Abstract

In this study, a large-aperture hole-patterned liquid crystal (LHLC) lens was prepared from a mixture of nematic liquid crystal (NLC, E7) and organic material (N-benzyl-2-methyl-4-nitroaniline, BNA). The electro-optic properties of doped and undoped samples were measured, compared, and analyzed. The doped sample exhibited a response time that was ∼6 times faster than that of the undoped sample because BNA doping decreased the rotational viscosity of the NLC. BNA dopant effectively suppressed the RMS error of LHLC lens addressed at the high voltage. Furthermore, the BNA dopant revealed a considerable absorbance for short wavelengths (< 450 nm), automatically providing the LHLC lens with a blue light filtering function for ophthalmic applications.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Enhancement of electro-optical properties of twisted nematic liquid crystals by doping aromatic hydrocarbon liquids

Yen-Te Chiang, Tsu-Ruey Chou, and Chih-Yu Chao
Opt. Express 22(25) 30882-30888 (2014)

Quadratic nonlinear optical properties of the organic N-benzyl-2-methyl-4-nitroaniline (BNA) biaxial crystal

Cyril Bernerd, Patricia Segonds, Jérôme Debray, Takashi Notake, Mio Koyama, Hiroaki Minamide, Hiromasa Ito, and Benoît Boulanger
Opt. Lett. 43(8) 1818-1821 (2018)

Dual-operation-mode liquid crystal lens

Chi -Yen Huang, Yi -Jen Huang, and Yao -Hsien Tseng
Opt. Express 17(23) 20860-20865 (2009)

References

  • View by:
  • |
  • |
  • |

  1. S. Masuda, S. Takahashi, T. Nose, S. Sato, and H. Ito, “Liquid-crystal microlens with a beam-steering function,” Appl. Opt. 36(20), 4772–4778 (1997).
    [Crossref]
  2. T. Galstian, O. Sova, K. Asatryan, V. Presniakov, A. Zohrabyan, and M. Evensen, “Optical camera with liquid crystal autofocus lens,” Opt. Express 25(24), 29945–29964 (2017).
    [Crossref]
  3. Y.-H. Wu, X. Liang, Y.-Q. Lu, F. Du, Y.-H. Lin, and S.-T. Wu, “Variable optical attenuator with a polymer-stabilized dual-frequency liquid crystal,” Appl. Opt. 44(20), 4394–4397 (2005).
    [Crossref]
  4. S. Mathews, G. Farrell, and Y. Semenova, “Liquid crystal infiltrated photonic crystal fibers for electric field intensity measurements,” Appl. Opt. 50(17), 2628–2635 (2011).
    [Crossref]
  5. F. Du, Y.-Q. Lu, and S.-T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85(12), 2181–2183 (2004).
    [Crossref]
  6. Y.-C. Chang, T.-H. Jen, C.-H. Ting, and Y.-P. Huang, “High-resistance liquid-crystal lens array for rotatable 2D/3D autostereoscopic display,” Opt. Express 22(3), 2714–2724 (2014).
    [Crossref]
  7. H.-S. Chen and Y.-H. Lin, “An endoscopic system adopting a liquid crystal lens with an electrically tunable depth-of-field,” Opt. Express 21(15), 18079–18088 (2013).
    [Crossref]
  8. Y. Huang, Y. Zhou, and S.-T. Wu, “Lasing in Dye–Doped Photonic Liquid Crystal Devices,” Mol. Cryst. Liq. Cryst. 453(1), 251–262 (2006).
    [Crossref]
  9. F. S.-Y. Yeung, F.-C. Xie, J. T.-K. Wan, F. K. Lee, O. K. C. Tsui, P. Sheng, and H.-S. Kwok, “Liquid crystal pretilt angle control using nanotextured surfaces,” J. Appl. Phys. 99(12), 124506 (2006).
    [Crossref]
  10. J. F. Algorri, D. C. Zografopoulos, V. Urruchi, and J. M. Sánchez-Pena, “Recent Advances in Adaptive Liquid Crystal Lenses,” Crystals 9(5), 272 (2019).
    [Crossref]
  11. B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid Crystal Lens with Spherical Electrode,” Jpn. J. Appl. Phys. 41(Part 2, No. 11A), L1232–L1233 (2002).
    [Crossref]
  12. O. Sova, V. Reshetnyak, T. Galstian, and K. Asatryan, “Electrically variable liquid crystal lens based on the dielectric dividing principle,” J. Opt. Soc. Am. A 32(5), 803–808 (2015).
    [Crossref]
  13. M. Xu, Z. Zhou, H. Ren, S. Hee Lee, and Q. Wang, “A microlens array based on polymer network liquid crystal,” J. Appl. Phys. 113(5), 053105 (2013).
    [Crossref]
  14. H. Park, Y.-J. Lee, J.-H. Kim, and C.-J. Yu, “51-3: Polarization-Selective Reflective Liquid Crystal Lens with Wavelength-Tunability,” Dig. Tech. Pap. - Soc. Inf. Disp. Int. Symp. 47(1), 696–698 (2016).
    [Crossref]
  15. F. Serra, M. A. Gharbi, Y. Luo, I. B. Liu, N. D. Bade, R. D. Kamien, S. Yang, and K. J. Stebe, “Curvature-Driven, One-Step Assembly of Reconfigurable Smectic Liquid Crystal “Compound Eye” Lenses,” Adv. Opt. Mater. 3(9), 1287–1292 (2015).
    [Crossref]
  16. Y.-Y. Kao, P. C. P. Chao, and C.-W. Hsueh, “A new low-voltage-driven GRIN liquid crystal lens with multiple ring electrodes in unequal widths,” Opt. Express 18(18), 18506–18518 (2010).
    [Crossref]
  17. F. Fan, A. K. Srivastava, T. Du, M. C. Tseng, V. Chigrinov, and H. S. Kwok, “Low voltage tunable liquid crystal lens,” Opt. Lett. 38(20), 4116–4119 (2013).
    [Crossref]
  18. T. Zhan, Y.-H. Lee, and S.-T. Wu, “High-resolution additive light field near-eye display by switchable Pancharatnam–Berry phase lenses,” Opt. Express 26(4), 4863–4872 (2018).
    [Crossref]
  19. T. Zhan, Y.-H. Lee, G. Tan, J. Xiong, K. Yin, F. Gou, J. Zou, N. Zhang, D. Zhao, J. Yang, S. Liu, and S.-T. Wu, “Pancharatnam Berry optical elements for head-up and near-eye displays,” J. Opt. Soc. Am. B 36(5), D52–D65 (2019).
    [Crossref]
  20. M. Ye and S. Sato, “New method of voltage application for improving response time of a liquid crystal lens,” Mol. Cryst. Liq. Cryst. 433(1), 229–236 (2005).
    [Crossref]
  21. M. Ye, B. Wang, M. Kawamura, and S. Sato, “Image formation using liquid crystal lens,” Jpn. J. Appl. Phys. 46(10A), 6776–6777 (2007).
    [Crossref]
  22. M. Ye, B. Wang, S. Yanase, and S. Sato, “Variable-focus liquid crystal lenses used in imaging systems as focusing elements,” Trans. Inst. Electron., Inf. Commun. Eng., Sect. E E91-C(10), 1599–1603 (2008).
    [Crossref]
  23. Y.-Y. Kao and P. C.-P. Chao, “A New Dual-Frequency Liquid Crystal Lens with Ring-and-Pie Electrodes and a Driving Scheme to Prevent Disclination Lines and Improve Recovery Time,” Sensors 11(5), 5402–5415 (2011).
    [Crossref]
  24. C. J. Hsu, K. Agrahari, P. Selvaraj, W. F. Chiang, C. Y. Huang, R. Manohar, and C. Y. Huang, “Application of ultra-thin indium–tin–oxide film in liquid crystal lens,” Opt. Laser Technol. 119, 105603 (2019).
    [Crossref]
  25. C.-J. Hsu, J.-J. Jhang, J.-C. Jhang, and C.-Y. Huang, “Influence of floating-ring-electrode on large-aperture liquid crystal lens,” Liq. Cryst. 45(1), 40–48 (2018).
    [Crossref]
  26. C.-J. Hsu, J.-J. Jhang, and C.-Y. Huang, “Large aperture liquid crystal lens with an imbedded floating ring electrode,” Opt. Express 24(15), 16722–16731 (2016).
    [Crossref]
  27. S. Gauza, P. Kula, X. Liang, S.-T. Wu, and R. Dąbrowski, “High birefringence and low viscosity liquid crystals with negative dielectric anisotropy,” Mol. Cryst. Liq. Cryst. 509(1), 47/[789]–59/[801] (2009).
    [Crossref]
  28. H. Chen, M. Hu, F. Peng, J. Li, Z. An, and S.-T. Wu, “Ultra-low viscosity liquid crystal materials,” Opt. Mater. Express 5(3), 655–660 (2015).
    [Crossref]
  29. H. Ren, Y.-H. Fan, S. Gauza, and S.-T. Wu, “Tunable microlens arrays using polymer network liquid crystal,” Opt. Commun. 230(4-6), 267–271 (2004).
    [Crossref]
  30. C. Y. Huang, P. Selvaraj, G. Senguttuvan, and C. J. Hsu, “Electro-optical and dielectric properties of TiO2 nanoparticles in nematic liquid crystals with high dielectric anisotropy,” J. Mol. Liq. 286, 110902 (2019).
    [Crossref]
  31. H. Hashimoto, Y. Okada, H. Fujimura, M. Morioka, O. Sugihara, N. Okamoto, and R. Matsushima, “Second-harmonic generation from single crystals of N-substituted 4-nitroanilines,” Jpn. J. Appl. Phys. 36(Part 1, No. 11), 6754–6760 (1997).
    [Crossref]
  32. K. Thirupugalmani, M. Venkatesh, S. Karthick, K. Maurya, N. Vijayan, A. Chaudhary, and S. Brahadeeswaran, “Influence of polar solvents on growth of potentially NLO active organic single crystals of N-benzyl-2-methyl-4-nitroaniline and their efficiency in terahertz generation,” CrystEngComm 19(19), 2623–2631 (2017).
    [Crossref]
  33. S.-T. Wu, U. Efron, and L. D. Hess, “Birefringence measurements of liquid crystals,” Appl. Opt. 23(21), 3911–3915 (1984).
    [Crossref]
  34. Z. Chen, L. Jiang, and H. Ma, “Calculation on frequency and temperature properties of birefringence of nematic liquid crystal 5CB in terahertz band,” Chem. Phys. Lett. 645, 205–209 (2016).
    [Crossref]
  35. D.-K. Yang and S.-T. Wu, Fundamentals of liquid crystal devices (John Wiley & Sons, 2014).
  36. M. Ye and S. Sato, “Optical properties of liquid crystal lens of any size,” Jpn. J. Appl. Phys. 41(Part 2, No. 5B), L571–L573 (2002).
    [Crossref]
  37. H. Ren, D. W. Fox, B. Wu, and S.-T. Wu, “Liquid crystal lens with large focal length tunability and low operating voltage,” Opt. Express 15(18), 11328–11335 (2007).
    [Crossref]
  38. M. Ye, B. Wang, M. Yamaguchi, and S. Sato, “Reducing driving voltages for liquid crystal lens using weakly conductive thin film,” Jpn. J. Appl. Phys. 47(6), 4597–4599 (2008).
    [Crossref]
  39. P. J. Hands, A. K. Kirby, and G. D. Love, “Adaptive modally addressed liquid crystal lenses,” in Liquid Crystals VIII, (International Society for Optics and Photonics, 2004), 136–143.
  40. G. Shibuya, N. Okuzawa, and M. Hayashi, “New application of liquid crystal lens of active polarized filter for micro camera,” Opt. Express 20(25), 27520–27528 (2012).
    [Crossref]
  41. B. Wang, M. Ye, and S. Sato, “Lens of electrically controllable focal length made by a glass lens and liquid-crystal layers,” Appl. Opt. 43(17), 3420–3425 (2004).
    [Crossref]
  42. T. Galstian, K. Asatryan, V. Presniakov, and A. Zohrabyan, “Electrically variable liquid crystal lenses for ophthalmic distance accommodation,” Opt. Express 27(13), 18803–18817 (2019).
    [Crossref]
  43. J. W. Goodman, Introduction to Fourier optics (Roberts and Company Publishers, 2005).
  44. M. Honma, T. Nose, and S. Sato, “Optimization of device parameters for minimizing spherical aberration and astigmatism in liquid crystal microlenses,” Opt. Rev. 6(2), 139–143 (1999).
    [Crossref]
  45. B. Wang, M. Ye, and S. Sato, “Properties of Liquid Crystal Lens with Stacked Structure of Liquid Crystal Layers,” Jpn. J. Appl. Phys. 45(10A), 7813–7818 (2006).
    [Crossref]

2019 (5)

J. F. Algorri, D. C. Zografopoulos, V. Urruchi, and J. M. Sánchez-Pena, “Recent Advances in Adaptive Liquid Crystal Lenses,” Crystals 9(5), 272 (2019).
[Crossref]

T. Zhan, Y.-H. Lee, G. Tan, J. Xiong, K. Yin, F. Gou, J. Zou, N. Zhang, D. Zhao, J. Yang, S. Liu, and S.-T. Wu, “Pancharatnam Berry optical elements for head-up and near-eye displays,” J. Opt. Soc. Am. B 36(5), D52–D65 (2019).
[Crossref]

C. J. Hsu, K. Agrahari, P. Selvaraj, W. F. Chiang, C. Y. Huang, R. Manohar, and C. Y. Huang, “Application of ultra-thin indium–tin–oxide film in liquid crystal lens,” Opt. Laser Technol. 119, 105603 (2019).
[Crossref]

C. Y. Huang, P. Selvaraj, G. Senguttuvan, and C. J. Hsu, “Electro-optical and dielectric properties of TiO2 nanoparticles in nematic liquid crystals with high dielectric anisotropy,” J. Mol. Liq. 286, 110902 (2019).
[Crossref]

T. Galstian, K. Asatryan, V. Presniakov, and A. Zohrabyan, “Electrically variable liquid crystal lenses for ophthalmic distance accommodation,” Opt. Express 27(13), 18803–18817 (2019).
[Crossref]

2018 (2)

C.-J. Hsu, J.-J. Jhang, J.-C. Jhang, and C.-Y. Huang, “Influence of floating-ring-electrode on large-aperture liquid crystal lens,” Liq. Cryst. 45(1), 40–48 (2018).
[Crossref]

T. Zhan, Y.-H. Lee, and S.-T. Wu, “High-resolution additive light field near-eye display by switchable Pancharatnam–Berry phase lenses,” Opt. Express 26(4), 4863–4872 (2018).
[Crossref]

2017 (2)

K. Thirupugalmani, M. Venkatesh, S. Karthick, K. Maurya, N. Vijayan, A. Chaudhary, and S. Brahadeeswaran, “Influence of polar solvents on growth of potentially NLO active organic single crystals of N-benzyl-2-methyl-4-nitroaniline and their efficiency in terahertz generation,” CrystEngComm 19(19), 2623–2631 (2017).
[Crossref]

T. Galstian, O. Sova, K. Asatryan, V. Presniakov, A. Zohrabyan, and M. Evensen, “Optical camera with liquid crystal autofocus lens,” Opt. Express 25(24), 29945–29964 (2017).
[Crossref]

2016 (3)

H. Park, Y.-J. Lee, J.-H. Kim, and C.-J. Yu, “51-3: Polarization-Selective Reflective Liquid Crystal Lens with Wavelength-Tunability,” Dig. Tech. Pap. - Soc. Inf. Disp. Int. Symp. 47(1), 696–698 (2016).
[Crossref]

C.-J. Hsu, J.-J. Jhang, and C.-Y. Huang, “Large aperture liquid crystal lens with an imbedded floating ring electrode,” Opt. Express 24(15), 16722–16731 (2016).
[Crossref]

Z. Chen, L. Jiang, and H. Ma, “Calculation on frequency and temperature properties of birefringence of nematic liquid crystal 5CB in terahertz band,” Chem. Phys. Lett. 645, 205–209 (2016).
[Crossref]

2015 (3)

H. Chen, M. Hu, F. Peng, J. Li, Z. An, and S.-T. Wu, “Ultra-low viscosity liquid crystal materials,” Opt. Mater. Express 5(3), 655–660 (2015).
[Crossref]

F. Serra, M. A. Gharbi, Y. Luo, I. B. Liu, N. D. Bade, R. D. Kamien, S. Yang, and K. J. Stebe, “Curvature-Driven, One-Step Assembly of Reconfigurable Smectic Liquid Crystal “Compound Eye” Lenses,” Adv. Opt. Mater. 3(9), 1287–1292 (2015).
[Crossref]

O. Sova, V. Reshetnyak, T. Galstian, and K. Asatryan, “Electrically variable liquid crystal lens based on the dielectric dividing principle,” J. Opt. Soc. Am. A 32(5), 803–808 (2015).
[Crossref]

2014 (1)

2013 (3)

2012 (1)

2011 (2)

S. Mathews, G. Farrell, and Y. Semenova, “Liquid crystal infiltrated photonic crystal fibers for electric field intensity measurements,” Appl. Opt. 50(17), 2628–2635 (2011).
[Crossref]

Y.-Y. Kao and P. C.-P. Chao, “A New Dual-Frequency Liquid Crystal Lens with Ring-and-Pie Electrodes and a Driving Scheme to Prevent Disclination Lines and Improve Recovery Time,” Sensors 11(5), 5402–5415 (2011).
[Crossref]

2010 (1)

2009 (1)

S. Gauza, P. Kula, X. Liang, S.-T. Wu, and R. Dąbrowski, “High birefringence and low viscosity liquid crystals with negative dielectric anisotropy,” Mol. Cryst. Liq. Cryst. 509(1), 47/[789]–59/[801] (2009).
[Crossref]

2008 (2)

M. Ye, B. Wang, S. Yanase, and S. Sato, “Variable-focus liquid crystal lenses used in imaging systems as focusing elements,” Trans. Inst. Electron., Inf. Commun. Eng., Sect. E E91-C(10), 1599–1603 (2008).
[Crossref]

M. Ye, B. Wang, M. Yamaguchi, and S. Sato, “Reducing driving voltages for liquid crystal lens using weakly conductive thin film,” Jpn. J. Appl. Phys. 47(6), 4597–4599 (2008).
[Crossref]

2007 (2)

H. Ren, D. W. Fox, B. Wu, and S.-T. Wu, “Liquid crystal lens with large focal length tunability and low operating voltage,” Opt. Express 15(18), 11328–11335 (2007).
[Crossref]

M. Ye, B. Wang, M. Kawamura, and S. Sato, “Image formation using liquid crystal lens,” Jpn. J. Appl. Phys. 46(10A), 6776–6777 (2007).
[Crossref]

2006 (3)

Y. Huang, Y. Zhou, and S.-T. Wu, “Lasing in Dye–Doped Photonic Liquid Crystal Devices,” Mol. Cryst. Liq. Cryst. 453(1), 251–262 (2006).
[Crossref]

F. S.-Y. Yeung, F.-C. Xie, J. T.-K. Wan, F. K. Lee, O. K. C. Tsui, P. Sheng, and H.-S. Kwok, “Liquid crystal pretilt angle control using nanotextured surfaces,” J. Appl. Phys. 99(12), 124506 (2006).
[Crossref]

B. Wang, M. Ye, and S. Sato, “Properties of Liquid Crystal Lens with Stacked Structure of Liquid Crystal Layers,” Jpn. J. Appl. Phys. 45(10A), 7813–7818 (2006).
[Crossref]

2005 (2)

Y.-H. Wu, X. Liang, Y.-Q. Lu, F. Du, Y.-H. Lin, and S.-T. Wu, “Variable optical attenuator with a polymer-stabilized dual-frequency liquid crystal,” Appl. Opt. 44(20), 4394–4397 (2005).
[Crossref]

M. Ye and S. Sato, “New method of voltage application for improving response time of a liquid crystal lens,” Mol. Cryst. Liq. Cryst. 433(1), 229–236 (2005).
[Crossref]

2004 (3)

H. Ren, Y.-H. Fan, S. Gauza, and S.-T. Wu, “Tunable microlens arrays using polymer network liquid crystal,” Opt. Commun. 230(4-6), 267–271 (2004).
[Crossref]

F. Du, Y.-Q. Lu, and S.-T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85(12), 2181–2183 (2004).
[Crossref]

B. Wang, M. Ye, and S. Sato, “Lens of electrically controllable focal length made by a glass lens and liquid-crystal layers,” Appl. Opt. 43(17), 3420–3425 (2004).
[Crossref]

2002 (2)

M. Ye and S. Sato, “Optical properties of liquid crystal lens of any size,” Jpn. J. Appl. Phys. 41(Part 2, No. 5B), L571–L573 (2002).
[Crossref]

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid Crystal Lens with Spherical Electrode,” Jpn. J. Appl. Phys. 41(Part 2, No. 11A), L1232–L1233 (2002).
[Crossref]

1999 (1)

M. Honma, T. Nose, and S. Sato, “Optimization of device parameters for minimizing spherical aberration and astigmatism in liquid crystal microlenses,” Opt. Rev. 6(2), 139–143 (1999).
[Crossref]

1997 (2)

S. Masuda, S. Takahashi, T. Nose, S. Sato, and H. Ito, “Liquid-crystal microlens with a beam-steering function,” Appl. Opt. 36(20), 4772–4778 (1997).
[Crossref]

H. Hashimoto, Y. Okada, H. Fujimura, M. Morioka, O. Sugihara, N. Okamoto, and R. Matsushima, “Second-harmonic generation from single crystals of N-substituted 4-nitroanilines,” Jpn. J. Appl. Phys. 36(Part 1, No. 11), 6754–6760 (1997).
[Crossref]

1984 (1)

Agrahari, K.

C. J. Hsu, K. Agrahari, P. Selvaraj, W. F. Chiang, C. Y. Huang, R. Manohar, and C. Y. Huang, “Application of ultra-thin indium–tin–oxide film in liquid crystal lens,” Opt. Laser Technol. 119, 105603 (2019).
[Crossref]

Algorri, J. F.

J. F. Algorri, D. C. Zografopoulos, V. Urruchi, and J. M. Sánchez-Pena, “Recent Advances in Adaptive Liquid Crystal Lenses,” Crystals 9(5), 272 (2019).
[Crossref]

An, Z.

Asatryan, K.

Bade, N. D.

F. Serra, M. A. Gharbi, Y. Luo, I. B. Liu, N. D. Bade, R. D. Kamien, S. Yang, and K. J. Stebe, “Curvature-Driven, One-Step Assembly of Reconfigurable Smectic Liquid Crystal “Compound Eye” Lenses,” Adv. Opt. Mater. 3(9), 1287–1292 (2015).
[Crossref]

Brahadeeswaran, S.

K. Thirupugalmani, M. Venkatesh, S. Karthick, K. Maurya, N. Vijayan, A. Chaudhary, and S. Brahadeeswaran, “Influence of polar solvents on growth of potentially NLO active organic single crystals of N-benzyl-2-methyl-4-nitroaniline and their efficiency in terahertz generation,” CrystEngComm 19(19), 2623–2631 (2017).
[Crossref]

Chang, Y.-C.

Chao, P. C. P.

Chao, P. C.-P.

Y.-Y. Kao and P. C.-P. Chao, “A New Dual-Frequency Liquid Crystal Lens with Ring-and-Pie Electrodes and a Driving Scheme to Prevent Disclination Lines and Improve Recovery Time,” Sensors 11(5), 5402–5415 (2011).
[Crossref]

Chaudhary, A.

K. Thirupugalmani, M. Venkatesh, S. Karthick, K. Maurya, N. Vijayan, A. Chaudhary, and S. Brahadeeswaran, “Influence of polar solvents on growth of potentially NLO active organic single crystals of N-benzyl-2-methyl-4-nitroaniline and their efficiency in terahertz generation,” CrystEngComm 19(19), 2623–2631 (2017).
[Crossref]

Chen, H.

Chen, H.-S.

Chen, Z.

Z. Chen, L. Jiang, and H. Ma, “Calculation on frequency and temperature properties of birefringence of nematic liquid crystal 5CB in terahertz band,” Chem. Phys. Lett. 645, 205–209 (2016).
[Crossref]

Chiang, W. F.

C. J. Hsu, K. Agrahari, P. Selvaraj, W. F. Chiang, C. Y. Huang, R. Manohar, and C. Y. Huang, “Application of ultra-thin indium–tin–oxide film in liquid crystal lens,” Opt. Laser Technol. 119, 105603 (2019).
[Crossref]

Chigrinov, V.

Dabrowski, R.

S. Gauza, P. Kula, X. Liang, S.-T. Wu, and R. Dąbrowski, “High birefringence and low viscosity liquid crystals with negative dielectric anisotropy,” Mol. Cryst. Liq. Cryst. 509(1), 47/[789]–59/[801] (2009).
[Crossref]

Du, F.

Y.-H. Wu, X. Liang, Y.-Q. Lu, F. Du, Y.-H. Lin, and S.-T. Wu, “Variable optical attenuator with a polymer-stabilized dual-frequency liquid crystal,” Appl. Opt. 44(20), 4394–4397 (2005).
[Crossref]

F. Du, Y.-Q. Lu, and S.-T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85(12), 2181–2183 (2004).
[Crossref]

Du, T.

Efron, U.

Evensen, M.

Fan, F.

Fan, Y.-H.

H. Ren, Y.-H. Fan, S. Gauza, and S.-T. Wu, “Tunable microlens arrays using polymer network liquid crystal,” Opt. Commun. 230(4-6), 267–271 (2004).
[Crossref]

Farrell, G.

Fox, D. W.

Fujimura, H.

H. Hashimoto, Y. Okada, H. Fujimura, M. Morioka, O. Sugihara, N. Okamoto, and R. Matsushima, “Second-harmonic generation from single crystals of N-substituted 4-nitroanilines,” Jpn. J. Appl. Phys. 36(Part 1, No. 11), 6754–6760 (1997).
[Crossref]

Galstian, T.

Gauza, S.

S. Gauza, P. Kula, X. Liang, S.-T. Wu, and R. Dąbrowski, “High birefringence and low viscosity liquid crystals with negative dielectric anisotropy,” Mol. Cryst. Liq. Cryst. 509(1), 47/[789]–59/[801] (2009).
[Crossref]

H. Ren, Y.-H. Fan, S. Gauza, and S.-T. Wu, “Tunable microlens arrays using polymer network liquid crystal,” Opt. Commun. 230(4-6), 267–271 (2004).
[Crossref]

Gharbi, M. A.

F. Serra, M. A. Gharbi, Y. Luo, I. B. Liu, N. D. Bade, R. D. Kamien, S. Yang, and K. J. Stebe, “Curvature-Driven, One-Step Assembly of Reconfigurable Smectic Liquid Crystal “Compound Eye” Lenses,” Adv. Opt. Mater. 3(9), 1287–1292 (2015).
[Crossref]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier optics (Roberts and Company Publishers, 2005).

Gou, F.

Hands, P. J.

P. J. Hands, A. K. Kirby, and G. D. Love, “Adaptive modally addressed liquid crystal lenses,” in Liquid Crystals VIII, (International Society for Optics and Photonics, 2004), 136–143.

Hashimoto, H.

H. Hashimoto, Y. Okada, H. Fujimura, M. Morioka, O. Sugihara, N. Okamoto, and R. Matsushima, “Second-harmonic generation from single crystals of N-substituted 4-nitroanilines,” Jpn. J. Appl. Phys. 36(Part 1, No. 11), 6754–6760 (1997).
[Crossref]

Hayashi, M.

Hee Lee, S.

M. Xu, Z. Zhou, H. Ren, S. Hee Lee, and Q. Wang, “A microlens array based on polymer network liquid crystal,” J. Appl. Phys. 113(5), 053105 (2013).
[Crossref]

Hess, L. D.

Honma, M.

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid Crystal Lens with Spherical Electrode,” Jpn. J. Appl. Phys. 41(Part 2, No. 11A), L1232–L1233 (2002).
[Crossref]

M. Honma, T. Nose, and S. Sato, “Optimization of device parameters for minimizing spherical aberration and astigmatism in liquid crystal microlenses,” Opt. Rev. 6(2), 139–143 (1999).
[Crossref]

Hsu, C. J.

C. Y. Huang, P. Selvaraj, G. Senguttuvan, and C. J. Hsu, “Electro-optical and dielectric properties of TiO2 nanoparticles in nematic liquid crystals with high dielectric anisotropy,” J. Mol. Liq. 286, 110902 (2019).
[Crossref]

C. J. Hsu, K. Agrahari, P. Selvaraj, W. F. Chiang, C. Y. Huang, R. Manohar, and C. Y. Huang, “Application of ultra-thin indium–tin–oxide film in liquid crystal lens,” Opt. Laser Technol. 119, 105603 (2019).
[Crossref]

Hsu, C.-J.

C.-J. Hsu, J.-J. Jhang, J.-C. Jhang, and C.-Y. Huang, “Influence of floating-ring-electrode on large-aperture liquid crystal lens,” Liq. Cryst. 45(1), 40–48 (2018).
[Crossref]

C.-J. Hsu, J.-J. Jhang, and C.-Y. Huang, “Large aperture liquid crystal lens with an imbedded floating ring electrode,” Opt. Express 24(15), 16722–16731 (2016).
[Crossref]

Hsueh, C.-W.

Hu, M.

Huang, C. Y.

C. J. Hsu, K. Agrahari, P. Selvaraj, W. F. Chiang, C. Y. Huang, R. Manohar, and C. Y. Huang, “Application of ultra-thin indium–tin–oxide film in liquid crystal lens,” Opt. Laser Technol. 119, 105603 (2019).
[Crossref]

C. J. Hsu, K. Agrahari, P. Selvaraj, W. F. Chiang, C. Y. Huang, R. Manohar, and C. Y. Huang, “Application of ultra-thin indium–tin–oxide film in liquid crystal lens,” Opt. Laser Technol. 119, 105603 (2019).
[Crossref]

C. Y. Huang, P. Selvaraj, G. Senguttuvan, and C. J. Hsu, “Electro-optical and dielectric properties of TiO2 nanoparticles in nematic liquid crystals with high dielectric anisotropy,” J. Mol. Liq. 286, 110902 (2019).
[Crossref]

Huang, C.-Y.

C.-J. Hsu, J.-J. Jhang, J.-C. Jhang, and C.-Y. Huang, “Influence of floating-ring-electrode on large-aperture liquid crystal lens,” Liq. Cryst. 45(1), 40–48 (2018).
[Crossref]

C.-J. Hsu, J.-J. Jhang, and C.-Y. Huang, “Large aperture liquid crystal lens with an imbedded floating ring electrode,” Opt. Express 24(15), 16722–16731 (2016).
[Crossref]

Huang, Y.

Y. Huang, Y. Zhou, and S.-T. Wu, “Lasing in Dye–Doped Photonic Liquid Crystal Devices,” Mol. Cryst. Liq. Cryst. 453(1), 251–262 (2006).
[Crossref]

Huang, Y.-P.

Ito, H.

Jen, T.-H.

Jhang, J.-C.

C.-J. Hsu, J.-J. Jhang, J.-C. Jhang, and C.-Y. Huang, “Influence of floating-ring-electrode on large-aperture liquid crystal lens,” Liq. Cryst. 45(1), 40–48 (2018).
[Crossref]

Jhang, J.-J.

C.-J. Hsu, J.-J. Jhang, J.-C. Jhang, and C.-Y. Huang, “Influence of floating-ring-electrode on large-aperture liquid crystal lens,” Liq. Cryst. 45(1), 40–48 (2018).
[Crossref]

C.-J. Hsu, J.-J. Jhang, and C.-Y. Huang, “Large aperture liquid crystal lens with an imbedded floating ring electrode,” Opt. Express 24(15), 16722–16731 (2016).
[Crossref]

Jiang, L.

Z. Chen, L. Jiang, and H. Ma, “Calculation on frequency and temperature properties of birefringence of nematic liquid crystal 5CB in terahertz band,” Chem. Phys. Lett. 645, 205–209 (2016).
[Crossref]

Kamien, R. D.

F. Serra, M. A. Gharbi, Y. Luo, I. B. Liu, N. D. Bade, R. D. Kamien, S. Yang, and K. J. Stebe, “Curvature-Driven, One-Step Assembly of Reconfigurable Smectic Liquid Crystal “Compound Eye” Lenses,” Adv. Opt. Mater. 3(9), 1287–1292 (2015).
[Crossref]

Kao, Y.-Y.

Y.-Y. Kao and P. C.-P. Chao, “A New Dual-Frequency Liquid Crystal Lens with Ring-and-Pie Electrodes and a Driving Scheme to Prevent Disclination Lines and Improve Recovery Time,” Sensors 11(5), 5402–5415 (2011).
[Crossref]

Y.-Y. Kao, P. C. P. Chao, and C.-W. Hsueh, “A new low-voltage-driven GRIN liquid crystal lens with multiple ring electrodes in unequal widths,” Opt. Express 18(18), 18506–18518 (2010).
[Crossref]

Karthick, S.

K. Thirupugalmani, M. Venkatesh, S. Karthick, K. Maurya, N. Vijayan, A. Chaudhary, and S. Brahadeeswaran, “Influence of polar solvents on growth of potentially NLO active organic single crystals of N-benzyl-2-methyl-4-nitroaniline and their efficiency in terahertz generation,” CrystEngComm 19(19), 2623–2631 (2017).
[Crossref]

Kawamura, M.

M. Ye, B. Wang, M. Kawamura, and S. Sato, “Image formation using liquid crystal lens,” Jpn. J. Appl. Phys. 46(10A), 6776–6777 (2007).
[Crossref]

Kim, J.-H.

H. Park, Y.-J. Lee, J.-H. Kim, and C.-J. Yu, “51-3: Polarization-Selective Reflective Liquid Crystal Lens with Wavelength-Tunability,” Dig. Tech. Pap. - Soc. Inf. Disp. Int. Symp. 47(1), 696–698 (2016).
[Crossref]

Kirby, A. K.

P. J. Hands, A. K. Kirby, and G. D. Love, “Adaptive modally addressed liquid crystal lenses,” in Liquid Crystals VIII, (International Society for Optics and Photonics, 2004), 136–143.

Kula, P.

S. Gauza, P. Kula, X. Liang, S.-T. Wu, and R. Dąbrowski, “High birefringence and low viscosity liquid crystals with negative dielectric anisotropy,” Mol. Cryst. Liq. Cryst. 509(1), 47/[789]–59/[801] (2009).
[Crossref]

Kwok, H. S.

Kwok, H.-S.

F. S.-Y. Yeung, F.-C. Xie, J. T.-K. Wan, F. K. Lee, O. K. C. Tsui, P. Sheng, and H.-S. Kwok, “Liquid crystal pretilt angle control using nanotextured surfaces,” J. Appl. Phys. 99(12), 124506 (2006).
[Crossref]

Lee, F. K.

F. S.-Y. Yeung, F.-C. Xie, J. T.-K. Wan, F. K. Lee, O. K. C. Tsui, P. Sheng, and H.-S. Kwok, “Liquid crystal pretilt angle control using nanotextured surfaces,” J. Appl. Phys. 99(12), 124506 (2006).
[Crossref]

Lee, Y.-H.

Lee, Y.-J.

H. Park, Y.-J. Lee, J.-H. Kim, and C.-J. Yu, “51-3: Polarization-Selective Reflective Liquid Crystal Lens with Wavelength-Tunability,” Dig. Tech. Pap. - Soc. Inf. Disp. Int. Symp. 47(1), 696–698 (2016).
[Crossref]

Li, J.

Liang, X.

S. Gauza, P. Kula, X. Liang, S.-T. Wu, and R. Dąbrowski, “High birefringence and low viscosity liquid crystals with negative dielectric anisotropy,” Mol. Cryst. Liq. Cryst. 509(1), 47/[789]–59/[801] (2009).
[Crossref]

Y.-H. Wu, X. Liang, Y.-Q. Lu, F. Du, Y.-H. Lin, and S.-T. Wu, “Variable optical attenuator with a polymer-stabilized dual-frequency liquid crystal,” Appl. Opt. 44(20), 4394–4397 (2005).
[Crossref]

Lin, Y.-H.

Liu, I. B.

F. Serra, M. A. Gharbi, Y. Luo, I. B. Liu, N. D. Bade, R. D. Kamien, S. Yang, and K. J. Stebe, “Curvature-Driven, One-Step Assembly of Reconfigurable Smectic Liquid Crystal “Compound Eye” Lenses,” Adv. Opt. Mater. 3(9), 1287–1292 (2015).
[Crossref]

Liu, S.

Love, G. D.

P. J. Hands, A. K. Kirby, and G. D. Love, “Adaptive modally addressed liquid crystal lenses,” in Liquid Crystals VIII, (International Society for Optics and Photonics, 2004), 136–143.

Lu, Y.-Q.

Y.-H. Wu, X. Liang, Y.-Q. Lu, F. Du, Y.-H. Lin, and S.-T. Wu, “Variable optical attenuator with a polymer-stabilized dual-frequency liquid crystal,” Appl. Opt. 44(20), 4394–4397 (2005).
[Crossref]

F. Du, Y.-Q. Lu, and S.-T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85(12), 2181–2183 (2004).
[Crossref]

Luo, Y.

F. Serra, M. A. Gharbi, Y. Luo, I. B. Liu, N. D. Bade, R. D. Kamien, S. Yang, and K. J. Stebe, “Curvature-Driven, One-Step Assembly of Reconfigurable Smectic Liquid Crystal “Compound Eye” Lenses,” Adv. Opt. Mater. 3(9), 1287–1292 (2015).
[Crossref]

Ma, H.

Z. Chen, L. Jiang, and H. Ma, “Calculation on frequency and temperature properties of birefringence of nematic liquid crystal 5CB in terahertz band,” Chem. Phys. Lett. 645, 205–209 (2016).
[Crossref]

Manohar, R.

C. J. Hsu, K. Agrahari, P. Selvaraj, W. F. Chiang, C. Y. Huang, R. Manohar, and C. Y. Huang, “Application of ultra-thin indium–tin–oxide film in liquid crystal lens,” Opt. Laser Technol. 119, 105603 (2019).
[Crossref]

Masuda, S.

Mathews, S.

Matsushima, R.

H. Hashimoto, Y. Okada, H. Fujimura, M. Morioka, O. Sugihara, N. Okamoto, and R. Matsushima, “Second-harmonic generation from single crystals of N-substituted 4-nitroanilines,” Jpn. J. Appl. Phys. 36(Part 1, No. 11), 6754–6760 (1997).
[Crossref]

Maurya, K.

K. Thirupugalmani, M. Venkatesh, S. Karthick, K. Maurya, N. Vijayan, A. Chaudhary, and S. Brahadeeswaran, “Influence of polar solvents on growth of potentially NLO active organic single crystals of N-benzyl-2-methyl-4-nitroaniline and their efficiency in terahertz generation,” CrystEngComm 19(19), 2623–2631 (2017).
[Crossref]

Morioka, M.

H. Hashimoto, Y. Okada, H. Fujimura, M. Morioka, O. Sugihara, N. Okamoto, and R. Matsushima, “Second-harmonic generation from single crystals of N-substituted 4-nitroanilines,” Jpn. J. Appl. Phys. 36(Part 1, No. 11), 6754–6760 (1997).
[Crossref]

Nose, T.

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid Crystal Lens with Spherical Electrode,” Jpn. J. Appl. Phys. 41(Part 2, No. 11A), L1232–L1233 (2002).
[Crossref]

M. Honma, T. Nose, and S. Sato, “Optimization of device parameters for minimizing spherical aberration and astigmatism in liquid crystal microlenses,” Opt. Rev. 6(2), 139–143 (1999).
[Crossref]

S. Masuda, S. Takahashi, T. Nose, S. Sato, and H. Ito, “Liquid-crystal microlens with a beam-steering function,” Appl. Opt. 36(20), 4772–4778 (1997).
[Crossref]

Okada, Y.

H. Hashimoto, Y. Okada, H. Fujimura, M. Morioka, O. Sugihara, N. Okamoto, and R. Matsushima, “Second-harmonic generation from single crystals of N-substituted 4-nitroanilines,” Jpn. J. Appl. Phys. 36(Part 1, No. 11), 6754–6760 (1997).
[Crossref]

Okamoto, N.

H. Hashimoto, Y. Okada, H. Fujimura, M. Morioka, O. Sugihara, N. Okamoto, and R. Matsushima, “Second-harmonic generation from single crystals of N-substituted 4-nitroanilines,” Jpn. J. Appl. Phys. 36(Part 1, No. 11), 6754–6760 (1997).
[Crossref]

Okuzawa, N.

Park, H.

H. Park, Y.-J. Lee, J.-H. Kim, and C.-J. Yu, “51-3: Polarization-Selective Reflective Liquid Crystal Lens with Wavelength-Tunability,” Dig. Tech. Pap. - Soc. Inf. Disp. Int. Symp. 47(1), 696–698 (2016).
[Crossref]

Peng, F.

Presniakov, V.

Ren, H.

M. Xu, Z. Zhou, H. Ren, S. Hee Lee, and Q. Wang, “A microlens array based on polymer network liquid crystal,” J. Appl. Phys. 113(5), 053105 (2013).
[Crossref]

H. Ren, D. W. Fox, B. Wu, and S.-T. Wu, “Liquid crystal lens with large focal length tunability and low operating voltage,” Opt. Express 15(18), 11328–11335 (2007).
[Crossref]

H. Ren, Y.-H. Fan, S. Gauza, and S.-T. Wu, “Tunable microlens arrays using polymer network liquid crystal,” Opt. Commun. 230(4-6), 267–271 (2004).
[Crossref]

Reshetnyak, V.

Sánchez-Pena, J. M.

J. F. Algorri, D. C. Zografopoulos, V. Urruchi, and J. M. Sánchez-Pena, “Recent Advances in Adaptive Liquid Crystal Lenses,” Crystals 9(5), 272 (2019).
[Crossref]

Sato, S.

M. Ye, B. Wang, S. Yanase, and S. Sato, “Variable-focus liquid crystal lenses used in imaging systems as focusing elements,” Trans. Inst. Electron., Inf. Commun. Eng., Sect. E E91-C(10), 1599–1603 (2008).
[Crossref]

M. Ye, B. Wang, M. Yamaguchi, and S. Sato, “Reducing driving voltages for liquid crystal lens using weakly conductive thin film,” Jpn. J. Appl. Phys. 47(6), 4597–4599 (2008).
[Crossref]

M. Ye, B. Wang, M. Kawamura, and S. Sato, “Image formation using liquid crystal lens,” Jpn. J. Appl. Phys. 46(10A), 6776–6777 (2007).
[Crossref]

B. Wang, M. Ye, and S. Sato, “Properties of Liquid Crystal Lens with Stacked Structure of Liquid Crystal Layers,” Jpn. J. Appl. Phys. 45(10A), 7813–7818 (2006).
[Crossref]

M. Ye and S. Sato, “New method of voltage application for improving response time of a liquid crystal lens,” Mol. Cryst. Liq. Cryst. 433(1), 229–236 (2005).
[Crossref]

B. Wang, M. Ye, and S. Sato, “Lens of electrically controllable focal length made by a glass lens and liquid-crystal layers,” Appl. Opt. 43(17), 3420–3425 (2004).
[Crossref]

M. Ye and S. Sato, “Optical properties of liquid crystal lens of any size,” Jpn. J. Appl. Phys. 41(Part 2, No. 5B), L571–L573 (2002).
[Crossref]

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid Crystal Lens with Spherical Electrode,” Jpn. J. Appl. Phys. 41(Part 2, No. 11A), L1232–L1233 (2002).
[Crossref]

M. Honma, T. Nose, and S. Sato, “Optimization of device parameters for minimizing spherical aberration and astigmatism in liquid crystal microlenses,” Opt. Rev. 6(2), 139–143 (1999).
[Crossref]

S. Masuda, S. Takahashi, T. Nose, S. Sato, and H. Ito, “Liquid-crystal microlens with a beam-steering function,” Appl. Opt. 36(20), 4772–4778 (1997).
[Crossref]

Selvaraj, P.

C. Y. Huang, P. Selvaraj, G. Senguttuvan, and C. J. Hsu, “Electro-optical and dielectric properties of TiO2 nanoparticles in nematic liquid crystals with high dielectric anisotropy,” J. Mol. Liq. 286, 110902 (2019).
[Crossref]

C. J. Hsu, K. Agrahari, P. Selvaraj, W. F. Chiang, C. Y. Huang, R. Manohar, and C. Y. Huang, “Application of ultra-thin indium–tin–oxide film in liquid crystal lens,” Opt. Laser Technol. 119, 105603 (2019).
[Crossref]

Semenova, Y.

Senguttuvan, G.

C. Y. Huang, P. Selvaraj, G. Senguttuvan, and C. J. Hsu, “Electro-optical and dielectric properties of TiO2 nanoparticles in nematic liquid crystals with high dielectric anisotropy,” J. Mol. Liq. 286, 110902 (2019).
[Crossref]

Serra, F.

F. Serra, M. A. Gharbi, Y. Luo, I. B. Liu, N. D. Bade, R. D. Kamien, S. Yang, and K. J. Stebe, “Curvature-Driven, One-Step Assembly of Reconfigurable Smectic Liquid Crystal “Compound Eye” Lenses,” Adv. Opt. Mater. 3(9), 1287–1292 (2015).
[Crossref]

Sheng, P.

F. S.-Y. Yeung, F.-C. Xie, J. T.-K. Wan, F. K. Lee, O. K. C. Tsui, P. Sheng, and H.-S. Kwok, “Liquid crystal pretilt angle control using nanotextured surfaces,” J. Appl. Phys. 99(12), 124506 (2006).
[Crossref]

Shibuya, G.

Sova, O.

Srivastava, A. K.

Stebe, K. J.

F. Serra, M. A. Gharbi, Y. Luo, I. B. Liu, N. D. Bade, R. D. Kamien, S. Yang, and K. J. Stebe, “Curvature-Driven, One-Step Assembly of Reconfigurable Smectic Liquid Crystal “Compound Eye” Lenses,” Adv. Opt. Mater. 3(9), 1287–1292 (2015).
[Crossref]

Sugihara, O.

H. Hashimoto, Y. Okada, H. Fujimura, M. Morioka, O. Sugihara, N. Okamoto, and R. Matsushima, “Second-harmonic generation from single crystals of N-substituted 4-nitroanilines,” Jpn. J. Appl. Phys. 36(Part 1, No. 11), 6754–6760 (1997).
[Crossref]

Takahashi, S.

Tan, G.

Thirupugalmani, K.

K. Thirupugalmani, M. Venkatesh, S. Karthick, K. Maurya, N. Vijayan, A. Chaudhary, and S. Brahadeeswaran, “Influence of polar solvents on growth of potentially NLO active organic single crystals of N-benzyl-2-methyl-4-nitroaniline and their efficiency in terahertz generation,” CrystEngComm 19(19), 2623–2631 (2017).
[Crossref]

Ting, C.-H.

Tseng, M. C.

Tsui, O. K. C.

F. S.-Y. Yeung, F.-C. Xie, J. T.-K. Wan, F. K. Lee, O. K. C. Tsui, P. Sheng, and H.-S. Kwok, “Liquid crystal pretilt angle control using nanotextured surfaces,” J. Appl. Phys. 99(12), 124506 (2006).
[Crossref]

Urruchi, V.

J. F. Algorri, D. C. Zografopoulos, V. Urruchi, and J. M. Sánchez-Pena, “Recent Advances in Adaptive Liquid Crystal Lenses,” Crystals 9(5), 272 (2019).
[Crossref]

Venkatesh, M.

K. Thirupugalmani, M. Venkatesh, S. Karthick, K. Maurya, N. Vijayan, A. Chaudhary, and S. Brahadeeswaran, “Influence of polar solvents on growth of potentially NLO active organic single crystals of N-benzyl-2-methyl-4-nitroaniline and their efficiency in terahertz generation,” CrystEngComm 19(19), 2623–2631 (2017).
[Crossref]

Vijayan, N.

K. Thirupugalmani, M. Venkatesh, S. Karthick, K. Maurya, N. Vijayan, A. Chaudhary, and S. Brahadeeswaran, “Influence of polar solvents on growth of potentially NLO active organic single crystals of N-benzyl-2-methyl-4-nitroaniline and their efficiency in terahertz generation,” CrystEngComm 19(19), 2623–2631 (2017).
[Crossref]

Wan, J. T.-K.

F. S.-Y. Yeung, F.-C. Xie, J. T.-K. Wan, F. K. Lee, O. K. C. Tsui, P. Sheng, and H.-S. Kwok, “Liquid crystal pretilt angle control using nanotextured surfaces,” J. Appl. Phys. 99(12), 124506 (2006).
[Crossref]

Wang, B.

M. Ye, B. Wang, S. Yanase, and S. Sato, “Variable-focus liquid crystal lenses used in imaging systems as focusing elements,” Trans. Inst. Electron., Inf. Commun. Eng., Sect. E E91-C(10), 1599–1603 (2008).
[Crossref]

M. Ye, B. Wang, M. Yamaguchi, and S. Sato, “Reducing driving voltages for liquid crystal lens using weakly conductive thin film,” Jpn. J. Appl. Phys. 47(6), 4597–4599 (2008).
[Crossref]

M. Ye, B. Wang, M. Kawamura, and S. Sato, “Image formation using liquid crystal lens,” Jpn. J. Appl. Phys. 46(10A), 6776–6777 (2007).
[Crossref]

B. Wang, M. Ye, and S. Sato, “Properties of Liquid Crystal Lens with Stacked Structure of Liquid Crystal Layers,” Jpn. J. Appl. Phys. 45(10A), 7813–7818 (2006).
[Crossref]

B. Wang, M. Ye, and S. Sato, “Lens of electrically controllable focal length made by a glass lens and liquid-crystal layers,” Appl. Opt. 43(17), 3420–3425 (2004).
[Crossref]

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid Crystal Lens with Spherical Electrode,” Jpn. J. Appl. Phys. 41(Part 2, No. 11A), L1232–L1233 (2002).
[Crossref]

Wang, Q.

M. Xu, Z. Zhou, H. Ren, S. Hee Lee, and Q. Wang, “A microlens array based on polymer network liquid crystal,” J. Appl. Phys. 113(5), 053105 (2013).
[Crossref]

Wu, B.

Wu, S.-T.

T. Zhan, Y.-H. Lee, G. Tan, J. Xiong, K. Yin, F. Gou, J. Zou, N. Zhang, D. Zhao, J. Yang, S. Liu, and S.-T. Wu, “Pancharatnam Berry optical elements for head-up and near-eye displays,” J. Opt. Soc. Am. B 36(5), D52–D65 (2019).
[Crossref]

T. Zhan, Y.-H. Lee, and S.-T. Wu, “High-resolution additive light field near-eye display by switchable Pancharatnam–Berry phase lenses,” Opt. Express 26(4), 4863–4872 (2018).
[Crossref]

H. Chen, M. Hu, F. Peng, J. Li, Z. An, and S.-T. Wu, “Ultra-low viscosity liquid crystal materials,” Opt. Mater. Express 5(3), 655–660 (2015).
[Crossref]

S. Gauza, P. Kula, X. Liang, S.-T. Wu, and R. Dąbrowski, “High birefringence and low viscosity liquid crystals with negative dielectric anisotropy,” Mol. Cryst. Liq. Cryst. 509(1), 47/[789]–59/[801] (2009).
[Crossref]

H. Ren, D. W. Fox, B. Wu, and S.-T. Wu, “Liquid crystal lens with large focal length tunability and low operating voltage,” Opt. Express 15(18), 11328–11335 (2007).
[Crossref]

Y. Huang, Y. Zhou, and S.-T. Wu, “Lasing in Dye–Doped Photonic Liquid Crystal Devices,” Mol. Cryst. Liq. Cryst. 453(1), 251–262 (2006).
[Crossref]

Y.-H. Wu, X. Liang, Y.-Q. Lu, F. Du, Y.-H. Lin, and S.-T. Wu, “Variable optical attenuator with a polymer-stabilized dual-frequency liquid crystal,” Appl. Opt. 44(20), 4394–4397 (2005).
[Crossref]

H. Ren, Y.-H. Fan, S. Gauza, and S.-T. Wu, “Tunable microlens arrays using polymer network liquid crystal,” Opt. Commun. 230(4-6), 267–271 (2004).
[Crossref]

F. Du, Y.-Q. Lu, and S.-T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85(12), 2181–2183 (2004).
[Crossref]

S.-T. Wu, U. Efron, and L. D. Hess, “Birefringence measurements of liquid crystals,” Appl. Opt. 23(21), 3911–3915 (1984).
[Crossref]

D.-K. Yang and S.-T. Wu, Fundamentals of liquid crystal devices (John Wiley & Sons, 2014).

Wu, Y.-H.

Xie, F.-C.

F. S.-Y. Yeung, F.-C. Xie, J. T.-K. Wan, F. K. Lee, O. K. C. Tsui, P. Sheng, and H.-S. Kwok, “Liquid crystal pretilt angle control using nanotextured surfaces,” J. Appl. Phys. 99(12), 124506 (2006).
[Crossref]

Xiong, J.

Xu, M.

M. Xu, Z. Zhou, H. Ren, S. Hee Lee, and Q. Wang, “A microlens array based on polymer network liquid crystal,” J. Appl. Phys. 113(5), 053105 (2013).
[Crossref]

Yamaguchi, M.

M. Ye, B. Wang, M. Yamaguchi, and S. Sato, “Reducing driving voltages for liquid crystal lens using weakly conductive thin film,” Jpn. J. Appl. Phys. 47(6), 4597–4599 (2008).
[Crossref]

Yanase, S.

M. Ye, B. Wang, S. Yanase, and S. Sato, “Variable-focus liquid crystal lenses used in imaging systems as focusing elements,” Trans. Inst. Electron., Inf. Commun. Eng., Sect. E E91-C(10), 1599–1603 (2008).
[Crossref]

Yang, D.-K.

D.-K. Yang and S.-T. Wu, Fundamentals of liquid crystal devices (John Wiley & Sons, 2014).

Yang, J.

Yang, S.

F. Serra, M. A. Gharbi, Y. Luo, I. B. Liu, N. D. Bade, R. D. Kamien, S. Yang, and K. J. Stebe, “Curvature-Driven, One-Step Assembly of Reconfigurable Smectic Liquid Crystal “Compound Eye” Lenses,” Adv. Opt. Mater. 3(9), 1287–1292 (2015).
[Crossref]

Ye, M.

M. Ye, B. Wang, M. Yamaguchi, and S. Sato, “Reducing driving voltages for liquid crystal lens using weakly conductive thin film,” Jpn. J. Appl. Phys. 47(6), 4597–4599 (2008).
[Crossref]

M. Ye, B. Wang, S. Yanase, and S. Sato, “Variable-focus liquid crystal lenses used in imaging systems as focusing elements,” Trans. Inst. Electron., Inf. Commun. Eng., Sect. E E91-C(10), 1599–1603 (2008).
[Crossref]

M. Ye, B. Wang, M. Kawamura, and S. Sato, “Image formation using liquid crystal lens,” Jpn. J. Appl. Phys. 46(10A), 6776–6777 (2007).
[Crossref]

B. Wang, M. Ye, and S. Sato, “Properties of Liquid Crystal Lens with Stacked Structure of Liquid Crystal Layers,” Jpn. J. Appl. Phys. 45(10A), 7813–7818 (2006).
[Crossref]

M. Ye and S. Sato, “New method of voltage application for improving response time of a liquid crystal lens,” Mol. Cryst. Liq. Cryst. 433(1), 229–236 (2005).
[Crossref]

B. Wang, M. Ye, and S. Sato, “Lens of electrically controllable focal length made by a glass lens and liquid-crystal layers,” Appl. Opt. 43(17), 3420–3425 (2004).
[Crossref]

M. Ye and S. Sato, “Optical properties of liquid crystal lens of any size,” Jpn. J. Appl. Phys. 41(Part 2, No. 5B), L571–L573 (2002).
[Crossref]

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid Crystal Lens with Spherical Electrode,” Jpn. J. Appl. Phys. 41(Part 2, No. 11A), L1232–L1233 (2002).
[Crossref]

Yeung, F. S.-Y.

F. S.-Y. Yeung, F.-C. Xie, J. T.-K. Wan, F. K. Lee, O. K. C. Tsui, P. Sheng, and H.-S. Kwok, “Liquid crystal pretilt angle control using nanotextured surfaces,” J. Appl. Phys. 99(12), 124506 (2006).
[Crossref]

Yin, K.

Yu, C.-J.

H. Park, Y.-J. Lee, J.-H. Kim, and C.-J. Yu, “51-3: Polarization-Selective Reflective Liquid Crystal Lens with Wavelength-Tunability,” Dig. Tech. Pap. - Soc. Inf. Disp. Int. Symp. 47(1), 696–698 (2016).
[Crossref]

Zhan, T.

Zhang, N.

Zhao, D.

Zhou, Y.

Y. Huang, Y. Zhou, and S.-T. Wu, “Lasing in Dye–Doped Photonic Liquid Crystal Devices,” Mol. Cryst. Liq. Cryst. 453(1), 251–262 (2006).
[Crossref]

Zhou, Z.

M. Xu, Z. Zhou, H. Ren, S. Hee Lee, and Q. Wang, “A microlens array based on polymer network liquid crystal,” J. Appl. Phys. 113(5), 053105 (2013).
[Crossref]

Zografopoulos, D. C.

J. F. Algorri, D. C. Zografopoulos, V. Urruchi, and J. M. Sánchez-Pena, “Recent Advances in Adaptive Liquid Crystal Lenses,” Crystals 9(5), 272 (2019).
[Crossref]

Zohrabyan, A.

Zou, J.

Adv. Opt. Mater. (1)

F. Serra, M. A. Gharbi, Y. Luo, I. B. Liu, N. D. Bade, R. D. Kamien, S. Yang, and K. J. Stebe, “Curvature-Driven, One-Step Assembly of Reconfigurable Smectic Liquid Crystal “Compound Eye” Lenses,” Adv. Opt. Mater. 3(9), 1287–1292 (2015).
[Crossref]

Appl. Opt. (5)

Appl. Phys. Lett. (1)

F. Du, Y.-Q. Lu, and S.-T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85(12), 2181–2183 (2004).
[Crossref]

Chem. Phys. Lett. (1)

Z. Chen, L. Jiang, and H. Ma, “Calculation on frequency and temperature properties of birefringence of nematic liquid crystal 5CB in terahertz band,” Chem. Phys. Lett. 645, 205–209 (2016).
[Crossref]

Crystals (1)

J. F. Algorri, D. C. Zografopoulos, V. Urruchi, and J. M. Sánchez-Pena, “Recent Advances in Adaptive Liquid Crystal Lenses,” Crystals 9(5), 272 (2019).
[Crossref]

CrystEngComm (1)

K. Thirupugalmani, M. Venkatesh, S. Karthick, K. Maurya, N. Vijayan, A. Chaudhary, and S. Brahadeeswaran, “Influence of polar solvents on growth of potentially NLO active organic single crystals of N-benzyl-2-methyl-4-nitroaniline and their efficiency in terahertz generation,” CrystEngComm 19(19), 2623–2631 (2017).
[Crossref]

Dig. Tech. Pap. - Soc. Inf. Disp. Int. Symp. (1)

H. Park, Y.-J. Lee, J.-H. Kim, and C.-J. Yu, “51-3: Polarization-Selective Reflective Liquid Crystal Lens with Wavelength-Tunability,” Dig. Tech. Pap. - Soc. Inf. Disp. Int. Symp. 47(1), 696–698 (2016).
[Crossref]

J. Appl. Phys. (2)

M. Xu, Z. Zhou, H. Ren, S. Hee Lee, and Q. Wang, “A microlens array based on polymer network liquid crystal,” J. Appl. Phys. 113(5), 053105 (2013).
[Crossref]

F. S.-Y. Yeung, F.-C. Xie, J. T.-K. Wan, F. K. Lee, O. K. C. Tsui, P. Sheng, and H.-S. Kwok, “Liquid crystal pretilt angle control using nanotextured surfaces,” J. Appl. Phys. 99(12), 124506 (2006).
[Crossref]

J. Mol. Liq. (1)

C. Y. Huang, P. Selvaraj, G. Senguttuvan, and C. J. Hsu, “Electro-optical and dielectric properties of TiO2 nanoparticles in nematic liquid crystals with high dielectric anisotropy,” J. Mol. Liq. 286, 110902 (2019).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (6)

B. Wang, M. Ye, and S. Sato, “Properties of Liquid Crystal Lens with Stacked Structure of Liquid Crystal Layers,” Jpn. J. Appl. Phys. 45(10A), 7813–7818 (2006).
[Crossref]

H. Hashimoto, Y. Okada, H. Fujimura, M. Morioka, O. Sugihara, N. Okamoto, and R. Matsushima, “Second-harmonic generation from single crystals of N-substituted 4-nitroanilines,” Jpn. J. Appl. Phys. 36(Part 1, No. 11), 6754–6760 (1997).
[Crossref]

M. Ye, B. Wang, M. Kawamura, and S. Sato, “Image formation using liquid crystal lens,” Jpn. J. Appl. Phys. 46(10A), 6776–6777 (2007).
[Crossref]

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid Crystal Lens with Spherical Electrode,” Jpn. J. Appl. Phys. 41(Part 2, No. 11A), L1232–L1233 (2002).
[Crossref]

M. Ye and S. Sato, “Optical properties of liquid crystal lens of any size,” Jpn. J. Appl. Phys. 41(Part 2, No. 5B), L571–L573 (2002).
[Crossref]

M. Ye, B. Wang, M. Yamaguchi, and S. Sato, “Reducing driving voltages for liquid crystal lens using weakly conductive thin film,” Jpn. J. Appl. Phys. 47(6), 4597–4599 (2008).
[Crossref]

Liq. Cryst. (1)

C.-J. Hsu, J.-J. Jhang, J.-C. Jhang, and C.-Y. Huang, “Influence of floating-ring-electrode on large-aperture liquid crystal lens,” Liq. Cryst. 45(1), 40–48 (2018).
[Crossref]

Mol. Cryst. Liq. Cryst. (3)

Y. Huang, Y. Zhou, and S.-T. Wu, “Lasing in Dye–Doped Photonic Liquid Crystal Devices,” Mol. Cryst. Liq. Cryst. 453(1), 251–262 (2006).
[Crossref]

M. Ye and S. Sato, “New method of voltage application for improving response time of a liquid crystal lens,” Mol. Cryst. Liq. Cryst. 433(1), 229–236 (2005).
[Crossref]

S. Gauza, P. Kula, X. Liang, S.-T. Wu, and R. Dąbrowski, “High birefringence and low viscosity liquid crystals with negative dielectric anisotropy,” Mol. Cryst. Liq. Cryst. 509(1), 47/[789]–59/[801] (2009).
[Crossref]

Opt. Commun. (1)

H. Ren, Y.-H. Fan, S. Gauza, and S.-T. Wu, “Tunable microlens arrays using polymer network liquid crystal,” Opt. Commun. 230(4-6), 267–271 (2004).
[Crossref]

Opt. Express (9)

G. Shibuya, N. Okuzawa, and M. Hayashi, “New application of liquid crystal lens of active polarized filter for micro camera,” Opt. Express 20(25), 27520–27528 (2012).
[Crossref]

H.-S. Chen and Y.-H. Lin, “An endoscopic system adopting a liquid crystal lens with an electrically tunable depth-of-field,” Opt. Express 21(15), 18079–18088 (2013).
[Crossref]

H. Ren, D. W. Fox, B. Wu, and S.-T. Wu, “Liquid crystal lens with large focal length tunability and low operating voltage,” Opt. Express 15(18), 11328–11335 (2007).
[Crossref]

Y.-Y. Kao, P. C. P. Chao, and C.-W. Hsueh, “A new low-voltage-driven GRIN liquid crystal lens with multiple ring electrodes in unequal widths,” Opt. Express 18(18), 18506–18518 (2010).
[Crossref]

Y.-C. Chang, T.-H. Jen, C.-H. Ting, and Y.-P. Huang, “High-resistance liquid-crystal lens array for rotatable 2D/3D autostereoscopic display,” Opt. Express 22(3), 2714–2724 (2014).
[Crossref]

C.-J. Hsu, J.-J. Jhang, and C.-Y. Huang, “Large aperture liquid crystal lens with an imbedded floating ring electrode,” Opt. Express 24(15), 16722–16731 (2016).
[Crossref]

T. Galstian, O. Sova, K. Asatryan, V. Presniakov, A. Zohrabyan, and M. Evensen, “Optical camera with liquid crystal autofocus lens,” Opt. Express 25(24), 29945–29964 (2017).
[Crossref]

T. Zhan, Y.-H. Lee, and S.-T. Wu, “High-resolution additive light field near-eye display by switchable Pancharatnam–Berry phase lenses,” Opt. Express 26(4), 4863–4872 (2018).
[Crossref]

T. Galstian, K. Asatryan, V. Presniakov, and A. Zohrabyan, “Electrically variable liquid crystal lenses for ophthalmic distance accommodation,” Opt. Express 27(13), 18803–18817 (2019).
[Crossref]

Opt. Laser Technol. (1)

C. J. Hsu, K. Agrahari, P. Selvaraj, W. F. Chiang, C. Y. Huang, R. Manohar, and C. Y. Huang, “Application of ultra-thin indium–tin–oxide film in liquid crystal lens,” Opt. Laser Technol. 119, 105603 (2019).
[Crossref]

Opt. Lett. (1)

Opt. Mater. Express (1)

Opt. Rev. (1)

M. Honma, T. Nose, and S. Sato, “Optimization of device parameters for minimizing spherical aberration and astigmatism in liquid crystal microlenses,” Opt. Rev. 6(2), 139–143 (1999).
[Crossref]

Sensors (1)

Y.-Y. Kao and P. C.-P. Chao, “A New Dual-Frequency Liquid Crystal Lens with Ring-and-Pie Electrodes and a Driving Scheme to Prevent Disclination Lines and Improve Recovery Time,” Sensors 11(5), 5402–5415 (2011).
[Crossref]

Trans. Inst. Electron., Inf. Commun. Eng., Sect. E (1)

M. Ye, B. Wang, S. Yanase, and S. Sato, “Variable-focus liquid crystal lenses used in imaging systems as focusing elements,” Trans. Inst. Electron., Inf. Commun. Eng., Sect. E E91-C(10), 1599–1603 (2008).
[Crossref]

Other (3)

D.-K. Yang and S.-T. Wu, Fundamentals of liquid crystal devices (John Wiley & Sons, 2014).

P. J. Hands, A. K. Kirby, and G. D. Love, “Adaptive modally addressed liquid crystal lenses,” in Liquid Crystals VIII, (International Society for Optics and Photonics, 2004), 136–143.

J. W. Goodman, Introduction to Fourier optics (Roberts and Company Publishers, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. (a) Structure scheme of LHLC lens cell; (b) molecular structure of BNA; (c) actual photo of pure LHLC lens cell; (d) measured birefringence of NLC and phase transition temperatures in the homogeneous BNA-doped LC cells.
Fig. 2.
Fig. 2. Interference fringes of the pure LHLC lens cell with a supplied voltage of (a) 40, (b) 80, (c) 90, and (d) 140 V; and those of the BNA-doped LHLC lens cell with a supplied voltage of (e) 40, (f) 80, (g) 100 and (h) 140 V. Red dashed lines indicate the AH region.
Fig. 3.
Fig. 3. Voltage-dependent focal lengths of pure and BNA-doped LHLC lenses.
Fig. 4.
Fig. 4. Phase retardations of (a) pure and (b) BNA-doped LHLC lenses at various voltages and (c) their evaluated RMS errors.
Fig. 5.
Fig. 5. FWHM values and focusing spot profiles of the pure and BNA-doped LHLC lenses at MaxP.
Fig. 6.
Fig. 6. Dynamic responses of pure and BNA-doped LHLC lenses with MaxP when the voltage is (a) turned on, (b) turned off, and (c) turned on by overdriving scheme.
Fig. 7.
Fig. 7. Imaging (a) without LHLC lens and with (b) pure and (c) BNA-doped LHLC lenses addressed at MaxP. (d) Transmission spectra of pure and BNA-doped LHLC lenses.

Tables (2)

Tables Icon

Table 1. Response times of the LHLC lenses.

Tables Icon

Table 2. Response times of pure and BNA-doped LHLC lenses.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

S = ( 1 T T n i ) β ,
Δ n = Δ n 0 ( 1 T T n i ) β ,
γ = b S e x p ( E K b T ) ,
f = r 2 2 N λ ,
N A r f ,
d F W H M = 0.52 λ N A ,