Abstract

In this work, the performance of Ca5(BO3)3F (CBF) single crystals was investigated for the third harmonic generation at 355 nm. A high energy conversion efficiency of 16.9% at 355 nm was reached using a two-conversion-stage setup. First, using a high peak power, passively Q-switched Nd3+:YAG/Cr4+:YAG microlaser based gain aperture in micro-MOPA, the second harmonic at 532 nm was achieved with lithium triborate (LBO) crystal, reaching 1.35 MW peak power. On a second step, laser pulses at 355 nm were generated using a 5 mm-long CBF crystal growth by TSSG method with energy, pulse duration and peak power of 479 µJ, 568 ps and 0.843 MW, respectively. These results are currently the highest reported for CBF material.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Nonlinear optical properties of Ca5(BO3)3F crystal

Ke Xu, Pascal Loiseau, Gerard Aka, Regine Maillard, Alain Maillard, and Takunori Taira
Opt. Express 16(22) 17735-17744 (2008)

Third harmonic generation at 343nm in nonlinear Ca5(BO3)3F (CBF) crystals

Loïc Deyra, Simon Ilas, Xavier Délen, Pascal Loiseau, François Balembois, Gerard Aka, François Salin, and Patrick Georges
Opt. Mater. Express 3(11) 1798-1802 (2013)

High average power third harmonic generation at 355 nm with K3B6O10Br crystal

Bo Xu, Zhanyu Hou, Mingjun Xia, Lijuan Liu, Xiaoyang Wang, Rukang Li, and Chuangtian Chen
Opt. Express 24(10) 10345-10351 (2016)

References

  • View by:
  • |
  • |
  • |

  1. S. Stefan, V. Frank, and B. Igor, “High-power excimer lasers for 157-nm lithography,” Proc. SPIE 5040, 1344–1351 (2003).
    [Crossref]
  2. E. A. Waddell, L. E. Locascio, and G. W. Kramer, “UV Laser Micromachining of Polymers for Microfluidic Applications,” JALA 7(1), 78–82 (2002).
    [Crossref]
  3. R. Bhandari and T. Taira, “Palm-top size megawatt peak power ultraviolet microlaser,” Opt. Eng. 52(7), 076102 (2013).
    [Crossref]
  4. V. P. Gapontsev, V. A. Tyrtyshnyy, O. I. Vershinin, B. L. Davydov, and D. A. Oulianov, “Third harmonic frequency generation by type-I critically phase matched LiB3O5 by means of optically active quartz crystal,” Opt. Express 21(3), 3715–3720 (2013).
    [Crossref]
  5. M. Ghotbi, Z. Sun, A. Majchrowski, E. Michalski, I. V. Kityk, and M. Ebrahim-Zadeh, “Efficient third harmonic generation of microjoule picosecond pulses at 355 nm in BiB3O6,” Appl. Phys. Lett. 89(17), 173124 (2006).
    [Crossref]
  6. R. Wu, “High-efficiency and compact blue source: intracavity frequency tripling by using LBO and BBO without the influence of birefringence,” Appl. Opt. 32(6), 971–975 (1993).
    [Crossref]
  7. A. Borsutzky, R. Brünger, C. Huang, and R. Wallenstein, “Harmonic and Sum-Frequency Generation of Pulsed Laser Radiation in BBO, LBO, and KD*P,” Appl. Phys. B 52(1), 55–62 (1991).
    [Crossref]
  8. M. Peltz, J. Bartschke, A. Borsutzky, R. Wallenstein, S. Vernay, T. Salva, and D. Rytz, “Harmonic generation in bismuth triborate (BiB3O6),” Appl. Phys. B 81(4), 487–495 (2005).
    [Crossref]
  9. H. Hong, Q. Liu, L. Huang, and M. Gong, “Improvement and formation of UV-induced damage on LBO crystal surface during long-term high-power third-harmonic generation,” Opt. Express 21(6), 7285–7293 (2013).
    [Crossref]
  10. J. H. Jang, I. H. Yoon, and C. S. Yoon, “Cause and repair of optical damage in nonlinear optical crystal of BiB3O6,” Opt. Mater. 31(6), 781–783 (2009).
    [Crossref]
  11. K. Xu, P. Loiseau, G. Aka, and J. Lejay, “A new promising nonlinear optical crystal for ultraviolet light generation: Ca5(BO3)3F,” Cryst. Growth Des. 9(5), 2235–2239 (2009).
    [Crossref]
  12. L. Shirong, H. Qinzhen, Z. Yifan, J. Aidong, and C. Chuangtian, “Structure of Calcium Fluoroborate, Ca5(BO3)3F,” Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 45(12), 1861–1863 (1989).
    [Crossref]
  13. L. Deyra, S. Ilas, X. Délen, P. Loiseau, F. Balembois, G. Aka, F. Salin, and P. Georges, “Third harmonic generation at 343 nm in nonlinear Ca5(BO3)3F (CBF) crystals,” Opt. Mater. Express 3(11), 1798–1802 (2013).
    [Crossref]
  14. K. Xu, P. Loiseau, G. Aka, R. Maillard, A. Maillard, and T. Taira, “Nonlinear optical properties of Ca5(BO3)3F crystal,” Opt. Express 16(22), 17735–17744 (2008).
    [Crossref]
  15. V. Yahia and T. Taira, “High brightness energetic pulses delivered by compact microchip-MOPA system,” Opt. Express 26(7), 8609–8618 (2018).
    [Crossref]
  16. C. Mühlig and S. Bublitz, “Absolute absorption measurements in nonlinear optical crystals,” Laser Congress 2019 (ASSL, LAC, LS&C), OSA Technical Digest (Optical Society of America, 2019), paper JTu3A.24.
  17. J. Ren, “Elaboration et caractérisation de monocristaux de borate pour la conversion de fréquences laser dans le domaine UV”, PhD, UPMC (2014).
  18. S. Ilas, P. Loiseau, G. Aka, and T. Taira, “240 kW peak power at 266 nm in nonlinear YAl3(BO3)4 single crystal,” Opt. Express 22(24), 30325–32 (2014).
    [Crossref]
  19. L. Liu, C. Liu, X. Wang, Z. G. Hu, R. K. Li, and C. T. Chen, “Impact of Fe3+ on UV absorption of K2Al2B2O7 crystal,” Solid State Sci. 11(4), 841–844 (2009).
    [Crossref]

2018 (1)

2014 (1)

2013 (4)

2009 (3)

J. H. Jang, I. H. Yoon, and C. S. Yoon, “Cause and repair of optical damage in nonlinear optical crystal of BiB3O6,” Opt. Mater. 31(6), 781–783 (2009).
[Crossref]

K. Xu, P. Loiseau, G. Aka, and J. Lejay, “A new promising nonlinear optical crystal for ultraviolet light generation: Ca5(BO3)3F,” Cryst. Growth Des. 9(5), 2235–2239 (2009).
[Crossref]

L. Liu, C. Liu, X. Wang, Z. G. Hu, R. K. Li, and C. T. Chen, “Impact of Fe3+ on UV absorption of K2Al2B2O7 crystal,” Solid State Sci. 11(4), 841–844 (2009).
[Crossref]

2008 (1)

2006 (1)

M. Ghotbi, Z. Sun, A. Majchrowski, E. Michalski, I. V. Kityk, and M. Ebrahim-Zadeh, “Efficient third harmonic generation of microjoule picosecond pulses at 355 nm in BiB3O6,” Appl. Phys. Lett. 89(17), 173124 (2006).
[Crossref]

2005 (1)

M. Peltz, J. Bartschke, A. Borsutzky, R. Wallenstein, S. Vernay, T. Salva, and D. Rytz, “Harmonic generation in bismuth triborate (BiB3O6),” Appl. Phys. B 81(4), 487–495 (2005).
[Crossref]

2003 (1)

S. Stefan, V. Frank, and B. Igor, “High-power excimer lasers for 157-nm lithography,” Proc. SPIE 5040, 1344–1351 (2003).
[Crossref]

2002 (1)

E. A. Waddell, L. E. Locascio, and G. W. Kramer, “UV Laser Micromachining of Polymers for Microfluidic Applications,” JALA 7(1), 78–82 (2002).
[Crossref]

1993 (1)

1991 (1)

A. Borsutzky, R. Brünger, C. Huang, and R. Wallenstein, “Harmonic and Sum-Frequency Generation of Pulsed Laser Radiation in BBO, LBO, and KD*P,” Appl. Phys. B 52(1), 55–62 (1991).
[Crossref]

1989 (1)

L. Shirong, H. Qinzhen, Z. Yifan, J. Aidong, and C. Chuangtian, “Structure of Calcium Fluoroborate, Ca5(BO3)3F,” Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 45(12), 1861–1863 (1989).
[Crossref]

Aidong, J.

L. Shirong, H. Qinzhen, Z. Yifan, J. Aidong, and C. Chuangtian, “Structure of Calcium Fluoroborate, Ca5(BO3)3F,” Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 45(12), 1861–1863 (1989).
[Crossref]

Aka, G.

Balembois, F.

Bartschke, J.

M. Peltz, J. Bartschke, A. Borsutzky, R. Wallenstein, S. Vernay, T. Salva, and D. Rytz, “Harmonic generation in bismuth triborate (BiB3O6),” Appl. Phys. B 81(4), 487–495 (2005).
[Crossref]

Bhandari, R.

R. Bhandari and T. Taira, “Palm-top size megawatt peak power ultraviolet microlaser,” Opt. Eng. 52(7), 076102 (2013).
[Crossref]

Borsutzky, A.

M. Peltz, J. Bartschke, A. Borsutzky, R. Wallenstein, S. Vernay, T. Salva, and D. Rytz, “Harmonic generation in bismuth triborate (BiB3O6),” Appl. Phys. B 81(4), 487–495 (2005).
[Crossref]

A. Borsutzky, R. Brünger, C. Huang, and R. Wallenstein, “Harmonic and Sum-Frequency Generation of Pulsed Laser Radiation in BBO, LBO, and KD*P,” Appl. Phys. B 52(1), 55–62 (1991).
[Crossref]

Brünger, R.

A. Borsutzky, R. Brünger, C. Huang, and R. Wallenstein, “Harmonic and Sum-Frequency Generation of Pulsed Laser Radiation in BBO, LBO, and KD*P,” Appl. Phys. B 52(1), 55–62 (1991).
[Crossref]

Bublitz, S.

C. Mühlig and S. Bublitz, “Absolute absorption measurements in nonlinear optical crystals,” Laser Congress 2019 (ASSL, LAC, LS&C), OSA Technical Digest (Optical Society of America, 2019), paper JTu3A.24.

Chen, C. T.

L. Liu, C. Liu, X. Wang, Z. G. Hu, R. K. Li, and C. T. Chen, “Impact of Fe3+ on UV absorption of K2Al2B2O7 crystal,” Solid State Sci. 11(4), 841–844 (2009).
[Crossref]

Chuangtian, C.

L. Shirong, H. Qinzhen, Z. Yifan, J. Aidong, and C. Chuangtian, “Structure of Calcium Fluoroborate, Ca5(BO3)3F,” Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 45(12), 1861–1863 (1989).
[Crossref]

Davydov, B. L.

Délen, X.

Deyra, L.

Ebrahim-Zadeh, M.

M. Ghotbi, Z. Sun, A. Majchrowski, E. Michalski, I. V. Kityk, and M. Ebrahim-Zadeh, “Efficient third harmonic generation of microjoule picosecond pulses at 355 nm in BiB3O6,” Appl. Phys. Lett. 89(17), 173124 (2006).
[Crossref]

Frank, V.

S. Stefan, V. Frank, and B. Igor, “High-power excimer lasers for 157-nm lithography,” Proc. SPIE 5040, 1344–1351 (2003).
[Crossref]

Gapontsev, V. P.

Georges, P.

Ghotbi, M.

M. Ghotbi, Z. Sun, A. Majchrowski, E. Michalski, I. V. Kityk, and M. Ebrahim-Zadeh, “Efficient third harmonic generation of microjoule picosecond pulses at 355 nm in BiB3O6,” Appl. Phys. Lett. 89(17), 173124 (2006).
[Crossref]

Gong, M.

Hong, H.

Hu, Z. G.

L. Liu, C. Liu, X. Wang, Z. G. Hu, R. K. Li, and C. T. Chen, “Impact of Fe3+ on UV absorption of K2Al2B2O7 crystal,” Solid State Sci. 11(4), 841–844 (2009).
[Crossref]

Huang, C.

A. Borsutzky, R. Brünger, C. Huang, and R. Wallenstein, “Harmonic and Sum-Frequency Generation of Pulsed Laser Radiation in BBO, LBO, and KD*P,” Appl. Phys. B 52(1), 55–62 (1991).
[Crossref]

Huang, L.

Igor, B.

S. Stefan, V. Frank, and B. Igor, “High-power excimer lasers for 157-nm lithography,” Proc. SPIE 5040, 1344–1351 (2003).
[Crossref]

Ilas, S.

Jang, J. H.

J. H. Jang, I. H. Yoon, and C. S. Yoon, “Cause and repair of optical damage in nonlinear optical crystal of BiB3O6,” Opt. Mater. 31(6), 781–783 (2009).
[Crossref]

Kityk, I. V.

M. Ghotbi, Z. Sun, A. Majchrowski, E. Michalski, I. V. Kityk, and M. Ebrahim-Zadeh, “Efficient third harmonic generation of microjoule picosecond pulses at 355 nm in BiB3O6,” Appl. Phys. Lett. 89(17), 173124 (2006).
[Crossref]

Kramer, G. W.

E. A. Waddell, L. E. Locascio, and G. W. Kramer, “UV Laser Micromachining of Polymers for Microfluidic Applications,” JALA 7(1), 78–82 (2002).
[Crossref]

Lejay, J.

K. Xu, P. Loiseau, G. Aka, and J. Lejay, “A new promising nonlinear optical crystal for ultraviolet light generation: Ca5(BO3)3F,” Cryst. Growth Des. 9(5), 2235–2239 (2009).
[Crossref]

Li, R. K.

L. Liu, C. Liu, X. Wang, Z. G. Hu, R. K. Li, and C. T. Chen, “Impact of Fe3+ on UV absorption of K2Al2B2O7 crystal,” Solid State Sci. 11(4), 841–844 (2009).
[Crossref]

Liu, C.

L. Liu, C. Liu, X. Wang, Z. G. Hu, R. K. Li, and C. T. Chen, “Impact of Fe3+ on UV absorption of K2Al2B2O7 crystal,” Solid State Sci. 11(4), 841–844 (2009).
[Crossref]

Liu, L.

L. Liu, C. Liu, X. Wang, Z. G. Hu, R. K. Li, and C. T. Chen, “Impact of Fe3+ on UV absorption of K2Al2B2O7 crystal,” Solid State Sci. 11(4), 841–844 (2009).
[Crossref]

Liu, Q.

Locascio, L. E.

E. A. Waddell, L. E. Locascio, and G. W. Kramer, “UV Laser Micromachining of Polymers for Microfluidic Applications,” JALA 7(1), 78–82 (2002).
[Crossref]

Loiseau, P.

Maillard, A.

Maillard, R.

Majchrowski, A.

M. Ghotbi, Z. Sun, A. Majchrowski, E. Michalski, I. V. Kityk, and M. Ebrahim-Zadeh, “Efficient third harmonic generation of microjoule picosecond pulses at 355 nm in BiB3O6,” Appl. Phys. Lett. 89(17), 173124 (2006).
[Crossref]

Michalski, E.

M. Ghotbi, Z. Sun, A. Majchrowski, E. Michalski, I. V. Kityk, and M. Ebrahim-Zadeh, “Efficient third harmonic generation of microjoule picosecond pulses at 355 nm in BiB3O6,” Appl. Phys. Lett. 89(17), 173124 (2006).
[Crossref]

Mühlig, C.

C. Mühlig and S. Bublitz, “Absolute absorption measurements in nonlinear optical crystals,” Laser Congress 2019 (ASSL, LAC, LS&C), OSA Technical Digest (Optical Society of America, 2019), paper JTu3A.24.

Oulianov, D. A.

Peltz, M.

M. Peltz, J. Bartschke, A. Borsutzky, R. Wallenstein, S. Vernay, T. Salva, and D. Rytz, “Harmonic generation in bismuth triborate (BiB3O6),” Appl. Phys. B 81(4), 487–495 (2005).
[Crossref]

Qinzhen, H.

L. Shirong, H. Qinzhen, Z. Yifan, J. Aidong, and C. Chuangtian, “Structure of Calcium Fluoroborate, Ca5(BO3)3F,” Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 45(12), 1861–1863 (1989).
[Crossref]

Ren, J.

J. Ren, “Elaboration et caractérisation de monocristaux de borate pour la conversion de fréquences laser dans le domaine UV”, PhD, UPMC (2014).

Rytz, D.

M. Peltz, J. Bartschke, A. Borsutzky, R. Wallenstein, S. Vernay, T. Salva, and D. Rytz, “Harmonic generation in bismuth triborate (BiB3O6),” Appl. Phys. B 81(4), 487–495 (2005).
[Crossref]

Salin, F.

Salva, T.

M. Peltz, J. Bartschke, A. Borsutzky, R. Wallenstein, S. Vernay, T. Salva, and D. Rytz, “Harmonic generation in bismuth triborate (BiB3O6),” Appl. Phys. B 81(4), 487–495 (2005).
[Crossref]

Shirong, L.

L. Shirong, H. Qinzhen, Z. Yifan, J. Aidong, and C. Chuangtian, “Structure of Calcium Fluoroborate, Ca5(BO3)3F,” Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 45(12), 1861–1863 (1989).
[Crossref]

Stefan, S.

S. Stefan, V. Frank, and B. Igor, “High-power excimer lasers for 157-nm lithography,” Proc. SPIE 5040, 1344–1351 (2003).
[Crossref]

Sun, Z.

M. Ghotbi, Z. Sun, A. Majchrowski, E. Michalski, I. V. Kityk, and M. Ebrahim-Zadeh, “Efficient third harmonic generation of microjoule picosecond pulses at 355 nm in BiB3O6,” Appl. Phys. Lett. 89(17), 173124 (2006).
[Crossref]

Taira, T.

Tyrtyshnyy, V. A.

Vernay, S.

M. Peltz, J. Bartschke, A. Borsutzky, R. Wallenstein, S. Vernay, T. Salva, and D. Rytz, “Harmonic generation in bismuth triborate (BiB3O6),” Appl. Phys. B 81(4), 487–495 (2005).
[Crossref]

Vershinin, O. I.

Waddell, E. A.

E. A. Waddell, L. E. Locascio, and G. W. Kramer, “UV Laser Micromachining of Polymers for Microfluidic Applications,” JALA 7(1), 78–82 (2002).
[Crossref]

Wallenstein, R.

M. Peltz, J. Bartschke, A. Borsutzky, R. Wallenstein, S. Vernay, T. Salva, and D. Rytz, “Harmonic generation in bismuth triborate (BiB3O6),” Appl. Phys. B 81(4), 487–495 (2005).
[Crossref]

A. Borsutzky, R. Brünger, C. Huang, and R. Wallenstein, “Harmonic and Sum-Frequency Generation of Pulsed Laser Radiation in BBO, LBO, and KD*P,” Appl. Phys. B 52(1), 55–62 (1991).
[Crossref]

Wang, X.

L. Liu, C. Liu, X. Wang, Z. G. Hu, R. K. Li, and C. T. Chen, “Impact of Fe3+ on UV absorption of K2Al2B2O7 crystal,” Solid State Sci. 11(4), 841–844 (2009).
[Crossref]

Wu, R.

Xu, K.

K. Xu, P. Loiseau, G. Aka, and J. Lejay, “A new promising nonlinear optical crystal for ultraviolet light generation: Ca5(BO3)3F,” Cryst. Growth Des. 9(5), 2235–2239 (2009).
[Crossref]

K. Xu, P. Loiseau, G. Aka, R. Maillard, A. Maillard, and T. Taira, “Nonlinear optical properties of Ca5(BO3)3F crystal,” Opt. Express 16(22), 17735–17744 (2008).
[Crossref]

Yahia, V.

Yifan, Z.

L. Shirong, H. Qinzhen, Z. Yifan, J. Aidong, and C. Chuangtian, “Structure of Calcium Fluoroborate, Ca5(BO3)3F,” Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 45(12), 1861–1863 (1989).
[Crossref]

Yoon, C. S.

J. H. Jang, I. H. Yoon, and C. S. Yoon, “Cause and repair of optical damage in nonlinear optical crystal of BiB3O6,” Opt. Mater. 31(6), 781–783 (2009).
[Crossref]

Yoon, I. H.

J. H. Jang, I. H. Yoon, and C. S. Yoon, “Cause and repair of optical damage in nonlinear optical crystal of BiB3O6,” Opt. Mater. 31(6), 781–783 (2009).
[Crossref]

Acta Crystallogr., Sect. C: Cryst. Struct. Commun. (1)

L. Shirong, H. Qinzhen, Z. Yifan, J. Aidong, and C. Chuangtian, “Structure of Calcium Fluoroborate, Ca5(BO3)3F,” Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 45(12), 1861–1863 (1989).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (2)

A. Borsutzky, R. Brünger, C. Huang, and R. Wallenstein, “Harmonic and Sum-Frequency Generation of Pulsed Laser Radiation in BBO, LBO, and KD*P,” Appl. Phys. B 52(1), 55–62 (1991).
[Crossref]

M. Peltz, J. Bartschke, A. Borsutzky, R. Wallenstein, S. Vernay, T. Salva, and D. Rytz, “Harmonic generation in bismuth triborate (BiB3O6),” Appl. Phys. B 81(4), 487–495 (2005).
[Crossref]

Appl. Phys. Lett. (1)

M. Ghotbi, Z. Sun, A. Majchrowski, E. Michalski, I. V. Kityk, and M. Ebrahim-Zadeh, “Efficient third harmonic generation of microjoule picosecond pulses at 355 nm in BiB3O6,” Appl. Phys. Lett. 89(17), 173124 (2006).
[Crossref]

Cryst. Growth Des. (1)

K. Xu, P. Loiseau, G. Aka, and J. Lejay, “A new promising nonlinear optical crystal for ultraviolet light generation: Ca5(BO3)3F,” Cryst. Growth Des. 9(5), 2235–2239 (2009).
[Crossref]

JALA (1)

E. A. Waddell, L. E. Locascio, and G. W. Kramer, “UV Laser Micromachining of Polymers for Microfluidic Applications,” JALA 7(1), 78–82 (2002).
[Crossref]

Opt. Eng. (1)

R. Bhandari and T. Taira, “Palm-top size megawatt peak power ultraviolet microlaser,” Opt. Eng. 52(7), 076102 (2013).
[Crossref]

Opt. Express (5)

Opt. Mater. (1)

J. H. Jang, I. H. Yoon, and C. S. Yoon, “Cause and repair of optical damage in nonlinear optical crystal of BiB3O6,” Opt. Mater. 31(6), 781–783 (2009).
[Crossref]

Opt. Mater. Express (1)

Proc. SPIE (1)

S. Stefan, V. Frank, and B. Igor, “High-power excimer lasers for 157-nm lithography,” Proc. SPIE 5040, 1344–1351 (2003).
[Crossref]

Solid State Sci. (1)

L. Liu, C. Liu, X. Wang, Z. G. Hu, R. K. Li, and C. T. Chen, “Impact of Fe3+ on UV absorption of K2Al2B2O7 crystal,” Solid State Sci. 11(4), 841–844 (2009).
[Crossref]

Other (2)

C. Mühlig and S. Bublitz, “Absolute absorption measurements in nonlinear optical crystals,” Laser Congress 2019 (ASSL, LAC, LS&C), OSA Technical Digest (Optical Society of America, 2019), paper JTu3A.24.

J. Ren, “Elaboration et caractérisation de monocristaux de borate pour la conversion de fréquences laser dans le domaine UV”, PhD, UPMC (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Ca(BO3)3F crystal growth by TSSG method using 20 wt% LiF flux. The white dots inside the crystal are LiF inclusions which appear during the growth. The circle shows the area where the highest conversion efficiency was obtained.
Fig. 2.
Fig. 2. Concept of gain aperture amplifier [15]
Fig. 3.
Fig. 3. Experimental setup for the THG experiment.
Fig. 4.
Fig. 4. UV energy conversion efficiency dependence on SHG energy conversion for CBF crystal.
Fig. 5.
Fig. 5. Experimental data on THG for uncoated CBF crystal and comparison with LBO crystal (anti-reflection coating for 1064 nm, 532 nm and 355 nm) in terms of output UV energy (a) and of conversion efficiency (b). The Rayleigh length was 403 mm and the fundamental beam size at the waist position was 2w0 = 0.75 mm.
Fig. 6.
Fig. 6. Experimental data on THG for different focusing conditions in CBF (a) and LBO (b) crystals. The Rayleigh lengths was 403 mm, 861 mm and 1325 mm for the fundamental beam sizes at the waist position of 2w0 = 0.75 mm, 1.08 mm and 1.34 mm, respectively.
Fig. 7.
Fig. 7. Transmission spectrum of CBF crystal after thermal treatment at 300°C for 2 hours. The cutting wavelength in UV region was measured at 200 nm. The inset shows the transmission spectrum in the visible region before and after the thermal treatment. Before heating the CBF crystal, a large absorption band centered around 450 nm can be noticed due to defects induced by laser tests.

Tables (2)

Tables Icon

Table 1. Commercial nonlinear crystals parameters compared to CBF parameters for type-II THG at 355 nm.

Tables Icon

Table 2. Transmission of CBF crystal for THG of Nd3+:YAG laser at 1064 nm.