Abstract

Temperature cross-sensitivity is a long-standing challenge for most of the in-line fiber optofluidic waveguide biosensors. In this paper, we propose a dual-optofluidic waveguide antiresonant reflecting optical waveguide (ARROW) biosensor for the detection of interferon-gamma (IFN-γ) concentration with temperature compensation. Two Fabry-Perot resonators infiltrated with IFN-γ and NaCl were formed in a hollow core fiber, which generate two resonance dips based on the ARROW model. The optical biosensor for the detection of interferon-gamma (IFN-γ) has been a key research interest in recent years because IFN-γ is an important early biomarker for many serious human diseases. Based on the dual-optofluidic waveguide ARROW biosensor, the IFN-γ concentration can be measured through the modulation of the resonance condition of the ARROW, while the temperature fluctuation can be eliminated due to same thermo-optic coefficients of two infiltration liquids. The experimental results show that the response of the ARROW biosensor can be amplified significantly with the signal-enhanced streptavidin, and the limit of detection of 0.5 ng/ml can be achieved for the IFN-γ concentration. More importantly, the influence of the temperature could be compensated through the referenced resonance dip. The proposed fiber biosensor has a great potential for the real-time detection of IFN-γ concentrations in the fields of health monitoring, cancer prevention, biological engineering, etc.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Self-referenced antiresonant reflecting guidance mechanism for directional bending sensing with low temperature and strain crosstalk

Ran Gao, Danfeng Lu, Jin Cheng, and Zhi-mei Qi
Opt. Express 25(15) 18081-18091 (2017)

Label-free detection of bovine serum albumin based on an in-fiber Mach-Zehnder interferometric biosensor

Zhengyong Li, Changrui Liao, Danni Chen, Jun Song, Wei Jin, Gang-Ding Peng, Feng Zhu, Ying Wang, Jun He, and Yiping Wang
Opt. Express 25(15) 17105-17113 (2017)

Optofluidic microcapillary biosensor for label-free, low glucose concentration detection

Hongdan Wan, Jijing Chen, Cheng Wan, Quan Zhou, Jie Wang, and Zuxing Zhang
Biomed. Opt. Express 10(8) 3929-3937 (2019)

References

  • View by:
  • |
  • |
  • |

  1. N. Zhang, G. Humbert, Z. F. Wu, K. W. Li, P. P. Shum, N. M. Y. Zhang, Y. Cui, J. L. Auguste, X. Q. Dinh, and L. Wei, “In-line optofluidic refractive index sensing in a side-channel photonic crystal fiber,” Opt. Express 24(24), 27674–27682 (2016).
    [Crossref]
  2. C. Wang, J. He, J. Zhang, C. Liao, Y. Wang, W. Jin, Y. Wang, and J. Wang, “Bragg gratings inscribed in selectively inflated photonic crystal fibers,” Opt. Express 25(23), 28442–28450 (2017).
    [Crossref]
  3. K. A. Bockerstett and R. J. DiPaolo, “Regulation of Gastric Carcinogenesis by Inflammatory Cytokines,” Cell. Mol. Gastroenterol. Hepatol. 4(1), 47–53 (2017).
    [Crossref]
  4. N. Dhenadhayalan, M. I. Sriramcde, and K. C. Lin, “Aptamer-based fluorogenic sensing of interferon-gamma probed with ReS2 and TiS2 nanosheets,” Sens. Actuators, B 258(1), 929–936 (2018).
    [Crossref]
  5. J. L. Flynn, J. Chan, K. J. Triebold, D. K. Dalton, T. A. Stewart, and B. R. Bloom, “An essential role for interferon gamma in resistance to Mycobacterium tuberculosis infection,” J. Exp. Med. 178(6), 2249–2254 (1993).
    [Crossref]
  6. L. K. Teixeira, B. P. Fonseca, B. A. Barboza, and J. P. Viola, “The role of interferon-gamma on immune and allergic responses,” Mem. Inst. Oswaldo Cruz 100(suppl 1), 137–144 (2005).
    [Crossref]
  7. H. H. Jeong, N. Erdene, J. H. Park, D. H. Jeong, H. Y. Lee, and S. K. Lee, “Real-time label-free immunoassay of interferon-gamma and prostate-specific antigen using a Fiber-Optic Localized Surface Plasmon Resonance sensor,” Biosens. Bioelectron. 39(1), 346–351 (2013).
    [Crossref]
  8. H. Sipovaa, V. Sevcu, M. Kuchar, J. N. Ahmadc, P. Mikulecky, R. Osickac, P. Maly, and J. Homola, “Surface plasmon resonance biosensor based on engineered proteins for direct detection of interferon-gamma in diluted blood plasma,” Sens. Actuators, B 174, 306–311 (2012).
    [Crossref]
  9. N. Tuleuova, C. N. Jones, J. Yan, E. Ramanculov, Y. Yokobayashi, and A. Revzin, “Development of an aptamer beacon for detection of interferon-gamma,” Anal. Chem. 82(5), 1851–1857 (2010).
    [Crossref]
  10. F. Y. Zhang, F. Deng, G. J. Liu, R. Middleton, D. W. Inglis, A. Anwer, S. Wang, and G. Z. Liu, “IFN-γ-induced signal-on fluorescence aptasensors: from hybridization chain reaction amplification to 3D optical fiber sensing interface towards a deployable device for cytokine sensing,” Mol. Syst. Des. Eng. 4(4), 872–881 (2019).
    [Crossref]
  11. D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic waveguide technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
    [Crossref]
  12. R. Gao, D. F. Lu, M. Y. Zhang, and Z. M. Qi, “Optofluidic waveguide Immunosensor Based on Resonant Wavelength Shift of a Hollow Core Fiber for Ultratrace Detection of Carcinogenic Benzo[a]pyrene,” ACS Photonics 5(4), 1273–1280 (2018).
    [Crossref]
  13. Q. Zhang, L. Hu, Y. Qi, G. Liu, N. Ianno, and M. Han, “Fiber-optic refractometer based on a phase-shifted fiber Bragg grating on a side-hole fiber,” Opt. Express 23(13), 16750–16759 (2015).
    [Crossref]
  14. N. Zhang, K. W. Li, Y. Cui, Z. F. Wu, P. P. Shum, J. L. Auguste, X. Q. Dinh, G. Humbert, and L. Wei, “Ultra-sensitive chemical and biological analysis via specialty fibers with built-in microstructured optofluidic waveguide channels,” Lab Chip 18(4), 655–661 (2018).
    [Crossref]
  15. Z. Wu, Z. Wang, Y. G. Liu, T. Han, S. Li, and H. Wei, “Mechanism and characteristics of long period fiber gratings in simplified hollow-core photonic crystal fibers,” Opt. Express 19(18), 17344–17349 (2011).
    [Crossref]
  16. J. Tian, Z. Lu, M. Quan, Y. Jiao, and Y. Yao, “Fast response Fabry-Perot interferometer microfluidic refractive index fiber sensor based on concave-core photonic crystal fiber,” Opt. Express 24(18), 20132–20142 (2016).
    [Crossref]
  17. N. L. P. Andrews, R. Ross, D. C. Munzke, A. Brzezinski, J. A. Barnes, O. Reich, and H. P. Loock, “In-fiber Mach-Zehnder interferometer for gas refractive index measurements based on a hollow-core photonic crystal fiber,” Opt. Express 24(13), 14086–14099 (2016).
    [Crossref]
  18. R. Otupiri, E. K. Akowuah, and S. Haxha, “Multi-channel SPR biosensor based on PCF for multi-analyte sensing applications,” Opt. Express 23(12), 15716–15727 (2015).
    [Crossref]
  19. Y. N. Zhang, L. B. Zhang, B. Hana, P. Gao, Q. L. Wu, and A. Z. Zhang, “Reflective mercury ion and temperature sensor based on a functionalized no core fiber combined with a fiber Bragg grating,” Sens. Actuators, B 272(1), 331–339 (2018).
    [Crossref]
  20. Q. Zhang, L. L. Hu, Y. F. Qi, G. G. Liu, N. Ianno, and M. Han, “Fiber-optic refractometer based on a phase shifted fiber Bragg grating on a side-hole fiber,” Opt. Express 23(13), 16750–16759 (2015).
    [Crossref]
  21. N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett. 27(18), 1592–1594 (2002).
    [Crossref]
  22. C. H. Lai, B. You, J. Y. Lu, T. A. Liu, J. L. Peng, C. K. Sun, and H. C. Chang, “Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding,” Opt. Express 18(1), 309–322 (2010).
    [Crossref]
  23. R. Gao, D. F. Lu, J. Cheng, Y. Jiang, and Z. M. Qi, “Temperature-compensated fibre optic magnetic field sensor based on a self-referenced anti-resonant reflecting optical waveguide,” Appl. Phys. Lett. 110(13), 131903 (2017).
    [Crossref]
  24. S. Liu, Y. Wang, M. Hou, J. Guo, Z. Li, and P. Lu, “Anti-resonant reflecting guidance in alcohol-filled hollow core photonic crystal fiber for sensing applications,” Opt. Express 21(25), 31690–31697 (2013).
    [Crossref]
  25. N. Tuleuova, C. N. Jones, J. Yan, E. Ramanculov, Y. Yokobayashi, and A. Revzin, “Development of an Aptamer Beacon for Detection of Interferon-Gamma,” Anal. Chem. 82(5), 1851–1857 (2010).
    [Crossref]
  26. J. D. Munzar, A. Ng, and D. Juncker, “Duplexed aptamers: history, design, theory, and application to biosensing,” Chem. Soc. Rev. 48(5), 1390–1419 (2019).
    [Crossref]
  27. S. W. Ding, C. Mosher, X. Y. Lee, S. R. Das, A. A. Cargill, X. H. Tang, B. L. Chen, E. S. McLamore, C. Gomes, J. M. Hostetter, and J. M. Claussen, “Rapid and Label-Free Detection of Interferon Gamma via an Electrochemical Aptasensor Comprising a Ternary Surface Monolayer on a Gold Interdigitated Electrode Array,” ACS Sens. 2(2), 210–217 (2017).
    [Crossref]
  28. T. Jones, R. C. Bailey, and L. C. Gunn, “Label-Free Biosensor Arrays Based on Silicon Ring Resonators and High-Speed Optical Scanning Instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
    [Crossref]
  29. Z. Wang, X. F. Liu, Y. Q. Huang, Q. L. Fan, and W. Huang, “Rapid and Reusable Detection of Interferon-Gamma Based on Label-Free Single-Stranded DNA and Thioflavin T,” IEEE Sens. J. 18(6), 2313–2317 (2018).
    [Crossref]
  30. B. P. Crulhas, D. Hadley, Y. Liu, D. S. Shin, G. Stybayeva, M. Imanbekova, A. E. Hill, V. Pedrosa, and A. Revzin, “An electrochemical aptasensor for detection of bovine interferon gamma,” Anal. Methods 9(31), 4527–4532 (2017).
    [Crossref]

2019 (2)

F. Y. Zhang, F. Deng, G. J. Liu, R. Middleton, D. W. Inglis, A. Anwer, S. Wang, and G. Z. Liu, “IFN-γ-induced signal-on fluorescence aptasensors: from hybridization chain reaction amplification to 3D optical fiber sensing interface towards a deployable device for cytokine sensing,” Mol. Syst. Des. Eng. 4(4), 872–881 (2019).
[Crossref]

J. D. Munzar, A. Ng, and D. Juncker, “Duplexed aptamers: history, design, theory, and application to biosensing,” Chem. Soc. Rev. 48(5), 1390–1419 (2019).
[Crossref]

2018 (5)

Z. Wang, X. F. Liu, Y. Q. Huang, Q. L. Fan, and W. Huang, “Rapid and Reusable Detection of Interferon-Gamma Based on Label-Free Single-Stranded DNA and Thioflavin T,” IEEE Sens. J. 18(6), 2313–2317 (2018).
[Crossref]

Y. N. Zhang, L. B. Zhang, B. Hana, P. Gao, Q. L. Wu, and A. Z. Zhang, “Reflective mercury ion and temperature sensor based on a functionalized no core fiber combined with a fiber Bragg grating,” Sens. Actuators, B 272(1), 331–339 (2018).
[Crossref]

R. Gao, D. F. Lu, M. Y. Zhang, and Z. M. Qi, “Optofluidic waveguide Immunosensor Based on Resonant Wavelength Shift of a Hollow Core Fiber for Ultratrace Detection of Carcinogenic Benzo[a]pyrene,” ACS Photonics 5(4), 1273–1280 (2018).
[Crossref]

N. Zhang, K. W. Li, Y. Cui, Z. F. Wu, P. P. Shum, J. L. Auguste, X. Q. Dinh, G. Humbert, and L. Wei, “Ultra-sensitive chemical and biological analysis via specialty fibers with built-in microstructured optofluidic waveguide channels,” Lab Chip 18(4), 655–661 (2018).
[Crossref]

N. Dhenadhayalan, M. I. Sriramcde, and K. C. Lin, “Aptamer-based fluorogenic sensing of interferon-gamma probed with ReS2 and TiS2 nanosheets,” Sens. Actuators, B 258(1), 929–936 (2018).
[Crossref]

2017 (5)

C. Wang, J. He, J. Zhang, C. Liao, Y. Wang, W. Jin, Y. Wang, and J. Wang, “Bragg gratings inscribed in selectively inflated photonic crystal fibers,” Opt. Express 25(23), 28442–28450 (2017).
[Crossref]

K. A. Bockerstett and R. J. DiPaolo, “Regulation of Gastric Carcinogenesis by Inflammatory Cytokines,” Cell. Mol. Gastroenterol. Hepatol. 4(1), 47–53 (2017).
[Crossref]

R. Gao, D. F. Lu, J. Cheng, Y. Jiang, and Z. M. Qi, “Temperature-compensated fibre optic magnetic field sensor based on a self-referenced anti-resonant reflecting optical waveguide,” Appl. Phys. Lett. 110(13), 131903 (2017).
[Crossref]

B. P. Crulhas, D. Hadley, Y. Liu, D. S. Shin, G. Stybayeva, M. Imanbekova, A. E. Hill, V. Pedrosa, and A. Revzin, “An electrochemical aptasensor for detection of bovine interferon gamma,” Anal. Methods 9(31), 4527–4532 (2017).
[Crossref]

S. W. Ding, C. Mosher, X. Y. Lee, S. R. Das, A. A. Cargill, X. H. Tang, B. L. Chen, E. S. McLamore, C. Gomes, J. M. Hostetter, and J. M. Claussen, “Rapid and Label-Free Detection of Interferon Gamma via an Electrochemical Aptasensor Comprising a Ternary Surface Monolayer on a Gold Interdigitated Electrode Array,” ACS Sens. 2(2), 210–217 (2017).
[Crossref]

2016 (3)

2015 (3)

2013 (2)

S. Liu, Y. Wang, M. Hou, J. Guo, Z. Li, and P. Lu, “Anti-resonant reflecting guidance in alcohol-filled hollow core photonic crystal fiber for sensing applications,” Opt. Express 21(25), 31690–31697 (2013).
[Crossref]

H. H. Jeong, N. Erdene, J. H. Park, D. H. Jeong, H. Y. Lee, and S. K. Lee, “Real-time label-free immunoassay of interferon-gamma and prostate-specific antigen using a Fiber-Optic Localized Surface Plasmon Resonance sensor,” Biosens. Bioelectron. 39(1), 346–351 (2013).
[Crossref]

2012 (1)

H. Sipovaa, V. Sevcu, M. Kuchar, J. N. Ahmadc, P. Mikulecky, R. Osickac, P. Maly, and J. Homola, “Surface plasmon resonance biosensor based on engineered proteins for direct detection of interferon-gamma in diluted blood plasma,” Sens. Actuators, B 174, 306–311 (2012).
[Crossref]

2011 (1)

2010 (4)

N. Tuleuova, C. N. Jones, J. Yan, E. Ramanculov, Y. Yokobayashi, and A. Revzin, “Development of an aptamer beacon for detection of interferon-gamma,” Anal. Chem. 82(5), 1851–1857 (2010).
[Crossref]

N. Tuleuova, C. N. Jones, J. Yan, E. Ramanculov, Y. Yokobayashi, and A. Revzin, “Development of an Aptamer Beacon for Detection of Interferon-Gamma,” Anal. Chem. 82(5), 1851–1857 (2010).
[Crossref]

T. Jones, R. C. Bailey, and L. C. Gunn, “Label-Free Biosensor Arrays Based on Silicon Ring Resonators and High-Speed Optical Scanning Instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

C. H. Lai, B. You, J. Y. Lu, T. A. Liu, J. L. Peng, C. K. Sun, and H. C. Chang, “Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding,” Opt. Express 18(1), 309–322 (2010).
[Crossref]

2006 (1)

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic waveguide technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref]

2005 (1)

L. K. Teixeira, B. P. Fonseca, B. A. Barboza, and J. P. Viola, “The role of interferon-gamma on immune and allergic responses,” Mem. Inst. Oswaldo Cruz 100(suppl 1), 137–144 (2005).
[Crossref]

2002 (1)

1993 (1)

J. L. Flynn, J. Chan, K. J. Triebold, D. K. Dalton, T. A. Stewart, and B. R. Bloom, “An essential role for interferon gamma in resistance to Mycobacterium tuberculosis infection,” J. Exp. Med. 178(6), 2249–2254 (1993).
[Crossref]

Abeeluck, A. K.

Ahmadc, J. N.

H. Sipovaa, V. Sevcu, M. Kuchar, J. N. Ahmadc, P. Mikulecky, R. Osickac, P. Maly, and J. Homola, “Surface plasmon resonance biosensor based on engineered proteins for direct detection of interferon-gamma in diluted blood plasma,” Sens. Actuators, B 174, 306–311 (2012).
[Crossref]

Akowuah, E. K.

Andrews, N. L. P.

Anwer, A.

F. Y. Zhang, F. Deng, G. J. Liu, R. Middleton, D. W. Inglis, A. Anwer, S. Wang, and G. Z. Liu, “IFN-γ-induced signal-on fluorescence aptasensors: from hybridization chain reaction amplification to 3D optical fiber sensing interface towards a deployable device for cytokine sensing,” Mol. Syst. Des. Eng. 4(4), 872–881 (2019).
[Crossref]

Auguste, J. L.

N. Zhang, K. W. Li, Y. Cui, Z. F. Wu, P. P. Shum, J. L. Auguste, X. Q. Dinh, G. Humbert, and L. Wei, “Ultra-sensitive chemical and biological analysis via specialty fibers with built-in microstructured optofluidic waveguide channels,” Lab Chip 18(4), 655–661 (2018).
[Crossref]

N. Zhang, G. Humbert, Z. F. Wu, K. W. Li, P. P. Shum, N. M. Y. Zhang, Y. Cui, J. L. Auguste, X. Q. Dinh, and L. Wei, “In-line optofluidic refractive index sensing in a side-channel photonic crystal fiber,” Opt. Express 24(24), 27674–27682 (2016).
[Crossref]

Bailey, R. C.

T. Jones, R. C. Bailey, and L. C. Gunn, “Label-Free Biosensor Arrays Based on Silicon Ring Resonators and High-Speed Optical Scanning Instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Barboza, B. A.

L. K. Teixeira, B. P. Fonseca, B. A. Barboza, and J. P. Viola, “The role of interferon-gamma on immune and allergic responses,” Mem. Inst. Oswaldo Cruz 100(suppl 1), 137–144 (2005).
[Crossref]

Barnes, J. A.

Bloom, B. R.

J. L. Flynn, J. Chan, K. J. Triebold, D. K. Dalton, T. A. Stewart, and B. R. Bloom, “An essential role for interferon gamma in resistance to Mycobacterium tuberculosis infection,” J. Exp. Med. 178(6), 2249–2254 (1993).
[Crossref]

Bockerstett, K. A.

K. A. Bockerstett and R. J. DiPaolo, “Regulation of Gastric Carcinogenesis by Inflammatory Cytokines,” Cell. Mol. Gastroenterol. Hepatol. 4(1), 47–53 (2017).
[Crossref]

Brzezinski, A.

Cargill, A. A.

S. W. Ding, C. Mosher, X. Y. Lee, S. R. Das, A. A. Cargill, X. H. Tang, B. L. Chen, E. S. McLamore, C. Gomes, J. M. Hostetter, and J. M. Claussen, “Rapid and Label-Free Detection of Interferon Gamma via an Electrochemical Aptasensor Comprising a Ternary Surface Monolayer on a Gold Interdigitated Electrode Array,” ACS Sens. 2(2), 210–217 (2017).
[Crossref]

Chan, J.

J. L. Flynn, J. Chan, K. J. Triebold, D. K. Dalton, T. A. Stewart, and B. R. Bloom, “An essential role for interferon gamma in resistance to Mycobacterium tuberculosis infection,” J. Exp. Med. 178(6), 2249–2254 (1993).
[Crossref]

Chang, H. C.

Chen, B. L.

S. W. Ding, C. Mosher, X. Y. Lee, S. R. Das, A. A. Cargill, X. H. Tang, B. L. Chen, E. S. McLamore, C. Gomes, J. M. Hostetter, and J. M. Claussen, “Rapid and Label-Free Detection of Interferon Gamma via an Electrochemical Aptasensor Comprising a Ternary Surface Monolayer on a Gold Interdigitated Electrode Array,” ACS Sens. 2(2), 210–217 (2017).
[Crossref]

Cheng, J.

R. Gao, D. F. Lu, J. Cheng, Y. Jiang, and Z. M. Qi, “Temperature-compensated fibre optic magnetic field sensor based on a self-referenced anti-resonant reflecting optical waveguide,” Appl. Phys. Lett. 110(13), 131903 (2017).
[Crossref]

Claussen, J. M.

S. W. Ding, C. Mosher, X. Y. Lee, S. R. Das, A. A. Cargill, X. H. Tang, B. L. Chen, E. S. McLamore, C. Gomes, J. M. Hostetter, and J. M. Claussen, “Rapid and Label-Free Detection of Interferon Gamma via an Electrochemical Aptasensor Comprising a Ternary Surface Monolayer on a Gold Interdigitated Electrode Array,” ACS Sens. 2(2), 210–217 (2017).
[Crossref]

Crulhas, B. P.

B. P. Crulhas, D. Hadley, Y. Liu, D. S. Shin, G. Stybayeva, M. Imanbekova, A. E. Hill, V. Pedrosa, and A. Revzin, “An electrochemical aptasensor for detection of bovine interferon gamma,” Anal. Methods 9(31), 4527–4532 (2017).
[Crossref]

Cui, Y.

N. Zhang, K. W. Li, Y. Cui, Z. F. Wu, P. P. Shum, J. L. Auguste, X. Q. Dinh, G. Humbert, and L. Wei, “Ultra-sensitive chemical and biological analysis via specialty fibers with built-in microstructured optofluidic waveguide channels,” Lab Chip 18(4), 655–661 (2018).
[Crossref]

N. Zhang, G. Humbert, Z. F. Wu, K. W. Li, P. P. Shum, N. M. Y. Zhang, Y. Cui, J. L. Auguste, X. Q. Dinh, and L. Wei, “In-line optofluidic refractive index sensing in a side-channel photonic crystal fiber,” Opt. Express 24(24), 27674–27682 (2016).
[Crossref]

Dalton, D. K.

J. L. Flynn, J. Chan, K. J. Triebold, D. K. Dalton, T. A. Stewart, and B. R. Bloom, “An essential role for interferon gamma in resistance to Mycobacterium tuberculosis infection,” J. Exp. Med. 178(6), 2249–2254 (1993).
[Crossref]

Das, S. R.

S. W. Ding, C. Mosher, X. Y. Lee, S. R. Das, A. A. Cargill, X. H. Tang, B. L. Chen, E. S. McLamore, C. Gomes, J. M. Hostetter, and J. M. Claussen, “Rapid and Label-Free Detection of Interferon Gamma via an Electrochemical Aptasensor Comprising a Ternary Surface Monolayer on a Gold Interdigitated Electrode Array,” ACS Sens. 2(2), 210–217 (2017).
[Crossref]

Deng, F.

F. Y. Zhang, F. Deng, G. J. Liu, R. Middleton, D. W. Inglis, A. Anwer, S. Wang, and G. Z. Liu, “IFN-γ-induced signal-on fluorescence aptasensors: from hybridization chain reaction amplification to 3D optical fiber sensing interface towards a deployable device for cytokine sensing,” Mol. Syst. Des. Eng. 4(4), 872–881 (2019).
[Crossref]

Dhenadhayalan, N.

N. Dhenadhayalan, M. I. Sriramcde, and K. C. Lin, “Aptamer-based fluorogenic sensing of interferon-gamma probed with ReS2 and TiS2 nanosheets,” Sens. Actuators, B 258(1), 929–936 (2018).
[Crossref]

Ding, S. W.

S. W. Ding, C. Mosher, X. Y. Lee, S. R. Das, A. A. Cargill, X. H. Tang, B. L. Chen, E. S. McLamore, C. Gomes, J. M. Hostetter, and J. M. Claussen, “Rapid and Label-Free Detection of Interferon Gamma via an Electrochemical Aptasensor Comprising a Ternary Surface Monolayer on a Gold Interdigitated Electrode Array,” ACS Sens. 2(2), 210–217 (2017).
[Crossref]

Dinh, X. Q.

N. Zhang, K. W. Li, Y. Cui, Z. F. Wu, P. P. Shum, J. L. Auguste, X. Q. Dinh, G. Humbert, and L. Wei, “Ultra-sensitive chemical and biological analysis via specialty fibers with built-in microstructured optofluidic waveguide channels,” Lab Chip 18(4), 655–661 (2018).
[Crossref]

N. Zhang, G. Humbert, Z. F. Wu, K. W. Li, P. P. Shum, N. M. Y. Zhang, Y. Cui, J. L. Auguste, X. Q. Dinh, and L. Wei, “In-line optofluidic refractive index sensing in a side-channel photonic crystal fiber,” Opt. Express 24(24), 27674–27682 (2016).
[Crossref]

DiPaolo, R. J.

K. A. Bockerstett and R. J. DiPaolo, “Regulation of Gastric Carcinogenesis by Inflammatory Cytokines,” Cell. Mol. Gastroenterol. Hepatol. 4(1), 47–53 (2017).
[Crossref]

Eggleton, B. J.

Erdene, N.

H. H. Jeong, N. Erdene, J. H. Park, D. H. Jeong, H. Y. Lee, and S. K. Lee, “Real-time label-free immunoassay of interferon-gamma and prostate-specific antigen using a Fiber-Optic Localized Surface Plasmon Resonance sensor,” Biosens. Bioelectron. 39(1), 346–351 (2013).
[Crossref]

Fan, Q. L.

Z. Wang, X. F. Liu, Y. Q. Huang, Q. L. Fan, and W. Huang, “Rapid and Reusable Detection of Interferon-Gamma Based on Label-Free Single-Stranded DNA and Thioflavin T,” IEEE Sens. J. 18(6), 2313–2317 (2018).
[Crossref]

Flynn, J. L.

J. L. Flynn, J. Chan, K. J. Triebold, D. K. Dalton, T. A. Stewart, and B. R. Bloom, “An essential role for interferon gamma in resistance to Mycobacterium tuberculosis infection,” J. Exp. Med. 178(6), 2249–2254 (1993).
[Crossref]

Fonseca, B. P.

L. K. Teixeira, B. P. Fonseca, B. A. Barboza, and J. P. Viola, “The role of interferon-gamma on immune and allergic responses,” Mem. Inst. Oswaldo Cruz 100(suppl 1), 137–144 (2005).
[Crossref]

Gao, P.

Y. N. Zhang, L. B. Zhang, B. Hana, P. Gao, Q. L. Wu, and A. Z. Zhang, “Reflective mercury ion and temperature sensor based on a functionalized no core fiber combined with a fiber Bragg grating,” Sens. Actuators, B 272(1), 331–339 (2018).
[Crossref]

Gao, R.

R. Gao, D. F. Lu, M. Y. Zhang, and Z. M. Qi, “Optofluidic waveguide Immunosensor Based on Resonant Wavelength Shift of a Hollow Core Fiber for Ultratrace Detection of Carcinogenic Benzo[a]pyrene,” ACS Photonics 5(4), 1273–1280 (2018).
[Crossref]

R. Gao, D. F. Lu, J. Cheng, Y. Jiang, and Z. M. Qi, “Temperature-compensated fibre optic magnetic field sensor based on a self-referenced anti-resonant reflecting optical waveguide,” Appl. Phys. Lett. 110(13), 131903 (2017).
[Crossref]

Gomes, C.

S. W. Ding, C. Mosher, X. Y. Lee, S. R. Das, A. A. Cargill, X. H. Tang, B. L. Chen, E. S. McLamore, C. Gomes, J. M. Hostetter, and J. M. Claussen, “Rapid and Label-Free Detection of Interferon Gamma via an Electrochemical Aptasensor Comprising a Ternary Surface Monolayer on a Gold Interdigitated Electrode Array,” ACS Sens. 2(2), 210–217 (2017).
[Crossref]

Gunn, L. C.

T. Jones, R. C. Bailey, and L. C. Gunn, “Label-Free Biosensor Arrays Based on Silicon Ring Resonators and High-Speed Optical Scanning Instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Guo, J.

Hadley, D.

B. P. Crulhas, D. Hadley, Y. Liu, D. S. Shin, G. Stybayeva, M. Imanbekova, A. E. Hill, V. Pedrosa, and A. Revzin, “An electrochemical aptasensor for detection of bovine interferon gamma,” Anal. Methods 9(31), 4527–4532 (2017).
[Crossref]

Han, M.

Han, T.

Hana, B.

Y. N. Zhang, L. B. Zhang, B. Hana, P. Gao, Q. L. Wu, and A. Z. Zhang, “Reflective mercury ion and temperature sensor based on a functionalized no core fiber combined with a fiber Bragg grating,” Sens. Actuators, B 272(1), 331–339 (2018).
[Crossref]

Haxha, S.

He, J.

Headley, C.

Hill, A. E.

B. P. Crulhas, D. Hadley, Y. Liu, D. S. Shin, G. Stybayeva, M. Imanbekova, A. E. Hill, V. Pedrosa, and A. Revzin, “An electrochemical aptasensor for detection of bovine interferon gamma,” Anal. Methods 9(31), 4527–4532 (2017).
[Crossref]

Homola, J.

H. Sipovaa, V. Sevcu, M. Kuchar, J. N. Ahmadc, P. Mikulecky, R. Osickac, P. Maly, and J. Homola, “Surface plasmon resonance biosensor based on engineered proteins for direct detection of interferon-gamma in diluted blood plasma,” Sens. Actuators, B 174, 306–311 (2012).
[Crossref]

Hostetter, J. M.

S. W. Ding, C. Mosher, X. Y. Lee, S. R. Das, A. A. Cargill, X. H. Tang, B. L. Chen, E. S. McLamore, C. Gomes, J. M. Hostetter, and J. M. Claussen, “Rapid and Label-Free Detection of Interferon Gamma via an Electrochemical Aptasensor Comprising a Ternary Surface Monolayer on a Gold Interdigitated Electrode Array,” ACS Sens. 2(2), 210–217 (2017).
[Crossref]

Hou, M.

Hu, L.

Hu, L. L.

Huang, W.

Z. Wang, X. F. Liu, Y. Q. Huang, Q. L. Fan, and W. Huang, “Rapid and Reusable Detection of Interferon-Gamma Based on Label-Free Single-Stranded DNA and Thioflavin T,” IEEE Sens. J. 18(6), 2313–2317 (2018).
[Crossref]

Huang, Y. Q.

Z. Wang, X. F. Liu, Y. Q. Huang, Q. L. Fan, and W. Huang, “Rapid and Reusable Detection of Interferon-Gamma Based on Label-Free Single-Stranded DNA and Thioflavin T,” IEEE Sens. J. 18(6), 2313–2317 (2018).
[Crossref]

Humbert, G.

N. Zhang, K. W. Li, Y. Cui, Z. F. Wu, P. P. Shum, J. L. Auguste, X. Q. Dinh, G. Humbert, and L. Wei, “Ultra-sensitive chemical and biological analysis via specialty fibers with built-in microstructured optofluidic waveguide channels,” Lab Chip 18(4), 655–661 (2018).
[Crossref]

N. Zhang, G. Humbert, Z. F. Wu, K. W. Li, P. P. Shum, N. M. Y. Zhang, Y. Cui, J. L. Auguste, X. Q. Dinh, and L. Wei, “In-line optofluidic refractive index sensing in a side-channel photonic crystal fiber,” Opt. Express 24(24), 27674–27682 (2016).
[Crossref]

Ianno, N.

Imanbekova, M.

B. P. Crulhas, D. Hadley, Y. Liu, D. S. Shin, G. Stybayeva, M. Imanbekova, A. E. Hill, V. Pedrosa, and A. Revzin, “An electrochemical aptasensor for detection of bovine interferon gamma,” Anal. Methods 9(31), 4527–4532 (2017).
[Crossref]

Inglis, D. W.

F. Y. Zhang, F. Deng, G. J. Liu, R. Middleton, D. W. Inglis, A. Anwer, S. Wang, and G. Z. Liu, “IFN-γ-induced signal-on fluorescence aptasensors: from hybridization chain reaction amplification to 3D optical fiber sensing interface towards a deployable device for cytokine sensing,” Mol. Syst. Des. Eng. 4(4), 872–881 (2019).
[Crossref]

Jeong, D. H.

H. H. Jeong, N. Erdene, J. H. Park, D. H. Jeong, H. Y. Lee, and S. K. Lee, “Real-time label-free immunoassay of interferon-gamma and prostate-specific antigen using a Fiber-Optic Localized Surface Plasmon Resonance sensor,” Biosens. Bioelectron. 39(1), 346–351 (2013).
[Crossref]

Jeong, H. H.

H. H. Jeong, N. Erdene, J. H. Park, D. H. Jeong, H. Y. Lee, and S. K. Lee, “Real-time label-free immunoassay of interferon-gamma and prostate-specific antigen using a Fiber-Optic Localized Surface Plasmon Resonance sensor,” Biosens. Bioelectron. 39(1), 346–351 (2013).
[Crossref]

Jiang, Y.

R. Gao, D. F. Lu, J. Cheng, Y. Jiang, and Z. M. Qi, “Temperature-compensated fibre optic magnetic field sensor based on a self-referenced anti-resonant reflecting optical waveguide,” Appl. Phys. Lett. 110(13), 131903 (2017).
[Crossref]

Jiao, Y.

Jin, W.

Jones, C. N.

N. Tuleuova, C. N. Jones, J. Yan, E. Ramanculov, Y. Yokobayashi, and A. Revzin, “Development of an aptamer beacon for detection of interferon-gamma,” Anal. Chem. 82(5), 1851–1857 (2010).
[Crossref]

N. Tuleuova, C. N. Jones, J. Yan, E. Ramanculov, Y. Yokobayashi, and A. Revzin, “Development of an Aptamer Beacon for Detection of Interferon-Gamma,” Anal. Chem. 82(5), 1851–1857 (2010).
[Crossref]

Jones, T.

T. Jones, R. C. Bailey, and L. C. Gunn, “Label-Free Biosensor Arrays Based on Silicon Ring Resonators and High-Speed Optical Scanning Instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

Juncker, D.

J. D. Munzar, A. Ng, and D. Juncker, “Duplexed aptamers: history, design, theory, and application to biosensing,” Chem. Soc. Rev. 48(5), 1390–1419 (2019).
[Crossref]

Kuchar, M.

H. Sipovaa, V. Sevcu, M. Kuchar, J. N. Ahmadc, P. Mikulecky, R. Osickac, P. Maly, and J. Homola, “Surface plasmon resonance biosensor based on engineered proteins for direct detection of interferon-gamma in diluted blood plasma,” Sens. Actuators, B 174, 306–311 (2012).
[Crossref]

Lai, C. H.

Lee, H. Y.

H. H. Jeong, N. Erdene, J. H. Park, D. H. Jeong, H. Y. Lee, and S. K. Lee, “Real-time label-free immunoassay of interferon-gamma and prostate-specific antigen using a Fiber-Optic Localized Surface Plasmon Resonance sensor,” Biosens. Bioelectron. 39(1), 346–351 (2013).
[Crossref]

Lee, S. K.

H. H. Jeong, N. Erdene, J. H. Park, D. H. Jeong, H. Y. Lee, and S. K. Lee, “Real-time label-free immunoassay of interferon-gamma and prostate-specific antigen using a Fiber-Optic Localized Surface Plasmon Resonance sensor,” Biosens. Bioelectron. 39(1), 346–351 (2013).
[Crossref]

Lee, X. Y.

S. W. Ding, C. Mosher, X. Y. Lee, S. R. Das, A. A. Cargill, X. H. Tang, B. L. Chen, E. S. McLamore, C. Gomes, J. M. Hostetter, and J. M. Claussen, “Rapid and Label-Free Detection of Interferon Gamma via an Electrochemical Aptasensor Comprising a Ternary Surface Monolayer on a Gold Interdigitated Electrode Array,” ACS Sens. 2(2), 210–217 (2017).
[Crossref]

Li, K. W.

N. Zhang, K. W. Li, Y. Cui, Z. F. Wu, P. P. Shum, J. L. Auguste, X. Q. Dinh, G. Humbert, and L. Wei, “Ultra-sensitive chemical and biological analysis via specialty fibers with built-in microstructured optofluidic waveguide channels,” Lab Chip 18(4), 655–661 (2018).
[Crossref]

N. Zhang, G. Humbert, Z. F. Wu, K. W. Li, P. P. Shum, N. M. Y. Zhang, Y. Cui, J. L. Auguste, X. Q. Dinh, and L. Wei, “In-line optofluidic refractive index sensing in a side-channel photonic crystal fiber,” Opt. Express 24(24), 27674–27682 (2016).
[Crossref]

Li, S.

Li, Z.

Liao, C.

Lin, K. C.

N. Dhenadhayalan, M. I. Sriramcde, and K. C. Lin, “Aptamer-based fluorogenic sensing of interferon-gamma probed with ReS2 and TiS2 nanosheets,” Sens. Actuators, B 258(1), 929–936 (2018).
[Crossref]

Litchinitser, N. M.

Liu, G.

Liu, G. G.

Liu, G. J.

F. Y. Zhang, F. Deng, G. J. Liu, R. Middleton, D. W. Inglis, A. Anwer, S. Wang, and G. Z. Liu, “IFN-γ-induced signal-on fluorescence aptasensors: from hybridization chain reaction amplification to 3D optical fiber sensing interface towards a deployable device for cytokine sensing,” Mol. Syst. Des. Eng. 4(4), 872–881 (2019).
[Crossref]

Liu, G. Z.

F. Y. Zhang, F. Deng, G. J. Liu, R. Middleton, D. W. Inglis, A. Anwer, S. Wang, and G. Z. Liu, “IFN-γ-induced signal-on fluorescence aptasensors: from hybridization chain reaction amplification to 3D optical fiber sensing interface towards a deployable device for cytokine sensing,” Mol. Syst. Des. Eng. 4(4), 872–881 (2019).
[Crossref]

Liu, S.

Liu, T. A.

Liu, X. F.

Z. Wang, X. F. Liu, Y. Q. Huang, Q. L. Fan, and W. Huang, “Rapid and Reusable Detection of Interferon-Gamma Based on Label-Free Single-Stranded DNA and Thioflavin T,” IEEE Sens. J. 18(6), 2313–2317 (2018).
[Crossref]

Liu, Y.

B. P. Crulhas, D. Hadley, Y. Liu, D. S. Shin, G. Stybayeva, M. Imanbekova, A. E. Hill, V. Pedrosa, and A. Revzin, “An electrochemical aptasensor for detection of bovine interferon gamma,” Anal. Methods 9(31), 4527–4532 (2017).
[Crossref]

Liu, Y. G.

Loock, H. P.

Lu, D. F.

R. Gao, D. F. Lu, M. Y. Zhang, and Z. M. Qi, “Optofluidic waveguide Immunosensor Based on Resonant Wavelength Shift of a Hollow Core Fiber for Ultratrace Detection of Carcinogenic Benzo[a]pyrene,” ACS Photonics 5(4), 1273–1280 (2018).
[Crossref]

R. Gao, D. F. Lu, J. Cheng, Y. Jiang, and Z. M. Qi, “Temperature-compensated fibre optic magnetic field sensor based on a self-referenced anti-resonant reflecting optical waveguide,” Appl. Phys. Lett. 110(13), 131903 (2017).
[Crossref]

Lu, J. Y.

Lu, P.

Lu, Z.

Maly, P.

H. Sipovaa, V. Sevcu, M. Kuchar, J. N. Ahmadc, P. Mikulecky, R. Osickac, P. Maly, and J. Homola, “Surface plasmon resonance biosensor based on engineered proteins for direct detection of interferon-gamma in diluted blood plasma,” Sens. Actuators, B 174, 306–311 (2012).
[Crossref]

McLamore, E. S.

S. W. Ding, C. Mosher, X. Y. Lee, S. R. Das, A. A. Cargill, X. H. Tang, B. L. Chen, E. S. McLamore, C. Gomes, J. M. Hostetter, and J. M. Claussen, “Rapid and Label-Free Detection of Interferon Gamma via an Electrochemical Aptasensor Comprising a Ternary Surface Monolayer on a Gold Interdigitated Electrode Array,” ACS Sens. 2(2), 210–217 (2017).
[Crossref]

Middleton, R.

F. Y. Zhang, F. Deng, G. J. Liu, R. Middleton, D. W. Inglis, A. Anwer, S. Wang, and G. Z. Liu, “IFN-γ-induced signal-on fluorescence aptasensors: from hybridization chain reaction amplification to 3D optical fiber sensing interface towards a deployable device for cytokine sensing,” Mol. Syst. Des. Eng. 4(4), 872–881 (2019).
[Crossref]

Mikulecky, P.

H. Sipovaa, V. Sevcu, M. Kuchar, J. N. Ahmadc, P. Mikulecky, R. Osickac, P. Maly, and J. Homola, “Surface plasmon resonance biosensor based on engineered proteins for direct detection of interferon-gamma in diluted blood plasma,” Sens. Actuators, B 174, 306–311 (2012).
[Crossref]

Mosher, C.

S. W. Ding, C. Mosher, X. Y. Lee, S. R. Das, A. A. Cargill, X. H. Tang, B. L. Chen, E. S. McLamore, C. Gomes, J. M. Hostetter, and J. M. Claussen, “Rapid and Label-Free Detection of Interferon Gamma via an Electrochemical Aptasensor Comprising a Ternary Surface Monolayer on a Gold Interdigitated Electrode Array,” ACS Sens. 2(2), 210–217 (2017).
[Crossref]

Munzar, J. D.

J. D. Munzar, A. Ng, and D. Juncker, “Duplexed aptamers: history, design, theory, and application to biosensing,” Chem. Soc. Rev. 48(5), 1390–1419 (2019).
[Crossref]

Munzke, D. C.

Ng, A.

J. D. Munzar, A. Ng, and D. Juncker, “Duplexed aptamers: history, design, theory, and application to biosensing,” Chem. Soc. Rev. 48(5), 1390–1419 (2019).
[Crossref]

Osickac, R.

H. Sipovaa, V. Sevcu, M. Kuchar, J. N. Ahmadc, P. Mikulecky, R. Osickac, P. Maly, and J. Homola, “Surface plasmon resonance biosensor based on engineered proteins for direct detection of interferon-gamma in diluted blood plasma,” Sens. Actuators, B 174, 306–311 (2012).
[Crossref]

Otupiri, R.

Park, J. H.

H. H. Jeong, N. Erdene, J. H. Park, D. H. Jeong, H. Y. Lee, and S. K. Lee, “Real-time label-free immunoassay of interferon-gamma and prostate-specific antigen using a Fiber-Optic Localized Surface Plasmon Resonance sensor,” Biosens. Bioelectron. 39(1), 346–351 (2013).
[Crossref]

Pedrosa, V.

B. P. Crulhas, D. Hadley, Y. Liu, D. S. Shin, G. Stybayeva, M. Imanbekova, A. E. Hill, V. Pedrosa, and A. Revzin, “An electrochemical aptasensor for detection of bovine interferon gamma,” Anal. Methods 9(31), 4527–4532 (2017).
[Crossref]

Peng, J. L.

Psaltis, D.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic waveguide technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref]

Qi, Y.

Qi, Y. F.

Qi, Z. M.

R. Gao, D. F. Lu, M. Y. Zhang, and Z. M. Qi, “Optofluidic waveguide Immunosensor Based on Resonant Wavelength Shift of a Hollow Core Fiber for Ultratrace Detection of Carcinogenic Benzo[a]pyrene,” ACS Photonics 5(4), 1273–1280 (2018).
[Crossref]

R. Gao, D. F. Lu, J. Cheng, Y. Jiang, and Z. M. Qi, “Temperature-compensated fibre optic magnetic field sensor based on a self-referenced anti-resonant reflecting optical waveguide,” Appl. Phys. Lett. 110(13), 131903 (2017).
[Crossref]

Quake, S. R.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic waveguide technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref]

Quan, M.

Ramanculov, E.

N. Tuleuova, C. N. Jones, J. Yan, E. Ramanculov, Y. Yokobayashi, and A. Revzin, “Development of an Aptamer Beacon for Detection of Interferon-Gamma,” Anal. Chem. 82(5), 1851–1857 (2010).
[Crossref]

N. Tuleuova, C. N. Jones, J. Yan, E. Ramanculov, Y. Yokobayashi, and A. Revzin, “Development of an aptamer beacon for detection of interferon-gamma,” Anal. Chem. 82(5), 1851–1857 (2010).
[Crossref]

Reich, O.

Revzin, A.

B. P. Crulhas, D. Hadley, Y. Liu, D. S. Shin, G. Stybayeva, M. Imanbekova, A. E. Hill, V. Pedrosa, and A. Revzin, “An electrochemical aptasensor for detection of bovine interferon gamma,” Anal. Methods 9(31), 4527–4532 (2017).
[Crossref]

N. Tuleuova, C. N. Jones, J. Yan, E. Ramanculov, Y. Yokobayashi, and A. Revzin, “Development of an Aptamer Beacon for Detection of Interferon-Gamma,” Anal. Chem. 82(5), 1851–1857 (2010).
[Crossref]

N. Tuleuova, C. N. Jones, J. Yan, E. Ramanculov, Y. Yokobayashi, and A. Revzin, “Development of an aptamer beacon for detection of interferon-gamma,” Anal. Chem. 82(5), 1851–1857 (2010).
[Crossref]

Ross, R.

Sevcu, V.

H. Sipovaa, V. Sevcu, M. Kuchar, J. N. Ahmadc, P. Mikulecky, R. Osickac, P. Maly, and J. Homola, “Surface plasmon resonance biosensor based on engineered proteins for direct detection of interferon-gamma in diluted blood plasma,” Sens. Actuators, B 174, 306–311 (2012).
[Crossref]

Shin, D. S.

B. P. Crulhas, D. Hadley, Y. Liu, D. S. Shin, G. Stybayeva, M. Imanbekova, A. E. Hill, V. Pedrosa, and A. Revzin, “An electrochemical aptasensor for detection of bovine interferon gamma,” Anal. Methods 9(31), 4527–4532 (2017).
[Crossref]

Shum, P. P.

N. Zhang, K. W. Li, Y. Cui, Z. F. Wu, P. P. Shum, J. L. Auguste, X. Q. Dinh, G. Humbert, and L. Wei, “Ultra-sensitive chemical and biological analysis via specialty fibers with built-in microstructured optofluidic waveguide channels,” Lab Chip 18(4), 655–661 (2018).
[Crossref]

N. Zhang, G. Humbert, Z. F. Wu, K. W. Li, P. P. Shum, N. M. Y. Zhang, Y. Cui, J. L. Auguste, X. Q. Dinh, and L. Wei, “In-line optofluidic refractive index sensing in a side-channel photonic crystal fiber,” Opt. Express 24(24), 27674–27682 (2016).
[Crossref]

Sipovaa, H.

H. Sipovaa, V. Sevcu, M. Kuchar, J. N. Ahmadc, P. Mikulecky, R. Osickac, P. Maly, and J. Homola, “Surface plasmon resonance biosensor based on engineered proteins for direct detection of interferon-gamma in diluted blood plasma,” Sens. Actuators, B 174, 306–311 (2012).
[Crossref]

Sriramcde, M. I.

N. Dhenadhayalan, M. I. Sriramcde, and K. C. Lin, “Aptamer-based fluorogenic sensing of interferon-gamma probed with ReS2 and TiS2 nanosheets,” Sens. Actuators, B 258(1), 929–936 (2018).
[Crossref]

Stewart, T. A.

J. L. Flynn, J. Chan, K. J. Triebold, D. K. Dalton, T. A. Stewart, and B. R. Bloom, “An essential role for interferon gamma in resistance to Mycobacterium tuberculosis infection,” J. Exp. Med. 178(6), 2249–2254 (1993).
[Crossref]

Stybayeva, G.

B. P. Crulhas, D. Hadley, Y. Liu, D. S. Shin, G. Stybayeva, M. Imanbekova, A. E. Hill, V. Pedrosa, and A. Revzin, “An electrochemical aptasensor for detection of bovine interferon gamma,” Anal. Methods 9(31), 4527–4532 (2017).
[Crossref]

Sun, C. K.

Tang, X. H.

S. W. Ding, C. Mosher, X. Y. Lee, S. R. Das, A. A. Cargill, X. H. Tang, B. L. Chen, E. S. McLamore, C. Gomes, J. M. Hostetter, and J. M. Claussen, “Rapid and Label-Free Detection of Interferon Gamma via an Electrochemical Aptasensor Comprising a Ternary Surface Monolayer on a Gold Interdigitated Electrode Array,” ACS Sens. 2(2), 210–217 (2017).
[Crossref]

Teixeira, L. K.

L. K. Teixeira, B. P. Fonseca, B. A. Barboza, and J. P. Viola, “The role of interferon-gamma on immune and allergic responses,” Mem. Inst. Oswaldo Cruz 100(suppl 1), 137–144 (2005).
[Crossref]

Tian, J.

Triebold, K. J.

J. L. Flynn, J. Chan, K. J. Triebold, D. K. Dalton, T. A. Stewart, and B. R. Bloom, “An essential role for interferon gamma in resistance to Mycobacterium tuberculosis infection,” J. Exp. Med. 178(6), 2249–2254 (1993).
[Crossref]

Tuleuova, N.

N. Tuleuova, C. N. Jones, J. Yan, E. Ramanculov, Y. Yokobayashi, and A. Revzin, “Development of an aptamer beacon for detection of interferon-gamma,” Anal. Chem. 82(5), 1851–1857 (2010).
[Crossref]

N. Tuleuova, C. N. Jones, J. Yan, E. Ramanculov, Y. Yokobayashi, and A. Revzin, “Development of an Aptamer Beacon for Detection of Interferon-Gamma,” Anal. Chem. 82(5), 1851–1857 (2010).
[Crossref]

Viola, J. P.

L. K. Teixeira, B. P. Fonseca, B. A. Barboza, and J. P. Viola, “The role of interferon-gamma on immune and allergic responses,” Mem. Inst. Oswaldo Cruz 100(suppl 1), 137–144 (2005).
[Crossref]

Wang, C.

Wang, J.

Wang, S.

F. Y. Zhang, F. Deng, G. J. Liu, R. Middleton, D. W. Inglis, A. Anwer, S. Wang, and G. Z. Liu, “IFN-γ-induced signal-on fluorescence aptasensors: from hybridization chain reaction amplification to 3D optical fiber sensing interface towards a deployable device for cytokine sensing,” Mol. Syst. Des. Eng. 4(4), 872–881 (2019).
[Crossref]

Wang, Y.

Wang, Z.

Z. Wang, X. F. Liu, Y. Q. Huang, Q. L. Fan, and W. Huang, “Rapid and Reusable Detection of Interferon-Gamma Based on Label-Free Single-Stranded DNA and Thioflavin T,” IEEE Sens. J. 18(6), 2313–2317 (2018).
[Crossref]

Z. Wu, Z. Wang, Y. G. Liu, T. Han, S. Li, and H. Wei, “Mechanism and characteristics of long period fiber gratings in simplified hollow-core photonic crystal fibers,” Opt. Express 19(18), 17344–17349 (2011).
[Crossref]

Wei, H.

Wei, L.

N. Zhang, K. W. Li, Y. Cui, Z. F. Wu, P. P. Shum, J. L. Auguste, X. Q. Dinh, G. Humbert, and L. Wei, “Ultra-sensitive chemical and biological analysis via specialty fibers with built-in microstructured optofluidic waveguide channels,” Lab Chip 18(4), 655–661 (2018).
[Crossref]

N. Zhang, G. Humbert, Z. F. Wu, K. W. Li, P. P. Shum, N. M. Y. Zhang, Y. Cui, J. L. Auguste, X. Q. Dinh, and L. Wei, “In-line optofluidic refractive index sensing in a side-channel photonic crystal fiber,” Opt. Express 24(24), 27674–27682 (2016).
[Crossref]

Wu, Q. L.

Y. N. Zhang, L. B. Zhang, B. Hana, P. Gao, Q. L. Wu, and A. Z. Zhang, “Reflective mercury ion and temperature sensor based on a functionalized no core fiber combined with a fiber Bragg grating,” Sens. Actuators, B 272(1), 331–339 (2018).
[Crossref]

Wu, Z.

Wu, Z. F.

N. Zhang, K. W. Li, Y. Cui, Z. F. Wu, P. P. Shum, J. L. Auguste, X. Q. Dinh, G. Humbert, and L. Wei, “Ultra-sensitive chemical and biological analysis via specialty fibers with built-in microstructured optofluidic waveguide channels,” Lab Chip 18(4), 655–661 (2018).
[Crossref]

N. Zhang, G. Humbert, Z. F. Wu, K. W. Li, P. P. Shum, N. M. Y. Zhang, Y. Cui, J. L. Auguste, X. Q. Dinh, and L. Wei, “In-line optofluidic refractive index sensing in a side-channel photonic crystal fiber,” Opt. Express 24(24), 27674–27682 (2016).
[Crossref]

Yan, J.

N. Tuleuova, C. N. Jones, J. Yan, E. Ramanculov, Y. Yokobayashi, and A. Revzin, “Development of an aptamer beacon for detection of interferon-gamma,” Anal. Chem. 82(5), 1851–1857 (2010).
[Crossref]

N. Tuleuova, C. N. Jones, J. Yan, E. Ramanculov, Y. Yokobayashi, and A. Revzin, “Development of an Aptamer Beacon for Detection of Interferon-Gamma,” Anal. Chem. 82(5), 1851–1857 (2010).
[Crossref]

Yang, C.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic waveguide technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref]

Yao, Y.

Yokobayashi, Y.

N. Tuleuova, C. N. Jones, J. Yan, E. Ramanculov, Y. Yokobayashi, and A. Revzin, “Development of an Aptamer Beacon for Detection of Interferon-Gamma,” Anal. Chem. 82(5), 1851–1857 (2010).
[Crossref]

N. Tuleuova, C. N. Jones, J. Yan, E. Ramanculov, Y. Yokobayashi, and A. Revzin, “Development of an aptamer beacon for detection of interferon-gamma,” Anal. Chem. 82(5), 1851–1857 (2010).
[Crossref]

You, B.

Zhang, A. Z.

Y. N. Zhang, L. B. Zhang, B. Hana, P. Gao, Q. L. Wu, and A. Z. Zhang, “Reflective mercury ion and temperature sensor based on a functionalized no core fiber combined with a fiber Bragg grating,” Sens. Actuators, B 272(1), 331–339 (2018).
[Crossref]

Zhang, F. Y.

F. Y. Zhang, F. Deng, G. J. Liu, R. Middleton, D. W. Inglis, A. Anwer, S. Wang, and G. Z. Liu, “IFN-γ-induced signal-on fluorescence aptasensors: from hybridization chain reaction amplification to 3D optical fiber sensing interface towards a deployable device for cytokine sensing,” Mol. Syst. Des. Eng. 4(4), 872–881 (2019).
[Crossref]

Zhang, J.

Zhang, L. B.

Y. N. Zhang, L. B. Zhang, B. Hana, P. Gao, Q. L. Wu, and A. Z. Zhang, “Reflective mercury ion and temperature sensor based on a functionalized no core fiber combined with a fiber Bragg grating,” Sens. Actuators, B 272(1), 331–339 (2018).
[Crossref]

Zhang, M. Y.

R. Gao, D. F. Lu, M. Y. Zhang, and Z. M. Qi, “Optofluidic waveguide Immunosensor Based on Resonant Wavelength Shift of a Hollow Core Fiber for Ultratrace Detection of Carcinogenic Benzo[a]pyrene,” ACS Photonics 5(4), 1273–1280 (2018).
[Crossref]

Zhang, N.

N. Zhang, K. W. Li, Y. Cui, Z. F. Wu, P. P. Shum, J. L. Auguste, X. Q. Dinh, G. Humbert, and L. Wei, “Ultra-sensitive chemical and biological analysis via specialty fibers with built-in microstructured optofluidic waveguide channels,” Lab Chip 18(4), 655–661 (2018).
[Crossref]

N. Zhang, G. Humbert, Z. F. Wu, K. W. Li, P. P. Shum, N. M. Y. Zhang, Y. Cui, J. L. Auguste, X. Q. Dinh, and L. Wei, “In-line optofluidic refractive index sensing in a side-channel photonic crystal fiber,” Opt. Express 24(24), 27674–27682 (2016).
[Crossref]

Zhang, N. M. Y.

Zhang, Q.

Zhang, Y. N.

Y. N. Zhang, L. B. Zhang, B. Hana, P. Gao, Q. L. Wu, and A. Z. Zhang, “Reflective mercury ion and temperature sensor based on a functionalized no core fiber combined with a fiber Bragg grating,” Sens. Actuators, B 272(1), 331–339 (2018).
[Crossref]

ACS Photonics (1)

R. Gao, D. F. Lu, M. Y. Zhang, and Z. M. Qi, “Optofluidic waveguide Immunosensor Based on Resonant Wavelength Shift of a Hollow Core Fiber for Ultratrace Detection of Carcinogenic Benzo[a]pyrene,” ACS Photonics 5(4), 1273–1280 (2018).
[Crossref]

ACS Sens. (1)

S. W. Ding, C. Mosher, X. Y. Lee, S. R. Das, A. A. Cargill, X. H. Tang, B. L. Chen, E. S. McLamore, C. Gomes, J. M. Hostetter, and J. M. Claussen, “Rapid and Label-Free Detection of Interferon Gamma via an Electrochemical Aptasensor Comprising a Ternary Surface Monolayer on a Gold Interdigitated Electrode Array,” ACS Sens. 2(2), 210–217 (2017).
[Crossref]

Anal. Chem. (2)

N. Tuleuova, C. N. Jones, J. Yan, E. Ramanculov, Y. Yokobayashi, and A. Revzin, “Development of an Aptamer Beacon for Detection of Interferon-Gamma,” Anal. Chem. 82(5), 1851–1857 (2010).
[Crossref]

N. Tuleuova, C. N. Jones, J. Yan, E. Ramanculov, Y. Yokobayashi, and A. Revzin, “Development of an aptamer beacon for detection of interferon-gamma,” Anal. Chem. 82(5), 1851–1857 (2010).
[Crossref]

Anal. Methods (1)

B. P. Crulhas, D. Hadley, Y. Liu, D. S. Shin, G. Stybayeva, M. Imanbekova, A. E. Hill, V. Pedrosa, and A. Revzin, “An electrochemical aptasensor for detection of bovine interferon gamma,” Anal. Methods 9(31), 4527–4532 (2017).
[Crossref]

Appl. Phys. Lett. (1)

R. Gao, D. F. Lu, J. Cheng, Y. Jiang, and Z. M. Qi, “Temperature-compensated fibre optic magnetic field sensor based on a self-referenced anti-resonant reflecting optical waveguide,” Appl. Phys. Lett. 110(13), 131903 (2017).
[Crossref]

Biosens. Bioelectron. (1)

H. H. Jeong, N. Erdene, J. H. Park, D. H. Jeong, H. Y. Lee, and S. K. Lee, “Real-time label-free immunoassay of interferon-gamma and prostate-specific antigen using a Fiber-Optic Localized Surface Plasmon Resonance sensor,” Biosens. Bioelectron. 39(1), 346–351 (2013).
[Crossref]

Cell. Mol. Gastroenterol. Hepatol. (1)

K. A. Bockerstett and R. J. DiPaolo, “Regulation of Gastric Carcinogenesis by Inflammatory Cytokines,” Cell. Mol. Gastroenterol. Hepatol. 4(1), 47–53 (2017).
[Crossref]

Chem. Soc. Rev. (1)

J. D. Munzar, A. Ng, and D. Juncker, “Duplexed aptamers: history, design, theory, and application to biosensing,” Chem. Soc. Rev. 48(5), 1390–1419 (2019).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

T. Jones, R. C. Bailey, and L. C. Gunn, “Label-Free Biosensor Arrays Based on Silicon Ring Resonators and High-Speed Optical Scanning Instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010).
[Crossref]

IEEE Sens. J. (1)

Z. Wang, X. F. Liu, Y. Q. Huang, Q. L. Fan, and W. Huang, “Rapid and Reusable Detection of Interferon-Gamma Based on Label-Free Single-Stranded DNA and Thioflavin T,” IEEE Sens. J. 18(6), 2313–2317 (2018).
[Crossref]

J. Exp. Med. (1)

J. L. Flynn, J. Chan, K. J. Triebold, D. K. Dalton, T. A. Stewart, and B. R. Bloom, “An essential role for interferon gamma in resistance to Mycobacterium tuberculosis infection,” J. Exp. Med. 178(6), 2249–2254 (1993).
[Crossref]

Lab Chip (1)

N. Zhang, K. W. Li, Y. Cui, Z. F. Wu, P. P. Shum, J. L. Auguste, X. Q. Dinh, G. Humbert, and L. Wei, “Ultra-sensitive chemical and biological analysis via specialty fibers with built-in microstructured optofluidic waveguide channels,” Lab Chip 18(4), 655–661 (2018).
[Crossref]

Mem. Inst. Oswaldo Cruz (1)

L. K. Teixeira, B. P. Fonseca, B. A. Barboza, and J. P. Viola, “The role of interferon-gamma on immune and allergic responses,” Mem. Inst. Oswaldo Cruz 100(suppl 1), 137–144 (2005).
[Crossref]

Mol. Syst. Des. Eng. (1)

F. Y. Zhang, F. Deng, G. J. Liu, R. Middleton, D. W. Inglis, A. Anwer, S. Wang, and G. Z. Liu, “IFN-γ-induced signal-on fluorescence aptasensors: from hybridization chain reaction amplification to 3D optical fiber sensing interface towards a deployable device for cytokine sensing,” Mol. Syst. Des. Eng. 4(4), 872–881 (2019).
[Crossref]

Nature (1)

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic waveguide technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref]

Opt. Express (10)

C. H. Lai, B. You, J. Y. Lu, T. A. Liu, J. L. Peng, C. K. Sun, and H. C. Chang, “Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding,” Opt. Express 18(1), 309–322 (2010).
[Crossref]

Z. Wu, Z. Wang, Y. G. Liu, T. Han, S. Li, and H. Wei, “Mechanism and characteristics of long period fiber gratings in simplified hollow-core photonic crystal fibers,” Opt. Express 19(18), 17344–17349 (2011).
[Crossref]

S. Liu, Y. Wang, M. Hou, J. Guo, Z. Li, and P. Lu, “Anti-resonant reflecting guidance in alcohol-filled hollow core photonic crystal fiber for sensing applications,” Opt. Express 21(25), 31690–31697 (2013).
[Crossref]

R. Otupiri, E. K. Akowuah, and S. Haxha, “Multi-channel SPR biosensor based on PCF for multi-analyte sensing applications,” Opt. Express 23(12), 15716–15727 (2015).
[Crossref]

Q. Zhang, L. L. Hu, Y. F. Qi, G. G. Liu, N. Ianno, and M. Han, “Fiber-optic refractometer based on a phase shifted fiber Bragg grating on a side-hole fiber,” Opt. Express 23(13), 16750–16759 (2015).
[Crossref]

Q. Zhang, L. Hu, Y. Qi, G. Liu, N. Ianno, and M. Han, “Fiber-optic refractometer based on a phase-shifted fiber Bragg grating on a side-hole fiber,” Opt. Express 23(13), 16750–16759 (2015).
[Crossref]

N. L. P. Andrews, R. Ross, D. C. Munzke, A. Brzezinski, J. A. Barnes, O. Reich, and H. P. Loock, “In-fiber Mach-Zehnder interferometer for gas refractive index measurements based on a hollow-core photonic crystal fiber,” Opt. Express 24(13), 14086–14099 (2016).
[Crossref]

J. Tian, Z. Lu, M. Quan, Y. Jiao, and Y. Yao, “Fast response Fabry-Perot interferometer microfluidic refractive index fiber sensor based on concave-core photonic crystal fiber,” Opt. Express 24(18), 20132–20142 (2016).
[Crossref]

N. Zhang, G. Humbert, Z. F. Wu, K. W. Li, P. P. Shum, N. M. Y. Zhang, Y. Cui, J. L. Auguste, X. Q. Dinh, and L. Wei, “In-line optofluidic refractive index sensing in a side-channel photonic crystal fiber,” Opt. Express 24(24), 27674–27682 (2016).
[Crossref]

C. Wang, J. He, J. Zhang, C. Liao, Y. Wang, W. Jin, Y. Wang, and J. Wang, “Bragg gratings inscribed in selectively inflated photonic crystal fibers,” Opt. Express 25(23), 28442–28450 (2017).
[Crossref]

Opt. Lett. (1)

Sens. Actuators, B (3)

Y. N. Zhang, L. B. Zhang, B. Hana, P. Gao, Q. L. Wu, and A. Z. Zhang, “Reflective mercury ion and temperature sensor based on a functionalized no core fiber combined with a fiber Bragg grating,” Sens. Actuators, B 272(1), 331–339 (2018).
[Crossref]

H. Sipovaa, V. Sevcu, M. Kuchar, J. N. Ahmadc, P. Mikulecky, R. Osickac, P. Maly, and J. Homola, “Surface plasmon resonance biosensor based on engineered proteins for direct detection of interferon-gamma in diluted blood plasma,” Sens. Actuators, B 174, 306–311 (2012).
[Crossref]

N. Dhenadhayalan, M. I. Sriramcde, and K. C. Lin, “Aptamer-based fluorogenic sensing of interferon-gamma probed with ReS2 and TiS2 nanosheets,” Sens. Actuators, B 258(1), 929–936 (2018).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. (a) The cross section of the HCF. (b) Geometric size of the HCF. (c) The cross-section of the NaCl-infiltrated HCF. (d) The close-up of the microchannel. (e) The schematic diagram of the dual-optofluidic waveguide ARROW.
Fig. 2.
Fig. 2. (a) Diagram of the dual-optofluidic waveguide ARROW and (b) the Fabry-Perot resonator. Numerical simulations of light distribution at the wavelength of (c) IFN-γ infiltrated resonator and (d) NaCl infiltrated resonator. (e) Experimental setup of the biosensor. (f) The fluorescent image of the optofluidic waveguide channel filled with fluorescent dye labelled aptamer layer.
Fig. 3.
Fig. 3. The temperature responses of the RB and NaCl at different concentrations.
Fig. 4.
Fig. 4. (a) Transmission spectrum of the dual-optofluidic waveguide ARROW biosensor. (b) Wavelength shifts with different RI. (c) Relationship between the wavelengths of resonance dips and RI. (d) Wavelength interval with different RI. (e) Wavelength shifts at different temperature from 20 to 80°C. (f) Wavelength of resonance dips and the wavelength interval.
Fig. 5.
Fig. 5. (a) The detail of each modification process. (b) Transmission spectra of biosensor before (dash line) and after washing (solid line) for each modification. (c) Wavelength of resonance dips and the wavelength interval. (d) Wavelength interval change with different IFN-γ concentration.
Fig. 6.
Fig. 6. (a) The detail of each modification process. (b) Wavelength interval change with different IFN-γ concentration for two methods. (c) Time response of the biosensor. (d) Wavelength interval change with IFN-γ and different proteins.
Fig. 7.
Fig. 7. The reusability of the optofluidic waveguide fiber sensor.
Fig. 8.
Fig. 8. Wavelength shifts of the resonance dip at the wavelength of (a) IFN-γ infiltrated resonator and (b) NaCl infiltrated resonator. (c) Wavelength of two resonance dips and the wavelength interval. (d) Wavelength interval change with different IFN-γ concentration.

Tables (1)

Tables Icon

Table 1. Performance of fiber optics sensors with similar sensing configuration.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

λ o = 2 ( d o p n o p 2 n a i r 2 + d c l n s i l i c a 2 n a i r 2 ) m .
λ n = 2 ( d o p n n a 2 n a i r 2 + d c l n s i l i c a 2 n a i r 2 ) m .