Schwarte, Z. Xu, H.-G. Heinol, J. Olk, R. Klein, B. Buxbaum, H. Fischer, and J. Schulte, “New electro-optical mixing and correlating sensor: facilities and applications of the photonic mixer device (pmd),” Proc. SPIE 3100, 245–253 (1997).
    [Crossref]
  2. F. Willomitzer and G. Häusler, “Single-shot 3d motion picture camera with a dense point cloud,” Opt. Express 25(19), 23451–23464 (2017).
    [Crossref]
  3. M. Schaffer, M. Grosse, and R. Kowarschik, “High-speed pattern projection for three-dimensional shape measurement using laser speckles,” Appl. Opt. 49(18), 3622 (2010).
    [Crossref]
  4. R. J. Woodham, “Photometric method for determining surface orientation from multiple images,” Opt. Eng. 19(1), 191139 (1980).
    [Crossref]
  5. G. Häusler, “Verfahren und vorrichtung zur ermittlung der form oder der abbildungseigenschaften von spiegelnden oder transparenten objekten,” (Patent DE19944354A1, (1999)).
  6. L. Huang, M. Idir, C. Zuo, and A. Asundi, “Review of phase measuring deflectometry,” Opt. Lasers Eng. 107, 247–257 (2018).
    [Crossref]
  7. M. C. Knauer, J. Kaminski, and G. Häusler, “Phase measuring deflectometry: a new approach to measure specular free-form surfaces,” Proc. SPIE 5457, 366 (2004).
    [Crossref]
  8. C. Faber, E. Olesch, R. Krobot, and G. Häusler, “Deflectometry challenges interferometry: the competition gets tougher!” Proc. SPIE 8493, 84930R (2012).
    [Crossref]
  9. E. Olesch, C. Faber, and G. Häusler, “Deflectometric self-calibration for arbitrary specular surfaces,” in Proceedings of DGaO, (2011).
  10. G. Häusler, C. Faber, E. Olesch, and S. Ettl, “Deflectometry vs. interferometry,” Proc. SPIE 8788, 87881C (2013).
    [Crossref]
  11. R. B. Bergmann, J. Burke, and C. Falldorf, “Precision optical metrology without lasers,” in International Conference on Optical and Photonic Engineering (icOPEN 2015), vol. 9524A. K. Asundi and Y. Fu, eds., International Society for Optics and Photonics (SPIE, 2015), pp. 23–30.
  12. G. P. Butel, G. A. Smith, and J. H. H. Burge, “Deflectometry using portable devices,” Opt. Eng. 54(2), 025111 (2015).
    [Crossref]
  13. I. Trumper, H. Choi, and D. W. Kim, “Instantaneous phase shifting deflectometry,” Opt. Express 24(24), 27993–28007 (2016).
    [Crossref]
  14. J. Riviere, P. Peers, and A. Ghosh, “Mobile Surface Reflectometry,” Comput. Graph. Forum 35(1), 191–202 (2016).
    [Crossref]
  15. L. R. Graves, H. Quach, H. Choi, and D. W. Kim, “Infinite deflectometry enabling 2 pi -steradian measurement range,” Opt. Express 27(5), 7602–7615 (2019).
    [Crossref]
  16. D. Lowe, “Method and apparatus for identifying scale invariant features in an image and use of same for locating an object in an image,” (Patent US6711293B1, (2000)).
  17. D. Lowe, “Object recognition from local scale-invariant features,” in Proceedings of the International Conference on Computer Vision. 2. pp. 1150–1157, (1999).
  18. P. Su, R. E. Parks, L. Wang, R. P. Angel, and J. H. Burge, “Software configurable optical test system: a computerized reverse hartmann test,” Appl. Opt. 49(23), 4404–4412 (2010).
    [Crossref]
  19. L. Huang, C. S. Ng, and A. K. Asundi, “Dynamic three-dimensional sensing for specular surface with monoscopic fringe reflectometry,” Opt. Express 19(13), 12809–12814 (2011).
    [Crossref]
  20. M. Fischer, M. Petz, and R. Tutsch, “Model-Based Deflectometric Measurement of Transparent Objects,” (Fringe 2013 – 7th International Workshop on Advanced Optical Imaging and Metrology, Springer (2013)).
  21. F. Willomitzer, “Single-Shot 3D Sensing Close to Physical Limits and Information Limits,” (Dissertation, Springer Theses (2019)).
  22. G. P. Butel, G. A. Smith, and J. H. Burge, “Binary pattern deflectometry,” Appl. Opt. 53(5), 923–930 (2014).
    [Crossref]
  23. M. Takeda and K. Mutoh, “Fourier transform profilometry for the automatic measurement of 3-d object shapes,” Appl. Opt. 22(24), 3977–3982 (1983).
    [Crossref]
  24. Y. Liu, E. Olesch, Z. Yang, and G. Häusler, “Fast and accurate deflectometry with crossed fringes,” Adv. Opt. Technol. 3(4), 441–445 (2014).
    [Crossref]
  25. M. Nguyen, Y. Ghim, and H. Rhee, “Single-shot deflectometry for dynamic 3d surface profile measurement by modified spatial-carrier frequency phase-shifting method,” Sci. Rep. 9(1), 3157 (2019).
    [Crossref]
  26. M. Tarini, H. P. Lensch, M. Goesele, and H.-P. Seidel, “3d acquisition of mirroring objects using striped patterns,” Graph. Models 67(4), 233–259 (2005).
    [Crossref]
  27. Y. Ding, J. Yu, and P. Sturm, “Recovering specular surfaces using curved line images,” in 2009 IEEE Conference on Computer Vision and Pattern Recognition, (2009), pp. 2326–2333.
  28. S. Tin, J. Ye, M. Nezamabadi, and C. Chen, “3d reconstruction of mirror-type objects using efficient ray coding,” in 2016 IEEE International Conference on Computational Photography (ICCP), (2016), pp. 1–11.
  29. T. Bonfort and P. Sturm, “Voxel carving for specular surfaces,” in Proceedings Ninth IEEE International Conference on Computer Vision, (2003), pp. 591–596 vol.1.
  30. C. Godard, P. Hedman, W. Li, and G. J. Brostow, “Multi-view reconstruction of highly specular surfaces in uncontrolled environments,” in 2015 International Conference on 3D Vision, (2015), pp. 19–27.
  31. B. Jacquet, C. Häne, K. Köser, and M. Pollefeys, “Real-world normal map capture for nearly flat reflective surfaces,” in 2013 IEEE International Conference on Computer Vision, (2013), pp. 713–720.
  32. K. Ikeuchi, “Determining surface orientations of specular surfaces by using the photometric stereo method,” in Shape Recovery, L. B. Wolff, S. A. Shafer, and G. E. Healey, eds. (Jones and Bartlett Publishers, Inc., USA, 1992), pp. 268–276.
  33. B. Tunwattanapong, G. Fyffe, P. Graham, J. Busch, X. Yu, A. Ghosh, and P. Debevec, “Acquiring reflectance and shape from continuous spherical harmonic illumination,” ACM Trans. Graph. 32(4), 1–12 (2013).
    [Crossref]
  34. T. Chen, M. Goesele, and H.-P. Seidel, “Mesostructure from specularity,” in Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Volume 2, (IEEE Computer Society, Washington, DC, USA, 2006), CVPR ’06, pp. 1825–1832.
  35. A. C. Sanderson, L. E. Weiss, and S. K. Nayar, “Structured highlight inspection of specular surfaces,” IEEE Trans. Pattern Anal. Machine Intell. 10(1), 44–55 (1988).
    [Crossref]
  36. S. K. Nayar, A. C. Sanderson, L. E. Weiss, and D. A. Simon, “Specular surface inspection using structured highlight and gaussian images,” IEEE Trans. Robot. Automat. 6(2), 208–218 (1990).
    [Crossref]
  37. C. Röttinger, C. Faber, M. Kurz, E. Olesch, G. Häusler, and E. Uhlmann, “Deflectometry for ultra-precision machining - measuring without rechucking,” in Proceedings of DGaO, (2011).
  38. “Kokomo opalescent glass co,” https://www.kog.com .
  39. S. Perkins, “New app reveals the hidden landscapes within georgia o’keeffe’s paintings,” Sci. Mag. (2019).
  40. L. Strelich, “Why are georgia o’keeffe’s paintings breaking out in pimples?” Smithsonian Mag. (2019).
  41. J. Salvant, M. Walton, D. Kronkright, C.-K. Yeh, F. Li, O. Cossairt, and A. K. Katsaggelos, “Photometric stereo by uv-induced fluorescence to detect protrusions on georgia o’keeffe’s paintings,” Met. Soaps Art (2019).
  42. R. Frankot and R. Chellappa, “A method for enforcing integrability in shape from shading algorithms,” IEEE Trans. Pattern Anal. Machine Intell. 10(4), 439–451 (1988).
    [Crossref]
  43. O. Arold, S. Ettl, F. Willomitzer, and G. Häusler, “Hand-guided 3D surface acquisition by combining simple light sectioning with real-time algorithms,” arXiv e-prints arXiv:1401.1946 (2014).
  44. F. Willomitzer, S. Ettl, O. Arold, and G. Häusler, “Flying triangulation - a motion-robust optical 3d sensor for the real-time shape acquisition of complex objects,” AIP Conf. Proc. 1537, 19–26 (2013).
    [Crossref]
  45. J. Qian, S. Feng, T. Tao, Y. Hu, K. Liu, S. Wu, Q. Chen, and C. Zuo, “High-resolution real-time 360°; 3d model reconstruction of a handheld object with fringe projection profilometry,” Opt. Lett. 44(23), 5751–5754 (2019).
    [Crossref]

2019 (3)

2018 (1)

L. Huang, M. Idir, C. Zuo, and A. Asundi, “Review of phase measuring deflectometry,” Opt. Lasers Eng. 107, 247–257 (2018).
[Crossref]

2017 (1)

2016 (2)

I. Trumper, H. Choi, and D. W. Kim, “Instantaneous phase shifting deflectometry,” Opt. Express 24(24), 27993–28007 (2016).
[Crossref]

J. Riviere, P. Peers, and A. Ghosh, “Mobile Surface Reflectometry,” Comput. Graph. Forum 35(1), 191–202 (2016).
[Crossref]

2015 (1)

G. P. Butel, G. A. Smith, and J. H. H. Burge, “Deflectometry using portable devices,” Opt. Eng. 54(2), 025111 (2015).
[Crossref]

2014 (2)

G. P. Butel, G. A. Smith, and J. H. Burge, “Binary pattern deflectometry,” Appl. Opt. 53(5), 923–930 (2014).
[Crossref]

Y. Liu, E. Olesch, Z. Yang, and G. Häusler, “Fast and accurate deflectometry with crossed fringes,” Adv. Opt. Technol. 3(4), 441–445 (2014).
[Crossref]

2013 (3)

G. Häusler, C. Faber, E. Olesch, and S. Ettl, “Deflectometry vs. interferometry,” Proc. SPIE 8788, 87881C (2013).
[Crossref]

F. Willomitzer, S. Ettl, O. Arold, and G. Häusler, “Flying triangulation - a motion-robust optical 3d sensor for the real-time shape acquisition of complex objects,” AIP Conf. Proc. 1537, 19–26 (2013).
[Crossref]

B. Tunwattanapong, G. Fyffe, P. Graham, J. Busch, X. Yu, A. Ghosh, and P. Debevec, “Acquiring reflectance and shape from continuous spherical harmonic illumination,” ACM Trans. Graph. 32(4), 1–12 (2013).
[Crossref]

2012 (1)

C. Faber, E. Olesch, R. Krobot, and G. Häusler, “Deflectometry challenges interferometry: the competition gets tougher!” Proc. SPIE 8493, 84930R (2012).
[Crossref]

2011 (1)

2010 (2)

2005 (1)

M. Tarini, H. P. Lensch, M. Goesele, and H.-P. Seidel, “3d acquisition of mirroring objects using striped patterns,” Graph. Models 67(4), 233–259 (2005).
[Crossref]

2004 (1)

M. C. Knauer, J. Kaminski, and G. Häusler, “Phase measuring deflectometry: a new approach to measure specular free-form surfaces,” Proc. SPIE 5457, 366 (2004).
[Crossref]

1997 (1)

R. Schwarte, Z. Xu, H.-G. Heinol, J. Olk, R. Klein, B. Buxbaum, H. Fischer, and J. Schulte, “New electro-optical mixing and correlating sensor: facilities and applications of the photonic mixer device (pmd),” Proc. SPIE 3100, 245–253 (1997).
[Crossref]

1990 (1)

S. K. Nayar, A. C. Sanderson, L. E. Weiss, and D. A. Simon, “Specular surface inspection using structured highlight and gaussian images,” IEEE Trans. Robot. Automat. 6(2), 208–218 (1990).
[Crossref]

1988 (2)

R. Frankot and R. Chellappa, “A method for enforcing integrability in shape from shading algorithms,” IEEE Trans. Pattern Anal. Machine Intell. 10(4), 439–451 (1988).
[Crossref]

A. C. Sanderson, L. E. Weiss, and S. K. Nayar, “Structured highlight inspection of specular surfaces,” IEEE Trans. Pattern Anal. Machine Intell. 10(1), 44–55 (1988).
[Crossref]

1983 (1)

1980 (1)

R. J. Woodham, “Photometric method for determining surface orientation from multiple images,” Opt. Eng. 19(1), 191139 (1980).
[Crossref]

Angel, R. P.

Arold, O.

F. Willomitzer, S. Ettl, O. Arold, and G. Häusler, “Flying triangulation - a motion-robust optical 3d sensor for the real-time shape acquisition of complex objects,” AIP Conf. Proc. 1537, 19–26 (2013).
[Crossref]

O. Arold, S. Ettl, F. Willomitzer, and G. Häusler, “Hand-guided 3D surface acquisition by combining simple light sectioning with real-time algorithms,” arXiv e-prints arXiv:1401.1946 (2014).

Asundi, A.

L. Huang, M. Idir, C. Zuo, and A. Asundi, “Review of phase measuring deflectometry,” Opt. Lasers Eng. 107, 247–257 (2018).
[Crossref]

Asundi, A. K.

Bergmann, R. B.

R. B. Bergmann, J. Burke, and C. Falldorf, “Precision optical metrology without lasers,” in International Conference on Optical and Photonic Engineering (icOPEN 2015), vol. 9524A. K. Asundi and Y. Fu, eds., International Society for Optics and Photonics (SPIE, 2015), pp. 23–30.

Bonfort, T.

T. Bonfort and P. Sturm, “Voxel carving for specular surfaces,” in Proceedings Ninth IEEE International Conference on Computer Vision, (2003), pp. 591–596 vol.1.

Brostow, G. J.

C. Godard, P. Hedman, W. Li, and G. J. Brostow, “Multi-view reconstruction of highly specular surfaces in uncontrolled environments,” in 2015 International Conference on 3D Vision, (2015), pp. 19–27.

Burge, J. H.

Burge, J. H. H.

G. P. Butel, G. A. Smith, and J. H. H. Burge, “Deflectometry using portable devices,” Opt. Eng. 54(2), 025111 (2015).
[Crossref]

Burke, J.

R. B. Bergmann, J. Burke, and C. Falldorf, “Precision optical metrology without lasers,” in International Conference on Optical and Photonic Engineering (icOPEN 2015), vol. 9524A. K. Asundi and Y. Fu, eds., International Society for Optics and Photonics (SPIE, 2015), pp. 23–30.

Busch, J.

B. Tunwattanapong, G. Fyffe, P. Graham, J. Busch, X. Yu, A. Ghosh, and P. Debevec, “Acquiring reflectance and shape from continuous spherical harmonic illumination,” ACM Trans. Graph. 32(4), 1–12 (2013).
[Crossref]

Butel, G. P.

G. P. Butel, G. A. Smith, and J. H. H. Burge, “Deflectometry using portable devices,” Opt. Eng. 54(2), 025111 (2015).
[Crossref]

G. P. Butel, G. A. Smith, and J. H. Burge, “Binary pattern deflectometry,” Appl. Opt. 53(5), 923–930 (2014).
[Crossref]

Buxbaum, B.

R. Schwarte, Z. Xu, H.-G. Heinol, J. Olk, R. Klein, B. Buxbaum, H. Fischer, and J. Schulte, “New electro-optical mixing and correlating sensor: facilities and applications of the photonic mixer device (pmd),” Proc. SPIE 3100, 245–253 (1997).
[Crossref]

Chellappa, R.

R. Frankot and R. Chellappa, “A method for enforcing integrability in shape from shading algorithms,” IEEE Trans. Pattern Anal. Machine Intell. 10(4), 439–451 (1988).
[Crossref]

Chen, C.

S. Tin, J. Ye, M. Nezamabadi, and C. Chen, “3d reconstruction of mirror-type objects using efficient ray coding,” in 2016 IEEE International Conference on Computational Photography (ICCP), (2016), pp. 1–11.

Chen, Q.

Chen, T.

T. Chen, M. Goesele, and H.-P. Seidel, “Mesostructure from specularity,” in Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Volume 2, (IEEE Computer Society, Washington, DC, USA, 2006), CVPR ’06, pp. 1825–1832.

Choi, H.

Cossairt, O.

J. Salvant, M. Walton, D. Kronkright, C.-K. Yeh, F. Li, O. Cossairt, and A. K. Katsaggelos, “Photometric stereo by uv-induced fluorescence to detect protrusions on georgia o’keeffe’s paintings,” Met. Soaps Art (2019).

Debevec, P.

B. Tunwattanapong, G. Fyffe, P. Graham, J. Busch, X. Yu, A. Ghosh, and P. Debevec, “Acquiring reflectance and shape from continuous spherical harmonic illumination,” ACM Trans. Graph. 32(4), 1–12 (2013).
[Crossref]

Ding, Y.

Y. Ding, J. Yu, and P. Sturm, “Recovering specular surfaces using curved line images,” in 2009 IEEE Conference on Computer Vision and Pattern Recognition, (2009), pp. 2326–2333.

Ettl, S.

G. Häusler, C. Faber, E. Olesch, and S. Ettl, “Deflectometry vs. interferometry,” Proc. SPIE 8788, 87881C (2013).
[Crossref]

F. Willomitzer, S. Ettl, O. Arold, and G. Häusler, “Flying triangulation - a motion-robust optical 3d sensor for the real-time shape acquisition of complex objects,” AIP Conf. Proc. 1537, 19–26 (2013).
[Crossref]

O. Arold, S. Ettl, F. Willomitzer, and G. Häusler, “Hand-guided 3D surface acquisition by combining simple light sectioning with real-time algorithms,” arXiv e-prints arXiv:1401.1946 (2014).

Faber, C.

G. Häusler, C. Faber, E. Olesch, and S. Ettl, “Deflectometry vs. interferometry,” Proc. SPIE 8788, 87881C (2013).
[Crossref]

C. Faber, E. Olesch, R. Krobot, and G. Häusler, “Deflectometry challenges interferometry: the competition gets tougher!” Proc. SPIE 8493, 84930R (2012).
[Crossref]

E. Olesch, C. Faber, and G. Häusler, “Deflectometric self-calibration for arbitrary specular surfaces,” in Proceedings of DGaO, (2011).

C. Röttinger, C. Faber, M. Kurz, E. Olesch, G. Häusler, and E. Uhlmann, “Deflectometry for ultra-precision machining - measuring without rechucking,” in Proceedings of DGaO, (2011).

Falldorf, C.

R. B. Bergmann, J. Burke, and C. Falldorf, “Precision optical metrology without lasers,” in International Conference on Optical and Photonic Engineering (icOPEN 2015), vol. 9524A. K. Asundi and Y. Fu, eds., International Society for Optics and Photonics (SPIE, 2015), pp. 23–30.

Feng, S.

Fischer, H.

R. Schwarte, Z. Xu, H.-G. Heinol, J. Olk, R. Klein, B. Buxbaum, H. Fischer, and J. Schulte, “New electro-optical mixing and correlating sensor: facilities and applications of the photonic mixer device (pmd),” Proc. SPIE 3100, 245–253 (1997).
[Crossref]

Fischer, M.

M. Fischer, M. Petz, and R. Tutsch, “Model-Based Deflectometric Measurement of Transparent Objects,” (Fringe 2013 – 7th International Workshop on Advanced Optical Imaging and Metrology, Springer (2013)).

Frankot, R.

R. Frankot and R. Chellappa, “A method for enforcing integrability in shape from shading algorithms,” IEEE Trans. Pattern Anal. Machine Intell. 10(4), 439–451 (1988).
[Crossref]

Fyffe, G.

B. Tunwattanapong, G. Fyffe, P. Graham, J. Busch, X. Yu, A. Ghosh, and P. Debevec, “Acquiring reflectance and shape from continuous spherical harmonic illumination,” ACM Trans. Graph. 32(4), 1–12 (2013).
[Crossref]

Ghim, Y.

M. Nguyen, Y. Ghim, and H. Rhee, “Single-shot deflectometry for dynamic 3d surface profile measurement by modified spatial-carrier frequency phase-shifting method,” Sci. Rep. 9(1), 3157 (2019).
[Crossref]

Ghosh, A.

J. Riviere, P. Peers, and A. Ghosh, “Mobile Surface Reflectometry,” Comput. Graph. Forum 35(1), 191–202 (2016).
[Crossref]

B. Tunwattanapong, G. Fyffe, P. Graham, J. Busch, X. Yu, A. Ghosh, and P. Debevec, “Acquiring reflectance and shape from continuous spherical harmonic illumination,” ACM Trans. Graph. 32(4), 1–12 (2013).
[Crossref]

Godard, C.

C. Godard, P. Hedman, W. Li, and G. J. Brostow, “Multi-view reconstruction of highly specular surfaces in uncontrolled environments,” in 2015 International Conference on 3D Vision, (2015), pp. 19–27.

Goesele, M.

M. Tarini, H. P. Lensch, M. Goesele, and H.-P. Seidel, “3d acquisition of mirroring objects using striped patterns,” Graph. Models 67(4), 233–259 (2005).
[Crossref]

T. Chen, M. Goesele, and H.-P. Seidel, “Mesostructure from specularity,” in Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Volume 2, (IEEE Computer Society, Washington, DC, USA, 2006), CVPR ’06, pp. 1825–1832.

Graham, P.

B. Tunwattanapong, G. Fyffe, P. Graham, J. Busch, X. Yu, A. Ghosh, and P. Debevec, “Acquiring reflectance and shape from continuous spherical harmonic illumination,” ACM Trans. Graph. 32(4), 1–12 (2013).
[Crossref]

Graves, L. R.

Grosse, M.

Häne, C.

B. Jacquet, C. Häne, K. Köser, and M. Pollefeys, “Real-world normal map capture for nearly flat reflective surfaces,” in 2013 IEEE International Conference on Computer Vision, (2013), pp. 713–720.

Häusler, G.

F. Willomitzer and G. Häusler, “Single-shot 3d motion picture camera with a dense point cloud,” Opt. Express 25(19), 23451–23464 (2017).
[Crossref]

Y. Liu, E. Olesch, Z. Yang, and G. Häusler, “Fast and accurate deflectometry with crossed fringes,” Adv. Opt. Technol. 3(4), 441–445 (2014).
[Crossref]

F. Willomitzer, S. Ettl, O. Arold, and G. Häusler, “Flying triangulation - a motion-robust optical 3d sensor for the real-time shape acquisition of complex objects,” AIP Conf. Proc. 1537, 19–26 (2013).
[Crossref]

G. Häusler, C. Faber, E. Olesch, and S. Ettl, “Deflectometry vs. interferometry,” Proc. SPIE 8788, 87881C (2013).
[Crossref]

C. Faber, E. Olesch, R. Krobot, and G. Häusler, “Deflectometry challenges interferometry: the competition gets tougher!” Proc. SPIE 8493, 84930R (2012).
[Crossref]

M. C. Knauer, J. Kaminski, and G. Häusler, “Phase measuring deflectometry: a new approach to measure specular free-form surfaces,” Proc. SPIE 5457, 366 (2004).
[Crossref]

E. Olesch, C. Faber, and G. Häusler, “Deflectometric self-calibration for arbitrary specular surfaces,” in Proceedings of DGaO, (2011).

O. Arold, S. Ettl, F. Willomitzer, and G. Häusler, “Hand-guided 3D surface acquisition by combining simple light sectioning with real-time algorithms,” arXiv e-prints arXiv:1401.1946 (2014).

G. Häusler, “Verfahren und vorrichtung zur ermittlung der form oder der abbildungseigenschaften von spiegelnden oder transparenten objekten,” (Patent DE19944354A1, (1999)).

C. Röttinger, C. Faber, M. Kurz, E. Olesch, G. Häusler, and E. Uhlmann, “Deflectometry for ultra-precision machining - measuring without rechucking,” in Proceedings of DGaO, (2011).

Hedman, P.

C. Godard, P. Hedman, W. Li, and G. J. Brostow, “Multi-view reconstruction of highly specular surfaces in uncontrolled environments,” in 2015 International Conference on 3D Vision, (2015), pp. 19–27.

Heinol, H.-G.

R. Schwarte, Z. Xu, H.-G. Heinol, J. Olk, R. Klein, B. Buxbaum, H. Fischer, and J. Schulte, “New electro-optical mixing and correlating sensor: facilities and applications of the photonic mixer device (pmd),” Proc. SPIE 3100, 245–253 (1997).
[Crossref]

Hu, Y.

Huang, L.

Idir, M.

L. Huang, M. Idir, C. Zuo, and A. Asundi, “Review of phase measuring deflectometry,” Opt. Lasers Eng. 107, 247–257 (2018).
[Crossref]

Ikeuchi, K.

K. Ikeuchi, “Determining surface orientations of specular surfaces by using the photometric stereo method,” in Shape Recovery, L. B. Wolff, S. A. Shafer, and G. E. Healey, eds. (Jones and Bartlett Publishers, Inc., USA, 1992), pp. 268–276.

Jacquet, B.

B. Jacquet, C. Häne, K. Köser, and M. Pollefeys, “Real-world normal map capture for nearly flat reflective surfaces,” in 2013 IEEE International Conference on Computer Vision, (2013), pp. 713–720.

Kaminski, J.

M. C. Knauer, J. Kaminski, and G. Häusler, “Phase measuring deflectometry: a new approach to measure specular free-form surfaces,” Proc. SPIE 5457, 366 (2004).
[Crossref]

Katsaggelos, A. K.

J. Salvant, M. Walton, D. Kronkright, C.-K. Yeh, F. Li, O. Cossairt, and A. K. Katsaggelos, “Photometric stereo by uv-induced fluorescence to detect protrusions on georgia o’keeffe’s paintings,” Met. Soaps Art (2019).

Kim, D. W.

Klein, R.

R. Schwarte, Z. Xu, H.-G. Heinol, J. Olk, R. Klein, B. Buxbaum, H. Fischer, and J. Schulte, “New electro-optical mixing and correlating sensor: facilities and applications of the photonic mixer device (pmd),” Proc. SPIE 3100, 245–253 (1997).
[Crossref]

Knauer, M. C.

M. C. Knauer, J. Kaminski, and G. Häusler, “Phase measuring deflectometry: a new approach to measure specular free-form surfaces,” Proc. SPIE 5457, 366 (2004).
[Crossref]

Köser, K.

B. Jacquet, C. Häne, K. Köser, and M. Pollefeys, “Real-world normal map capture for nearly flat reflective surfaces,” in 2013 IEEE International Conference on Computer Vision, (2013), pp. 713–720.

Kowarschik, R.

Krobot, R.

C. Faber, E. Olesch, R. Krobot, and G. Häusler, “Deflectometry challenges interferometry: the competition gets tougher!” Proc. SPIE 8493, 84930R (2012).
[Crossref]

Kronkright, D.

J. Salvant, M. Walton, D. Kronkright, C.-K. Yeh, F. Li, O. Cossairt, and A. K. Katsaggelos, “Photometric stereo by uv-induced fluorescence to detect protrusions on georgia o’keeffe’s paintings,” Met. Soaps Art (2019).

Kurz, M.

C. Röttinger, C. Faber, M. Kurz, E. Olesch, G. Häusler, and E. Uhlmann, “Deflectometry for ultra-precision machining - measuring without rechucking,” in Proceedings of DGaO, (2011).

Lensch, H. P.

M. Tarini, H. P. Lensch, M. Goesele, and H.-P. Seidel, “3d acquisition of mirroring objects using striped patterns,” Graph. Models 67(4), 233–259 (2005).
[Crossref]

Li, F.

J. Salvant, M. Walton, D. Kronkright, C.-K. Yeh, F. Li, O. Cossairt, and A. K. Katsaggelos, “Photometric stereo by uv-induced fluorescence to detect protrusions on georgia o’keeffe’s paintings,” Met. Soaps Art (2019).

Li, W.

C. Godard, P. Hedman, W. Li, and G. J. Brostow, “Multi-view reconstruction of highly specular surfaces in uncontrolled environments,” in 2015 International Conference on 3D Vision, (2015), pp. 19–27.

Liu, K.

Liu, Y.

Y. Liu, E. Olesch, Z. Yang, and G. Häusler, “Fast and accurate deflectometry with crossed fringes,” Adv. Opt. Technol. 3(4), 441–445 (2014).
[Crossref]

Lowe, D.

D. Lowe, “Method and apparatus for identifying scale invariant features in an image and use of same for locating an object in an image,” (Patent US6711293B1, (2000)).

D. Lowe, “Object recognition from local scale-invariant features,” in Proceedings of the International Conference on Computer Vision. 2. pp. 1150–1157, (1999).

Mutoh, K.

Nayar, S. K.

S. K. Nayar, A. C. Sanderson, L. E. Weiss, and D. A. Simon, “Specular surface inspection using structured highlight and gaussian images,” IEEE Trans. Robot. Automat. 6(2), 208–218 (1990).
[Crossref]

A. C. Sanderson, L. E. Weiss, and S. K. Nayar, “Structured highlight inspection of specular surfaces,” IEEE Trans. Pattern Anal. Machine Intell. 10(1), 44–55 (1988).
[Crossref]

Nezamabadi, M.

S. Tin, J. Ye, M. Nezamabadi, and C. Chen, “3d reconstruction of mirror-type objects using efficient ray coding,” in 2016 IEEE International Conference on Computational Photography (ICCP), (2016), pp. 1–11.

Ng, C. S.

Nguyen, M.

M. Nguyen, Y. Ghim, and H. Rhee, “Single-shot deflectometry for dynamic 3d surface profile measurement by modified spatial-carrier frequency phase-shifting method,” Sci. Rep. 9(1), 3157 (2019).
[Crossref]

Olesch, E.

Y. Liu, E. Olesch, Z. Yang, and G. Häusler, “Fast and accurate deflectometry with crossed fringes,” Adv. Opt. Technol. 3(4), 441–445 (2014).
[Crossref]

G. Häusler, C. Faber, E. Olesch, and S. Ettl, “Deflectometry vs. interferometry,” Proc. SPIE 8788, 87881C (2013).
[Crossref]

C. Faber, E. Olesch, R. Krobot, and G. Häusler, “Deflectometry challenges interferometry: the competition gets tougher!” Proc. SPIE 8493, 84930R (2012).
[Crossref]

E. Olesch, C. Faber, and G. Häusler, “Deflectometric self-calibration for arbitrary specular surfaces,” in Proceedings of DGaO, (2011).

C. Röttinger, C. Faber, M. Kurz, E. Olesch, G. Häusler, and E. Uhlmann, “Deflectometry for ultra-precision machining - measuring without rechucking,” in Proceedings of DGaO, (2011).

Olk, J.

R. Schwarte, Z. Xu, H.-G. Heinol, J. Olk, R. Klein, B. Buxbaum, H. Fischer, and J. Schulte, “New electro-optical mixing and correlating sensor: facilities and applications of the photonic mixer device (pmd),” Proc. SPIE 3100, 245–253 (1997).
[Crossref]

Parks, R. E.

Peers, P.

J. Riviere, P. Peers, and A. Ghosh, “Mobile Surface Reflectometry,” Comput. Graph. Forum 35(1), 191–202 (2016).
[Crossref]

Perkins, S.

S. Perkins, “New app reveals the hidden landscapes within georgia o’keeffe’s paintings,” Sci. Mag. (2019).

Petz, M.

M. Fischer, M. Petz, and R. Tutsch, “Model-Based Deflectometric Measurement of Transparent Objects,” (Fringe 2013 – 7th International Workshop on Advanced Optical Imaging and Metrology, Springer (2013)).

Pollefeys, M.

B. Jacquet, C. Häne, K. Köser, and M. Pollefeys, “Real-world normal map capture for nearly flat reflective surfaces,” in 2013 IEEE International Conference on Computer Vision, (2013), pp. 713–720.

Qian, J.

Quach, H.

Rhee, H.

M. Nguyen, Y. Ghim, and H. Rhee, “Single-shot deflectometry for dynamic 3d surface profile measurement by modified spatial-carrier frequency phase-shifting method,” Sci. Rep. 9(1), 3157 (2019).
[Crossref]

Riviere, J.

J. Riviere, P. Peers, and A. Ghosh, “Mobile Surface Reflectometry,” Comput. Graph. Forum 35(1), 191–202 (2016).
[Crossref]

Röttinger, C.

C. Röttinger, C. Faber, M. Kurz, E. Olesch, G. Häusler, and E. Uhlmann, “Deflectometry for ultra-precision machining - measuring without rechucking,” in Proceedings of DGaO, (2011).

Salvant, J.

J. Salvant, M. Walton, D. Kronkright, C.-K. Yeh, F. Li, O. Cossairt, and A. K. Katsaggelos, “Photometric stereo by uv-induced fluorescence to detect protrusions on georgia o’keeffe’s paintings,” Met. Soaps Art (2019).

Sanderson, A. C.

S. K. Nayar, A. C. Sanderson, L. E. Weiss, and D. A. Simon, “Specular surface inspection using structured highlight and gaussian images,” IEEE Trans. Robot. Automat. 6(2), 208–218 (1990).
[Crossref]

A. C. Sanderson, L. E. Weiss, and S. K. Nayar, “Structured highlight inspection of specular surfaces,” IEEE Trans. Pattern Anal. Machine Intell. 10(1), 44–55 (1988).
[Crossref]

Schaffer, M.

Schulte, J.

R. Schwarte, Z. Xu, H.-G. Heinol, J. Olk, R. Klein, B. Buxbaum, H. Fischer, and J. Schulte, “New electro-optical mixing and correlating sensor: facilities and applications of the photonic mixer device (pmd),” Proc. SPIE 3100, 245–253 (1997).
[Crossref]

Schwarte, R.

R. Schwarte, Z. Xu, H.-G. Heinol, J. Olk, R. Klein, B. Buxbaum, H. Fischer, and J. Schulte, “New electro-optical mixing and correlating sensor: facilities and applications of the photonic mixer device (pmd),” Proc. SPIE 3100, 245–253 (1997).
[Crossref]

Seidel, H.-P.

M. Tarini, H. P. Lensch, M. Goesele, and H.-P. Seidel, “3d acquisition of mirroring objects using striped patterns,” Graph. Models 67(4), 233–259 (2005).
[Crossref]

T. Chen, M. Goesele, and H.-P. Seidel, “Mesostructure from specularity,” in Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Volume 2, (IEEE Computer Society, Washington, DC, USA, 2006), CVPR ’06, pp. 1825–1832.

Simon, D. A.

S. K. Nayar, A. C. Sanderson, L. E. Weiss, and D. A. Simon, “Specular surface inspection using structured highlight and gaussian images,” IEEE Trans. Robot. Automat. 6(2), 208–218 (1990).
[Crossref]

Smith, G. A.

G. P. Butel, G. A. Smith, and J. H. H. Burge, “Deflectometry using portable devices,” Opt. Eng. 54(2), 025111 (2015).
[Crossref]

G. P. Butel, G. A. Smith, and J. H. Burge, “Binary pattern deflectometry,” Appl. Opt. 53(5), 923–930 (2014).
[Crossref]

Strelich, L.

L. Strelich, “Why are georgia o’keeffe’s paintings breaking out in pimples?” Smithsonian Mag. (2019).

Sturm, P.

T. Bonfort and P. Sturm, “Voxel carving for specular surfaces,” in Proceedings Ninth IEEE International Conference on Computer Vision, (2003), pp. 591–596 vol.1.

Y. Ding, J. Yu, and P. Sturm, “Recovering specular surfaces using curved line images,” in 2009 IEEE Conference on Computer Vision and Pattern Recognition, (2009), pp. 2326–2333.

Su, P.

Takeda, M.

Tao, T.

Tarini, M.

M. Tarini, H. P. Lensch, M. Goesele, and H.-P. Seidel, “3d acquisition of mirroring objects using striped patterns,” Graph. Models 67(4), 233–259 (2005).
[Crossref]

Tin, S.

S. Tin, J. Ye, M. Nezamabadi, and C. Chen, “3d reconstruction of mirror-type objects using efficient ray coding,” in 2016 IEEE International Conference on Computational Photography (ICCP), (2016), pp. 1–11.

Trumper, I.

Tunwattanapong, B.

B. Tunwattanapong, G. Fyffe, P. Graham, J. Busch, X. Yu, A. Ghosh, and P. Debevec, “Acquiring reflectance and shape from continuous spherical harmonic illumination,” ACM Trans. Graph. 32(4), 1–12 (2013).
[Crossref]

Tutsch, R.

M. Fischer, M. Petz, and R. Tutsch, “Model-Based Deflectometric Measurement of Transparent Objects,” (Fringe 2013 – 7th International Workshop on Advanced Optical Imaging and Metrology, Springer (2013)).

Uhlmann, E.

C. Röttinger, C. Faber, M. Kurz, E. Olesch, G. Häusler, and E. Uhlmann, “Deflectometry for ultra-precision machining - measuring without rechucking,” in Proceedings of DGaO, (2011).

Walton, M.

J. Salvant, M. Walton, D. Kronkright, C.-K. Yeh, F. Li, O. Cossairt, and A. K. Katsaggelos, “Photometric stereo by uv-induced fluorescence to detect protrusions on georgia o’keeffe’s paintings,” Met. Soaps Art (2019).

Wang, L.

Weiss, L. E.

S. K. Nayar, A. C. Sanderson, L. E. Weiss, and D. A. Simon, “Specular surface inspection using structured highlight and gaussian images,” IEEE Trans. Robot. Automat. 6(2), 208–218 (1990).
[Crossref]

A. C. Sanderson, L. E. Weiss, and S. K. Nayar, “Structured highlight inspection of specular surfaces,” IEEE Trans. Pattern Anal. Machine Intell. 10(1), 44–55 (1988).
[Crossref]

Willomitzer, F.

F. Willomitzer and G. Häusler, “Single-shot 3d motion picture camera with a dense point cloud,” Opt. Express 25(19), 23451–23464 (2017).
[Crossref]

F. Willomitzer, S. Ettl, O. Arold, and G. Häusler, “Flying triangulation - a motion-robust optical 3d sensor for the real-time shape acquisition of complex objects,” AIP Conf. Proc. 1537, 19–26 (2013).
[Crossref]

O. Arold, S. Ettl, F. Willomitzer, and G. Häusler, “Hand-guided 3D surface acquisition by combining simple light sectioning with real-time algorithms,” arXiv e-prints arXiv:1401.1946 (2014).

F. Willomitzer, “Single-Shot 3D Sensing Close to Physical Limits and Information Limits,” (Dissertation, Springer Theses (2019)).

Woodham, R. J.

R. J. Woodham, “Photometric method for determining surface orientation from multiple images,” Opt. Eng. 19(1), 191139 (1980).
[Crossref]

Wu, S.

Xu, Z.

R. Schwarte, Z. Xu, H.-G. Heinol, J. Olk, R. Klein, B. Buxbaum, H. Fischer, and J. Schulte, “New electro-optical mixing and correlating sensor: facilities and applications of the photonic mixer device (pmd),” Proc. SPIE 3100, 245–253 (1997).
[Crossref]

Yang, Z.

Y. Liu, E. Olesch, Z. Yang, and G. Häusler, “Fast and accurate deflectometry with crossed fringes,” Adv. Opt. Technol. 3(4), 441–445 (2014).
[Crossref]

Ye, J.

S. Tin, J. Ye, M. Nezamabadi, and C. Chen, “3d reconstruction of mirror-type objects using efficient ray coding,” in 2016 IEEE International Conference on Computational Photography (ICCP), (2016), pp. 1–11.

Yeh, C.-K.

J. Salvant, M. Walton, D. Kronkright, C.-K. Yeh, F. Li, O. Cossairt, and A. K. Katsaggelos, “Photometric stereo by uv-induced fluorescence to detect protrusions on georgia o’keeffe’s paintings,” Met. Soaps Art (2019).

Yu, J.

Y. Ding, J. Yu, and P. Sturm, “Recovering specular surfaces using curved line images,” in 2009 IEEE Conference on Computer Vision and Pattern Recognition, (2009), pp. 2326–2333.

Yu, X.

B. Tunwattanapong, G. Fyffe, P. Graham, J. Busch, X. Yu, A. Ghosh, and P. Debevec, “Acquiring reflectance and shape from continuous spherical harmonic illumination,” ACM Trans. Graph. 32(4), 1–12 (2013).
[Crossref]

Zuo, C.

ACM Trans. Graph. (1)

B. Tunwattanapong, G. Fyffe, P. Graham, J. Busch, X. Yu, A. Ghosh, and P. Debevec, “Acquiring reflectance and shape from continuous spherical harmonic illumination,” ACM Trans. Graph. 32(4), 1–12 (2013).
[Crossref]

Adv. Opt. Technol. (1)

Y. Liu, E. Olesch, Z. Yang, and G. Häusler, “Fast and accurate deflectometry with crossed fringes,” Adv. Opt. Technol. 3(4), 441–445 (2014).
[Crossref]

AIP Conf. Proc. (1)

F. Willomitzer, S. Ettl, O. Arold, and G. Häusler, “Flying triangulation - a motion-robust optical 3d sensor for the real-time shape acquisition of complex objects,” AIP Conf. Proc. 1537, 19–26 (2013).
[Crossref]

Appl. Opt. (4)

Comput. Graph. Forum (1)

J. Riviere, P. Peers, and A. Ghosh, “Mobile Surface Reflectometry,” Comput. Graph. Forum 35(1), 191–202 (2016).
[Crossref]

Graph. Models (1)

M. Tarini, H. P. Lensch, M. Goesele, and H.-P. Seidel, “3d acquisition of mirroring objects using striped patterns,” Graph. Models 67(4), 233–259 (2005).
[Crossref]

IEEE Trans. Pattern Anal. Machine Intell. (2)

R. Frankot and R. Chellappa, “A method for enforcing integrability in shape from shading algorithms,” IEEE Trans. Pattern Anal. Machine Intell. 10(4), 439–451 (1988).
[Crossref]

A. C. Sanderson, L. E. Weiss, and S. K. Nayar, “Structured highlight inspection of specular surfaces,” IEEE Trans. Pattern Anal. Machine Intell. 10(1), 44–55 (1988).
[Crossref]

IEEE Trans. Robot. Automat. (1)

S. K. Nayar, A. C. Sanderson, L. E. Weiss, and D. A. Simon, “Specular surface inspection using structured highlight and gaussian images,” IEEE Trans. Robot. Automat. 6(2), 208–218 (1990).
[Crossref]

Opt. Eng. (2)

G. P. Butel, G. A. Smith, and J. H. H. Burge, “Deflectometry using portable devices,” Opt. Eng. 54(2), 025111 (2015).
[Crossref]

R. J. Woodham, “Photometric method for determining surface orientation from multiple images,” Opt. Eng. 19(1), 191139 (1980).
[Crossref]

Opt. Express (4)

Opt. Lasers Eng. (1)

L. Huang, M. Idir, C. Zuo, and A. Asundi, “Review of phase measuring deflectometry,” Opt. Lasers Eng. 107, 247–257 (2018).
[Crossref]

Opt. Lett. (1)

Proc. SPIE (4)

M. C. Knauer, J. Kaminski, and G. Häusler, “Phase measuring deflectometry: a new approach to measure specular free-form surfaces,” Proc. SPIE 5457, 366 (2004).
[Crossref]

C. Faber, E. Olesch, R. Krobot, and G. Häusler, “Deflectometry challenges interferometry: the competition gets tougher!” Proc. SPIE 8493, 84930R (2012).
[Crossref]

G. Häusler, C. Faber, E. Olesch, and S. Ettl, “Deflectometry vs. interferometry,” Proc. SPIE 8788, 87881C (2013).
[Crossref]

R. Schwarte, Z. Xu, H.-G. Heinol, J. Olk, R. Klein, B. Buxbaum, H. Fischer, and J. Schulte, “New electro-optical mixing and correlating sensor: facilities and applications of the photonic mixer device (pmd),” Proc. SPIE 3100, 245–253 (1997).
[Crossref]

Sci. Rep. (1)

M. Nguyen, Y. Ghim, and H. Rhee, “Single-shot deflectometry for dynamic 3d surface profile measurement by modified spatial-carrier frequency phase-shifting method,” Sci. Rep. 9(1), 3157 (2019).
[Crossref]

Other (20)

T. Chen, M. Goesele, and H.-P. Seidel, “Mesostructure from specularity,” in Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Volume 2, (IEEE Computer Society, Washington, DC, USA, 2006), CVPR ’06, pp. 1825–1832.

C. Röttinger, C. Faber, M. Kurz, E. Olesch, G. Häusler, and E. Uhlmann, “Deflectometry for ultra-precision machining - measuring without rechucking,” in Proceedings of DGaO, (2011).

“Kokomo opalescent glass co,” https://www.kog.com .

S. Perkins, “New app reveals the hidden landscapes within georgia o’keeffe’s paintings,” Sci. Mag. (2019).

L. Strelich, “Why are georgia o’keeffe’s paintings breaking out in pimples?” Smithsonian Mag. (2019).

J. Salvant, M. Walton, D. Kronkright, C.-K. Yeh, F. Li, O. Cossairt, and A. K. Katsaggelos, “Photometric stereo by uv-induced fluorescence to detect protrusions on georgia o’keeffe’s paintings,” Met. Soaps Art (2019).

O. Arold, S. Ettl, F. Willomitzer, and G. Häusler, “Hand-guided 3D surface acquisition by combining simple light sectioning with real-time algorithms,” arXiv e-prints arXiv:1401.1946 (2014).

M. Fischer, M. Petz, and R. Tutsch, “Model-Based Deflectometric Measurement of Transparent Objects,” (Fringe 2013 – 7th International Workshop on Advanced Optical Imaging and Metrology, Springer (2013)).

F. Willomitzer, “Single-Shot 3D Sensing Close to Physical Limits and Information Limits,” (Dissertation, Springer Theses (2019)).

D. Lowe, “Method and apparatus for identifying scale invariant features in an image and use of same for locating an object in an image,” (Patent US6711293B1, (2000)).

D. Lowe, “Object recognition from local scale-invariant features,” in Proceedings of the International Conference on Computer Vision. 2. pp. 1150–1157, (1999).

Y. Ding, J. Yu, and P. Sturm, “Recovering specular surfaces using curved line images,” in 2009 IEEE Conference on Computer Vision and Pattern Recognition, (2009), pp. 2326–2333.

S. Tin, J. Ye, M. Nezamabadi, and C. Chen, “3d reconstruction of mirror-type objects using efficient ray coding,” in 2016 IEEE International Conference on Computational Photography (ICCP), (2016), pp. 1–11.

T. Bonfort and P. Sturm, “Voxel carving for specular surfaces,” in Proceedings Ninth IEEE International Conference on Computer Vision, (2003), pp. 591–596 vol.1.

C. Godard, P. Hedman, W. Li, and G. J. Brostow, “Multi-view reconstruction of highly specular surfaces in uncontrolled environments,” in 2015 International Conference on 3D Vision, (2015), pp. 19–27.

B. Jacquet, C. Häne, K. Köser, and M. Pollefeys, “Real-world normal map capture for nearly flat reflective surfaces,” in 2013 IEEE International Conference on Computer Vision, (2013), pp. 713–720.

K. Ikeuchi, “Determining surface orientations of specular surfaces by using the photometric stereo method,” in Shape Recovery, L. B. Wolff, S. A. Shafer, and G. E. Healey, eds. (Jones and Bartlett Publishers, Inc., USA, 1992), pp. 268–276.

R. B. Bergmann, J. Burke, and C. Falldorf, “Precision optical metrology without lasers,” in International Conference on Optical and Photonic Engineering (icOPEN 2015), vol. 9524A. K. Asundi and Y. Fu, eds., International Society for Optics and Photonics (SPIE, 2015), pp. 23–30.

G. Häusler, “Verfahren und vorrichtung zur ermittlung der form oder der abbildungseigenschaften von spiegelnden oder transparenten objekten,” (Patent DE19944354A1, (1999)).

E. Olesch, C. Faber, and G. Häusler, “Deflectometric self-calibration for arbitrary specular surfaces,” in Proceedings of DGaO, (2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. a) Handheld measurement of a stained glass painting with a mobile device. The reflections of the screen are visible on parts of the glass surface and reveal its three-dimensional structure. The measurement result (normal map) is displayed in the zoomed inset. b) Basic principle of ‘Phase Measuring Deflectometry’ (PMD): A screen with a fringe pattern is observed over the reflective surface of an object. The normal map of the object surface can be calculated from the deformation of the fringe pattern in the camera image.
Fig. 2.
Fig. 2. Photograph of objects to be measured with our system. a-d) Stained glass test tiles from the Kokomo glass factory [38], each with an edge length of $\sim 50\;mm$. Surface structure complexity and angular distribution of surface normals increase from a to d: ’33KDR’ (a), ’33RON’ (b), ’33WAV’ (c), ’33TIP’ (d). e) Large stained glass painting (diameter $300\;mm$), scanned with our multi-view technique by 14 views from different angles and positions.
Fig. 3.
Fig. 3. Single-view 3D reconstructions (surface normal maps) of Kokomo glass test tiles. ’33KDR’ (a), ’33RON’ (b), ’33WAV’ (c), ’33TIP’ (d). Measurements are performed with mounted tablet and no room lights. e) Reconstructions of ’33RON’ and ’33WAV’ measured under normal office light ($\sim 500lx$). e) Reconstructions for a handheld measurement of’33RON’ and ’33WAV’.
Fig. 4.
Fig. 4. Multi-view normal map 3D reconstruction of large stained glass painting using image-based registration. a) and b) ’White images’ (images captured with black screen and diffuse room light illumination) before distortion correction. c) Detected and mapped features in the two subsequent ’white images’ (color-coded by green and magenta). d) Registered ’white images’. e) Visualization of stitched multi-view normal map result, consisting of 14 registered single-views.
Fig. 5.
Fig. 5. Deflectometric measurements of different surfaces: Paintings, technical, metallic, enameled ceramic, and fluid surfaces. a) Image of measured painting with marked $70\;mm \times 80\;mm$ measurement region. b) and c) Surface shape of the marked region, calculated by integration of the acquired normal map. Brushstrokes and canvas can nicely be resolved. d) Image of measured key ($70\;mm$ length). e) Measured normal map of the key. f) Water drops ($20\;mm \times 15\;mm$) on an enameled ceramic surface (coffee mug). g) Evaluated normal map. h) Normal maps of a 5 cent and a 10 cent coin. i) Circuit board with marked $22.5\;mm \times 15\;mm$ measurement region and measured normal map. Each metallic circle has a diameter of $\sim 2\;mm$

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I ( x , y ) = A ( x , y ) + B ( x , y ) cos ( ϕ ( x , y ) )   .
I m ( x , y ) = A ( x , y ) + B ( x , y ) cos ( ϕ ( x , y ) ϕ m )   ,
ϕ m = ( m 1 ) π 2   .
ϕ ( x , y ) = arctan I 2 ( x , y ) I 4 ( x , y ) I 1 ( x , y ) I 3 ( x , y )
n = 1 ϕ x ~ 2 + ϕ y ~ 2 + 1 ( ϕ x ~ ϕ y ~ 1 )   ,