Abstract

We report a novel single-cavity dual-wavelength laser that has two distributed Bragg reflector (DBR) gratings at each side of a gain section for THz communication applications. By varying the inject current of one of the DBR gratings, the optical beat frequency of the laser can be widely tuned. In the device, a high-speed electro-absorption modulator (EAM) is also integrated and can be used for up to 25 Gb/s data modulation.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High-speed directly modulated widely tunable two-section InGaAlAs DBR lasers

Daibing Zhou, Song Liang, Lingjuan Zhao, Hongliang Zhu, and Wei Wang
Opt. Express 25(3) 2341-2346 (2017)

Electroabsorption-modulated widely tunable DBR laser transmitter for WDM-PONs

Liangshun Han, Song Liang, Huitao Wang, Lijun Qiao, Junjie Xu, Lingjuan Zhao, Hongliang Zhu, Baojun Wang, and Wei Wang
Opt. Express 22(24) 30368-30376 (2014)

Distributed feedback laser diode integrated with distributed Bragg reflector for continuous-wave terahertz generation

Namje Kim, Sang-Pil Han, Han-Cheol Ryu, Hyunsung Ko, Jeong-Woo Park, Donghun Lee, Min Yong Jeon, and Kyung Hyun Park
Opt. Express 20(16) 17496-17502 (2012)

References

  • View by:
  • |
  • |
  • |

  1. A. Stöhr, “Photonic millimeter-wave generation and its applications in high data rate wireless access,” in IEEE International Topical Meeting on Microwave Photonics (MWP) (2010), 7–10.
  2. A. J. Seeds, H. Shams, M. J. Fice, and C. Renaud, “Terahertz photonics for wireless communications,” J. Lightwave Technol. 33(3), 579–587 (2015).
    [Crossref]
  3. S. Schiller, B. Roth, F. Lewen, O. Ricken, and M. C. Wiedner, “Ultranarrow-linewidth continuous-wave THz sources based on multiplier chains,” Appl. Phys. B 95(1), 55–61 (2009).
    [Crossref]
  4. K. Nallappan, H. Guerboukha, C. Nerguizian, and M. Skorobogatly, “Live streaming of uncompressed HD and 4 K videos using terahertz wireless links,” IEEE Access 6, 58030–58042 (2018).
    [Crossref]
  5. G. Ducournau, P. Szriftgiser, A. Beck, D. Bacquet, F. Pavanello, E. Peytavit, M. Zaknoune, T. Akalin, and J. Lampin, “Ultrawide-bandwidth single-channel 0.4-THz wireless link combining broadband quasi-optic photomixer and coherent detection,” IEEE Trans. Microw. Theory Tech. 4(3), 328–337 (2014).
    [Crossref]
  6. G. Carpintero, K. Balakier, Z. Yang, R. C. Guzmán, A. Corradi, A. Jimenez, G. Kervella, M. J. Fice, M. Lamponi, M. Chitoui, F. van Dijk, C. C. Renaud, A. Wonfor, E. A. J. M. Bente, R. V. Penty, I. H. White, and A. J. Seeds, “Microwave photonic integrated circuits for millimeter-wave wireless communications,” J. Lightwave Technol. 32(20), 3495–3501 (2014).
    [Crossref]
  7. N. Kim, S. Han, H. Ryu, H. Ko, J. Park, D. Lee, M. Y. Jeon, and K. H. Park, “Distributed feedback laser diode integrated with distributed Bragg reflector for continuous-wave terahertz generation,” Opt. Express 20(16), 17496–17502 (2012).
    [Crossref]
  8. C. Guillermo, H. Shintaro, F. David, G. Robinson, N. Tadao, and K. Norbert, “Wireless data transmission at terahertz carrier waves generated from a hybrid InP-polymer dual tunable DBR laser photonic integrated circuit,” Sci. Rep. 8(1), 3018 (2018).
    [Crossref]
  9. M. Zanola, M. J. Strain, G. Giuliani, and M. Sorel, “Monolithically integrated DFB lasers for tunable and narrow linewidth millimeter-wave generation,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500406 (2013).
    [Crossref]
  10. F. Dijk, G. Kervella, M. Lamponi, M. Chtioui, F. Lelarge, E. Vinet, Y. Robert, M. J. Fice, C. C. Renaud, A. Jimenez, and G. Carpintero, “Integrated InP heterodyne millimeter wave transmitter,” IEEE Photonics Technol. Lett. 26(10), 965–968 (2014).
    [Crossref]
  11. M. Lo, A. Zarzuelo, R. Guzmán, and G. Carpintero, “Monolithically integrated microwave frequency synthesizer on InP generic foundry platform,” J. Lightwave Technol. 36(19), 4626–4632 (2018).
    [Crossref]
  12. Q. Deng, J. Xu, L. Guo, S. Liang, L. Hou, and H. Zhu, “A dual-grating InGaAsP/InP DFB laser integrated with an SOA for THz generation,” IEEE Photonics Technol. Lett. 28(21), 2307–2310 (2016).
    [Crossref]
  13. D. Wake, C. R. Lima, and P. A. Davies, “Optical generation of millimeter-wave signals for fiber-radio systems using a dual-mode DFB semiconductor laser,” lEEE T. Microwave Theory Tech. 43(9), 2270–2276 (1995).
    [Crossref]
  14. F. Pozzi, R. M. De La Rue, and M. Sorel, “Dual-wavelength InAlGaAs-InP laterally coupled distributed feedback laser,” IEEE Photonics Technol. Lett. 18(24), 2563–2565 (2006).
    [Crossref]
  15. N. Kim, J. Shin, E. Sim, C. W. Lee, D. S. Yee, M. Y. Jeon, Y. Jang, and K. H. Park, “Monolithic dual-mode distributed feedback semiconductor laser for tunable continuous-wave terahertz generation,” Opt. Express 17(16), 13851–13859 (2009).
    [Crossref]
  16. T. Kita, A. Matsumoto, N. Yamamoto, and H. Yamada, “Tunable dual-wavelength heterogeneous quantum dot laser diode with a silicon external cavity,” J. Lightwave Technol. 36(2), 219–224 (2018).
    [Crossref]
  17. J. Xu, L. Hou, Q. Deng, L. Han, S. Liang, J. H. Marsh, and H. Zhu, “Fully integrated multi-optoelectronic synthesizer for THz pumping source in wireless communications with rich backup redundancy and wide tuning range,” Sci. Rep. 6(1), 29084 (2016).
    [Crossref]
  18. M. Sun, S. Tan, F. Guo, S. Liu, Q. Kan, D. Lu, R. Zhang, W. Zhao, S. Liang, and W. Wang, “Integrated four-wavelength DFB diode laser array for continuous-wave THZ generation,” IEEE Photonics J. 8(4), 1–8 (2016).
    [Crossref]
  19. J. Sun, Y. Dai, X. Chen, Y. Zhang, and S. Xie, “Stable dual-wavelength DFB fiber laser with separate resonant cavities and its application in tunable microwave generation,” IEEE Photonics Technol. Lett. 18(24), 2587–2589 (2006).
    [Crossref]
  20. W. Liu, M. Jiang, D. Chen, and S. He, “Dual-wavelength single longitudinal mode polarization maintaining fiber laser and its application in microwave generation,” J. Lightwave Technol. 27(20), 4455–4459 (2009).
    [Crossref]
  21. M. J. Fice, E. Rouvalis, F. van Dijk, A. Accard, F. Lelarge, C. C. Renaud, G. Carpintero, and A. J. Seeds, “146-GHz millimeter-wave radio-over-fiber photonic wireless transmission system,” Opt. Express 20(2), 1769–1774 (2012).
    [Crossref]
  22. L. Han, S. Liang, J. Xu, L. Qiao, H. Wang, L. Zhao, H. Zhu, and W. Wang, “DBR laser with over 20-nm wavelength tuning range,” IEEE Photonics Technol. Lett. 28(9), 943–946 (2016).
    [Crossref]
  23. L. Han, S. Liang, H. Wang, L. Qiao, J. Xu, L. Zhao, H. Zhu, B. Wang, and W. Wang, “Electroabsorption-modulated widely tunable DBR laser transmitter for WDM-PONs,” Opt. Express 22(24), 30368–30376 (2014).
    [Crossref]
  24. L. Han, S. Liang, C. Zhang, L. Yu, L. Zhao, H. Zhu, B. Wang, C. Ji, and W. Wang, “Fabrication of widely tunable ridge waveguide DBR lasers for WDM-PON,” Chin. Opt. Lett. 12(9), 091402 (2014).
    [Crossref]
  25. L. Yu, H. Wang, D. Lu, S. Liang, C. Zhang, B. Pan, L. Zhang, and L. Zhao, “A widely tunable directly modulated DBR laser with high linearity,” IEEE Photonics J. 6(4), 1–8 (2014).
    [Crossref]
  26. G. Kyritsis and N. Zakhleniuk, “Self-Consistent Simulation Model and Enhancement of Wavelength Tuning of InGaAsP/InP Multisection DBR Laser Diodes,” IEEE J. Sel. Top. Quantum Electron. 19(5), 1–11 (2013).
    [Crossref]
  27. F. Delorme, G. Alibert, P. Boulet, S. Grosmaire, S. Slempkes, and A. Ougazzaden, “High reliability of high-power and widely tunable 1.55-µm distributed Bragg reflector lasers for WDM applications,” IEEE J. Sel. Top. Quantum Electron. 3(2), 607–614 (1997).
    [Crossref]

2018 (4)

K. Nallappan, H. Guerboukha, C. Nerguizian, and M. Skorobogatly, “Live streaming of uncompressed HD and 4 K videos using terahertz wireless links,” IEEE Access 6, 58030–58042 (2018).
[Crossref]

C. Guillermo, H. Shintaro, F. David, G. Robinson, N. Tadao, and K. Norbert, “Wireless data transmission at terahertz carrier waves generated from a hybrid InP-polymer dual tunable DBR laser photonic integrated circuit,” Sci. Rep. 8(1), 3018 (2018).
[Crossref]

M. Lo, A. Zarzuelo, R. Guzmán, and G. Carpintero, “Monolithically integrated microwave frequency synthesizer on InP generic foundry platform,” J. Lightwave Technol. 36(19), 4626–4632 (2018).
[Crossref]

T. Kita, A. Matsumoto, N. Yamamoto, and H. Yamada, “Tunable dual-wavelength heterogeneous quantum dot laser diode with a silicon external cavity,” J. Lightwave Technol. 36(2), 219–224 (2018).
[Crossref]

2016 (4)

J. Xu, L. Hou, Q. Deng, L. Han, S. Liang, J. H. Marsh, and H. Zhu, “Fully integrated multi-optoelectronic synthesizer for THz pumping source in wireless communications with rich backup redundancy and wide tuning range,” Sci. Rep. 6(1), 29084 (2016).
[Crossref]

M. Sun, S. Tan, F. Guo, S. Liu, Q. Kan, D. Lu, R. Zhang, W. Zhao, S. Liang, and W. Wang, “Integrated four-wavelength DFB diode laser array for continuous-wave THZ generation,” IEEE Photonics J. 8(4), 1–8 (2016).
[Crossref]

Q. Deng, J. Xu, L. Guo, S. Liang, L. Hou, and H. Zhu, “A dual-grating InGaAsP/InP DFB laser integrated with an SOA for THz generation,” IEEE Photonics Technol. Lett. 28(21), 2307–2310 (2016).
[Crossref]

L. Han, S. Liang, J. Xu, L. Qiao, H. Wang, L. Zhao, H. Zhu, and W. Wang, “DBR laser with over 20-nm wavelength tuning range,” IEEE Photonics Technol. Lett. 28(9), 943–946 (2016).
[Crossref]

2015 (1)

2014 (6)

G. Ducournau, P. Szriftgiser, A. Beck, D. Bacquet, F. Pavanello, E. Peytavit, M. Zaknoune, T. Akalin, and J. Lampin, “Ultrawide-bandwidth single-channel 0.4-THz wireless link combining broadband quasi-optic photomixer and coherent detection,” IEEE Trans. Microw. Theory Tech. 4(3), 328–337 (2014).
[Crossref]

G. Carpintero, K. Balakier, Z. Yang, R. C. Guzmán, A. Corradi, A. Jimenez, G. Kervella, M. J. Fice, M. Lamponi, M. Chitoui, F. van Dijk, C. C. Renaud, A. Wonfor, E. A. J. M. Bente, R. V. Penty, I. H. White, and A. J. Seeds, “Microwave photonic integrated circuits for millimeter-wave wireless communications,” J. Lightwave Technol. 32(20), 3495–3501 (2014).
[Crossref]

F. Dijk, G. Kervella, M. Lamponi, M. Chtioui, F. Lelarge, E. Vinet, Y. Robert, M. J. Fice, C. C. Renaud, A. Jimenez, and G. Carpintero, “Integrated InP heterodyne millimeter wave transmitter,” IEEE Photonics Technol. Lett. 26(10), 965–968 (2014).
[Crossref]

L. Han, S. Liang, H. Wang, L. Qiao, J. Xu, L. Zhao, H. Zhu, B. Wang, and W. Wang, “Electroabsorption-modulated widely tunable DBR laser transmitter for WDM-PONs,” Opt. Express 22(24), 30368–30376 (2014).
[Crossref]

L. Han, S. Liang, C. Zhang, L. Yu, L. Zhao, H. Zhu, B. Wang, C. Ji, and W. Wang, “Fabrication of widely tunable ridge waveguide DBR lasers for WDM-PON,” Chin. Opt. Lett. 12(9), 091402 (2014).
[Crossref]

L. Yu, H. Wang, D. Lu, S. Liang, C. Zhang, B. Pan, L. Zhang, and L. Zhao, “A widely tunable directly modulated DBR laser with high linearity,” IEEE Photonics J. 6(4), 1–8 (2014).
[Crossref]

2013 (2)

G. Kyritsis and N. Zakhleniuk, “Self-Consistent Simulation Model and Enhancement of Wavelength Tuning of InGaAsP/InP Multisection DBR Laser Diodes,” IEEE J. Sel. Top. Quantum Electron. 19(5), 1–11 (2013).
[Crossref]

M. Zanola, M. J. Strain, G. Giuliani, and M. Sorel, “Monolithically integrated DFB lasers for tunable and narrow linewidth millimeter-wave generation,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500406 (2013).
[Crossref]

2012 (2)

2009 (3)

2006 (2)

F. Pozzi, R. M. De La Rue, and M. Sorel, “Dual-wavelength InAlGaAs-InP laterally coupled distributed feedback laser,” IEEE Photonics Technol. Lett. 18(24), 2563–2565 (2006).
[Crossref]

J. Sun, Y. Dai, X. Chen, Y. Zhang, and S. Xie, “Stable dual-wavelength DFB fiber laser with separate resonant cavities and its application in tunable microwave generation,” IEEE Photonics Technol. Lett. 18(24), 2587–2589 (2006).
[Crossref]

1997 (1)

F. Delorme, G. Alibert, P. Boulet, S. Grosmaire, S. Slempkes, and A. Ougazzaden, “High reliability of high-power and widely tunable 1.55-µm distributed Bragg reflector lasers for WDM applications,” IEEE J. Sel. Top. Quantum Electron. 3(2), 607–614 (1997).
[Crossref]

1995 (1)

D. Wake, C. R. Lima, and P. A. Davies, “Optical generation of millimeter-wave signals for fiber-radio systems using a dual-mode DFB semiconductor laser,” lEEE T. Microwave Theory Tech. 43(9), 2270–2276 (1995).
[Crossref]

Accard, A.

Akalin, T.

G. Ducournau, P. Szriftgiser, A. Beck, D. Bacquet, F. Pavanello, E. Peytavit, M. Zaknoune, T. Akalin, and J. Lampin, “Ultrawide-bandwidth single-channel 0.4-THz wireless link combining broadband quasi-optic photomixer and coherent detection,” IEEE Trans. Microw. Theory Tech. 4(3), 328–337 (2014).
[Crossref]

Alibert, G.

F. Delorme, G. Alibert, P. Boulet, S. Grosmaire, S. Slempkes, and A. Ougazzaden, “High reliability of high-power and widely tunable 1.55-µm distributed Bragg reflector lasers for WDM applications,” IEEE J. Sel. Top. Quantum Electron. 3(2), 607–614 (1997).
[Crossref]

Bacquet, D.

G. Ducournau, P. Szriftgiser, A. Beck, D. Bacquet, F. Pavanello, E. Peytavit, M. Zaknoune, T. Akalin, and J. Lampin, “Ultrawide-bandwidth single-channel 0.4-THz wireless link combining broadband quasi-optic photomixer and coherent detection,” IEEE Trans. Microw. Theory Tech. 4(3), 328–337 (2014).
[Crossref]

Balakier, K.

Beck, A.

G. Ducournau, P. Szriftgiser, A. Beck, D. Bacquet, F. Pavanello, E. Peytavit, M. Zaknoune, T. Akalin, and J. Lampin, “Ultrawide-bandwidth single-channel 0.4-THz wireless link combining broadband quasi-optic photomixer and coherent detection,” IEEE Trans. Microw. Theory Tech. 4(3), 328–337 (2014).
[Crossref]

Bente, E. A. J. M.

Boulet, P.

F. Delorme, G. Alibert, P. Boulet, S. Grosmaire, S. Slempkes, and A. Ougazzaden, “High reliability of high-power and widely tunable 1.55-µm distributed Bragg reflector lasers for WDM applications,” IEEE J. Sel. Top. Quantum Electron. 3(2), 607–614 (1997).
[Crossref]

Carpintero, G.

Chen, D.

Chen, X.

J. Sun, Y. Dai, X. Chen, Y. Zhang, and S. Xie, “Stable dual-wavelength DFB fiber laser with separate resonant cavities and its application in tunable microwave generation,” IEEE Photonics Technol. Lett. 18(24), 2587–2589 (2006).
[Crossref]

Chitoui, M.

Chtioui, M.

F. Dijk, G. Kervella, M. Lamponi, M. Chtioui, F. Lelarge, E. Vinet, Y. Robert, M. J. Fice, C. C. Renaud, A. Jimenez, and G. Carpintero, “Integrated InP heterodyne millimeter wave transmitter,” IEEE Photonics Technol. Lett. 26(10), 965–968 (2014).
[Crossref]

Corradi, A.

Dai, Y.

J. Sun, Y. Dai, X. Chen, Y. Zhang, and S. Xie, “Stable dual-wavelength DFB fiber laser with separate resonant cavities and its application in tunable microwave generation,” IEEE Photonics Technol. Lett. 18(24), 2587–2589 (2006).
[Crossref]

David, F.

C. Guillermo, H. Shintaro, F. David, G. Robinson, N. Tadao, and K. Norbert, “Wireless data transmission at terahertz carrier waves generated from a hybrid InP-polymer dual tunable DBR laser photonic integrated circuit,” Sci. Rep. 8(1), 3018 (2018).
[Crossref]

Davies, P. A.

D. Wake, C. R. Lima, and P. A. Davies, “Optical generation of millimeter-wave signals for fiber-radio systems using a dual-mode DFB semiconductor laser,” lEEE T. Microwave Theory Tech. 43(9), 2270–2276 (1995).
[Crossref]

De La Rue, R. M.

F. Pozzi, R. M. De La Rue, and M. Sorel, “Dual-wavelength InAlGaAs-InP laterally coupled distributed feedback laser,” IEEE Photonics Technol. Lett. 18(24), 2563–2565 (2006).
[Crossref]

Delorme, F.

F. Delorme, G. Alibert, P. Boulet, S. Grosmaire, S. Slempkes, and A. Ougazzaden, “High reliability of high-power and widely tunable 1.55-µm distributed Bragg reflector lasers for WDM applications,” IEEE J. Sel. Top. Quantum Electron. 3(2), 607–614 (1997).
[Crossref]

Deng, Q.

Q. Deng, J. Xu, L. Guo, S. Liang, L. Hou, and H. Zhu, “A dual-grating InGaAsP/InP DFB laser integrated with an SOA for THz generation,” IEEE Photonics Technol. Lett. 28(21), 2307–2310 (2016).
[Crossref]

J. Xu, L. Hou, Q. Deng, L. Han, S. Liang, J. H. Marsh, and H. Zhu, “Fully integrated multi-optoelectronic synthesizer for THz pumping source in wireless communications with rich backup redundancy and wide tuning range,” Sci. Rep. 6(1), 29084 (2016).
[Crossref]

Dijk, F.

F. Dijk, G. Kervella, M. Lamponi, M. Chtioui, F. Lelarge, E. Vinet, Y. Robert, M. J. Fice, C. C. Renaud, A. Jimenez, and G. Carpintero, “Integrated InP heterodyne millimeter wave transmitter,” IEEE Photonics Technol. Lett. 26(10), 965–968 (2014).
[Crossref]

Ducournau, G.

G. Ducournau, P. Szriftgiser, A. Beck, D. Bacquet, F. Pavanello, E. Peytavit, M. Zaknoune, T. Akalin, and J. Lampin, “Ultrawide-bandwidth single-channel 0.4-THz wireless link combining broadband quasi-optic photomixer and coherent detection,” IEEE Trans. Microw. Theory Tech. 4(3), 328–337 (2014).
[Crossref]

Fice, M. J.

Giuliani, G.

M. Zanola, M. J. Strain, G. Giuliani, and M. Sorel, “Monolithically integrated DFB lasers for tunable and narrow linewidth millimeter-wave generation,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500406 (2013).
[Crossref]

Grosmaire, S.

F. Delorme, G. Alibert, P. Boulet, S. Grosmaire, S. Slempkes, and A. Ougazzaden, “High reliability of high-power and widely tunable 1.55-µm distributed Bragg reflector lasers for WDM applications,” IEEE J. Sel. Top. Quantum Electron. 3(2), 607–614 (1997).
[Crossref]

Guerboukha, H.

K. Nallappan, H. Guerboukha, C. Nerguizian, and M. Skorobogatly, “Live streaming of uncompressed HD and 4 K videos using terahertz wireless links,” IEEE Access 6, 58030–58042 (2018).
[Crossref]

Guillermo, C.

C. Guillermo, H. Shintaro, F. David, G. Robinson, N. Tadao, and K. Norbert, “Wireless data transmission at terahertz carrier waves generated from a hybrid InP-polymer dual tunable DBR laser photonic integrated circuit,” Sci. Rep. 8(1), 3018 (2018).
[Crossref]

Guo, F.

M. Sun, S. Tan, F. Guo, S. Liu, Q. Kan, D. Lu, R. Zhang, W. Zhao, S. Liang, and W. Wang, “Integrated four-wavelength DFB diode laser array for continuous-wave THZ generation,” IEEE Photonics J. 8(4), 1–8 (2016).
[Crossref]

Guo, L.

Q. Deng, J. Xu, L. Guo, S. Liang, L. Hou, and H. Zhu, “A dual-grating InGaAsP/InP DFB laser integrated with an SOA for THz generation,” IEEE Photonics Technol. Lett. 28(21), 2307–2310 (2016).
[Crossref]

Guzmán, R.

Guzmán, R. C.

Han, L.

L. Han, S. Liang, J. Xu, L. Qiao, H. Wang, L. Zhao, H. Zhu, and W. Wang, “DBR laser with over 20-nm wavelength tuning range,” IEEE Photonics Technol. Lett. 28(9), 943–946 (2016).
[Crossref]

J. Xu, L. Hou, Q. Deng, L. Han, S. Liang, J. H. Marsh, and H. Zhu, “Fully integrated multi-optoelectronic synthesizer for THz pumping source in wireless communications with rich backup redundancy and wide tuning range,” Sci. Rep. 6(1), 29084 (2016).
[Crossref]

L. Han, S. Liang, C. Zhang, L. Yu, L. Zhao, H. Zhu, B. Wang, C. Ji, and W. Wang, “Fabrication of widely tunable ridge waveguide DBR lasers for WDM-PON,” Chin. Opt. Lett. 12(9), 091402 (2014).
[Crossref]

L. Han, S. Liang, H. Wang, L. Qiao, J. Xu, L. Zhao, H. Zhu, B. Wang, and W. Wang, “Electroabsorption-modulated widely tunable DBR laser transmitter for WDM-PONs,” Opt. Express 22(24), 30368–30376 (2014).
[Crossref]

Han, S.

He, S.

Hou, L.

Q. Deng, J. Xu, L. Guo, S. Liang, L. Hou, and H. Zhu, “A dual-grating InGaAsP/InP DFB laser integrated with an SOA for THz generation,” IEEE Photonics Technol. Lett. 28(21), 2307–2310 (2016).
[Crossref]

J. Xu, L. Hou, Q. Deng, L. Han, S. Liang, J. H. Marsh, and H. Zhu, “Fully integrated multi-optoelectronic synthesizer for THz pumping source in wireless communications with rich backup redundancy and wide tuning range,” Sci. Rep. 6(1), 29084 (2016).
[Crossref]

Jang, Y.

Jeon, M. Y.

Ji, C.

Jiang, M.

Jimenez, A.

Kan, Q.

M. Sun, S. Tan, F. Guo, S. Liu, Q. Kan, D. Lu, R. Zhang, W. Zhao, S. Liang, and W. Wang, “Integrated four-wavelength DFB diode laser array for continuous-wave THZ generation,” IEEE Photonics J. 8(4), 1–8 (2016).
[Crossref]

Kervella, G.

Kim, N.

Kita, T.

Ko, H.

Kyritsis, G.

G. Kyritsis and N. Zakhleniuk, “Self-Consistent Simulation Model and Enhancement of Wavelength Tuning of InGaAsP/InP Multisection DBR Laser Diodes,” IEEE J. Sel. Top. Quantum Electron. 19(5), 1–11 (2013).
[Crossref]

Lampin, J.

G. Ducournau, P. Szriftgiser, A. Beck, D. Bacquet, F. Pavanello, E. Peytavit, M. Zaknoune, T. Akalin, and J. Lampin, “Ultrawide-bandwidth single-channel 0.4-THz wireless link combining broadband quasi-optic photomixer and coherent detection,” IEEE Trans. Microw. Theory Tech. 4(3), 328–337 (2014).
[Crossref]

Lamponi, M.

Lee, C. W.

Lee, D.

Lelarge, F.

F. Dijk, G. Kervella, M. Lamponi, M. Chtioui, F. Lelarge, E. Vinet, Y. Robert, M. J. Fice, C. C. Renaud, A. Jimenez, and G. Carpintero, “Integrated InP heterodyne millimeter wave transmitter,” IEEE Photonics Technol. Lett. 26(10), 965–968 (2014).
[Crossref]

M. J. Fice, E. Rouvalis, F. van Dijk, A. Accard, F. Lelarge, C. C. Renaud, G. Carpintero, and A. J. Seeds, “146-GHz millimeter-wave radio-over-fiber photonic wireless transmission system,” Opt. Express 20(2), 1769–1774 (2012).
[Crossref]

Lewen, F.

S. Schiller, B. Roth, F. Lewen, O. Ricken, and M. C. Wiedner, “Ultranarrow-linewidth continuous-wave THz sources based on multiplier chains,” Appl. Phys. B 95(1), 55–61 (2009).
[Crossref]

Liang, S.

Q. Deng, J. Xu, L. Guo, S. Liang, L. Hou, and H. Zhu, “A dual-grating InGaAsP/InP DFB laser integrated with an SOA for THz generation,” IEEE Photonics Technol. Lett. 28(21), 2307–2310 (2016).
[Crossref]

M. Sun, S. Tan, F. Guo, S. Liu, Q. Kan, D. Lu, R. Zhang, W. Zhao, S. Liang, and W. Wang, “Integrated four-wavelength DFB diode laser array for continuous-wave THZ generation,” IEEE Photonics J. 8(4), 1–8 (2016).
[Crossref]

J. Xu, L. Hou, Q. Deng, L. Han, S. Liang, J. H. Marsh, and H. Zhu, “Fully integrated multi-optoelectronic synthesizer for THz pumping source in wireless communications with rich backup redundancy and wide tuning range,” Sci. Rep. 6(1), 29084 (2016).
[Crossref]

L. Han, S. Liang, J. Xu, L. Qiao, H. Wang, L. Zhao, H. Zhu, and W. Wang, “DBR laser with over 20-nm wavelength tuning range,” IEEE Photonics Technol. Lett. 28(9), 943–946 (2016).
[Crossref]

L. Han, S. Liang, H. Wang, L. Qiao, J. Xu, L. Zhao, H. Zhu, B. Wang, and W. Wang, “Electroabsorption-modulated widely tunable DBR laser transmitter for WDM-PONs,” Opt. Express 22(24), 30368–30376 (2014).
[Crossref]

L. Han, S. Liang, C. Zhang, L. Yu, L. Zhao, H. Zhu, B. Wang, C. Ji, and W. Wang, “Fabrication of widely tunable ridge waveguide DBR lasers for WDM-PON,” Chin. Opt. Lett. 12(9), 091402 (2014).
[Crossref]

L. Yu, H. Wang, D. Lu, S. Liang, C. Zhang, B. Pan, L. Zhang, and L. Zhao, “A widely tunable directly modulated DBR laser with high linearity,” IEEE Photonics J. 6(4), 1–8 (2014).
[Crossref]

Lima, C. R.

D. Wake, C. R. Lima, and P. A. Davies, “Optical generation of millimeter-wave signals for fiber-radio systems using a dual-mode DFB semiconductor laser,” lEEE T. Microwave Theory Tech. 43(9), 2270–2276 (1995).
[Crossref]

Liu, S.

M. Sun, S. Tan, F. Guo, S. Liu, Q. Kan, D. Lu, R. Zhang, W. Zhao, S. Liang, and W. Wang, “Integrated four-wavelength DFB diode laser array for continuous-wave THZ generation,” IEEE Photonics J. 8(4), 1–8 (2016).
[Crossref]

Liu, W.

Lo, M.

Lu, D.

M. Sun, S. Tan, F. Guo, S. Liu, Q. Kan, D. Lu, R. Zhang, W. Zhao, S. Liang, and W. Wang, “Integrated four-wavelength DFB diode laser array for continuous-wave THZ generation,” IEEE Photonics J. 8(4), 1–8 (2016).
[Crossref]

L. Yu, H. Wang, D. Lu, S. Liang, C. Zhang, B. Pan, L. Zhang, and L. Zhao, “A widely tunable directly modulated DBR laser with high linearity,” IEEE Photonics J. 6(4), 1–8 (2014).
[Crossref]

Marsh, J. H.

J. Xu, L. Hou, Q. Deng, L. Han, S. Liang, J. H. Marsh, and H. Zhu, “Fully integrated multi-optoelectronic synthesizer for THz pumping source in wireless communications with rich backup redundancy and wide tuning range,” Sci. Rep. 6(1), 29084 (2016).
[Crossref]

Matsumoto, A.

Nallappan, K.

K. Nallappan, H. Guerboukha, C. Nerguizian, and M. Skorobogatly, “Live streaming of uncompressed HD and 4 K videos using terahertz wireless links,” IEEE Access 6, 58030–58042 (2018).
[Crossref]

Nerguizian, C.

K. Nallappan, H. Guerboukha, C. Nerguizian, and M. Skorobogatly, “Live streaming of uncompressed HD and 4 K videos using terahertz wireless links,” IEEE Access 6, 58030–58042 (2018).
[Crossref]

Norbert, K.

C. Guillermo, H. Shintaro, F. David, G. Robinson, N. Tadao, and K. Norbert, “Wireless data transmission at terahertz carrier waves generated from a hybrid InP-polymer dual tunable DBR laser photonic integrated circuit,” Sci. Rep. 8(1), 3018 (2018).
[Crossref]

Ougazzaden, A.

F. Delorme, G. Alibert, P. Boulet, S. Grosmaire, S. Slempkes, and A. Ougazzaden, “High reliability of high-power and widely tunable 1.55-µm distributed Bragg reflector lasers for WDM applications,” IEEE J. Sel. Top. Quantum Electron. 3(2), 607–614 (1997).
[Crossref]

Pan, B.

L. Yu, H. Wang, D. Lu, S. Liang, C. Zhang, B. Pan, L. Zhang, and L. Zhao, “A widely tunable directly modulated DBR laser with high linearity,” IEEE Photonics J. 6(4), 1–8 (2014).
[Crossref]

Park, J.

Park, K. H.

Pavanello, F.

G. Ducournau, P. Szriftgiser, A. Beck, D. Bacquet, F. Pavanello, E. Peytavit, M. Zaknoune, T. Akalin, and J. Lampin, “Ultrawide-bandwidth single-channel 0.4-THz wireless link combining broadband quasi-optic photomixer and coherent detection,” IEEE Trans. Microw. Theory Tech. 4(3), 328–337 (2014).
[Crossref]

Penty, R. V.

Peytavit, E.

G. Ducournau, P. Szriftgiser, A. Beck, D. Bacquet, F. Pavanello, E. Peytavit, M. Zaknoune, T. Akalin, and J. Lampin, “Ultrawide-bandwidth single-channel 0.4-THz wireless link combining broadband quasi-optic photomixer and coherent detection,” IEEE Trans. Microw. Theory Tech. 4(3), 328–337 (2014).
[Crossref]

Pozzi, F.

F. Pozzi, R. M. De La Rue, and M. Sorel, “Dual-wavelength InAlGaAs-InP laterally coupled distributed feedback laser,” IEEE Photonics Technol. Lett. 18(24), 2563–2565 (2006).
[Crossref]

Qiao, L.

L. Han, S. Liang, J. Xu, L. Qiao, H. Wang, L. Zhao, H. Zhu, and W. Wang, “DBR laser with over 20-nm wavelength tuning range,” IEEE Photonics Technol. Lett. 28(9), 943–946 (2016).
[Crossref]

L. Han, S. Liang, H. Wang, L. Qiao, J. Xu, L. Zhao, H. Zhu, B. Wang, and W. Wang, “Electroabsorption-modulated widely tunable DBR laser transmitter for WDM-PONs,” Opt. Express 22(24), 30368–30376 (2014).
[Crossref]

Renaud, C.

Renaud, C. C.

Ricken, O.

S. Schiller, B. Roth, F. Lewen, O. Ricken, and M. C. Wiedner, “Ultranarrow-linewidth continuous-wave THz sources based on multiplier chains,” Appl. Phys. B 95(1), 55–61 (2009).
[Crossref]

Robert, Y.

F. Dijk, G. Kervella, M. Lamponi, M. Chtioui, F. Lelarge, E. Vinet, Y. Robert, M. J. Fice, C. C. Renaud, A. Jimenez, and G. Carpintero, “Integrated InP heterodyne millimeter wave transmitter,” IEEE Photonics Technol. Lett. 26(10), 965–968 (2014).
[Crossref]

Robinson, G.

C. Guillermo, H. Shintaro, F. David, G. Robinson, N. Tadao, and K. Norbert, “Wireless data transmission at terahertz carrier waves generated from a hybrid InP-polymer dual tunable DBR laser photonic integrated circuit,” Sci. Rep. 8(1), 3018 (2018).
[Crossref]

Roth, B.

S. Schiller, B. Roth, F. Lewen, O. Ricken, and M. C. Wiedner, “Ultranarrow-linewidth continuous-wave THz sources based on multiplier chains,” Appl. Phys. B 95(1), 55–61 (2009).
[Crossref]

Rouvalis, E.

Ryu, H.

Schiller, S.

S. Schiller, B. Roth, F. Lewen, O. Ricken, and M. C. Wiedner, “Ultranarrow-linewidth continuous-wave THz sources based on multiplier chains,” Appl. Phys. B 95(1), 55–61 (2009).
[Crossref]

Seeds, A. J.

Shams, H.

Shin, J.

Shintaro, H.

C. Guillermo, H. Shintaro, F. David, G. Robinson, N. Tadao, and K. Norbert, “Wireless data transmission at terahertz carrier waves generated from a hybrid InP-polymer dual tunable DBR laser photonic integrated circuit,” Sci. Rep. 8(1), 3018 (2018).
[Crossref]

Sim, E.

Skorobogatly, M.

K. Nallappan, H. Guerboukha, C. Nerguizian, and M. Skorobogatly, “Live streaming of uncompressed HD and 4 K videos using terahertz wireless links,” IEEE Access 6, 58030–58042 (2018).
[Crossref]

Slempkes, S.

F. Delorme, G. Alibert, P. Boulet, S. Grosmaire, S. Slempkes, and A. Ougazzaden, “High reliability of high-power and widely tunable 1.55-µm distributed Bragg reflector lasers for WDM applications,” IEEE J. Sel. Top. Quantum Electron. 3(2), 607–614 (1997).
[Crossref]

Sorel, M.

M. Zanola, M. J. Strain, G. Giuliani, and M. Sorel, “Monolithically integrated DFB lasers for tunable and narrow linewidth millimeter-wave generation,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500406 (2013).
[Crossref]

F. Pozzi, R. M. De La Rue, and M. Sorel, “Dual-wavelength InAlGaAs-InP laterally coupled distributed feedback laser,” IEEE Photonics Technol. Lett. 18(24), 2563–2565 (2006).
[Crossref]

Stöhr, A.

A. Stöhr, “Photonic millimeter-wave generation and its applications in high data rate wireless access,” in IEEE International Topical Meeting on Microwave Photonics (MWP) (2010), 7–10.

Strain, M. J.

M. Zanola, M. J. Strain, G. Giuliani, and M. Sorel, “Monolithically integrated DFB lasers for tunable and narrow linewidth millimeter-wave generation,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500406 (2013).
[Crossref]

Sun, J.

J. Sun, Y. Dai, X. Chen, Y. Zhang, and S. Xie, “Stable dual-wavelength DFB fiber laser with separate resonant cavities and its application in tunable microwave generation,” IEEE Photonics Technol. Lett. 18(24), 2587–2589 (2006).
[Crossref]

Sun, M.

M. Sun, S. Tan, F. Guo, S. Liu, Q. Kan, D. Lu, R. Zhang, W. Zhao, S. Liang, and W. Wang, “Integrated four-wavelength DFB diode laser array for continuous-wave THZ generation,” IEEE Photonics J. 8(4), 1–8 (2016).
[Crossref]

Szriftgiser, P.

G. Ducournau, P. Szriftgiser, A. Beck, D. Bacquet, F. Pavanello, E. Peytavit, M. Zaknoune, T. Akalin, and J. Lampin, “Ultrawide-bandwidth single-channel 0.4-THz wireless link combining broadband quasi-optic photomixer and coherent detection,” IEEE Trans. Microw. Theory Tech. 4(3), 328–337 (2014).
[Crossref]

Tadao, N.

C. Guillermo, H. Shintaro, F. David, G. Robinson, N. Tadao, and K. Norbert, “Wireless data transmission at terahertz carrier waves generated from a hybrid InP-polymer dual tunable DBR laser photonic integrated circuit,” Sci. Rep. 8(1), 3018 (2018).
[Crossref]

Tan, S.

M. Sun, S. Tan, F. Guo, S. Liu, Q. Kan, D. Lu, R. Zhang, W. Zhao, S. Liang, and W. Wang, “Integrated four-wavelength DFB diode laser array for continuous-wave THZ generation,” IEEE Photonics J. 8(4), 1–8 (2016).
[Crossref]

van Dijk, F.

Vinet, E.

F. Dijk, G. Kervella, M. Lamponi, M. Chtioui, F. Lelarge, E. Vinet, Y. Robert, M. J. Fice, C. C. Renaud, A. Jimenez, and G. Carpintero, “Integrated InP heterodyne millimeter wave transmitter,” IEEE Photonics Technol. Lett. 26(10), 965–968 (2014).
[Crossref]

Wake, D.

D. Wake, C. R. Lima, and P. A. Davies, “Optical generation of millimeter-wave signals for fiber-radio systems using a dual-mode DFB semiconductor laser,” lEEE T. Microwave Theory Tech. 43(9), 2270–2276 (1995).
[Crossref]

Wang, B.

Wang, H.

L. Han, S. Liang, J. Xu, L. Qiao, H. Wang, L. Zhao, H. Zhu, and W. Wang, “DBR laser with over 20-nm wavelength tuning range,” IEEE Photonics Technol. Lett. 28(9), 943–946 (2016).
[Crossref]

L. Han, S. Liang, H. Wang, L. Qiao, J. Xu, L. Zhao, H. Zhu, B. Wang, and W. Wang, “Electroabsorption-modulated widely tunable DBR laser transmitter for WDM-PONs,” Opt. Express 22(24), 30368–30376 (2014).
[Crossref]

L. Yu, H. Wang, D. Lu, S. Liang, C. Zhang, B. Pan, L. Zhang, and L. Zhao, “A widely tunable directly modulated DBR laser with high linearity,” IEEE Photonics J. 6(4), 1–8 (2014).
[Crossref]

Wang, W.

M. Sun, S. Tan, F. Guo, S. Liu, Q. Kan, D. Lu, R. Zhang, W. Zhao, S. Liang, and W. Wang, “Integrated four-wavelength DFB diode laser array for continuous-wave THZ generation,” IEEE Photonics J. 8(4), 1–8 (2016).
[Crossref]

L. Han, S. Liang, J. Xu, L. Qiao, H. Wang, L. Zhao, H. Zhu, and W. Wang, “DBR laser with over 20-nm wavelength tuning range,” IEEE Photonics Technol. Lett. 28(9), 943–946 (2016).
[Crossref]

L. Han, S. Liang, H. Wang, L. Qiao, J. Xu, L. Zhao, H. Zhu, B. Wang, and W. Wang, “Electroabsorption-modulated widely tunable DBR laser transmitter for WDM-PONs,” Opt. Express 22(24), 30368–30376 (2014).
[Crossref]

L. Han, S. Liang, C. Zhang, L. Yu, L. Zhao, H. Zhu, B. Wang, C. Ji, and W. Wang, “Fabrication of widely tunable ridge waveguide DBR lasers for WDM-PON,” Chin. Opt. Lett. 12(9), 091402 (2014).
[Crossref]

White, I. H.

Wiedner, M. C.

S. Schiller, B. Roth, F. Lewen, O. Ricken, and M. C. Wiedner, “Ultranarrow-linewidth continuous-wave THz sources based on multiplier chains,” Appl. Phys. B 95(1), 55–61 (2009).
[Crossref]

Wonfor, A.

Xie, S.

J. Sun, Y. Dai, X. Chen, Y. Zhang, and S. Xie, “Stable dual-wavelength DFB fiber laser with separate resonant cavities and its application in tunable microwave generation,” IEEE Photonics Technol. Lett. 18(24), 2587–2589 (2006).
[Crossref]

Xu, J.

Q. Deng, J. Xu, L. Guo, S. Liang, L. Hou, and H. Zhu, “A dual-grating InGaAsP/InP DFB laser integrated with an SOA for THz generation,” IEEE Photonics Technol. Lett. 28(21), 2307–2310 (2016).
[Crossref]

J. Xu, L. Hou, Q. Deng, L. Han, S. Liang, J. H. Marsh, and H. Zhu, “Fully integrated multi-optoelectronic synthesizer for THz pumping source in wireless communications with rich backup redundancy and wide tuning range,” Sci. Rep. 6(1), 29084 (2016).
[Crossref]

L. Han, S. Liang, J. Xu, L. Qiao, H. Wang, L. Zhao, H. Zhu, and W. Wang, “DBR laser with over 20-nm wavelength tuning range,” IEEE Photonics Technol. Lett. 28(9), 943–946 (2016).
[Crossref]

L. Han, S. Liang, H. Wang, L. Qiao, J. Xu, L. Zhao, H. Zhu, B. Wang, and W. Wang, “Electroabsorption-modulated widely tunable DBR laser transmitter for WDM-PONs,” Opt. Express 22(24), 30368–30376 (2014).
[Crossref]

Yamada, H.

Yamamoto, N.

Yang, Z.

Yee, D. S.

Yu, L.

L. Han, S. Liang, C. Zhang, L. Yu, L. Zhao, H. Zhu, B. Wang, C. Ji, and W. Wang, “Fabrication of widely tunable ridge waveguide DBR lasers for WDM-PON,” Chin. Opt. Lett. 12(9), 091402 (2014).
[Crossref]

L. Yu, H. Wang, D. Lu, S. Liang, C. Zhang, B. Pan, L. Zhang, and L. Zhao, “A widely tunable directly modulated DBR laser with high linearity,” IEEE Photonics J. 6(4), 1–8 (2014).
[Crossref]

Zakhleniuk, N.

G. Kyritsis and N. Zakhleniuk, “Self-Consistent Simulation Model and Enhancement of Wavelength Tuning of InGaAsP/InP Multisection DBR Laser Diodes,” IEEE J. Sel. Top. Quantum Electron. 19(5), 1–11 (2013).
[Crossref]

Zaknoune, M.

G. Ducournau, P. Szriftgiser, A. Beck, D. Bacquet, F. Pavanello, E. Peytavit, M. Zaknoune, T. Akalin, and J. Lampin, “Ultrawide-bandwidth single-channel 0.4-THz wireless link combining broadband quasi-optic photomixer and coherent detection,” IEEE Trans. Microw. Theory Tech. 4(3), 328–337 (2014).
[Crossref]

Zanola, M.

M. Zanola, M. J. Strain, G. Giuliani, and M. Sorel, “Monolithically integrated DFB lasers for tunable and narrow linewidth millimeter-wave generation,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500406 (2013).
[Crossref]

Zarzuelo, A.

Zhang, C.

L. Yu, H. Wang, D. Lu, S. Liang, C. Zhang, B. Pan, L. Zhang, and L. Zhao, “A widely tunable directly modulated DBR laser with high linearity,” IEEE Photonics J. 6(4), 1–8 (2014).
[Crossref]

L. Han, S. Liang, C. Zhang, L. Yu, L. Zhao, H. Zhu, B. Wang, C. Ji, and W. Wang, “Fabrication of widely tunable ridge waveguide DBR lasers for WDM-PON,” Chin. Opt. Lett. 12(9), 091402 (2014).
[Crossref]

Zhang, L.

L. Yu, H. Wang, D. Lu, S. Liang, C. Zhang, B. Pan, L. Zhang, and L. Zhao, “A widely tunable directly modulated DBR laser with high linearity,” IEEE Photonics J. 6(4), 1–8 (2014).
[Crossref]

Zhang, R.

M. Sun, S. Tan, F. Guo, S. Liu, Q. Kan, D. Lu, R. Zhang, W. Zhao, S. Liang, and W. Wang, “Integrated four-wavelength DFB diode laser array for continuous-wave THZ generation,” IEEE Photonics J. 8(4), 1–8 (2016).
[Crossref]

Zhang, Y.

J. Sun, Y. Dai, X. Chen, Y. Zhang, and S. Xie, “Stable dual-wavelength DFB fiber laser with separate resonant cavities and its application in tunable microwave generation,” IEEE Photonics Technol. Lett. 18(24), 2587–2589 (2006).
[Crossref]

Zhao, L.

L. Han, S. Liang, J. Xu, L. Qiao, H. Wang, L. Zhao, H. Zhu, and W. Wang, “DBR laser with over 20-nm wavelength tuning range,” IEEE Photonics Technol. Lett. 28(9), 943–946 (2016).
[Crossref]

L. Han, S. Liang, C. Zhang, L. Yu, L. Zhao, H. Zhu, B. Wang, C. Ji, and W. Wang, “Fabrication of widely tunable ridge waveguide DBR lasers for WDM-PON,” Chin. Opt. Lett. 12(9), 091402 (2014).
[Crossref]

L. Han, S. Liang, H. Wang, L. Qiao, J. Xu, L. Zhao, H. Zhu, B. Wang, and W. Wang, “Electroabsorption-modulated widely tunable DBR laser transmitter for WDM-PONs,” Opt. Express 22(24), 30368–30376 (2014).
[Crossref]

L. Yu, H. Wang, D. Lu, S. Liang, C. Zhang, B. Pan, L. Zhang, and L. Zhao, “A widely tunable directly modulated DBR laser with high linearity,” IEEE Photonics J. 6(4), 1–8 (2014).
[Crossref]

Zhao, W.

M. Sun, S. Tan, F. Guo, S. Liu, Q. Kan, D. Lu, R. Zhang, W. Zhao, S. Liang, and W. Wang, “Integrated four-wavelength DFB diode laser array for continuous-wave THZ generation,” IEEE Photonics J. 8(4), 1–8 (2016).
[Crossref]

Zhu, H.

J. Xu, L. Hou, Q. Deng, L. Han, S. Liang, J. H. Marsh, and H. Zhu, “Fully integrated multi-optoelectronic synthesizer for THz pumping source in wireless communications with rich backup redundancy and wide tuning range,” Sci. Rep. 6(1), 29084 (2016).
[Crossref]

Q. Deng, J. Xu, L. Guo, S. Liang, L. Hou, and H. Zhu, “A dual-grating InGaAsP/InP DFB laser integrated with an SOA for THz generation,” IEEE Photonics Technol. Lett. 28(21), 2307–2310 (2016).
[Crossref]

L. Han, S. Liang, J. Xu, L. Qiao, H. Wang, L. Zhao, H. Zhu, and W. Wang, “DBR laser with over 20-nm wavelength tuning range,” IEEE Photonics Technol. Lett. 28(9), 943–946 (2016).
[Crossref]

L. Han, S. Liang, H. Wang, L. Qiao, J. Xu, L. Zhao, H. Zhu, B. Wang, and W. Wang, “Electroabsorption-modulated widely tunable DBR laser transmitter for WDM-PONs,” Opt. Express 22(24), 30368–30376 (2014).
[Crossref]

L. Han, S. Liang, C. Zhang, L. Yu, L. Zhao, H. Zhu, B. Wang, C. Ji, and W. Wang, “Fabrication of widely tunable ridge waveguide DBR lasers for WDM-PON,” Chin. Opt. Lett. 12(9), 091402 (2014).
[Crossref]

Appl. Phys. B (1)

S. Schiller, B. Roth, F. Lewen, O. Ricken, and M. C. Wiedner, “Ultranarrow-linewidth continuous-wave THz sources based on multiplier chains,” Appl. Phys. B 95(1), 55–61 (2009).
[Crossref]

Chin. Opt. Lett. (1)

IEEE Access (1)

K. Nallappan, H. Guerboukha, C. Nerguizian, and M. Skorobogatly, “Live streaming of uncompressed HD and 4 K videos using terahertz wireless links,” IEEE Access 6, 58030–58042 (2018).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

M. Zanola, M. J. Strain, G. Giuliani, and M. Sorel, “Monolithically integrated DFB lasers for tunable and narrow linewidth millimeter-wave generation,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500406 (2013).
[Crossref]

G. Kyritsis and N. Zakhleniuk, “Self-Consistent Simulation Model and Enhancement of Wavelength Tuning of InGaAsP/InP Multisection DBR Laser Diodes,” IEEE J. Sel. Top. Quantum Electron. 19(5), 1–11 (2013).
[Crossref]

F. Delorme, G. Alibert, P. Boulet, S. Grosmaire, S. Slempkes, and A. Ougazzaden, “High reliability of high-power and widely tunable 1.55-µm distributed Bragg reflector lasers for WDM applications,” IEEE J. Sel. Top. Quantum Electron. 3(2), 607–614 (1997).
[Crossref]

IEEE Photonics J. (2)

L. Yu, H. Wang, D. Lu, S. Liang, C. Zhang, B. Pan, L. Zhang, and L. Zhao, “A widely tunable directly modulated DBR laser with high linearity,” IEEE Photonics J. 6(4), 1–8 (2014).
[Crossref]

M. Sun, S. Tan, F. Guo, S. Liu, Q. Kan, D. Lu, R. Zhang, W. Zhao, S. Liang, and W. Wang, “Integrated four-wavelength DFB diode laser array for continuous-wave THZ generation,” IEEE Photonics J. 8(4), 1–8 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (5)

J. Sun, Y. Dai, X. Chen, Y. Zhang, and S. Xie, “Stable dual-wavelength DFB fiber laser with separate resonant cavities and its application in tunable microwave generation,” IEEE Photonics Technol. Lett. 18(24), 2587–2589 (2006).
[Crossref]

F. Pozzi, R. M. De La Rue, and M. Sorel, “Dual-wavelength InAlGaAs-InP laterally coupled distributed feedback laser,” IEEE Photonics Technol. Lett. 18(24), 2563–2565 (2006).
[Crossref]

L. Han, S. Liang, J. Xu, L. Qiao, H. Wang, L. Zhao, H. Zhu, and W. Wang, “DBR laser with over 20-nm wavelength tuning range,” IEEE Photonics Technol. Lett. 28(9), 943–946 (2016).
[Crossref]

F. Dijk, G. Kervella, M. Lamponi, M. Chtioui, F. Lelarge, E. Vinet, Y. Robert, M. J. Fice, C. C. Renaud, A. Jimenez, and G. Carpintero, “Integrated InP heterodyne millimeter wave transmitter,” IEEE Photonics Technol. Lett. 26(10), 965–968 (2014).
[Crossref]

Q. Deng, J. Xu, L. Guo, S. Liang, L. Hou, and H. Zhu, “A dual-grating InGaAsP/InP DFB laser integrated with an SOA for THz generation,” IEEE Photonics Technol. Lett. 28(21), 2307–2310 (2016).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

G. Ducournau, P. Szriftgiser, A. Beck, D. Bacquet, F. Pavanello, E. Peytavit, M. Zaknoune, T. Akalin, and J. Lampin, “Ultrawide-bandwidth single-channel 0.4-THz wireless link combining broadband quasi-optic photomixer and coherent detection,” IEEE Trans. Microw. Theory Tech. 4(3), 328–337 (2014).
[Crossref]

J. Lightwave Technol. (5)

lEEE T. Microwave Theory Tech. (1)

D. Wake, C. R. Lima, and P. A. Davies, “Optical generation of millimeter-wave signals for fiber-radio systems using a dual-mode DFB semiconductor laser,” lEEE T. Microwave Theory Tech. 43(9), 2270–2276 (1995).
[Crossref]

Opt. Express (4)

Sci. Rep. (2)

J. Xu, L. Hou, Q. Deng, L. Han, S. Liang, J. H. Marsh, and H. Zhu, “Fully integrated multi-optoelectronic synthesizer for THz pumping source in wireless communications with rich backup redundancy and wide tuning range,” Sci. Rep. 6(1), 29084 (2016).
[Crossref]

C. Guillermo, H. Shintaro, F. David, G. Robinson, N. Tadao, and K. Norbert, “Wireless data transmission at terahertz carrier waves generated from a hybrid InP-polymer dual tunable DBR laser photonic integrated circuit,” Sci. Rep. 8(1), 3018 (2018).
[Crossref]

Other (1)

A. Stöhr, “Photonic millimeter-wave generation and its applications in high data rate wireless access,” in IEEE International Topical Meeting on Microwave Photonics (MWP) (2010), 7–10.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. (a) Optical graph of a fabricated device, (b) The schematic cross-section material structure.
Fig. 2.
Fig. 2. Light output power as a function of the gain current. During the test, there is no current in the DBR sections and the phase section and the EAM is not biased. The inject current in the SOA section is fixed at 150 mA.
Fig. 3.
Fig. 3. (a) Calculated reflection spectra of the gratings of our device. (b) Spectra behavior when the front grating current is 0 mA and the rear grating current is varied from 0 to 80 mA. During the measurements, the currents in the gain and SOA sections are 100 and 110 mA, respectively. The EAM is also not biased. The dashed blue curve is the reflection spectrum of the rear DBR grating when there is no current injected.
Fig. 4.
Fig. 4. (a) Dual wave length emission properties of the laser at different rear DBR current (mA), the wavelength separation between the two modes is marked in nanometer, (b) the corresponding autocorrelation traces, (c) THz power as a function of frequency. During the measurements, the currents in the gain, SOA and front DBR sections are 100,110 and 0 mA, respectively. The EAM is not biased.
Fig. 5.
Fig. 5. The effects of SOA current on the dual wavelength emission. During the measurements, the currents in the gain and rear and front DBR sections are 100,28 and 0 mA, respectively. The EAM is not biased.
Fig. 6.
Fig. 6. Electrical spectra of a 0.135 THz signal down converted to 38.8 GHz optically. (a) Spectrum measured with a 20 GHz span, (b) detailed spectrum measured with a 300 MHz span, the blue curve is the Lorenz fit of the measured data. During the measurements, the currents in the gain and SOA sections are 100 and 110 mA, respectively. The currents in the rear and front DBR sections are 4.0 and 0 mA, respectively. The EAM is not biased.
Fig. 7.
Fig. 7. (a) Static optical ER of the EAM when different currents are injected into the rear DBR sections, (b) modulation response of the EAM when it is bias at different voltage and the rear DBR current is 11.3 mA. During the measurements, the currents in the gain, SOA and front DBR sections are 100, 110 and 0 mA, respectively.
Fig. 8.
Fig. 8. Eye diagrams obtained at 10 Gb/s, Vpp = 1.6 V (a) and 25 Gb/s Vpp = 2.4 V (b) modulation in the B2B condition. During the measurements, the currents in the gain and SOA sections are 100 and 110 mA, respectively. The currents in the rear and front DBR sections are 11.3 and 0 mA, respectively. The EAM is biased at -3 V. The rms jitters are 1.97 and 1.82 ps for the 10 and 25 Gb/s eye diagrams, respectively.