Abstract

In this study, we presented a high-power widely tunable all-fiber narrowband superfluorescent fiber source (SFS) by employing two tunable bandpass filters and three amplifier stages. More than 935 W output power is achieved, with a slope efficiency of >75% and a beam quality factor of M2=1.40. The tuning of the narrowband SFS ranges from ∼1045 nm to ∼1085 nm with a full width at half maximum linewidth of less than 0.71 nm. The tunable narrowband SFS stably operates without the influence of parasitic oscillation and self-pulsing effects under maximum power. To the best of our knowledge, this study is the first to demonstrate a widely tunable all-fiber narrowband SFS around 1 µm wavelength region with output power reaching kilowatt-level.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High power, widely tunable, narrowband superfluorescent source at 2 μm based on a monolithic Tm-doped fiber amplifier

Xiong Wang, Xiaoxi Jin, Pu Zhou, Xiaolin Wang, Hu Xiao, and Zejin Liu
Opt. Express 23(3) 3382-3389 (2015)

High power broadband all fiber super-fluorescent source with linear polarization and near diffraction-limited beam quality

Pengfei Ma, Long Huang, Xiaolin Wang, Pu Zhou, and Zejin Liu
Opt. Express 24(2) 1082-1088 (2016)

Power scaling of narrowband high-power all-fiber superfluorescent fiber source to 1.87  kW

Jiangming Xu, Wei Liu, Jinyong Leng, Hu Xiao, Shaofeng Guo, Pu Zhou, and Jinbao Chen
Opt. Lett. 40(13) 2973-2976 (2015)

References

  • View by:
  • |
  • |
  • |

  1. F. J. Duarte, Tunable laser applications (CRC, 2016).
  2. C. Wirth, O. Schmidt, I. Tsybin, T. Schreiber, R. Eberhardt, J. Limpert, A. Tünnermann, K. Ludewigt, M. Cowin, E. L. Have, and M. Jung, “High average power spectral beam combining of four fiber amplifiers to 8.2 kW,” Opt. Lett. 36(16), 3118–3120 (2011).
    [Crossref]
  3. Y. J. Jung, M. J. Jeon, H. Jeong, and J. W. Kim, “Efficient wavelength-tunable operation of tandem-pumped Yb fiber lasers,” Appl. Phys. B 123(2), 57 (2017).
    [Crossref]
  4. E. A. Zlobina, S. I. Kablukov, and S. A. Babin, “All-PM CW fiber optical parametric oscillator,” Opt. Express 24(22), 25409–25414 (2016).
    [Crossref]
  5. L. Zhang, H. Jiang, X. Yang, W. Pan, S. Cui, and Y. Feng, “Nearly-octave wavelength tuning of a continuous wave fiber laser,” Sci. Rep. 7(1), 42611 (2017).
    [Crossref]
  6. R. Royon, J. Lhermite, L. Sarger, and E. Cormier, “High power, continuous-wave ytterbium-doped fiber laser tunable from 976 to 1120 nm,” Opt. Express 21(11), 13818–13823 (2013).
    [Crossref]
  7. J. Hu, L. Zhang, and Y. Feng, “Widely tunable Yb-doped all-fiber laser from 1.0 to 1.1 µm,” in Advanced Solid State Lasers, OSA Technical Digest (online) (Optical Society of America, 2014), paper AM5A.22.
  8. J. Hu, L. Zhang, and Y. Feng, “Widely tunable single-mode Yb-doped all-fiber master oscillator power amplifier,” IEEE Photonics Technol. Lett. 27(24), 2559–2562 (2015).
    [Crossref]
  9. V. Balaswamy, S. Aparanji, G. Chayran, and V. R. Supradeepa, “High-power, independently wavelength, power, and linewidth tunable Ytterbium fiber laser,” IEEE Photonics Technol. Lett. 31(8), 583–586 (2019).
    [Crossref]
  10. B. N. Upadhyaya, “Self-pulsing dynamics in Yb-doped fiber lasers,” in Fiber Laser, M. C. Paul, ed. (IntechOpen, 2016).
  11. B. N. Upadhyaya, A. Kuruvilla, U. Chakravarty, M. R. Shenoy, K. Thyagarajan, and S. M. Oak, “Effect of laser linewidth and fiber length on self-pulsing dynamics and output stabilization of single-mode Yb-doped double-clad fiber laser,” Appl. Opt. 49(12), 2316–2325 (2010).
    [Crossref]
  12. W. Wang, J. Leng, Y. Gao, S. Guo, and Z. Jiang, “Influence of temporal characteristics on the power scalability of the fiber amplifier,” Laser Phys. 25(3), 035101 (2015).
    [Crossref]
  13. P. Peterka, P. Koška, and J. Čtyroký, “Reflectivity of Superimposed Bragg Gratings Induced by Longitudinal Mode Instabilities in Fiber Lasers,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–8 (2018).
    [Crossref]
  14. J. Xu, P. Zhou, W. Liu, J. Leng, H. Xiao, P. Ma, J. Wu, H. Zhang, J. Chen, and Z. Liu, “Exploration in performance scaling and new application avenues of superfluorescent fiber source,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–10 (2018).
    [Crossref]
  15. O. Schmidt, M. Rekas, C. Wirth, J. Rothhardt, S. Rhein, A. Kliner, M. Strecker, T. Schreiber, J. Limpert, R. Eberhardt, and A. Tünnermann, “High power narrow-band fiber-based ASE source,” Opt. Express 19(5), 4421–4427 (2011).
    [Crossref]
  16. J. Xu, W. Liu, J. Leng, H. Xiao, S. Guo, P. Zhou, and J. Chen, “Power scaling of narrowband high-power all-fiber superfluorescent fiber source to 1.87 kW,” Opt. Lett. 40(13), 2973–2976 (2015).
    [Crossref]
  17. P. Wang and W. A. Clarkson, “Tunable Yb-doped Fibre Amplified Spontaneous Emission Source, “ in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper CFM6.
  18. P. Wu, B. Zhao, W. Zhao, Z. Li, W. Gao, P. Ju, J. Zheng, and Y. Wang, “30 W all-fiber tunable, narrowband Yb-doped superfluorescent fiber source,” Infrared Phys. Technol. 92, 363–366 (2018).
    [Crossref]
  19. J. Ye, J. Xu, Y. Zhang, J. Song, J. Leng, and P. Zhou, “Spectrum-manipulable hundred-watt-level high-power superfluorescent fiber source,” J. Lightwave Technol. 37(13), 3113–3118 (2019).
    [Crossref]
  20. P. Ma, R. Tao, X. Wang, P. Zhou, and Z. Liu, “High-power narrow-band and polarization-maintained all fiber superfluorescent source,” IEEE Photonics Technol. Lett. 27(8), 879–882 (2015).
    [Crossref]
  21. J. Xu, J. Ye, H. Xiao, J. Leng, W. Liu, and P. Zhou, “In-band pumping avenue based high power superfluorescent fiber source with record power and near-diffraction-limited beam quality,” High Power Laser Sci. Eng. 6, e46 (2018).
    [Crossref]
  22. W. Liu, P. Ma, P. Zhou, and Z. Jiang, “Spectral property optimization for a narrowband-filtered superfluorescent fiber source,” Laser Phys. Lett. 15(2), 025103 (2018).
    [Crossref]

2019 (2)

V. Balaswamy, S. Aparanji, G. Chayran, and V. R. Supradeepa, “High-power, independently wavelength, power, and linewidth tunable Ytterbium fiber laser,” IEEE Photonics Technol. Lett. 31(8), 583–586 (2019).
[Crossref]

J. Ye, J. Xu, Y. Zhang, J. Song, J. Leng, and P. Zhou, “Spectrum-manipulable hundred-watt-level high-power superfluorescent fiber source,” J. Lightwave Technol. 37(13), 3113–3118 (2019).
[Crossref]

2018 (5)

J. Xu, J. Ye, H. Xiao, J. Leng, W. Liu, and P. Zhou, “In-band pumping avenue based high power superfluorescent fiber source with record power and near-diffraction-limited beam quality,” High Power Laser Sci. Eng. 6, e46 (2018).
[Crossref]

W. Liu, P. Ma, P. Zhou, and Z. Jiang, “Spectral property optimization for a narrowband-filtered superfluorescent fiber source,” Laser Phys. Lett. 15(2), 025103 (2018).
[Crossref]

P. Peterka, P. Koška, and J. Čtyroký, “Reflectivity of Superimposed Bragg Gratings Induced by Longitudinal Mode Instabilities in Fiber Lasers,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–8 (2018).
[Crossref]

J. Xu, P. Zhou, W. Liu, J. Leng, H. Xiao, P. Ma, J. Wu, H. Zhang, J. Chen, and Z. Liu, “Exploration in performance scaling and new application avenues of superfluorescent fiber source,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–10 (2018).
[Crossref]

P. Wu, B. Zhao, W. Zhao, Z. Li, W. Gao, P. Ju, J. Zheng, and Y. Wang, “30 W all-fiber tunable, narrowband Yb-doped superfluorescent fiber source,” Infrared Phys. Technol. 92, 363–366 (2018).
[Crossref]

2017 (2)

Y. J. Jung, M. J. Jeon, H. Jeong, and J. W. Kim, “Efficient wavelength-tunable operation of tandem-pumped Yb fiber lasers,” Appl. Phys. B 123(2), 57 (2017).
[Crossref]

L. Zhang, H. Jiang, X. Yang, W. Pan, S. Cui, and Y. Feng, “Nearly-octave wavelength tuning of a continuous wave fiber laser,” Sci. Rep. 7(1), 42611 (2017).
[Crossref]

2016 (1)

2015 (4)

J. Hu, L. Zhang, and Y. Feng, “Widely tunable single-mode Yb-doped all-fiber master oscillator power amplifier,” IEEE Photonics Technol. Lett. 27(24), 2559–2562 (2015).
[Crossref]

W. Wang, J. Leng, Y. Gao, S. Guo, and Z. Jiang, “Influence of temporal characteristics on the power scalability of the fiber amplifier,” Laser Phys. 25(3), 035101 (2015).
[Crossref]

J. Xu, W. Liu, J. Leng, H. Xiao, S. Guo, P. Zhou, and J. Chen, “Power scaling of narrowband high-power all-fiber superfluorescent fiber source to 1.87 kW,” Opt. Lett. 40(13), 2973–2976 (2015).
[Crossref]

P. Ma, R. Tao, X. Wang, P. Zhou, and Z. Liu, “High-power narrow-band and polarization-maintained all fiber superfluorescent source,” IEEE Photonics Technol. Lett. 27(8), 879–882 (2015).
[Crossref]

2013 (1)

2011 (2)

2010 (1)

Aparanji, S.

V. Balaswamy, S. Aparanji, G. Chayran, and V. R. Supradeepa, “High-power, independently wavelength, power, and linewidth tunable Ytterbium fiber laser,” IEEE Photonics Technol. Lett. 31(8), 583–586 (2019).
[Crossref]

Babin, S. A.

Balaswamy, V.

V. Balaswamy, S. Aparanji, G. Chayran, and V. R. Supradeepa, “High-power, independently wavelength, power, and linewidth tunable Ytterbium fiber laser,” IEEE Photonics Technol. Lett. 31(8), 583–586 (2019).
[Crossref]

Chakravarty, U.

Chayran, G.

V. Balaswamy, S. Aparanji, G. Chayran, and V. R. Supradeepa, “High-power, independently wavelength, power, and linewidth tunable Ytterbium fiber laser,” IEEE Photonics Technol. Lett. 31(8), 583–586 (2019).
[Crossref]

Chen, J.

J. Xu, P. Zhou, W. Liu, J. Leng, H. Xiao, P. Ma, J. Wu, H. Zhang, J. Chen, and Z. Liu, “Exploration in performance scaling and new application avenues of superfluorescent fiber source,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–10 (2018).
[Crossref]

J. Xu, W. Liu, J. Leng, H. Xiao, S. Guo, P. Zhou, and J. Chen, “Power scaling of narrowband high-power all-fiber superfluorescent fiber source to 1.87 kW,” Opt. Lett. 40(13), 2973–2976 (2015).
[Crossref]

Clarkson, W. A.

P. Wang and W. A. Clarkson, “Tunable Yb-doped Fibre Amplified Spontaneous Emission Source, “ in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper CFM6.

Cormier, E.

Cowin, M.

Ctyroký, J.

P. Peterka, P. Koška, and J. Čtyroký, “Reflectivity of Superimposed Bragg Gratings Induced by Longitudinal Mode Instabilities in Fiber Lasers,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–8 (2018).
[Crossref]

Cui, S.

L. Zhang, H. Jiang, X. Yang, W. Pan, S. Cui, and Y. Feng, “Nearly-octave wavelength tuning of a continuous wave fiber laser,” Sci. Rep. 7(1), 42611 (2017).
[Crossref]

Duarte, F. J.

F. J. Duarte, Tunable laser applications (CRC, 2016).

Eberhardt, R.

Feng, Y.

L. Zhang, H. Jiang, X. Yang, W. Pan, S. Cui, and Y. Feng, “Nearly-octave wavelength tuning of a continuous wave fiber laser,” Sci. Rep. 7(1), 42611 (2017).
[Crossref]

J. Hu, L. Zhang, and Y. Feng, “Widely tunable single-mode Yb-doped all-fiber master oscillator power amplifier,” IEEE Photonics Technol. Lett. 27(24), 2559–2562 (2015).
[Crossref]

J. Hu, L. Zhang, and Y. Feng, “Widely tunable Yb-doped all-fiber laser from 1.0 to 1.1 µm,” in Advanced Solid State Lasers, OSA Technical Digest (online) (Optical Society of America, 2014), paper AM5A.22.

Gao, W.

P. Wu, B. Zhao, W. Zhao, Z. Li, W. Gao, P. Ju, J. Zheng, and Y. Wang, “30 W all-fiber tunable, narrowband Yb-doped superfluorescent fiber source,” Infrared Phys. Technol. 92, 363–366 (2018).
[Crossref]

Gao, Y.

W. Wang, J. Leng, Y. Gao, S. Guo, and Z. Jiang, “Influence of temporal characteristics on the power scalability of the fiber amplifier,” Laser Phys. 25(3), 035101 (2015).
[Crossref]

Guo, S.

W. Wang, J. Leng, Y. Gao, S. Guo, and Z. Jiang, “Influence of temporal characteristics on the power scalability of the fiber amplifier,” Laser Phys. 25(3), 035101 (2015).
[Crossref]

J. Xu, W. Liu, J. Leng, H. Xiao, S. Guo, P. Zhou, and J. Chen, “Power scaling of narrowband high-power all-fiber superfluorescent fiber source to 1.87 kW,” Opt. Lett. 40(13), 2973–2976 (2015).
[Crossref]

Have, E. L.

Hu, J.

J. Hu, L. Zhang, and Y. Feng, “Widely tunable single-mode Yb-doped all-fiber master oscillator power amplifier,” IEEE Photonics Technol. Lett. 27(24), 2559–2562 (2015).
[Crossref]

J. Hu, L. Zhang, and Y. Feng, “Widely tunable Yb-doped all-fiber laser from 1.0 to 1.1 µm,” in Advanced Solid State Lasers, OSA Technical Digest (online) (Optical Society of America, 2014), paper AM5A.22.

Jeon, M. J.

Y. J. Jung, M. J. Jeon, H. Jeong, and J. W. Kim, “Efficient wavelength-tunable operation of tandem-pumped Yb fiber lasers,” Appl. Phys. B 123(2), 57 (2017).
[Crossref]

Jeong, H.

Y. J. Jung, M. J. Jeon, H. Jeong, and J. W. Kim, “Efficient wavelength-tunable operation of tandem-pumped Yb fiber lasers,” Appl. Phys. B 123(2), 57 (2017).
[Crossref]

Jiang, H.

L. Zhang, H. Jiang, X. Yang, W. Pan, S. Cui, and Y. Feng, “Nearly-octave wavelength tuning of a continuous wave fiber laser,” Sci. Rep. 7(1), 42611 (2017).
[Crossref]

Jiang, Z.

W. Liu, P. Ma, P. Zhou, and Z. Jiang, “Spectral property optimization for a narrowband-filtered superfluorescent fiber source,” Laser Phys. Lett. 15(2), 025103 (2018).
[Crossref]

W. Wang, J. Leng, Y. Gao, S. Guo, and Z. Jiang, “Influence of temporal characteristics on the power scalability of the fiber amplifier,” Laser Phys. 25(3), 035101 (2015).
[Crossref]

Ju, P.

P. Wu, B. Zhao, W. Zhao, Z. Li, W. Gao, P. Ju, J. Zheng, and Y. Wang, “30 W all-fiber tunable, narrowband Yb-doped superfluorescent fiber source,” Infrared Phys. Technol. 92, 363–366 (2018).
[Crossref]

Jung, M.

Jung, Y. J.

Y. J. Jung, M. J. Jeon, H. Jeong, and J. W. Kim, “Efficient wavelength-tunable operation of tandem-pumped Yb fiber lasers,” Appl. Phys. B 123(2), 57 (2017).
[Crossref]

Kablukov, S. I.

Kim, J. W.

Y. J. Jung, M. J. Jeon, H. Jeong, and J. W. Kim, “Efficient wavelength-tunable operation of tandem-pumped Yb fiber lasers,” Appl. Phys. B 123(2), 57 (2017).
[Crossref]

Kliner, A.

Koška, P.

P. Peterka, P. Koška, and J. Čtyroký, “Reflectivity of Superimposed Bragg Gratings Induced by Longitudinal Mode Instabilities in Fiber Lasers,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–8 (2018).
[Crossref]

Kuruvilla, A.

Leng, J.

J. Ye, J. Xu, Y. Zhang, J. Song, J. Leng, and P. Zhou, “Spectrum-manipulable hundred-watt-level high-power superfluorescent fiber source,” J. Lightwave Technol. 37(13), 3113–3118 (2019).
[Crossref]

J. Xu, J. Ye, H. Xiao, J. Leng, W. Liu, and P. Zhou, “In-band pumping avenue based high power superfluorescent fiber source with record power and near-diffraction-limited beam quality,” High Power Laser Sci. Eng. 6, e46 (2018).
[Crossref]

J. Xu, P. Zhou, W. Liu, J. Leng, H. Xiao, P. Ma, J. Wu, H. Zhang, J. Chen, and Z. Liu, “Exploration in performance scaling and new application avenues of superfluorescent fiber source,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–10 (2018).
[Crossref]

J. Xu, W. Liu, J. Leng, H. Xiao, S. Guo, P. Zhou, and J. Chen, “Power scaling of narrowband high-power all-fiber superfluorescent fiber source to 1.87 kW,” Opt. Lett. 40(13), 2973–2976 (2015).
[Crossref]

W. Wang, J. Leng, Y. Gao, S. Guo, and Z. Jiang, “Influence of temporal characteristics on the power scalability of the fiber amplifier,” Laser Phys. 25(3), 035101 (2015).
[Crossref]

Lhermite, J.

Li, Z.

P. Wu, B. Zhao, W. Zhao, Z. Li, W. Gao, P. Ju, J. Zheng, and Y. Wang, “30 W all-fiber tunable, narrowband Yb-doped superfluorescent fiber source,” Infrared Phys. Technol. 92, 363–366 (2018).
[Crossref]

Limpert, J.

Liu, W.

J. Xu, P. Zhou, W. Liu, J. Leng, H. Xiao, P. Ma, J. Wu, H. Zhang, J. Chen, and Z. Liu, “Exploration in performance scaling and new application avenues of superfluorescent fiber source,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–10 (2018).
[Crossref]

W. Liu, P. Ma, P. Zhou, and Z. Jiang, “Spectral property optimization for a narrowband-filtered superfluorescent fiber source,” Laser Phys. Lett. 15(2), 025103 (2018).
[Crossref]

J. Xu, J. Ye, H. Xiao, J. Leng, W. Liu, and P. Zhou, “In-band pumping avenue based high power superfluorescent fiber source with record power and near-diffraction-limited beam quality,” High Power Laser Sci. Eng. 6, e46 (2018).
[Crossref]

J. Xu, W. Liu, J. Leng, H. Xiao, S. Guo, P. Zhou, and J. Chen, “Power scaling of narrowband high-power all-fiber superfluorescent fiber source to 1.87 kW,” Opt. Lett. 40(13), 2973–2976 (2015).
[Crossref]

Liu, Z.

J. Xu, P. Zhou, W. Liu, J. Leng, H. Xiao, P. Ma, J. Wu, H. Zhang, J. Chen, and Z. Liu, “Exploration in performance scaling and new application avenues of superfluorescent fiber source,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–10 (2018).
[Crossref]

P. Ma, R. Tao, X. Wang, P. Zhou, and Z. Liu, “High-power narrow-band and polarization-maintained all fiber superfluorescent source,” IEEE Photonics Technol. Lett. 27(8), 879–882 (2015).
[Crossref]

Ludewigt, K.

Ma, P.

J. Xu, P. Zhou, W. Liu, J. Leng, H. Xiao, P. Ma, J. Wu, H. Zhang, J. Chen, and Z. Liu, “Exploration in performance scaling and new application avenues of superfluorescent fiber source,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–10 (2018).
[Crossref]

W. Liu, P. Ma, P. Zhou, and Z. Jiang, “Spectral property optimization for a narrowband-filtered superfluorescent fiber source,” Laser Phys. Lett. 15(2), 025103 (2018).
[Crossref]

P. Ma, R. Tao, X. Wang, P. Zhou, and Z. Liu, “High-power narrow-band and polarization-maintained all fiber superfluorescent source,” IEEE Photonics Technol. Lett. 27(8), 879–882 (2015).
[Crossref]

Oak, S. M.

Pan, W.

L. Zhang, H. Jiang, X. Yang, W. Pan, S. Cui, and Y. Feng, “Nearly-octave wavelength tuning of a continuous wave fiber laser,” Sci. Rep. 7(1), 42611 (2017).
[Crossref]

Peterka, P.

P. Peterka, P. Koška, and J. Čtyroký, “Reflectivity of Superimposed Bragg Gratings Induced by Longitudinal Mode Instabilities in Fiber Lasers,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–8 (2018).
[Crossref]

Rekas, M.

Rhein, S.

Rothhardt, J.

Royon, R.

Sarger, L.

Schmidt, O.

Schreiber, T.

Shenoy, M. R.

Song, J.

Strecker, M.

Supradeepa, V. R.

V. Balaswamy, S. Aparanji, G. Chayran, and V. R. Supradeepa, “High-power, independently wavelength, power, and linewidth tunable Ytterbium fiber laser,” IEEE Photonics Technol. Lett. 31(8), 583–586 (2019).
[Crossref]

Tao, R.

P. Ma, R. Tao, X. Wang, P. Zhou, and Z. Liu, “High-power narrow-band and polarization-maintained all fiber superfluorescent source,” IEEE Photonics Technol. Lett. 27(8), 879–882 (2015).
[Crossref]

Thyagarajan, K.

Tsybin, I.

Tünnermann, A.

Upadhyaya, B. N.

Wang, P.

P. Wang and W. A. Clarkson, “Tunable Yb-doped Fibre Amplified Spontaneous Emission Source, “ in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper CFM6.

Wang, W.

W. Wang, J. Leng, Y. Gao, S. Guo, and Z. Jiang, “Influence of temporal characteristics on the power scalability of the fiber amplifier,” Laser Phys. 25(3), 035101 (2015).
[Crossref]

Wang, X.

P. Ma, R. Tao, X. Wang, P. Zhou, and Z. Liu, “High-power narrow-band and polarization-maintained all fiber superfluorescent source,” IEEE Photonics Technol. Lett. 27(8), 879–882 (2015).
[Crossref]

Wang, Y.

P. Wu, B. Zhao, W. Zhao, Z. Li, W. Gao, P. Ju, J. Zheng, and Y. Wang, “30 W all-fiber tunable, narrowband Yb-doped superfluorescent fiber source,” Infrared Phys. Technol. 92, 363–366 (2018).
[Crossref]

Wirth, C.

Wu, J.

J. Xu, P. Zhou, W. Liu, J. Leng, H. Xiao, P. Ma, J. Wu, H. Zhang, J. Chen, and Z. Liu, “Exploration in performance scaling and new application avenues of superfluorescent fiber source,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–10 (2018).
[Crossref]

Wu, P.

P. Wu, B. Zhao, W. Zhao, Z. Li, W. Gao, P. Ju, J. Zheng, and Y. Wang, “30 W all-fiber tunable, narrowband Yb-doped superfluorescent fiber source,” Infrared Phys. Technol. 92, 363–366 (2018).
[Crossref]

Xiao, H.

J. Xu, P. Zhou, W. Liu, J. Leng, H. Xiao, P. Ma, J. Wu, H. Zhang, J. Chen, and Z. Liu, “Exploration in performance scaling and new application avenues of superfluorescent fiber source,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–10 (2018).
[Crossref]

J. Xu, J. Ye, H. Xiao, J. Leng, W. Liu, and P. Zhou, “In-band pumping avenue based high power superfluorescent fiber source with record power and near-diffraction-limited beam quality,” High Power Laser Sci. Eng. 6, e46 (2018).
[Crossref]

J. Xu, W. Liu, J. Leng, H. Xiao, S. Guo, P. Zhou, and J. Chen, “Power scaling of narrowband high-power all-fiber superfluorescent fiber source to 1.87 kW,” Opt. Lett. 40(13), 2973–2976 (2015).
[Crossref]

Xu, J.

J. Ye, J. Xu, Y. Zhang, J. Song, J. Leng, and P. Zhou, “Spectrum-manipulable hundred-watt-level high-power superfluorescent fiber source,” J. Lightwave Technol. 37(13), 3113–3118 (2019).
[Crossref]

J. Xu, J. Ye, H. Xiao, J. Leng, W. Liu, and P. Zhou, “In-band pumping avenue based high power superfluorescent fiber source with record power and near-diffraction-limited beam quality,” High Power Laser Sci. Eng. 6, e46 (2018).
[Crossref]

J. Xu, P. Zhou, W. Liu, J. Leng, H. Xiao, P. Ma, J. Wu, H. Zhang, J. Chen, and Z. Liu, “Exploration in performance scaling and new application avenues of superfluorescent fiber source,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–10 (2018).
[Crossref]

J. Xu, W. Liu, J. Leng, H. Xiao, S. Guo, P. Zhou, and J. Chen, “Power scaling of narrowband high-power all-fiber superfluorescent fiber source to 1.87 kW,” Opt. Lett. 40(13), 2973–2976 (2015).
[Crossref]

Yang, X.

L. Zhang, H. Jiang, X. Yang, W. Pan, S. Cui, and Y. Feng, “Nearly-octave wavelength tuning of a continuous wave fiber laser,” Sci. Rep. 7(1), 42611 (2017).
[Crossref]

Ye, J.

J. Ye, J. Xu, Y. Zhang, J. Song, J. Leng, and P. Zhou, “Spectrum-manipulable hundred-watt-level high-power superfluorescent fiber source,” J. Lightwave Technol. 37(13), 3113–3118 (2019).
[Crossref]

J. Xu, J. Ye, H. Xiao, J. Leng, W. Liu, and P. Zhou, “In-band pumping avenue based high power superfluorescent fiber source with record power and near-diffraction-limited beam quality,” High Power Laser Sci. Eng. 6, e46 (2018).
[Crossref]

Zhang, H.

J. Xu, P. Zhou, W. Liu, J. Leng, H. Xiao, P. Ma, J. Wu, H. Zhang, J. Chen, and Z. Liu, “Exploration in performance scaling and new application avenues of superfluorescent fiber source,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–10 (2018).
[Crossref]

Zhang, L.

L. Zhang, H. Jiang, X. Yang, W. Pan, S. Cui, and Y. Feng, “Nearly-octave wavelength tuning of a continuous wave fiber laser,” Sci. Rep. 7(1), 42611 (2017).
[Crossref]

J. Hu, L. Zhang, and Y. Feng, “Widely tunable single-mode Yb-doped all-fiber master oscillator power amplifier,” IEEE Photonics Technol. Lett. 27(24), 2559–2562 (2015).
[Crossref]

J. Hu, L. Zhang, and Y. Feng, “Widely tunable Yb-doped all-fiber laser from 1.0 to 1.1 µm,” in Advanced Solid State Lasers, OSA Technical Digest (online) (Optical Society of America, 2014), paper AM5A.22.

Zhang, Y.

Zhao, B.

P. Wu, B. Zhao, W. Zhao, Z. Li, W. Gao, P. Ju, J. Zheng, and Y. Wang, “30 W all-fiber tunable, narrowband Yb-doped superfluorescent fiber source,” Infrared Phys. Technol. 92, 363–366 (2018).
[Crossref]

Zhao, W.

P. Wu, B. Zhao, W. Zhao, Z. Li, W. Gao, P. Ju, J. Zheng, and Y. Wang, “30 W all-fiber tunable, narrowband Yb-doped superfluorescent fiber source,” Infrared Phys. Technol. 92, 363–366 (2018).
[Crossref]

Zheng, J.

P. Wu, B. Zhao, W. Zhao, Z. Li, W. Gao, P. Ju, J. Zheng, and Y. Wang, “30 W all-fiber tunable, narrowband Yb-doped superfluorescent fiber source,” Infrared Phys. Technol. 92, 363–366 (2018).
[Crossref]

Zhou, P.

J. Ye, J. Xu, Y. Zhang, J. Song, J. Leng, and P. Zhou, “Spectrum-manipulable hundred-watt-level high-power superfluorescent fiber source,” J. Lightwave Technol. 37(13), 3113–3118 (2019).
[Crossref]

J. Xu, J. Ye, H. Xiao, J. Leng, W. Liu, and P. Zhou, “In-band pumping avenue based high power superfluorescent fiber source with record power and near-diffraction-limited beam quality,” High Power Laser Sci. Eng. 6, e46 (2018).
[Crossref]

W. Liu, P. Ma, P. Zhou, and Z. Jiang, “Spectral property optimization for a narrowband-filtered superfluorescent fiber source,” Laser Phys. Lett. 15(2), 025103 (2018).
[Crossref]

J. Xu, P. Zhou, W. Liu, J. Leng, H. Xiao, P. Ma, J. Wu, H. Zhang, J. Chen, and Z. Liu, “Exploration in performance scaling and new application avenues of superfluorescent fiber source,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–10 (2018).
[Crossref]

J. Xu, W. Liu, J. Leng, H. Xiao, S. Guo, P. Zhou, and J. Chen, “Power scaling of narrowband high-power all-fiber superfluorescent fiber source to 1.87 kW,” Opt. Lett. 40(13), 2973–2976 (2015).
[Crossref]

P. Ma, R. Tao, X. Wang, P. Zhou, and Z. Liu, “High-power narrow-band and polarization-maintained all fiber superfluorescent source,” IEEE Photonics Technol. Lett. 27(8), 879–882 (2015).
[Crossref]

Zlobina, E. A.

Appl. Opt. (1)

Appl. Phys. B (1)

Y. J. Jung, M. J. Jeon, H. Jeong, and J. W. Kim, “Efficient wavelength-tunable operation of tandem-pumped Yb fiber lasers,” Appl. Phys. B 123(2), 57 (2017).
[Crossref]

High Power Laser Sci. Eng. (1)

J. Xu, J. Ye, H. Xiao, J. Leng, W. Liu, and P. Zhou, “In-band pumping avenue based high power superfluorescent fiber source with record power and near-diffraction-limited beam quality,” High Power Laser Sci. Eng. 6, e46 (2018).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

P. Peterka, P. Koška, and J. Čtyroký, “Reflectivity of Superimposed Bragg Gratings Induced by Longitudinal Mode Instabilities in Fiber Lasers,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–8 (2018).
[Crossref]

J. Xu, P. Zhou, W. Liu, J. Leng, H. Xiao, P. Ma, J. Wu, H. Zhang, J. Chen, and Z. Liu, “Exploration in performance scaling and new application avenues of superfluorescent fiber source,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–10 (2018).
[Crossref]

IEEE Photonics Technol. Lett. (3)

J. Hu, L. Zhang, and Y. Feng, “Widely tunable single-mode Yb-doped all-fiber master oscillator power amplifier,” IEEE Photonics Technol. Lett. 27(24), 2559–2562 (2015).
[Crossref]

V. Balaswamy, S. Aparanji, G. Chayran, and V. R. Supradeepa, “High-power, independently wavelength, power, and linewidth tunable Ytterbium fiber laser,” IEEE Photonics Technol. Lett. 31(8), 583–586 (2019).
[Crossref]

P. Ma, R. Tao, X. Wang, P. Zhou, and Z. Liu, “High-power narrow-band and polarization-maintained all fiber superfluorescent source,” IEEE Photonics Technol. Lett. 27(8), 879–882 (2015).
[Crossref]

Infrared Phys. Technol. (1)

P. Wu, B. Zhao, W. Zhao, Z. Li, W. Gao, P. Ju, J. Zheng, and Y. Wang, “30 W all-fiber tunable, narrowband Yb-doped superfluorescent fiber source,” Infrared Phys. Technol. 92, 363–366 (2018).
[Crossref]

J. Lightwave Technol. (1)

Laser Phys. (1)

W. Wang, J. Leng, Y. Gao, S. Guo, and Z. Jiang, “Influence of temporal characteristics on the power scalability of the fiber amplifier,” Laser Phys. 25(3), 035101 (2015).
[Crossref]

Laser Phys. Lett. (1)

W. Liu, P. Ma, P. Zhou, and Z. Jiang, “Spectral property optimization for a narrowband-filtered superfluorescent fiber source,” Laser Phys. Lett. 15(2), 025103 (2018).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Sci. Rep. (1)

L. Zhang, H. Jiang, X. Yang, W. Pan, S. Cui, and Y. Feng, “Nearly-octave wavelength tuning of a continuous wave fiber laser,” Sci. Rep. 7(1), 42611 (2017).
[Crossref]

Other (4)

P. Wang and W. A. Clarkson, “Tunable Yb-doped Fibre Amplified Spontaneous Emission Source, “ in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper CFM6.

B. N. Upadhyaya, “Self-pulsing dynamics in Yb-doped fiber lasers,” in Fiber Laser, M. C. Paul, ed. (IntechOpen, 2016).

J. Hu, L. Zhang, and Y. Feng, “Widely tunable Yb-doped all-fiber laser from 1.0 to 1.1 µm,” in Advanced Solid State Lasers, OSA Technical Digest (online) (Optical Society of America, 2014), paper AM5A.22.

F. J. Duarte, Tunable laser applications (CRC, 2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Experimental setup of the high-power all-fiberized tunable narrowband SFS.
Fig. 2.
Fig. 2. Spectral characteristics of broadband SFS at different output power (0.1 nm resolution).
Fig. 3.
Fig. 3. (a) Filtered spectra (0.1 nm resolution) and (b) output power of the narrowband SFS seed
Fig. 4.
Fig. 4. (a) Measured output spectra at the maximum output power of preamplifier 2 (0.1 nm resolution). (b) Maximum output power and FWHM linewidth of the power scaling at different wavelengths.
Fig. 5.
Fig. 5. (a) Output power and slope efficiency of the main amplifier versus pump power at different wavelengths. (b) FWHM linewidths versus pump power of the main amplifier.
Fig. 6.
Fig. 6. Evolution of detailed spectrum versus output power at different wavelengths: (a) 1045 nm, (b) 1055 nm, (c) 1065 nm, (d) 1075 nm, (e) 1085 nm. (f) Output spectra of the main amplifier at the maximum output power. (g), (h), (i) Details of the fine spectrum of 1045, 1065, and 1085 nm at full power, respectively. (0.1 nm resolution)
Fig. 7.
Fig. 7. Temporal domain characteristic of the tunable narrowband SFS.
Fig. 8.
Fig. 8. Beam quality (M2) of 1065 nm at 1 kW output power.