Abstract

We propose an underwater optical signal detection system based on multi-dimensional integral imaging with spatially distributed multiple light sources and four-dimensional (4D) spatial-temporal correlation. We demonstrate our system for the detection of optical signals in turbid water. A 4D optical signal is generated from a three-dimensional (3D) spatial distribution of underwater light sources, which are temporally encoded using spread spectrum techniques. The optical signals are captured by an array of cameras, and 3D integral imaging reconstruction is performed, followed by multi-dimensional correlation to detect the optical signal. Inclusion of multiple light sources located at different depths allows for successful signal detection at turbidity levels not feasible using only a single light source. We consider the proposed system under varied turbidity levels using both Pseudorandom and Gold Codes for temporal signal coding. We also compare the effectiveness of the proposed underwater optical signal detection system to a similar system using only a single light source and compare between conventional and integral imaging-based signal detection. The underwater signal detection capabilities are measured through performance-based metrics such as receiver operating characteristic (ROC) curves, the area under the curve (AUC), and the number of detection errors. Furthermore, statistical analysis, including Kullback-Leibler divergence and Bhattacharya distance, shows improved performance of the proposed multi-source integral imaging underwater system. The proposed integral-imaging based approach is shown to significantly outperform conventional imaging-based methods.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optical sensing and detection in turbid water using multidimensional integral imaging

Satoru Komatsu, Adam Markman, and Bahram Javidi
Opt. Lett. 43(14) 3261-3264 (2018)

Spatial-temporal human gesture recognition under degraded conditions using three-dimensional integral imaging

Xin Shen, Hee-seung Kim, Komatsu Satoru, Adam Markman, and Bahram Javidi
Opt. Express 26(11) 13938-13951 (2018)

Multi-wavelength spatial frequency domain diffuse optical tomography using single-pixel imaging based on lock-in photon counting

Tongxin Li, Zhuanping Qin, Xi Hou, Mai Dan, Jiao Li, Limin Zhang, Zhongxing Zhou, and Feng Gao
Opt. Express 27(16) 23138-23156 (2019)

References

  • View by:
  • |
  • |
  • |

  1. H. Kaushal and G. Kaddoum, “Underwater Optical Wireless Communication,” IEEE Access 4, 1518–1547 (2016).
    [Crossref]
  2. M. Stojanovic and P.-P. J. Beaujean, “Acoustic Communication,” in Springer Handbook of Ocean Engineering (Springer International Publishing, 2016, pp. 359–386.
  3. M. Khalighi, T. Hamza, S. Bourennane, P. Léon, and J. Opderbecke, “Underwater Wireless Optical Communications Using Silicon Photo-Multipliers,” IEEE Photonics J. 9(4), 1–10 (2017).
    [Crossref]
  4. A. Burguera, F. Bonin-Font, and G. Oliver, “Trajectory-based visual localization in underwater surveying missions,” Sensors 15(1), 1708–1735 (2015).
    [Crossref]
  5. Z. Lin, W. Li, C. Gatebe, R. Poudyal, and K. Stamnes, “Radiative transfer simulations of the two-dimensional ocean glint reflectance and determination of the sea surface roughness,” Appl. Opt. 55(6), 1206–1215 (2016).
    [Crossref]
  6. T.-C. Wu, Y.-C. Chi, H.-Y. Wang, C.-T. Tsai, and G.-R. Lin, “Blue Laser Diode Enables Underwater Communication at 12.4 Gbps,” Sci. Rep. 7(1), 40480 (2017).
    [Crossref]
  7. P. Lacovara, “High-bandwidth underwater communications,” Mar. Technol. Soc. J. 42(1), 93–102 (2008).
    [Crossref]
  8. K. K. Hamamatsu Photonics, “Photomultiplier tubes: Basics and applications,” Ed. 3a 310, (2007).
  9. I. Takai, T. Harada, M. Andoh, K. Yasutomi, K. Kagawa, and S. Kawahito, “Optical vehicle-to-vehicle communication system using LED transmitter and camera receiver,” IEEE Photonics J. 6(5), 1–14 (2014).
    [Crossref]
  10. M. S. M. Akram, L. G. D. Aravinda, M. K. P. D. Munaweera, G. M. R. I. Godaliyadda, and M. P. B. Ekanayake, “Camera based visible light communication system for underwater applications,” in IEEE International Conference on Industrial and Information Systems, ICIIS 2017 - Proceedings (IEEE, 2018), pp. 1–6.
  11. P. Xia, Y. Awatsuji, K. Nishio, and O. Matoba, “One million fps digital holography,” Electron. Lett. 50(23), 1693–1695 (2014).
    [Crossref]
  12. M. Cho and B. Javidi, “Peplography—a passive 3D photon counting imaging through scattering media,” Opt. Lett. 41(22), 5401–5404 (2016).
    [Crossref]
  13. S. Komatsu, A. Markman, and B. Javidi, “Optical sensing and detection in turbid water using multi-dimensional integral imaging,” Opt. Lett. 43(14), 3261–3264 (2018).
    [Crossref]
  14. T. Treibitz and Y. Y. Schechner, “Active polarization descattering,” IEEE Trans. Pattern Anal. Mach. Intell. 31(3), 385–399 (2009).
    [Crossref]
  15. X. Shen, H. Kim, K. Satoru, A. Markman, and B. Javidi, “Spatial-temporal human gesture recognition under degraded conditions using three-dimensional integral imaging,” Opt. Express 26(11), 13938–13951 (2018).
    [Crossref]
  16. Y. Peng, K. Cao, and P. C. Cosman, “Generalization of the Dark Channel Prior for Single Image Restoration,” IEEE Trans. on Image Process. 27(6), 2856–2868 (2018).
    [Crossref]
  17. S. Kullback and R. A. Leibler, “On information and sufficiency,” Ann. Math. Stat. 22(1), 79–86 (1951).
    [Crossref]
  18. A. Bhattacharyya, “On a measure of divergence between two statistical populations defined by their probability distributions,” Bull. Calcutta Math. Soc. 35, 99–109 (1943).
  19. F. Goudail, P. Réfrégier, and G. Delyon, “Bhattacharyya distance as a contrast parameter for statistical processing of noisy optical images,” J. Opt. Soc. Am. A 21(7), 1231–1240 (2004).
    [Crossref]
  20. G. Lippmann, “La photographie intégrale,” CR Séances Acad 146, 446–451 (1908).
  21. Y. Igarashi, H. Murata, and M. Ueda, “3-D Display System Using a Computer Generated Integral Photograph,” Jpn. J. Appl. Phys. 17(9), 1683–1684 (1978).
    [Crossref]
  22. T. Okoshi, “Three-dimensional displays,” Proc. IEEE 68(5), 548–564 (1980).
    [Crossref]
  23. B. Javidi and M. Cho, “Three-Dimensional Visualization of Objects in Turbid Water Using Integral Imaging,” J. Disp. Technol. 6(10), 544–547 (2010).
    [Crossref]
  24. A. Markman, X. Shen, and B. Javidi, “Three-dimensional object visualization and detection in low light illumination using integral imaging,” Opt. Lett. 42(16), 3068–3071 (2017).
    [Crossref]
  25. M. B. Mollah and M. R. Islam, “Comparative analysis of Gold Codes with PN codes using correlation property in CDMA technology,” in 2012 International Conference on Computer Communication and Informatics (2012), pp. 1–6.
  26. J. G. Proakis and M. Salehi, Digital Communications (McGraw-Hill, 2008).
  27. “FASTCAM SA-X2,” https://photron.com/fastcam-sa-x2/ .
  28. M. Palmese, G. Bertolotto, A. Pescetto, and A. Trucco, “Spread Spectrum Modulation for Acoustic Communication in Shallow Water Channel,” in OCEANS 2007 - Europe (2007), pp. 1–4.
  29. L. Jun Liu, J. Fen Li, L. Zhou, P. Zhai, H. Zhao, J. Cai Jin, and Z. chao Lv, “An underwater acoustic direct sequence spread spectrum communication system using dual spread spectrum code,” Front. Inf. Technol. Electron. Eng. 19(8), 972–983 (2018).
    [Crossref]
  30. Y. Peng and P. C. Cosman, “Underwater Image Restoration Based on Image Blurriness and Light Absorption,” IEEE Trans. on Image Process. 26(4), 1579–1594 (2017).
    [Crossref]
  31. K. O. Amer, M. Elbouz, A. Alfalou, C. Brosseau, and J. Hajjami, “Enhancing underwater optical imaging by using a low-pass polarization filter,” Opt. Express 27(2), 621–643 (2019).
    [Crossref]
  32. B. Song, G. Zhang, W. Zhu, and Z. Liang, “ROC operating point selection for classification of imbalanced data with application to computer-aided polyp detection in CT colonography,” Int J CARS 9(1), 79–89 (2014).
    [Crossref]
  33. M. H. Zweig and G. Campbell, “Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine,” Clin. Chem. 39(4), 561–577 (1993).
    [Crossref]
  34. B. Javidi, X. Shen, A. S. Markman, P. Latorre-Carmona, A. Martinez-Uso, J. Martinez Sotoca, F. Pla, M. Martinez-Corral, G. Saavedra, Y. P. Huang, and A. Stern, “Multidimensional Optical Sensing and Imaging System (MOSIS): From Macroscales to Microscales,” Proc. IEEE 105(5), 850–875 (2017).
    [Crossref]
  35. A. Stern and B. Javidi, “Three-dimensional image sensing and reconstruction with time-division multiplexed computational integral imaging,” Appl. Opt. 42(35), 7036–7042 (2003).
    [Crossref]
  36. M. Dubreuil, P. Delrot, I. Leonard, A. Alfalou, C. Brosseau, and A. Dogariu, “Exploring underwater target detection by imaging polarimetry and correlation techniques,” Appl. Opt. 52(5), 997–1005 (2013).
    [Crossref]
  37. F. A. Sadjadi and A. Mahalanobis, “Automatic target recognition XXVII,” Proc. SPIE10202 (2017).
  38. J. W. Goodman, Statistical Optics (John Wiley & Sons, 2015).
  39. P. Refregier, V. Laude, and B. Javidi, “Nonlinear joint-transform correlation: an optimal solution for adaptive image discrimination and input noise robustness,” Opt. Lett. 19(6), 405–407 (1994).
    [Crossref]

2019 (1)

2018 (4)

L. Jun Liu, J. Fen Li, L. Zhou, P. Zhai, H. Zhao, J. Cai Jin, and Z. chao Lv, “An underwater acoustic direct sequence spread spectrum communication system using dual spread spectrum code,” Front. Inf. Technol. Electron. Eng. 19(8), 972–983 (2018).
[Crossref]

X. Shen, H. Kim, K. Satoru, A. Markman, and B. Javidi, “Spatial-temporal human gesture recognition under degraded conditions using three-dimensional integral imaging,” Opt. Express 26(11), 13938–13951 (2018).
[Crossref]

Y. Peng, K. Cao, and P. C. Cosman, “Generalization of the Dark Channel Prior for Single Image Restoration,” IEEE Trans. on Image Process. 27(6), 2856–2868 (2018).
[Crossref]

S. Komatsu, A. Markman, and B. Javidi, “Optical sensing and detection in turbid water using multi-dimensional integral imaging,” Opt. Lett. 43(14), 3261–3264 (2018).
[Crossref]

2017 (5)

M. Khalighi, T. Hamza, S. Bourennane, P. Léon, and J. Opderbecke, “Underwater Wireless Optical Communications Using Silicon Photo-Multipliers,” IEEE Photonics J. 9(4), 1–10 (2017).
[Crossref]

T.-C. Wu, Y.-C. Chi, H.-Y. Wang, C.-T. Tsai, and G.-R. Lin, “Blue Laser Diode Enables Underwater Communication at 12.4 Gbps,” Sci. Rep. 7(1), 40480 (2017).
[Crossref]

Y. Peng and P. C. Cosman, “Underwater Image Restoration Based on Image Blurriness and Light Absorption,” IEEE Trans. on Image Process. 26(4), 1579–1594 (2017).
[Crossref]

B. Javidi, X. Shen, A. S. Markman, P. Latorre-Carmona, A. Martinez-Uso, J. Martinez Sotoca, F. Pla, M. Martinez-Corral, G. Saavedra, Y. P. Huang, and A. Stern, “Multidimensional Optical Sensing and Imaging System (MOSIS): From Macroscales to Microscales,” Proc. IEEE 105(5), 850–875 (2017).
[Crossref]

A. Markman, X. Shen, and B. Javidi, “Three-dimensional object visualization and detection in low light illumination using integral imaging,” Opt. Lett. 42(16), 3068–3071 (2017).
[Crossref]

2016 (3)

2015 (1)

A. Burguera, F. Bonin-Font, and G. Oliver, “Trajectory-based visual localization in underwater surveying missions,” Sensors 15(1), 1708–1735 (2015).
[Crossref]

2014 (3)

I. Takai, T. Harada, M. Andoh, K. Yasutomi, K. Kagawa, and S. Kawahito, “Optical vehicle-to-vehicle communication system using LED transmitter and camera receiver,” IEEE Photonics J. 6(5), 1–14 (2014).
[Crossref]

P. Xia, Y. Awatsuji, K. Nishio, and O. Matoba, “One million fps digital holography,” Electron. Lett. 50(23), 1693–1695 (2014).
[Crossref]

B. Song, G. Zhang, W. Zhu, and Z. Liang, “ROC operating point selection for classification of imbalanced data with application to computer-aided polyp detection in CT colonography,” Int J CARS 9(1), 79–89 (2014).
[Crossref]

2013 (1)

2010 (1)

B. Javidi and M. Cho, “Three-Dimensional Visualization of Objects in Turbid Water Using Integral Imaging,” J. Disp. Technol. 6(10), 544–547 (2010).
[Crossref]

2009 (1)

T. Treibitz and Y. Y. Schechner, “Active polarization descattering,” IEEE Trans. Pattern Anal. Mach. Intell. 31(3), 385–399 (2009).
[Crossref]

2008 (1)

P. Lacovara, “High-bandwidth underwater communications,” Mar. Technol. Soc. J. 42(1), 93–102 (2008).
[Crossref]

2004 (1)

2003 (1)

1994 (1)

1993 (1)

M. H. Zweig and G. Campbell, “Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine,” Clin. Chem. 39(4), 561–577 (1993).
[Crossref]

1980 (1)

T. Okoshi, “Three-dimensional displays,” Proc. IEEE 68(5), 548–564 (1980).
[Crossref]

1978 (1)

Y. Igarashi, H. Murata, and M. Ueda, “3-D Display System Using a Computer Generated Integral Photograph,” Jpn. J. Appl. Phys. 17(9), 1683–1684 (1978).
[Crossref]

1951 (1)

S. Kullback and R. A. Leibler, “On information and sufficiency,” Ann. Math. Stat. 22(1), 79–86 (1951).
[Crossref]

1943 (1)

A. Bhattacharyya, “On a measure of divergence between two statistical populations defined by their probability distributions,” Bull. Calcutta Math. Soc. 35, 99–109 (1943).

1908 (1)

G. Lippmann, “La photographie intégrale,” CR Séances Acad 146, 446–451 (1908).

Akram, M. S. M.

M. S. M. Akram, L. G. D. Aravinda, M. K. P. D. Munaweera, G. M. R. I. Godaliyadda, and M. P. B. Ekanayake, “Camera based visible light communication system for underwater applications,” in IEEE International Conference on Industrial and Information Systems, ICIIS 2017 - Proceedings (IEEE, 2018), pp. 1–6.

Alfalou, A.

Amer, K. O.

Andoh, M.

I. Takai, T. Harada, M. Andoh, K. Yasutomi, K. Kagawa, and S. Kawahito, “Optical vehicle-to-vehicle communication system using LED transmitter and camera receiver,” IEEE Photonics J. 6(5), 1–14 (2014).
[Crossref]

Aravinda, L. G. D.

M. S. M. Akram, L. G. D. Aravinda, M. K. P. D. Munaweera, G. M. R. I. Godaliyadda, and M. P. B. Ekanayake, “Camera based visible light communication system for underwater applications,” in IEEE International Conference on Industrial and Information Systems, ICIIS 2017 - Proceedings (IEEE, 2018), pp. 1–6.

Awatsuji, Y.

P. Xia, Y. Awatsuji, K. Nishio, and O. Matoba, “One million fps digital holography,” Electron. Lett. 50(23), 1693–1695 (2014).
[Crossref]

Beaujean, P.-P. J.

M. Stojanovic and P.-P. J. Beaujean, “Acoustic Communication,” in Springer Handbook of Ocean Engineering (Springer International Publishing, 2016, pp. 359–386.

Bertolotto, G.

M. Palmese, G. Bertolotto, A. Pescetto, and A. Trucco, “Spread Spectrum Modulation for Acoustic Communication in Shallow Water Channel,” in OCEANS 2007 - Europe (2007), pp. 1–4.

Bhattacharyya, A.

A. Bhattacharyya, “On a measure of divergence between two statistical populations defined by their probability distributions,” Bull. Calcutta Math. Soc. 35, 99–109 (1943).

Bonin-Font, F.

A. Burguera, F. Bonin-Font, and G. Oliver, “Trajectory-based visual localization in underwater surveying missions,” Sensors 15(1), 1708–1735 (2015).
[Crossref]

Bourennane, S.

M. Khalighi, T. Hamza, S. Bourennane, P. Léon, and J. Opderbecke, “Underwater Wireless Optical Communications Using Silicon Photo-Multipliers,” IEEE Photonics J. 9(4), 1–10 (2017).
[Crossref]

Brosseau, C.

Burguera, A.

A. Burguera, F. Bonin-Font, and G. Oliver, “Trajectory-based visual localization in underwater surveying missions,” Sensors 15(1), 1708–1735 (2015).
[Crossref]

Cai Jin, J.

L. Jun Liu, J. Fen Li, L. Zhou, P. Zhai, H. Zhao, J. Cai Jin, and Z. chao Lv, “An underwater acoustic direct sequence spread spectrum communication system using dual spread spectrum code,” Front. Inf. Technol. Electron. Eng. 19(8), 972–983 (2018).
[Crossref]

Campbell, G.

M. H. Zweig and G. Campbell, “Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine,” Clin. Chem. 39(4), 561–577 (1993).
[Crossref]

Cao, K.

Y. Peng, K. Cao, and P. C. Cosman, “Generalization of the Dark Channel Prior for Single Image Restoration,” IEEE Trans. on Image Process. 27(6), 2856–2868 (2018).
[Crossref]

chao Lv, Z.

L. Jun Liu, J. Fen Li, L. Zhou, P. Zhai, H. Zhao, J. Cai Jin, and Z. chao Lv, “An underwater acoustic direct sequence spread spectrum communication system using dual spread spectrum code,” Front. Inf. Technol. Electron. Eng. 19(8), 972–983 (2018).
[Crossref]

Chi, Y.-C.

T.-C. Wu, Y.-C. Chi, H.-Y. Wang, C.-T. Tsai, and G.-R. Lin, “Blue Laser Diode Enables Underwater Communication at 12.4 Gbps,” Sci. Rep. 7(1), 40480 (2017).
[Crossref]

Cho, M.

M. Cho and B. Javidi, “Peplography—a passive 3D photon counting imaging through scattering media,” Opt. Lett. 41(22), 5401–5404 (2016).
[Crossref]

B. Javidi and M. Cho, “Three-Dimensional Visualization of Objects in Turbid Water Using Integral Imaging,” J. Disp. Technol. 6(10), 544–547 (2010).
[Crossref]

Cosman, P. C.

Y. Peng, K. Cao, and P. C. Cosman, “Generalization of the Dark Channel Prior for Single Image Restoration,” IEEE Trans. on Image Process. 27(6), 2856–2868 (2018).
[Crossref]

Y. Peng and P. C. Cosman, “Underwater Image Restoration Based on Image Blurriness and Light Absorption,” IEEE Trans. on Image Process. 26(4), 1579–1594 (2017).
[Crossref]

Delrot, P.

Delyon, G.

Dogariu, A.

Dubreuil, M.

Ekanayake, M. P. B.

M. S. M. Akram, L. G. D. Aravinda, M. K. P. D. Munaweera, G. M. R. I. Godaliyadda, and M. P. B. Ekanayake, “Camera based visible light communication system for underwater applications,” in IEEE International Conference on Industrial and Information Systems, ICIIS 2017 - Proceedings (IEEE, 2018), pp. 1–6.

Elbouz, M.

Fen Li, J.

L. Jun Liu, J. Fen Li, L. Zhou, P. Zhai, H. Zhao, J. Cai Jin, and Z. chao Lv, “An underwater acoustic direct sequence spread spectrum communication system using dual spread spectrum code,” Front. Inf. Technol. Electron. Eng. 19(8), 972–983 (2018).
[Crossref]

Gatebe, C.

Godaliyadda, G. M. R. I.

M. S. M. Akram, L. G. D. Aravinda, M. K. P. D. Munaweera, G. M. R. I. Godaliyadda, and M. P. B. Ekanayake, “Camera based visible light communication system for underwater applications,” in IEEE International Conference on Industrial and Information Systems, ICIIS 2017 - Proceedings (IEEE, 2018), pp. 1–6.

Goodman, J. W.

J. W. Goodman, Statistical Optics (John Wiley & Sons, 2015).

Goudail, F.

Hajjami, J.

Hamamatsu Photonics, K. K.

K. K. Hamamatsu Photonics, “Photomultiplier tubes: Basics and applications,” Ed. 3a 310, (2007).

Hamza, T.

M. Khalighi, T. Hamza, S. Bourennane, P. Léon, and J. Opderbecke, “Underwater Wireless Optical Communications Using Silicon Photo-Multipliers,” IEEE Photonics J. 9(4), 1–10 (2017).
[Crossref]

Harada, T.

I. Takai, T. Harada, M. Andoh, K. Yasutomi, K. Kagawa, and S. Kawahito, “Optical vehicle-to-vehicle communication system using LED transmitter and camera receiver,” IEEE Photonics J. 6(5), 1–14 (2014).
[Crossref]

Huang, Y. P.

B. Javidi, X. Shen, A. S. Markman, P. Latorre-Carmona, A. Martinez-Uso, J. Martinez Sotoca, F. Pla, M. Martinez-Corral, G. Saavedra, Y. P. Huang, and A. Stern, “Multidimensional Optical Sensing and Imaging System (MOSIS): From Macroscales to Microscales,” Proc. IEEE 105(5), 850–875 (2017).
[Crossref]

Igarashi, Y.

Y. Igarashi, H. Murata, and M. Ueda, “3-D Display System Using a Computer Generated Integral Photograph,” Jpn. J. Appl. Phys. 17(9), 1683–1684 (1978).
[Crossref]

Islam, M. R.

M. B. Mollah and M. R. Islam, “Comparative analysis of Gold Codes with PN codes using correlation property in CDMA technology,” in 2012 International Conference on Computer Communication and Informatics (2012), pp. 1–6.

Javidi, B.

S. Komatsu, A. Markman, and B. Javidi, “Optical sensing and detection in turbid water using multi-dimensional integral imaging,” Opt. Lett. 43(14), 3261–3264 (2018).
[Crossref]

X. Shen, H. Kim, K. Satoru, A. Markman, and B. Javidi, “Spatial-temporal human gesture recognition under degraded conditions using three-dimensional integral imaging,” Opt. Express 26(11), 13938–13951 (2018).
[Crossref]

A. Markman, X. Shen, and B. Javidi, “Three-dimensional object visualization and detection in low light illumination using integral imaging,” Opt. Lett. 42(16), 3068–3071 (2017).
[Crossref]

B. Javidi, X. Shen, A. S. Markman, P. Latorre-Carmona, A. Martinez-Uso, J. Martinez Sotoca, F. Pla, M. Martinez-Corral, G. Saavedra, Y. P. Huang, and A. Stern, “Multidimensional Optical Sensing and Imaging System (MOSIS): From Macroscales to Microscales,” Proc. IEEE 105(5), 850–875 (2017).
[Crossref]

M. Cho and B. Javidi, “Peplography—a passive 3D photon counting imaging through scattering media,” Opt. Lett. 41(22), 5401–5404 (2016).
[Crossref]

B. Javidi and M. Cho, “Three-Dimensional Visualization of Objects in Turbid Water Using Integral Imaging,” J. Disp. Technol. 6(10), 544–547 (2010).
[Crossref]

A. Stern and B. Javidi, “Three-dimensional image sensing and reconstruction with time-division multiplexed computational integral imaging,” Appl. Opt. 42(35), 7036–7042 (2003).
[Crossref]

P. Refregier, V. Laude, and B. Javidi, “Nonlinear joint-transform correlation: an optimal solution for adaptive image discrimination and input noise robustness,” Opt. Lett. 19(6), 405–407 (1994).
[Crossref]

Jun Liu, L.

L. Jun Liu, J. Fen Li, L. Zhou, P. Zhai, H. Zhao, J. Cai Jin, and Z. chao Lv, “An underwater acoustic direct sequence spread spectrum communication system using dual spread spectrum code,” Front. Inf. Technol. Electron. Eng. 19(8), 972–983 (2018).
[Crossref]

Kaddoum, G.

H. Kaushal and G. Kaddoum, “Underwater Optical Wireless Communication,” IEEE Access 4, 1518–1547 (2016).
[Crossref]

Kagawa, K.

I. Takai, T. Harada, M. Andoh, K. Yasutomi, K. Kagawa, and S. Kawahito, “Optical vehicle-to-vehicle communication system using LED transmitter and camera receiver,” IEEE Photonics J. 6(5), 1–14 (2014).
[Crossref]

Kaushal, H.

H. Kaushal and G. Kaddoum, “Underwater Optical Wireless Communication,” IEEE Access 4, 1518–1547 (2016).
[Crossref]

Kawahito, S.

I. Takai, T. Harada, M. Andoh, K. Yasutomi, K. Kagawa, and S. Kawahito, “Optical vehicle-to-vehicle communication system using LED transmitter and camera receiver,” IEEE Photonics J. 6(5), 1–14 (2014).
[Crossref]

Khalighi, M.

M. Khalighi, T. Hamza, S. Bourennane, P. Léon, and J. Opderbecke, “Underwater Wireless Optical Communications Using Silicon Photo-Multipliers,” IEEE Photonics J. 9(4), 1–10 (2017).
[Crossref]

Kim, H.

Komatsu, S.

Kullback, S.

S. Kullback and R. A. Leibler, “On information and sufficiency,” Ann. Math. Stat. 22(1), 79–86 (1951).
[Crossref]

Lacovara, P.

P. Lacovara, “High-bandwidth underwater communications,” Mar. Technol. Soc. J. 42(1), 93–102 (2008).
[Crossref]

Latorre-Carmona, P.

B. Javidi, X. Shen, A. S. Markman, P. Latorre-Carmona, A. Martinez-Uso, J. Martinez Sotoca, F. Pla, M. Martinez-Corral, G. Saavedra, Y. P. Huang, and A. Stern, “Multidimensional Optical Sensing and Imaging System (MOSIS): From Macroscales to Microscales,” Proc. IEEE 105(5), 850–875 (2017).
[Crossref]

Laude, V.

Leibler, R. A.

S. Kullback and R. A. Leibler, “On information and sufficiency,” Ann. Math. Stat. 22(1), 79–86 (1951).
[Crossref]

Léon, P.

M. Khalighi, T. Hamza, S. Bourennane, P. Léon, and J. Opderbecke, “Underwater Wireless Optical Communications Using Silicon Photo-Multipliers,” IEEE Photonics J. 9(4), 1–10 (2017).
[Crossref]

Leonard, I.

Li, W.

Liang, Z.

B. Song, G. Zhang, W. Zhu, and Z. Liang, “ROC operating point selection for classification of imbalanced data with application to computer-aided polyp detection in CT colonography,” Int J CARS 9(1), 79–89 (2014).
[Crossref]

Lin, G.-R.

T.-C. Wu, Y.-C. Chi, H.-Y. Wang, C.-T. Tsai, and G.-R. Lin, “Blue Laser Diode Enables Underwater Communication at 12.4 Gbps,” Sci. Rep. 7(1), 40480 (2017).
[Crossref]

Lin, Z.

Lippmann, G.

G. Lippmann, “La photographie intégrale,” CR Séances Acad 146, 446–451 (1908).

Mahalanobis, A.

F. A. Sadjadi and A. Mahalanobis, “Automatic target recognition XXVII,” Proc. SPIE10202 (2017).

Markman, A.

Markman, A. S.

B. Javidi, X. Shen, A. S. Markman, P. Latorre-Carmona, A. Martinez-Uso, J. Martinez Sotoca, F. Pla, M. Martinez-Corral, G. Saavedra, Y. P. Huang, and A. Stern, “Multidimensional Optical Sensing and Imaging System (MOSIS): From Macroscales to Microscales,” Proc. IEEE 105(5), 850–875 (2017).
[Crossref]

Martinez Sotoca, J.

B. Javidi, X. Shen, A. S. Markman, P. Latorre-Carmona, A. Martinez-Uso, J. Martinez Sotoca, F. Pla, M. Martinez-Corral, G. Saavedra, Y. P. Huang, and A. Stern, “Multidimensional Optical Sensing and Imaging System (MOSIS): From Macroscales to Microscales,” Proc. IEEE 105(5), 850–875 (2017).
[Crossref]

Martinez-Corral, M.

B. Javidi, X. Shen, A. S. Markman, P. Latorre-Carmona, A. Martinez-Uso, J. Martinez Sotoca, F. Pla, M. Martinez-Corral, G. Saavedra, Y. P. Huang, and A. Stern, “Multidimensional Optical Sensing and Imaging System (MOSIS): From Macroscales to Microscales,” Proc. IEEE 105(5), 850–875 (2017).
[Crossref]

Martinez-Uso, A.

B. Javidi, X. Shen, A. S. Markman, P. Latorre-Carmona, A. Martinez-Uso, J. Martinez Sotoca, F. Pla, M. Martinez-Corral, G. Saavedra, Y. P. Huang, and A. Stern, “Multidimensional Optical Sensing and Imaging System (MOSIS): From Macroscales to Microscales,” Proc. IEEE 105(5), 850–875 (2017).
[Crossref]

Matoba, O.

P. Xia, Y. Awatsuji, K. Nishio, and O. Matoba, “One million fps digital holography,” Electron. Lett. 50(23), 1693–1695 (2014).
[Crossref]

Mollah, M. B.

M. B. Mollah and M. R. Islam, “Comparative analysis of Gold Codes with PN codes using correlation property in CDMA technology,” in 2012 International Conference on Computer Communication and Informatics (2012), pp. 1–6.

Munaweera, M. K. P. D.

M. S. M. Akram, L. G. D. Aravinda, M. K. P. D. Munaweera, G. M. R. I. Godaliyadda, and M. P. B. Ekanayake, “Camera based visible light communication system for underwater applications,” in IEEE International Conference on Industrial and Information Systems, ICIIS 2017 - Proceedings (IEEE, 2018), pp. 1–6.

Murata, H.

Y. Igarashi, H. Murata, and M. Ueda, “3-D Display System Using a Computer Generated Integral Photograph,” Jpn. J. Appl. Phys. 17(9), 1683–1684 (1978).
[Crossref]

Nishio, K.

P. Xia, Y. Awatsuji, K. Nishio, and O. Matoba, “One million fps digital holography,” Electron. Lett. 50(23), 1693–1695 (2014).
[Crossref]

Okoshi, T.

T. Okoshi, “Three-dimensional displays,” Proc. IEEE 68(5), 548–564 (1980).
[Crossref]

Oliver, G.

A. Burguera, F. Bonin-Font, and G. Oliver, “Trajectory-based visual localization in underwater surveying missions,” Sensors 15(1), 1708–1735 (2015).
[Crossref]

Opderbecke, J.

M. Khalighi, T. Hamza, S. Bourennane, P. Léon, and J. Opderbecke, “Underwater Wireless Optical Communications Using Silicon Photo-Multipliers,” IEEE Photonics J. 9(4), 1–10 (2017).
[Crossref]

Palmese, M.

M. Palmese, G. Bertolotto, A. Pescetto, and A. Trucco, “Spread Spectrum Modulation for Acoustic Communication in Shallow Water Channel,” in OCEANS 2007 - Europe (2007), pp. 1–4.

Peng, Y.

Y. Peng, K. Cao, and P. C. Cosman, “Generalization of the Dark Channel Prior for Single Image Restoration,” IEEE Trans. on Image Process. 27(6), 2856–2868 (2018).
[Crossref]

Y. Peng and P. C. Cosman, “Underwater Image Restoration Based on Image Blurriness and Light Absorption,” IEEE Trans. on Image Process. 26(4), 1579–1594 (2017).
[Crossref]

Pescetto, A.

M. Palmese, G. Bertolotto, A. Pescetto, and A. Trucco, “Spread Spectrum Modulation for Acoustic Communication in Shallow Water Channel,” in OCEANS 2007 - Europe (2007), pp. 1–4.

Pla, F.

B. Javidi, X. Shen, A. S. Markman, P. Latorre-Carmona, A. Martinez-Uso, J. Martinez Sotoca, F. Pla, M. Martinez-Corral, G. Saavedra, Y. P. Huang, and A. Stern, “Multidimensional Optical Sensing and Imaging System (MOSIS): From Macroscales to Microscales,” Proc. IEEE 105(5), 850–875 (2017).
[Crossref]

Poudyal, R.

Proakis, J. G.

J. G. Proakis and M. Salehi, Digital Communications (McGraw-Hill, 2008).

Refregier, P.

Réfrégier, P.

Saavedra, G.

B. Javidi, X. Shen, A. S. Markman, P. Latorre-Carmona, A. Martinez-Uso, J. Martinez Sotoca, F. Pla, M. Martinez-Corral, G. Saavedra, Y. P. Huang, and A. Stern, “Multidimensional Optical Sensing and Imaging System (MOSIS): From Macroscales to Microscales,” Proc. IEEE 105(5), 850–875 (2017).
[Crossref]

Sadjadi, F. A.

F. A. Sadjadi and A. Mahalanobis, “Automatic target recognition XXVII,” Proc. SPIE10202 (2017).

Salehi, M.

J. G. Proakis and M. Salehi, Digital Communications (McGraw-Hill, 2008).

Satoru, K.

Schechner, Y. Y.

T. Treibitz and Y. Y. Schechner, “Active polarization descattering,” IEEE Trans. Pattern Anal. Mach. Intell. 31(3), 385–399 (2009).
[Crossref]

Shen, X.

X. Shen, H. Kim, K. Satoru, A. Markman, and B. Javidi, “Spatial-temporal human gesture recognition under degraded conditions using three-dimensional integral imaging,” Opt. Express 26(11), 13938–13951 (2018).
[Crossref]

A. Markman, X. Shen, and B. Javidi, “Three-dimensional object visualization and detection in low light illumination using integral imaging,” Opt. Lett. 42(16), 3068–3071 (2017).
[Crossref]

B. Javidi, X. Shen, A. S. Markman, P. Latorre-Carmona, A. Martinez-Uso, J. Martinez Sotoca, F. Pla, M. Martinez-Corral, G. Saavedra, Y. P. Huang, and A. Stern, “Multidimensional Optical Sensing and Imaging System (MOSIS): From Macroscales to Microscales,” Proc. IEEE 105(5), 850–875 (2017).
[Crossref]

Song, B.

B. Song, G. Zhang, W. Zhu, and Z. Liang, “ROC operating point selection for classification of imbalanced data with application to computer-aided polyp detection in CT colonography,” Int J CARS 9(1), 79–89 (2014).
[Crossref]

Stamnes, K.

Stern, A.

B. Javidi, X. Shen, A. S. Markman, P. Latorre-Carmona, A. Martinez-Uso, J. Martinez Sotoca, F. Pla, M. Martinez-Corral, G. Saavedra, Y. P. Huang, and A. Stern, “Multidimensional Optical Sensing and Imaging System (MOSIS): From Macroscales to Microscales,” Proc. IEEE 105(5), 850–875 (2017).
[Crossref]

A. Stern and B. Javidi, “Three-dimensional image sensing and reconstruction with time-division multiplexed computational integral imaging,” Appl. Opt. 42(35), 7036–7042 (2003).
[Crossref]

Stojanovic, M.

M. Stojanovic and P.-P. J. Beaujean, “Acoustic Communication,” in Springer Handbook of Ocean Engineering (Springer International Publishing, 2016, pp. 359–386.

Takai, I.

I. Takai, T. Harada, M. Andoh, K. Yasutomi, K. Kagawa, and S. Kawahito, “Optical vehicle-to-vehicle communication system using LED transmitter and camera receiver,” IEEE Photonics J. 6(5), 1–14 (2014).
[Crossref]

Treibitz, T.

T. Treibitz and Y. Y. Schechner, “Active polarization descattering,” IEEE Trans. Pattern Anal. Mach. Intell. 31(3), 385–399 (2009).
[Crossref]

Trucco, A.

M. Palmese, G. Bertolotto, A. Pescetto, and A. Trucco, “Spread Spectrum Modulation for Acoustic Communication in Shallow Water Channel,” in OCEANS 2007 - Europe (2007), pp. 1–4.

Tsai, C.-T.

T.-C. Wu, Y.-C. Chi, H.-Y. Wang, C.-T. Tsai, and G.-R. Lin, “Blue Laser Diode Enables Underwater Communication at 12.4 Gbps,” Sci. Rep. 7(1), 40480 (2017).
[Crossref]

Ueda, M.

Y. Igarashi, H. Murata, and M. Ueda, “3-D Display System Using a Computer Generated Integral Photograph,” Jpn. J. Appl. Phys. 17(9), 1683–1684 (1978).
[Crossref]

Wang, H.-Y.

T.-C. Wu, Y.-C. Chi, H.-Y. Wang, C.-T. Tsai, and G.-R. Lin, “Blue Laser Diode Enables Underwater Communication at 12.4 Gbps,” Sci. Rep. 7(1), 40480 (2017).
[Crossref]

Wu, T.-C.

T.-C. Wu, Y.-C. Chi, H.-Y. Wang, C.-T. Tsai, and G.-R. Lin, “Blue Laser Diode Enables Underwater Communication at 12.4 Gbps,” Sci. Rep. 7(1), 40480 (2017).
[Crossref]

Xia, P.

P. Xia, Y. Awatsuji, K. Nishio, and O. Matoba, “One million fps digital holography,” Electron. Lett. 50(23), 1693–1695 (2014).
[Crossref]

Yasutomi, K.

I. Takai, T. Harada, M. Andoh, K. Yasutomi, K. Kagawa, and S. Kawahito, “Optical vehicle-to-vehicle communication system using LED transmitter and camera receiver,” IEEE Photonics J. 6(5), 1–14 (2014).
[Crossref]

Zhai, P.

L. Jun Liu, J. Fen Li, L. Zhou, P. Zhai, H. Zhao, J. Cai Jin, and Z. chao Lv, “An underwater acoustic direct sequence spread spectrum communication system using dual spread spectrum code,” Front. Inf. Technol. Electron. Eng. 19(8), 972–983 (2018).
[Crossref]

Zhang, G.

B. Song, G. Zhang, W. Zhu, and Z. Liang, “ROC operating point selection for classification of imbalanced data with application to computer-aided polyp detection in CT colonography,” Int J CARS 9(1), 79–89 (2014).
[Crossref]

Zhao, H.

L. Jun Liu, J. Fen Li, L. Zhou, P. Zhai, H. Zhao, J. Cai Jin, and Z. chao Lv, “An underwater acoustic direct sequence spread spectrum communication system using dual spread spectrum code,” Front. Inf. Technol. Electron. Eng. 19(8), 972–983 (2018).
[Crossref]

Zhou, L.

L. Jun Liu, J. Fen Li, L. Zhou, P. Zhai, H. Zhao, J. Cai Jin, and Z. chao Lv, “An underwater acoustic direct sequence spread spectrum communication system using dual spread spectrum code,” Front. Inf. Technol. Electron. Eng. 19(8), 972–983 (2018).
[Crossref]

Zhu, W.

B. Song, G. Zhang, W. Zhu, and Z. Liang, “ROC operating point selection for classification of imbalanced data with application to computer-aided polyp detection in CT colonography,” Int J CARS 9(1), 79–89 (2014).
[Crossref]

Zweig, M. H.

M. H. Zweig and G. Campbell, “Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine,” Clin. Chem. 39(4), 561–577 (1993).
[Crossref]

Ann. Math. Stat. (1)

S. Kullback and R. A. Leibler, “On information and sufficiency,” Ann. Math. Stat. 22(1), 79–86 (1951).
[Crossref]

Appl. Opt. (3)

Bull. Calcutta Math. Soc. (1)

A. Bhattacharyya, “On a measure of divergence between two statistical populations defined by their probability distributions,” Bull. Calcutta Math. Soc. 35, 99–109 (1943).

Clin. Chem. (1)

M. H. Zweig and G. Campbell, “Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine,” Clin. Chem. 39(4), 561–577 (1993).
[Crossref]

CR Séances Acad (1)

G. Lippmann, “La photographie intégrale,” CR Séances Acad 146, 446–451 (1908).

Electron. Lett. (1)

P. Xia, Y. Awatsuji, K. Nishio, and O. Matoba, “One million fps digital holography,” Electron. Lett. 50(23), 1693–1695 (2014).
[Crossref]

Front. Inf. Technol. Electron. Eng. (1)

L. Jun Liu, J. Fen Li, L. Zhou, P. Zhai, H. Zhao, J. Cai Jin, and Z. chao Lv, “An underwater acoustic direct sequence spread spectrum communication system using dual spread spectrum code,” Front. Inf. Technol. Electron. Eng. 19(8), 972–983 (2018).
[Crossref]

IEEE Access (1)

H. Kaushal and G. Kaddoum, “Underwater Optical Wireless Communication,” IEEE Access 4, 1518–1547 (2016).
[Crossref]

IEEE Photonics J. (2)

M. Khalighi, T. Hamza, S. Bourennane, P. Léon, and J. Opderbecke, “Underwater Wireless Optical Communications Using Silicon Photo-Multipliers,” IEEE Photonics J. 9(4), 1–10 (2017).
[Crossref]

I. Takai, T. Harada, M. Andoh, K. Yasutomi, K. Kagawa, and S. Kawahito, “Optical vehicle-to-vehicle communication system using LED transmitter and camera receiver,” IEEE Photonics J. 6(5), 1–14 (2014).
[Crossref]

IEEE Trans. on Image Process. (2)

Y. Peng and P. C. Cosman, “Underwater Image Restoration Based on Image Blurriness and Light Absorption,” IEEE Trans. on Image Process. 26(4), 1579–1594 (2017).
[Crossref]

Y. Peng, K. Cao, and P. C. Cosman, “Generalization of the Dark Channel Prior for Single Image Restoration,” IEEE Trans. on Image Process. 27(6), 2856–2868 (2018).
[Crossref]

IEEE Trans. Pattern Anal. Mach. Intell. (1)

T. Treibitz and Y. Y. Schechner, “Active polarization descattering,” IEEE Trans. Pattern Anal. Mach. Intell. 31(3), 385–399 (2009).
[Crossref]

Int J CARS (1)

B. Song, G. Zhang, W. Zhu, and Z. Liang, “ROC operating point selection for classification of imbalanced data with application to computer-aided polyp detection in CT colonography,” Int J CARS 9(1), 79–89 (2014).
[Crossref]

J. Disp. Technol. (1)

B. Javidi and M. Cho, “Three-Dimensional Visualization of Objects in Turbid Water Using Integral Imaging,” J. Disp. Technol. 6(10), 544–547 (2010).
[Crossref]

J. Opt. Soc. Am. A (1)

Jpn. J. Appl. Phys. (1)

Y. Igarashi, H. Murata, and M. Ueda, “3-D Display System Using a Computer Generated Integral Photograph,” Jpn. J. Appl. Phys. 17(9), 1683–1684 (1978).
[Crossref]

Mar. Technol. Soc. J. (1)

P. Lacovara, “High-bandwidth underwater communications,” Mar. Technol. Soc. J. 42(1), 93–102 (2008).
[Crossref]

Opt. Express (2)

Opt. Lett. (4)

Proc. IEEE (2)

B. Javidi, X. Shen, A. S. Markman, P. Latorre-Carmona, A. Martinez-Uso, J. Martinez Sotoca, F. Pla, M. Martinez-Corral, G. Saavedra, Y. P. Huang, and A. Stern, “Multidimensional Optical Sensing and Imaging System (MOSIS): From Macroscales to Microscales,” Proc. IEEE 105(5), 850–875 (2017).
[Crossref]

T. Okoshi, “Three-dimensional displays,” Proc. IEEE 68(5), 548–564 (1980).
[Crossref]

Sci. Rep. (1)

T.-C. Wu, Y.-C. Chi, H.-Y. Wang, C.-T. Tsai, and G.-R. Lin, “Blue Laser Diode Enables Underwater Communication at 12.4 Gbps,” Sci. Rep. 7(1), 40480 (2017).
[Crossref]

Sensors (1)

A. Burguera, F. Bonin-Font, and G. Oliver, “Trajectory-based visual localization in underwater surveying missions,” Sensors 15(1), 1708–1735 (2015).
[Crossref]

Other (9)

M. Stojanovic and P.-P. J. Beaujean, “Acoustic Communication,” in Springer Handbook of Ocean Engineering (Springer International Publishing, 2016, pp. 359–386.

K. K. Hamamatsu Photonics, “Photomultiplier tubes: Basics and applications,” Ed. 3a 310, (2007).

M. S. M. Akram, L. G. D. Aravinda, M. K. P. D. Munaweera, G. M. R. I. Godaliyadda, and M. P. B. Ekanayake, “Camera based visible light communication system for underwater applications,” in IEEE International Conference on Industrial and Information Systems, ICIIS 2017 - Proceedings (IEEE, 2018), pp. 1–6.

M. B. Mollah and M. R. Islam, “Comparative analysis of Gold Codes with PN codes using correlation property in CDMA technology,” in 2012 International Conference on Computer Communication and Informatics (2012), pp. 1–6.

J. G. Proakis and M. Salehi, Digital Communications (McGraw-Hill, 2008).

“FASTCAM SA-X2,” https://photron.com/fastcam-sa-x2/ .

M. Palmese, G. Bertolotto, A. Pescetto, and A. Trucco, “Spread Spectrum Modulation for Acoustic Communication in Shallow Water Channel,” in OCEANS 2007 - Europe (2007), pp. 1–4.

F. A. Sadjadi and A. Mahalanobis, “Automatic target recognition XXVII,” Proc. SPIE10202 (2017).

J. W. Goodman, Statistical Optics (John Wiley & Sons, 2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1. 3D imaging system for underwater signal detection: (a) experimental setup to capture the optical signal during the pickup stage of integral imaging and (b) computational volumetric reconstruction process for integral imaging. The external white light LED is used to mimic ambient light for shallow water scenes.
Fig. 2.
Fig. 2. (a) Water tank with turbid water and a white LED source to mimic ambient light environments in shallow water scenes, (b) A 3 × 3 camera array for integral imaging pickup (c) An example of 3D distributed multiple light sources with 5 LEDs.
Fig. 3.
Fig. 3. Images of the multiple LED distribution in underwater viewed from the central camera perspective, taken (a) under clear water without turbidity, and (b) in turbid water, which contains 50 ml antacid (α = 0.041 mm−1).
Fig. 4.
Fig. 4. Flow chart of the proposed system for (a) optical signal transmission and (b) detection in underwater communication. InIm denotes Integral Imaging.
Fig. 5.
Fig. 5. Example of the signal recovery algorithm using dark channel prior estimation. (a) Original 2D elemental image at α = 0.006 mm−1 and SNR=3.2, and (b) 2D elemental image after applying the signal recovery algorithm with SNR=4.1. SNR=µsignalbackground. The color-bar represents the intensity of the blue channel values, which range from 0 to 1.
Fig. 6.
Fig. 6. Example of transmitted 4D (spatial and temporal) data structure. (a-c) First three frames of captured 2D elemental images from the video sequence of temporally encoded multiple (five) light sources. (i-iii) Five reconstructed depth images focused at each LED by integral imaging with depths Z1=900 mm, Z2=920 mm, Z3=940 mm, Z4=950 mm, and Z5=960 mm.
Fig. 7.
Fig. 7. Example of the reference template correlation filter. (a) Reference template planes showing depth frames with LED ON signals. (b) Reference template planes showing depth frames with LED OFF signals. The color-bar represents the pixel values, which range from -1 to 1.
Fig. 8.
Fig. 8. 4D correlation results S(t) for underwater signal detection with 50 ml antacid added to the water tank (α=0.041 mm−1). Red circles indicate the correctly detected transmitted signals.
Fig. 9.
Fig. 9. ROC (Receiver operating characteristic) curves for underwater signal detection at turbidity level (α=0.324 mm−1). Results compared between integral imaging (InIm) reconstructed video data with the multiple light sources and coded with gold code [blue line], integral imaging using multiple light sources coded with PRS code [black line], integral imaging using a single light source coded with gold code [magenta line], integral imaging using a single light source coded with PRS code [green line] and conventional imaging with multiple light sources and gold code [red line].
Fig. 10.
Fig. 10. (a) Area under curves and (b) number of detection errors for underwater signal detection at various turbidity levels. Results are compared between integral imaging (InIm) reconstructed video data with the multiple light sources and coded with gold code [blue line], integral imaging using multiple light sources coded with PRS code [black line], integral imaging using a single light source coded with gold code [magenta line], integral imaging using a single light source coded with PRS code [green line] and conventional imaging with multiple light sources and gold codes [red line].
Fig. 11.
Fig. 11. The intensity distribution of single light source and multiple light sources at α = 0.006 mm−1 (a) 2D elemental image of single high-power light source (b) 2D elemental image of five low-power light sources (5 LEDs with each LED having an output power that is less than 1/5 the high-power LED used in a single LED system of (a)). The color-bar represents the intensity of the blue channel values, which range from 0 to 1.
Fig. 12.
Fig. 12. ROC (Receiver operating characteristic) curves for underwater signal detection at turbidity level (α=0.227 mm−1). Results compared between integral imaging (InIm) with the multiple low-power light sources and coded with gold code [blue line], integral imaging using a single high-power light source coded with gold code [red line] and 2D conventional imaging with a high-power single light sources and gold code [black line].

Tables (2)

Tables Icon

Table 1. Turbidity levels used in the experiments. Turbidity levels and Beer’s coefficient are varied by changing the amount of antacid added to the water.

Tables Icon

Table 2. SNR, Kullback-Leibler divergence (DKL), and Bhattacharyya distance (DB) at various turbidity levels for 2D imaging and 3D integral imaging.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I ( x , y , z , t ) = 1 O ( x , y , z , t ) m = 0 M 1 n = 0 N 1 E I m , n ( x m N x P x f C x z , y n N y P y f C y z )
I c ( x ) = J c ( x ) t c ( x ) + A c ( 1 t c ( x ) ) , c { r , g , b }
C ( x , y , z , t ) = F T 1 { [ H ( u , v , ϕ , ϑ ) ] . [ T ( u , v , ϕ , ϑ ) ] }
D K L ( R | | Q ) = m R log Q R 0
D B ( R , Q ) = ln ( m R . Q )