Abstract

We report for the first time the resurgence of regenerated fiber Bragg gratings (RFBGs) useful for ultra-high temperature measurements exceeding 1400 °C. A detailed study of the dynamics associated with grating regeneration in six-hole microstructured optical fibers (SHMOFs) and single mode fibers (SMFs) was conducted. Rapid heating and rapid cooling techniques appeared to have a significant impact on the thermal sustainability of the RFBGs in both types of optical fibers reaching temperature regimes exceeding 1400 °C. The presence of air holes sheds new light in understanding the thermal response of RFBGs and the stresses associated with them, which governs the variation in the Bragg wavelength.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Effect of two annealing processes on the thermal regeneration of fiber Bragg gratings in hydrogenated standard optical fibers

Kai Lu, Hangzhou Yang, Kok-Sing Lim, Harith Ahmad, Pan Zhang, Qin Tian, Xiangzi Ding, and Xueguang Qiao
Appl. Opt. 57(24) 6971-6975 (2018)

A study of regenerated gratings produced in germanosilicate fibers by high temperature annealing

S. Bandyopadhyay, J. Canning, P. Biswas, M. Stevenson, and K. Dasgupta
Opt. Express 19(2) 1198-1206 (2011)

Transition from purely elastic to viscoelastic behavior of silica optical fibers at high temperatures characterized using regenerated Bragg gratings

Markus Lindner, Daniel Bernard, Florian Heilmeier, Martin Jakobi, Wolfram Volk, Alexander W. Koch, and Johannes Roths
Opt. Express 28(5) 7323-7340 (2020)

References

  • View by:
  • |
  • |
  • |

  1. M. Åslund and J. Canning, “Annealing properties of gratings written into UV-presensitized hydrogen-outdiffused optical fiber,” Opt. Lett. 25(10), 692–694 (2000).
    [Crossref]
  2. K.-S. Lim, H.-Z. Yang, W.-Y. Chong, Y.-K. Cheong, C.-H. Lim, N. M. Ali, and H. Ahmad, “Axial contraction in etched optical fiber due to internal stress reduction,” Opt. Express 21(3), 2551–2562 (2013).
    [Crossref]
  3. N. Groothoff and J. Canning, “Enhanced type IIA gratings for high-temperature operation,” Opt. Lett. 29(20), 2360–2362 (2004).
    [Crossref]
  4. B. Zhang and M. Kahrizi, “High-Temperature Resistance Fiber Bragg Grating Temperature Sensor Fabrication,” IEEE Sens. J. 7(4), 586–591 (2007).
    [Crossref]
  5. S. Bandyopadhyay, J. Canning, M. Stevenson, and K. Cook, “Ultrahigh-temperature regenerated gratings in boron-codoped germanosilicate optical fiber using 193 nm,” Opt. Lett. 33(16), 1917–1919 (2008).
    [Crossref]
  6. P. Holmberg, F. Laurell, and M. Fokine, “Influence of pre-annealing on the thermal regeneration of fiber Bragg gratings in standard optical fibers,” Opt. Express 23(21), 27520–27535 (2015).
    [Crossref]
  7. H. Z. Yang, X. G. Qiao, S. Das, and M. C. Paul, “Thermal regenerated grating operation at temperatures up to 1400°C using new class of multimaterial glass-based photosensitive fiber,” Opt. Lett. 39(22), 6438–6441 (2014).
    [Crossref]
  8. D. S. Gunawardena, K. A. Mat-Sharif, M.-H. Lai, K.-S. Lim, N. Tamchek, N. Y. M. Omar, S. D. Emami, S. Z. Muhamad-Yasin, M. I. Zulkifli, Z. Yusoff, H.-Z. Yang, H. A. Abdul-Rashid, and H. Ahmad, “Thermal Activation of Regenerated Grating in Hydrogenated Gallosilicate Fiber,” IEEE Sens. J. 16(6), 1659–1664 (2016).
    [Crossref]
  9. K. Cook, L.-Y. Shao, and J. Canning, “Regeneration and helium: regenerating Bragg gratings in helium-loaded germanosilicate optical fibre,” Opt. Mater. Express 2(12), 1733–1742 (2012).
    [Crossref]
  10. A. Bueno, K. Chah, D. Kinet, P. Mégret, and C. Caucheteur, “Hydrogen influence on regenerated FBGs produced by the phase mask technique with 266 nm femtosecond pulses,” in Advanced Photonics Conference, (Optical Society of America, 2014), paper. BW4D-3.
  11. K. Cook, C. Smelser, J. Canning, G. le Garff, M. Lancry, and S. Mihailov, “Regenerated femtosecond fibre Bragg gratings,” Proc. SPIE 8351, 835111 (2012).
    [Crossref]
  12. T. Wang, L.-Y. Shao, J. Canning, and K. Cook, “Regeneration of fiber Bragg gratings under strain,” Appl. Opt. 52(10), 2080–2085 (2013).
    [Crossref]
  13. A. Bueno, D. Kinet, P. Mégret, and C. Caucheteur, “Fast thermal regeneration of fiber Bragg gratings,” Opt. Lett. 38(20), 4178–4181 (2013).
    [Crossref]
  14. T. Chen, R. Chen, C. Jewart, B. Zhang, K. Cook, J. Canning, and K. P. Chen, “Regenerated gratings in air-hole microstructured fibers for high-temperature pressure sensing,” Opt. Lett. 36(18), 3542–3544 (2011).
    [Crossref]
  15. A. M. R. Pinto and M. Lopez-Amo, “Photonic Crystal Fibers for Sensing Applications,” J. Sens. 2012, 1–21 (2012).
    [Crossref]
  16. D. Lopez-Torres, A. Lopez-Aldaba, C. Elosua, J. Auguste, R. Jamier, P. Roy, M. Lopez-Amo, and F. Arregui, “Comparison between Different Structures of Suspended-Core Microstructured Optical Fibers for Volatiles Sensing,” Sensors 18(8), 2523 (2018).
    [Crossref]
  17. J. Canning, “Regeneration, regenerated gratings and composite glass properties: the implications for high temperature micro and nano milling and optical sensing,” Measurement 79, 236–249 (2016).
    [Crossref]
  18. M. Lancry, K. Cook, J. Cao, T. Billotte, B. Poumellec, and J. Canning, “Study of stress relaxation in UV regenerated fiber Bragg gratings,” in The European Conference on Lasers and Electro-Optics, (Optical Society of America, 2017), paper. CM_P_25.
  19. M. Lancry, K. Cook, D. Pallarés-Aldeiturriaga, J. M. Lopez-Higuera, B. Poumellec, and J. Canning, “Raman spectroscopic study of Bragg gratings regeneration,” in Advanced Photonics Conference, (Optical Society of America, 2018), paper. BM2A-4.
  20. H. Yang, W. Y. Chong, Y. K. Cheong, K.-S. Lim, C. H. Pua, S. W. Harun, and H. Ahmad, “Thermal Regeneration in Etched-Core Fiber Bragg Grating,” IEEE Sens. J. 13(7), 2581–2585 (2013).
    [Crossref]
  21. J. Canning, M. Stevenson, S. Bandyopadhyay, and K. Cook, “Extreme silica optical fibre gratings,” Sensors 8(10), 6448–6452 (2008).
    [Crossref]
  22. M. Lai, K. Lim, D. S. Gunawardena, H. Yang, W.-Y. Chong, and H. Ahmad, “Thermal stress modification in regenerated fiber Bragg grating via manipulation of glass transition temperature based on CO2-laser annealing,” Opt. Lett. 40(5), 748–751 (2015).
    [Crossref]
  23. K. W. Raine, R. Feced, S. E. Kanellopoulos, and V. A. Handerek, “Measurement of axial stress at high spatial resolution in ultraviolet-exposed fibers,” Appl. Opt. 38(7), 1086–1095 (1999).
    [Crossref]
  24. M. Tomozawa, A. Koike, and S. R. Ryu, “Exponential structural relaxation of a high purity silica glass,” J. Non-Cryst. Solids 354(40-41), 4685–4690 (2008).
    [Crossref]
  25. Q. Lin, N. Zhao, K. Yao, Z. Jiang, B. Tian, P. Shi, and F. Chen, “Ordinary Optical Fiber Sensor for Ultra-High Temperature Measurement Based on Infrared Radiation,” Sensors 18(11), 4071 (2018).
    [Crossref]
  26. M. Celikin, D. Barba, B. Bastola, A. Ruediger, and F. Rosei, “Development of regenerated fiber Bragg grating sensors with long-term stability,” Opt. Express 24(19), 21897–21909 (2016).
    [Crossref]
  27. F. E. Wagstaff, “Crystallization Kinetics of Internally Nucleated Vitreous Silica,” J. Am. Ceram. Soc. 51(8), 449–453 (1968).
    [Crossref]
  28. Y. Li, M. Yang, C. Liao, D. Wang, J. Lu, and P. Lu, “Prestressed Fiber Bragg Grating With High Temperature Stability,” J. Lightwave Technol. 29(10), 1555–1559 (2011).
    [Crossref]
  29. T. Martynkien, G. Statkiewicz-Barabach, J. Olszewski, J. Wojcik, P. Mergo, T. Geernaert, C. Sonnenfeld, A. Anuszkiewicz, M. K. Szczurowski, K. Tarnowski, M. Makara, K. Skorupski, J. Klimek, K. Poturaj, W. Urbanczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, “Highly birefringent microstructured fibers with enhanced sensitivity to hydrostatic pressure,” Opt. Express 18(14), 15113–15121 (2010).
    [Crossref]

2018 (2)

D. Lopez-Torres, A. Lopez-Aldaba, C. Elosua, J. Auguste, R. Jamier, P. Roy, M. Lopez-Amo, and F. Arregui, “Comparison between Different Structures of Suspended-Core Microstructured Optical Fibers for Volatiles Sensing,” Sensors 18(8), 2523 (2018).
[Crossref]

Q. Lin, N. Zhao, K. Yao, Z. Jiang, B. Tian, P. Shi, and F. Chen, “Ordinary Optical Fiber Sensor for Ultra-High Temperature Measurement Based on Infrared Radiation,” Sensors 18(11), 4071 (2018).
[Crossref]

2016 (3)

M. Celikin, D. Barba, B. Bastola, A. Ruediger, and F. Rosei, “Development of regenerated fiber Bragg grating sensors with long-term stability,” Opt. Express 24(19), 21897–21909 (2016).
[Crossref]

J. Canning, “Regeneration, regenerated gratings and composite glass properties: the implications for high temperature micro and nano milling and optical sensing,” Measurement 79, 236–249 (2016).
[Crossref]

D. S. Gunawardena, K. A. Mat-Sharif, M.-H. Lai, K.-S. Lim, N. Tamchek, N. Y. M. Omar, S. D. Emami, S. Z. Muhamad-Yasin, M. I. Zulkifli, Z. Yusoff, H.-Z. Yang, H. A. Abdul-Rashid, and H. Ahmad, “Thermal Activation of Regenerated Grating in Hydrogenated Gallosilicate Fiber,” IEEE Sens. J. 16(6), 1659–1664 (2016).
[Crossref]

2015 (2)

2014 (1)

2013 (4)

2012 (3)

A. M. R. Pinto and M. Lopez-Amo, “Photonic Crystal Fibers for Sensing Applications,” J. Sens. 2012, 1–21 (2012).
[Crossref]

K. Cook, L.-Y. Shao, and J. Canning, “Regeneration and helium: regenerating Bragg gratings in helium-loaded germanosilicate optical fibre,” Opt. Mater. Express 2(12), 1733–1742 (2012).
[Crossref]

K. Cook, C. Smelser, J. Canning, G. le Garff, M. Lancry, and S. Mihailov, “Regenerated femtosecond fibre Bragg gratings,” Proc. SPIE 8351, 835111 (2012).
[Crossref]

2011 (2)

2010 (1)

2008 (3)

M. Tomozawa, A. Koike, and S. R. Ryu, “Exponential structural relaxation of a high purity silica glass,” J. Non-Cryst. Solids 354(40-41), 4685–4690 (2008).
[Crossref]

S. Bandyopadhyay, J. Canning, M. Stevenson, and K. Cook, “Ultrahigh-temperature regenerated gratings in boron-codoped germanosilicate optical fiber using 193 nm,” Opt. Lett. 33(16), 1917–1919 (2008).
[Crossref]

J. Canning, M. Stevenson, S. Bandyopadhyay, and K. Cook, “Extreme silica optical fibre gratings,” Sensors 8(10), 6448–6452 (2008).
[Crossref]

2007 (1)

B. Zhang and M. Kahrizi, “High-Temperature Resistance Fiber Bragg Grating Temperature Sensor Fabrication,” IEEE Sens. J. 7(4), 586–591 (2007).
[Crossref]

2004 (1)

2000 (1)

1999 (1)

1968 (1)

F. E. Wagstaff, “Crystallization Kinetics of Internally Nucleated Vitreous Silica,” J. Am. Ceram. Soc. 51(8), 449–453 (1968).
[Crossref]

Abdul-Rashid, H. A.

D. S. Gunawardena, K. A. Mat-Sharif, M.-H. Lai, K.-S. Lim, N. Tamchek, N. Y. M. Omar, S. D. Emami, S. Z. Muhamad-Yasin, M. I. Zulkifli, Z. Yusoff, H.-Z. Yang, H. A. Abdul-Rashid, and H. Ahmad, “Thermal Activation of Regenerated Grating in Hydrogenated Gallosilicate Fiber,” IEEE Sens. J. 16(6), 1659–1664 (2016).
[Crossref]

Ahmad, H.

D. S. Gunawardena, K. A. Mat-Sharif, M.-H. Lai, K.-S. Lim, N. Tamchek, N. Y. M. Omar, S. D. Emami, S. Z. Muhamad-Yasin, M. I. Zulkifli, Z. Yusoff, H.-Z. Yang, H. A. Abdul-Rashid, and H. Ahmad, “Thermal Activation of Regenerated Grating in Hydrogenated Gallosilicate Fiber,” IEEE Sens. J. 16(6), 1659–1664 (2016).
[Crossref]

M. Lai, K. Lim, D. S. Gunawardena, H. Yang, W.-Y. Chong, and H. Ahmad, “Thermal stress modification in regenerated fiber Bragg grating via manipulation of glass transition temperature based on CO2-laser annealing,” Opt. Lett. 40(5), 748–751 (2015).
[Crossref]

H. Yang, W. Y. Chong, Y. K. Cheong, K.-S. Lim, C. H. Pua, S. W. Harun, and H. Ahmad, “Thermal Regeneration in Etched-Core Fiber Bragg Grating,” IEEE Sens. J. 13(7), 2581–2585 (2013).
[Crossref]

K.-S. Lim, H.-Z. Yang, W.-Y. Chong, Y.-K. Cheong, C.-H. Lim, N. M. Ali, and H. Ahmad, “Axial contraction in etched optical fiber due to internal stress reduction,” Opt. Express 21(3), 2551–2562 (2013).
[Crossref]

Ali, N. M.

Anuszkiewicz, A.

Arregui, F.

D. Lopez-Torres, A. Lopez-Aldaba, C. Elosua, J. Auguste, R. Jamier, P. Roy, M. Lopez-Amo, and F. Arregui, “Comparison between Different Structures of Suspended-Core Microstructured Optical Fibers for Volatiles Sensing,” Sensors 18(8), 2523 (2018).
[Crossref]

Åslund, M.

Auguste, J.

D. Lopez-Torres, A. Lopez-Aldaba, C. Elosua, J. Auguste, R. Jamier, P. Roy, M. Lopez-Amo, and F. Arregui, “Comparison between Different Structures of Suspended-Core Microstructured Optical Fibers for Volatiles Sensing,” Sensors 18(8), 2523 (2018).
[Crossref]

Bandyopadhyay, S.

Barba, D.

Bastola, B.

Berghmans, F.

Billotte, T.

M. Lancry, K. Cook, J. Cao, T. Billotte, B. Poumellec, and J. Canning, “Study of stress relaxation in UV regenerated fiber Bragg gratings,” in The European Conference on Lasers and Electro-Optics, (Optical Society of America, 2017), paper. CM_P_25.

Bueno, A.

A. Bueno, D. Kinet, P. Mégret, and C. Caucheteur, “Fast thermal regeneration of fiber Bragg gratings,” Opt. Lett. 38(20), 4178–4181 (2013).
[Crossref]

A. Bueno, K. Chah, D. Kinet, P. Mégret, and C. Caucheteur, “Hydrogen influence on regenerated FBGs produced by the phase mask technique with 266 nm femtosecond pulses,” in Advanced Photonics Conference, (Optical Society of America, 2014), paper. BW4D-3.

Canning, J.

J. Canning, “Regeneration, regenerated gratings and composite glass properties: the implications for high temperature micro and nano milling and optical sensing,” Measurement 79, 236–249 (2016).
[Crossref]

T. Wang, L.-Y. Shao, J. Canning, and K. Cook, “Regeneration of fiber Bragg gratings under strain,” Appl. Opt. 52(10), 2080–2085 (2013).
[Crossref]

K. Cook, C. Smelser, J. Canning, G. le Garff, M. Lancry, and S. Mihailov, “Regenerated femtosecond fibre Bragg gratings,” Proc. SPIE 8351, 835111 (2012).
[Crossref]

K. Cook, L.-Y. Shao, and J. Canning, “Regeneration and helium: regenerating Bragg gratings in helium-loaded germanosilicate optical fibre,” Opt. Mater. Express 2(12), 1733–1742 (2012).
[Crossref]

T. Chen, R. Chen, C. Jewart, B. Zhang, K. Cook, J. Canning, and K. P. Chen, “Regenerated gratings in air-hole microstructured fibers for high-temperature pressure sensing,” Opt. Lett. 36(18), 3542–3544 (2011).
[Crossref]

S. Bandyopadhyay, J. Canning, M. Stevenson, and K. Cook, “Ultrahigh-temperature regenerated gratings in boron-codoped germanosilicate optical fiber using 193 nm,” Opt. Lett. 33(16), 1917–1919 (2008).
[Crossref]

J. Canning, M. Stevenson, S. Bandyopadhyay, and K. Cook, “Extreme silica optical fibre gratings,” Sensors 8(10), 6448–6452 (2008).
[Crossref]

N. Groothoff and J. Canning, “Enhanced type IIA gratings for high-temperature operation,” Opt. Lett. 29(20), 2360–2362 (2004).
[Crossref]

M. Åslund and J. Canning, “Annealing properties of gratings written into UV-presensitized hydrogen-outdiffused optical fiber,” Opt. Lett. 25(10), 692–694 (2000).
[Crossref]

M. Lancry, K. Cook, J. Cao, T. Billotte, B. Poumellec, and J. Canning, “Study of stress relaxation in UV regenerated fiber Bragg gratings,” in The European Conference on Lasers and Electro-Optics, (Optical Society of America, 2017), paper. CM_P_25.

M. Lancry, K. Cook, D. Pallarés-Aldeiturriaga, J. M. Lopez-Higuera, B. Poumellec, and J. Canning, “Raman spectroscopic study of Bragg gratings regeneration,” in Advanced Photonics Conference, (Optical Society of America, 2018), paper. BM2A-4.

Cao, J.

M. Lancry, K. Cook, J. Cao, T. Billotte, B. Poumellec, and J. Canning, “Study of stress relaxation in UV regenerated fiber Bragg gratings,” in The European Conference on Lasers and Electro-Optics, (Optical Society of America, 2017), paper. CM_P_25.

Caucheteur, C.

A. Bueno, D. Kinet, P. Mégret, and C. Caucheteur, “Fast thermal regeneration of fiber Bragg gratings,” Opt. Lett. 38(20), 4178–4181 (2013).
[Crossref]

A. Bueno, K. Chah, D. Kinet, P. Mégret, and C. Caucheteur, “Hydrogen influence on regenerated FBGs produced by the phase mask technique with 266 nm femtosecond pulses,” in Advanced Photonics Conference, (Optical Society of America, 2014), paper. BW4D-3.

Celikin, M.

Chah, K.

A. Bueno, K. Chah, D. Kinet, P. Mégret, and C. Caucheteur, “Hydrogen influence on regenerated FBGs produced by the phase mask technique with 266 nm femtosecond pulses,” in Advanced Photonics Conference, (Optical Society of America, 2014), paper. BW4D-3.

Chen, F.

Q. Lin, N. Zhao, K. Yao, Z. Jiang, B. Tian, P. Shi, and F. Chen, “Ordinary Optical Fiber Sensor for Ultra-High Temperature Measurement Based on Infrared Radiation,” Sensors 18(11), 4071 (2018).
[Crossref]

Chen, K. P.

Chen, R.

Chen, T.

Cheong, Y. K.

H. Yang, W. Y. Chong, Y. K. Cheong, K.-S. Lim, C. H. Pua, S. W. Harun, and H. Ahmad, “Thermal Regeneration in Etched-Core Fiber Bragg Grating,” IEEE Sens. J. 13(7), 2581–2585 (2013).
[Crossref]

Cheong, Y.-K.

Chong, W. Y.

H. Yang, W. Y. Chong, Y. K. Cheong, K.-S. Lim, C. H. Pua, S. W. Harun, and H. Ahmad, “Thermal Regeneration in Etched-Core Fiber Bragg Grating,” IEEE Sens. J. 13(7), 2581–2585 (2013).
[Crossref]

Chong, W.-Y.

Cook, K.

T. Wang, L.-Y. Shao, J. Canning, and K. Cook, “Regeneration of fiber Bragg gratings under strain,” Appl. Opt. 52(10), 2080–2085 (2013).
[Crossref]

K. Cook, C. Smelser, J. Canning, G. le Garff, M. Lancry, and S. Mihailov, “Regenerated femtosecond fibre Bragg gratings,” Proc. SPIE 8351, 835111 (2012).
[Crossref]

K. Cook, L.-Y. Shao, and J. Canning, “Regeneration and helium: regenerating Bragg gratings in helium-loaded germanosilicate optical fibre,” Opt. Mater. Express 2(12), 1733–1742 (2012).
[Crossref]

T. Chen, R. Chen, C. Jewart, B. Zhang, K. Cook, J. Canning, and K. P. Chen, “Regenerated gratings in air-hole microstructured fibers for high-temperature pressure sensing,” Opt. Lett. 36(18), 3542–3544 (2011).
[Crossref]

S. Bandyopadhyay, J. Canning, M. Stevenson, and K. Cook, “Ultrahigh-temperature regenerated gratings in boron-codoped germanosilicate optical fiber using 193 nm,” Opt. Lett. 33(16), 1917–1919 (2008).
[Crossref]

J. Canning, M. Stevenson, S. Bandyopadhyay, and K. Cook, “Extreme silica optical fibre gratings,” Sensors 8(10), 6448–6452 (2008).
[Crossref]

M. Lancry, K. Cook, J. Cao, T. Billotte, B. Poumellec, and J. Canning, “Study of stress relaxation in UV regenerated fiber Bragg gratings,” in The European Conference on Lasers and Electro-Optics, (Optical Society of America, 2017), paper. CM_P_25.

M. Lancry, K. Cook, D. Pallarés-Aldeiturriaga, J. M. Lopez-Higuera, B. Poumellec, and J. Canning, “Raman spectroscopic study of Bragg gratings regeneration,” in Advanced Photonics Conference, (Optical Society of America, 2018), paper. BM2A-4.

Das, S.

Elosua, C.

D. Lopez-Torres, A. Lopez-Aldaba, C. Elosua, J. Auguste, R. Jamier, P. Roy, M. Lopez-Amo, and F. Arregui, “Comparison between Different Structures of Suspended-Core Microstructured Optical Fibers for Volatiles Sensing,” Sensors 18(8), 2523 (2018).
[Crossref]

Emami, S. D.

D. S. Gunawardena, K. A. Mat-Sharif, M.-H. Lai, K.-S. Lim, N. Tamchek, N. Y. M. Omar, S. D. Emami, S. Z. Muhamad-Yasin, M. I. Zulkifli, Z. Yusoff, H.-Z. Yang, H. A. Abdul-Rashid, and H. Ahmad, “Thermal Activation of Regenerated Grating in Hydrogenated Gallosilicate Fiber,” IEEE Sens. J. 16(6), 1659–1664 (2016).
[Crossref]

Feced, R.

Fokine, M.

Geernaert, T.

Groothoff, N.

Gunawardena, D. S.

D. S. Gunawardena, K. A. Mat-Sharif, M.-H. Lai, K.-S. Lim, N. Tamchek, N. Y. M. Omar, S. D. Emami, S. Z. Muhamad-Yasin, M. I. Zulkifli, Z. Yusoff, H.-Z. Yang, H. A. Abdul-Rashid, and H. Ahmad, “Thermal Activation of Regenerated Grating in Hydrogenated Gallosilicate Fiber,” IEEE Sens. J. 16(6), 1659–1664 (2016).
[Crossref]

M. Lai, K. Lim, D. S. Gunawardena, H. Yang, W.-Y. Chong, and H. Ahmad, “Thermal stress modification in regenerated fiber Bragg grating via manipulation of glass transition temperature based on CO2-laser annealing,” Opt. Lett. 40(5), 748–751 (2015).
[Crossref]

Handerek, V. A.

Harun, S. W.

H. Yang, W. Y. Chong, Y. K. Cheong, K.-S. Lim, C. H. Pua, S. W. Harun, and H. Ahmad, “Thermal Regeneration in Etched-Core Fiber Bragg Grating,” IEEE Sens. J. 13(7), 2581–2585 (2013).
[Crossref]

Holmberg, P.

Jamier, R.

D. Lopez-Torres, A. Lopez-Aldaba, C. Elosua, J. Auguste, R. Jamier, P. Roy, M. Lopez-Amo, and F. Arregui, “Comparison between Different Structures of Suspended-Core Microstructured Optical Fibers for Volatiles Sensing,” Sensors 18(8), 2523 (2018).
[Crossref]

Jewart, C.

Jiang, Z.

Q. Lin, N. Zhao, K. Yao, Z. Jiang, B. Tian, P. Shi, and F. Chen, “Ordinary Optical Fiber Sensor for Ultra-High Temperature Measurement Based on Infrared Radiation,” Sensors 18(11), 4071 (2018).
[Crossref]

Kahrizi, M.

B. Zhang and M. Kahrizi, “High-Temperature Resistance Fiber Bragg Grating Temperature Sensor Fabrication,” IEEE Sens. J. 7(4), 586–591 (2007).
[Crossref]

Kanellopoulos, S. E.

Kinet, D.

A. Bueno, D. Kinet, P. Mégret, and C. Caucheteur, “Fast thermal regeneration of fiber Bragg gratings,” Opt. Lett. 38(20), 4178–4181 (2013).
[Crossref]

A. Bueno, K. Chah, D. Kinet, P. Mégret, and C. Caucheteur, “Hydrogen influence on regenerated FBGs produced by the phase mask technique with 266 nm femtosecond pulses,” in Advanced Photonics Conference, (Optical Society of America, 2014), paper. BW4D-3.

Klimek, J.

Koike, A.

M. Tomozawa, A. Koike, and S. R. Ryu, “Exponential structural relaxation of a high purity silica glass,” J. Non-Cryst. Solids 354(40-41), 4685–4690 (2008).
[Crossref]

Lai, M.

Lai, M.-H.

D. S. Gunawardena, K. A. Mat-Sharif, M.-H. Lai, K.-S. Lim, N. Tamchek, N. Y. M. Omar, S. D. Emami, S. Z. Muhamad-Yasin, M. I. Zulkifli, Z. Yusoff, H.-Z. Yang, H. A. Abdul-Rashid, and H. Ahmad, “Thermal Activation of Regenerated Grating in Hydrogenated Gallosilicate Fiber,” IEEE Sens. J. 16(6), 1659–1664 (2016).
[Crossref]

Lancry, M.

K. Cook, C. Smelser, J. Canning, G. le Garff, M. Lancry, and S. Mihailov, “Regenerated femtosecond fibre Bragg gratings,” Proc. SPIE 8351, 835111 (2012).
[Crossref]

M. Lancry, K. Cook, D. Pallarés-Aldeiturriaga, J. M. Lopez-Higuera, B. Poumellec, and J. Canning, “Raman spectroscopic study of Bragg gratings regeneration,” in Advanced Photonics Conference, (Optical Society of America, 2018), paper. BM2A-4.

M. Lancry, K. Cook, J. Cao, T. Billotte, B. Poumellec, and J. Canning, “Study of stress relaxation in UV regenerated fiber Bragg gratings,” in The European Conference on Lasers and Electro-Optics, (Optical Society of America, 2017), paper. CM_P_25.

Laurell, F.

le Garff, G.

K. Cook, C. Smelser, J. Canning, G. le Garff, M. Lancry, and S. Mihailov, “Regenerated femtosecond fibre Bragg gratings,” Proc. SPIE 8351, 835111 (2012).
[Crossref]

Li, Y.

Liao, C.

Lim, C.-H.

Lim, K.

Lim, K.-S.

D. S. Gunawardena, K. A. Mat-Sharif, M.-H. Lai, K.-S. Lim, N. Tamchek, N. Y. M. Omar, S. D. Emami, S. Z. Muhamad-Yasin, M. I. Zulkifli, Z. Yusoff, H.-Z. Yang, H. A. Abdul-Rashid, and H. Ahmad, “Thermal Activation of Regenerated Grating in Hydrogenated Gallosilicate Fiber,” IEEE Sens. J. 16(6), 1659–1664 (2016).
[Crossref]

K.-S. Lim, H.-Z. Yang, W.-Y. Chong, Y.-K. Cheong, C.-H. Lim, N. M. Ali, and H. Ahmad, “Axial contraction in etched optical fiber due to internal stress reduction,” Opt. Express 21(3), 2551–2562 (2013).
[Crossref]

H. Yang, W. Y. Chong, Y. K. Cheong, K.-S. Lim, C. H. Pua, S. W. Harun, and H. Ahmad, “Thermal Regeneration in Etched-Core Fiber Bragg Grating,” IEEE Sens. J. 13(7), 2581–2585 (2013).
[Crossref]

Lin, Q.

Q. Lin, N. Zhao, K. Yao, Z. Jiang, B. Tian, P. Shi, and F. Chen, “Ordinary Optical Fiber Sensor for Ultra-High Temperature Measurement Based on Infrared Radiation,” Sensors 18(11), 4071 (2018).
[Crossref]

Lopez-Aldaba, A.

D. Lopez-Torres, A. Lopez-Aldaba, C. Elosua, J. Auguste, R. Jamier, P. Roy, M. Lopez-Amo, and F. Arregui, “Comparison between Different Structures of Suspended-Core Microstructured Optical Fibers for Volatiles Sensing,” Sensors 18(8), 2523 (2018).
[Crossref]

Lopez-Amo, M.

D. Lopez-Torres, A. Lopez-Aldaba, C. Elosua, J. Auguste, R. Jamier, P. Roy, M. Lopez-Amo, and F. Arregui, “Comparison between Different Structures of Suspended-Core Microstructured Optical Fibers for Volatiles Sensing,” Sensors 18(8), 2523 (2018).
[Crossref]

A. M. R. Pinto and M. Lopez-Amo, “Photonic Crystal Fibers for Sensing Applications,” J. Sens. 2012, 1–21 (2012).
[Crossref]

Lopez-Higuera, J. M.

M. Lancry, K. Cook, D. Pallarés-Aldeiturriaga, J. M. Lopez-Higuera, B. Poumellec, and J. Canning, “Raman spectroscopic study of Bragg gratings regeneration,” in Advanced Photonics Conference, (Optical Society of America, 2018), paper. BM2A-4.

Lopez-Torres, D.

D. Lopez-Torres, A. Lopez-Aldaba, C. Elosua, J. Auguste, R. Jamier, P. Roy, M. Lopez-Amo, and F. Arregui, “Comparison between Different Structures of Suspended-Core Microstructured Optical Fibers for Volatiles Sensing,” Sensors 18(8), 2523 (2018).
[Crossref]

Lu, J.

Lu, P.

Makara, M.

Martynkien, T.

Mat-Sharif, K. A.

D. S. Gunawardena, K. A. Mat-Sharif, M.-H. Lai, K.-S. Lim, N. Tamchek, N. Y. M. Omar, S. D. Emami, S. Z. Muhamad-Yasin, M. I. Zulkifli, Z. Yusoff, H.-Z. Yang, H. A. Abdul-Rashid, and H. Ahmad, “Thermal Activation of Regenerated Grating in Hydrogenated Gallosilicate Fiber,” IEEE Sens. J. 16(6), 1659–1664 (2016).
[Crossref]

Mégret, P.

A. Bueno, D. Kinet, P. Mégret, and C. Caucheteur, “Fast thermal regeneration of fiber Bragg gratings,” Opt. Lett. 38(20), 4178–4181 (2013).
[Crossref]

A. Bueno, K. Chah, D. Kinet, P. Mégret, and C. Caucheteur, “Hydrogen influence on regenerated FBGs produced by the phase mask technique with 266 nm femtosecond pulses,” in Advanced Photonics Conference, (Optical Society of America, 2014), paper. BW4D-3.

Mergo, P.

Mihailov, S.

K. Cook, C. Smelser, J. Canning, G. le Garff, M. Lancry, and S. Mihailov, “Regenerated femtosecond fibre Bragg gratings,” Proc. SPIE 8351, 835111 (2012).
[Crossref]

Muhamad-Yasin, S. Z.

D. S. Gunawardena, K. A. Mat-Sharif, M.-H. Lai, K.-S. Lim, N. Tamchek, N. Y. M. Omar, S. D. Emami, S. Z. Muhamad-Yasin, M. I. Zulkifli, Z. Yusoff, H.-Z. Yang, H. A. Abdul-Rashid, and H. Ahmad, “Thermal Activation of Regenerated Grating in Hydrogenated Gallosilicate Fiber,” IEEE Sens. J. 16(6), 1659–1664 (2016).
[Crossref]

Nasilowski, T.

Olszewski, J.

Omar, N. Y. M.

D. S. Gunawardena, K. A. Mat-Sharif, M.-H. Lai, K.-S. Lim, N. Tamchek, N. Y. M. Omar, S. D. Emami, S. Z. Muhamad-Yasin, M. I. Zulkifli, Z. Yusoff, H.-Z. Yang, H. A. Abdul-Rashid, and H. Ahmad, “Thermal Activation of Regenerated Grating in Hydrogenated Gallosilicate Fiber,” IEEE Sens. J. 16(6), 1659–1664 (2016).
[Crossref]

Pallarés-Aldeiturriaga, D.

M. Lancry, K. Cook, D. Pallarés-Aldeiturriaga, J. M. Lopez-Higuera, B. Poumellec, and J. Canning, “Raman spectroscopic study of Bragg gratings regeneration,” in Advanced Photonics Conference, (Optical Society of America, 2018), paper. BM2A-4.

Paul, M. C.

Pinto, A. M. R.

A. M. R. Pinto and M. Lopez-Amo, “Photonic Crystal Fibers for Sensing Applications,” J. Sens. 2012, 1–21 (2012).
[Crossref]

Poturaj, K.

Poumellec, B.

M. Lancry, K. Cook, D. Pallarés-Aldeiturriaga, J. M. Lopez-Higuera, B. Poumellec, and J. Canning, “Raman spectroscopic study of Bragg gratings regeneration,” in Advanced Photonics Conference, (Optical Society of America, 2018), paper. BM2A-4.

M. Lancry, K. Cook, J. Cao, T. Billotte, B. Poumellec, and J. Canning, “Study of stress relaxation in UV regenerated fiber Bragg gratings,” in The European Conference on Lasers and Electro-Optics, (Optical Society of America, 2017), paper. CM_P_25.

Pua, C. H.

H. Yang, W. Y. Chong, Y. K. Cheong, K.-S. Lim, C. H. Pua, S. W. Harun, and H. Ahmad, “Thermal Regeneration in Etched-Core Fiber Bragg Grating,” IEEE Sens. J. 13(7), 2581–2585 (2013).
[Crossref]

Qiao, X. G.

Raine, K. W.

Rosei, F.

Roy, P.

D. Lopez-Torres, A. Lopez-Aldaba, C. Elosua, J. Auguste, R. Jamier, P. Roy, M. Lopez-Amo, and F. Arregui, “Comparison between Different Structures of Suspended-Core Microstructured Optical Fibers for Volatiles Sensing,” Sensors 18(8), 2523 (2018).
[Crossref]

Ruediger, A.

Ryu, S. R.

M. Tomozawa, A. Koike, and S. R. Ryu, “Exponential structural relaxation of a high purity silica glass,” J. Non-Cryst. Solids 354(40-41), 4685–4690 (2008).
[Crossref]

Shao, L.-Y.

Shi, P.

Q. Lin, N. Zhao, K. Yao, Z. Jiang, B. Tian, P. Shi, and F. Chen, “Ordinary Optical Fiber Sensor for Ultra-High Temperature Measurement Based on Infrared Radiation,” Sensors 18(11), 4071 (2018).
[Crossref]

Skorupski, K.

Smelser, C.

K. Cook, C. Smelser, J. Canning, G. le Garff, M. Lancry, and S. Mihailov, “Regenerated femtosecond fibre Bragg gratings,” Proc. SPIE 8351, 835111 (2012).
[Crossref]

Sonnenfeld, C.

Statkiewicz-Barabach, G.

Stevenson, M.

Szczurowski, M. K.

Tamchek, N.

D. S. Gunawardena, K. A. Mat-Sharif, M.-H. Lai, K.-S. Lim, N. Tamchek, N. Y. M. Omar, S. D. Emami, S. Z. Muhamad-Yasin, M. I. Zulkifli, Z. Yusoff, H.-Z. Yang, H. A. Abdul-Rashid, and H. Ahmad, “Thermal Activation of Regenerated Grating in Hydrogenated Gallosilicate Fiber,” IEEE Sens. J. 16(6), 1659–1664 (2016).
[Crossref]

Tarnowski, K.

Thienpont, H.

Tian, B.

Q. Lin, N. Zhao, K. Yao, Z. Jiang, B. Tian, P. Shi, and F. Chen, “Ordinary Optical Fiber Sensor for Ultra-High Temperature Measurement Based on Infrared Radiation,” Sensors 18(11), 4071 (2018).
[Crossref]

Tomozawa, M.

M. Tomozawa, A. Koike, and S. R. Ryu, “Exponential structural relaxation of a high purity silica glass,” J. Non-Cryst. Solids 354(40-41), 4685–4690 (2008).
[Crossref]

Urbanczyk, W.

Wagstaff, F. E.

F. E. Wagstaff, “Crystallization Kinetics of Internally Nucleated Vitreous Silica,” J. Am. Ceram. Soc. 51(8), 449–453 (1968).
[Crossref]

Wang, D.

Wang, T.

Wojcik, J.

Yang, H.

M. Lai, K. Lim, D. S. Gunawardena, H. Yang, W.-Y. Chong, and H. Ahmad, “Thermal stress modification in regenerated fiber Bragg grating via manipulation of glass transition temperature based on CO2-laser annealing,” Opt. Lett. 40(5), 748–751 (2015).
[Crossref]

H. Yang, W. Y. Chong, Y. K. Cheong, K.-S. Lim, C. H. Pua, S. W. Harun, and H. Ahmad, “Thermal Regeneration in Etched-Core Fiber Bragg Grating,” IEEE Sens. J. 13(7), 2581–2585 (2013).
[Crossref]

Yang, H. Z.

Yang, H.-Z.

D. S. Gunawardena, K. A. Mat-Sharif, M.-H. Lai, K.-S. Lim, N. Tamchek, N. Y. M. Omar, S. D. Emami, S. Z. Muhamad-Yasin, M. I. Zulkifli, Z. Yusoff, H.-Z. Yang, H. A. Abdul-Rashid, and H. Ahmad, “Thermal Activation of Regenerated Grating in Hydrogenated Gallosilicate Fiber,” IEEE Sens. J. 16(6), 1659–1664 (2016).
[Crossref]

K.-S. Lim, H.-Z. Yang, W.-Y. Chong, Y.-K. Cheong, C.-H. Lim, N. M. Ali, and H. Ahmad, “Axial contraction in etched optical fiber due to internal stress reduction,” Opt. Express 21(3), 2551–2562 (2013).
[Crossref]

Yang, M.

Yao, K.

Q. Lin, N. Zhao, K. Yao, Z. Jiang, B. Tian, P. Shi, and F. Chen, “Ordinary Optical Fiber Sensor for Ultra-High Temperature Measurement Based on Infrared Radiation,” Sensors 18(11), 4071 (2018).
[Crossref]

Yusoff, Z.

D. S. Gunawardena, K. A. Mat-Sharif, M.-H. Lai, K.-S. Lim, N. Tamchek, N. Y. M. Omar, S. D. Emami, S. Z. Muhamad-Yasin, M. I. Zulkifli, Z. Yusoff, H.-Z. Yang, H. A. Abdul-Rashid, and H. Ahmad, “Thermal Activation of Regenerated Grating in Hydrogenated Gallosilicate Fiber,” IEEE Sens. J. 16(6), 1659–1664 (2016).
[Crossref]

Zhang, B.

Zhao, N.

Q. Lin, N. Zhao, K. Yao, Z. Jiang, B. Tian, P. Shi, and F. Chen, “Ordinary Optical Fiber Sensor for Ultra-High Temperature Measurement Based on Infrared Radiation,” Sensors 18(11), 4071 (2018).
[Crossref]

Zulkifli, M. I.

D. S. Gunawardena, K. A. Mat-Sharif, M.-H. Lai, K.-S. Lim, N. Tamchek, N. Y. M. Omar, S. D. Emami, S. Z. Muhamad-Yasin, M. I. Zulkifli, Z. Yusoff, H.-Z. Yang, H. A. Abdul-Rashid, and H. Ahmad, “Thermal Activation of Regenerated Grating in Hydrogenated Gallosilicate Fiber,” IEEE Sens. J. 16(6), 1659–1664 (2016).
[Crossref]

Appl. Opt. (2)

IEEE Sens. J. (3)

B. Zhang and M. Kahrizi, “High-Temperature Resistance Fiber Bragg Grating Temperature Sensor Fabrication,” IEEE Sens. J. 7(4), 586–591 (2007).
[Crossref]

D. S. Gunawardena, K. A. Mat-Sharif, M.-H. Lai, K.-S. Lim, N. Tamchek, N. Y. M. Omar, S. D. Emami, S. Z. Muhamad-Yasin, M. I. Zulkifli, Z. Yusoff, H.-Z. Yang, H. A. Abdul-Rashid, and H. Ahmad, “Thermal Activation of Regenerated Grating in Hydrogenated Gallosilicate Fiber,” IEEE Sens. J. 16(6), 1659–1664 (2016).
[Crossref]

H. Yang, W. Y. Chong, Y. K. Cheong, K.-S. Lim, C. H. Pua, S. W. Harun, and H. Ahmad, “Thermal Regeneration in Etched-Core Fiber Bragg Grating,” IEEE Sens. J. 13(7), 2581–2585 (2013).
[Crossref]

J. Am. Ceram. Soc. (1)

F. E. Wagstaff, “Crystallization Kinetics of Internally Nucleated Vitreous Silica,” J. Am. Ceram. Soc. 51(8), 449–453 (1968).
[Crossref]

J. Lightwave Technol. (1)

J. Non-Cryst. Solids (1)

M. Tomozawa, A. Koike, and S. R. Ryu, “Exponential structural relaxation of a high purity silica glass,” J. Non-Cryst. Solids 354(40-41), 4685–4690 (2008).
[Crossref]

J. Sens. (1)

A. M. R. Pinto and M. Lopez-Amo, “Photonic Crystal Fibers for Sensing Applications,” J. Sens. 2012, 1–21 (2012).
[Crossref]

Measurement (1)

J. Canning, “Regeneration, regenerated gratings and composite glass properties: the implications for high temperature micro and nano milling and optical sensing,” Measurement 79, 236–249 (2016).
[Crossref]

Opt. Express (4)

Opt. Lett. (7)

Opt. Mater. Express (1)

Proc. SPIE (1)

K. Cook, C. Smelser, J. Canning, G. le Garff, M. Lancry, and S. Mihailov, “Regenerated femtosecond fibre Bragg gratings,” Proc. SPIE 8351, 835111 (2012).
[Crossref]

Sensors (3)

Q. Lin, N. Zhao, K. Yao, Z. Jiang, B. Tian, P. Shi, and F. Chen, “Ordinary Optical Fiber Sensor for Ultra-High Temperature Measurement Based on Infrared Radiation,” Sensors 18(11), 4071 (2018).
[Crossref]

J. Canning, M. Stevenson, S. Bandyopadhyay, and K. Cook, “Extreme silica optical fibre gratings,” Sensors 8(10), 6448–6452 (2008).
[Crossref]

D. Lopez-Torres, A. Lopez-Aldaba, C. Elosua, J. Auguste, R. Jamier, P. Roy, M. Lopez-Amo, and F. Arregui, “Comparison between Different Structures of Suspended-Core Microstructured Optical Fibers for Volatiles Sensing,” Sensors 18(8), 2523 (2018).
[Crossref]

Other (3)

A. Bueno, K. Chah, D. Kinet, P. Mégret, and C. Caucheteur, “Hydrogen influence on regenerated FBGs produced by the phase mask technique with 266 nm femtosecond pulses,” in Advanced Photonics Conference, (Optical Society of America, 2014), paper. BW4D-3.

M. Lancry, K. Cook, J. Cao, T. Billotte, B. Poumellec, and J. Canning, “Study of stress relaxation in UV regenerated fiber Bragg gratings,” in The European Conference on Lasers and Electro-Optics, (Optical Society of America, 2017), paper. CM_P_25.

M. Lancry, K. Cook, D. Pallarés-Aldeiturriaga, J. M. Lopez-Higuera, B. Poumellec, and J. Canning, “Raman spectroscopic study of Bragg gratings regeneration,” in Advanced Photonics Conference, (Optical Society of America, 2018), paper. BM2A-4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1. (a) Schematic diagram of the stacked SHMOF preform and SEM images of (b) SHMOF and (c) SMF.
Fig. 2.
Fig. 2. (a) Evolution of the grating reflectivity and Bragg wavelength shift during thermal regeneration and (b) Heating and cooling cycles of the RFBGs in SHMOF and SMF.
Fig. 3.
Fig. 3. (a) Temperature sensitivity calibration for three heating cycles and (b) wavelength stability of RFBGs in SHMOF and (c) SMF for 6.5 h.
Fig. 4.
Fig. 4. (a) Peak power, wavelength shift and (b) reflection spectra of an RFBG/R2FBG in SHMOF with increasing temperature.
Fig. 5.
Fig. 5. Spectral profile of the SG, RFBG and R2FBG in SHMOF. The inset shows the temperature sensitivity calibration of the R2FBG.
Fig. 6.
Fig. 6. (a) Peak power and wavelength shift of RFBGs in SHMOF and SMF and (b) reflection spectra of the RFBG/R2FBG in SMF with increasing temperature.
Fig. 7.
Fig. 7. (a) Peak power and wavelength shift of an RFBG in SMF with increasing temperature and (b) Spectral profile of the SG and RFBG in SMF.
Fig. 8.
Fig. 8. (a) Evolution of the grating reflectivity and Bragg wavelength shift during thermal regeneration of rapidly heated SGs and (b) reflection spectra of the SGs and RFBGs in SHMOF and SMF.
Fig. 9.
Fig. 9. (a) Thermal decay characteristics and (b) the reflection spectra of the RFBGs in SHMOF and (c) SMF with increasing temperature.
Fig. 10.
Fig. 10. Temperature sustainability of the RFBGs in SHMOF at 1350 °C fabricated through rapid heating.
Fig. 11.
Fig. 11. (a) Wavelength response of the RFBGs in SHMOF and SMF during rapid cooling and (b) their reflection spectra at ambient temperature.
Fig. 12.
Fig. 12. (a) Thermal decay characteristics and (b) the reflection spectra of the rapidly cooled RFBGs in SHMOF and (c) SMF with increasing temperature.
Fig. 13.
Fig. 13. Thermal stability of rapidly cooled RFBGs in SHMOF and SMF at 1350 °C.
Fig. 14.
Fig. 14. Variation of stress in the fiber core of RFBGs in SHMOF and SMF after grating regeneration, rapid heating and rapid cooling tests.

Tables (1)

Tables Icon

Table 1. Maximum temperatures of the RFBGs/R2FBGs when subjected to different thermal treatments

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ η e f f = η e f f ( λ i λ f 1 )
Δ σ z = 2 Δ η e f f 3 C 2 + C 1