Abstract

We investigate the evolution of nonlinear dynamic behaviors of two polarization components (x-PC and y-PC), as well as the interplay of polarization bistability and injection strength in the vertical-cavity surface-emitting laser (VCSEL) with polarization-preserved optical injection. We explore a new threshold mechanism to judge two logic outputs encoded in different dynamic behaviors of the x-PC and y-PC emitted by the VCSEL with polarization-preserved optical injection. We demonstrate implementations of two parallel optical chaotic reset-set flip-flop operations and two parallel chaotic toggle flip-flop operations that are synchronized by a clock signal and response for as short as 1 ns bit time. We further observe the reconfiguration of these two kinds of flip-flop operations with clock synchronization in different time periods by controlling the duration-time of the reset (toggle) signal with high-level. The probability of the correct trigger responses for these two kinds of flip-flop operations is controlled by the interplay of the duration-time of the reset (toggle) signal and the noise strength of the spontaneous emission. The probability that is equal to 1 for the reset-set flip-flop operations occurs in the long duration-time of the reset (toggle) signal ranging from 480 ps to 592 ps. The probability with 1 for the toggle flip-flop operations takes place in the short duration-time between 116 ps and 170 ps. Moreover, these two kinds of flip-flop operations have strong robust to the spontaneous emission noise. The optical chaotic flip-flop operation device with clock synchronization and reconfigurable trigger function proposed in our scheme offers interesting perspectives for applications where noise is unavoidable and synchronized multiple triggering is required.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optical chaotic data-selection logic operation with the fast response for picosecond magnitude

Dongzhou Zhong, Guangze Yang, Zhenzhen Xiao, Yi Ding, Jiangtao Xi, Neng Zeng, and Hua Yang
Opt. Express 27(16) 23357-23367 (2019)

All-optical flip-flop based on the bistability of injection locked Fabry-Perot laser diode

Yong Deok Jeong, Jeong Sik Cho, Yong Hyub Won, Hyuek Jae Lee, and Hark Yoo
Opt. Express 14(9) 4058-4063 (2006)

All-optical flip-flop operation based on bistability in V-cavity laser

Yingchen Wu, Yu Zhu, Xiaolu Liao, Jianjun Meng, and Jian-Jun He
Opt. Express 24(12) 12507-12514 (2016)

References

  • View by:
  • |
  • |
  • |

  1. A. Smerieri, B. Schneider, F. Duport, M. Haelterman, and S. Massar, “All-optical reservoir computing,” Opt. Express 20(20), 22783–22795 (2012).
    [Crossref]
  2. S. Ortín, M. C. Soriano, L. Pesquera, D. Brunner, D. San-Martín, I. Fischer, C. R. Mirasso, and J. M. Gutiérrez, “A unified framework for reservoir computing and extreme learning machines based on a single time-delayed neuron,” Sci. Rep. 5(1), 14945 (2015).
    [Crossref]
  3. Y. S. Hou, G. Q. Xia, W. Y. Yang, E. J. D. Wang, Z. F. Jiang, C. X. Hu, and Z. M. Wu, “Prediction performance of reservoir computing system based on a semiconductor laser subject to double optical feedback and optical injection,” Opt. Express 26(8), 10211–10219 (2018).
    [Crossref]
  4. X. S. Tan, Y. S. Hou, Z. M. Wu, and G. Q. Xia, “Parallel information processing by a reservoir computing system based on a vcsel subject to double optical feedback and optical injection,” Opt. Express 27(18), 26070–26079 (2019).
    [Crossref]
  5. A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
    [Crossref]
  6. H. S. Gill, S. S. Gill, and K. S. Bhatia, “A novel chaos-based encryption approach for future-generation passive optical networks using sha-2,” J. Opt. Commun. Netw. 9(12), 1184–1190 (2017).
    [Crossref]
  7. Q. Li, T. Deng, Z. M. Wu, and G. Q. Xia, “Security-enhanced bidirectional long-distance chaos secure communication,” Chin. J. Lasers 45(1), 0106001 (2018).
    [Crossref]
  8. N. Jiang, A. K. Zhao, C. P. Xue, J. M. Tang, and K. Qiu, “Physical secure optical communication based on private chaotic spectral phase encryption/decryption,” Opt. Lett. 44(7), 1536–1539 (2019).
    [Crossref]
  9. F. Y. Lin and J. M. Liu, “Chaotic radar using nonlinear laser dynamics,” IEEE J. Quantum Electron. 40(6), 815–820 (2004).
    [Crossref]
  10. D. Z. Zhong, Z. Z. Xiao, G. Z. Yang, N. Zeng, and H. Yang, “Real-time ranging of the six orientational targets by using chaotic polarization radars in the three-node vcsel network,” Opt. Express 27(7), 9857–9867 (2019).
    [Crossref]
  11. Y. Wang, S. Y. Xiang, B. Wang, X. Y. Cao, A. J. Wen, and Y. Hao, “Time-delay signature concealment and physical random bits generation in mutually coupled semiconductor lasers with fbg filtered injection,” Opt. Express 27(6), 8446–8455 (2019).
    [Crossref]
  12. S. Y. Xiang, Y. H. Zhang, J. K. Gong, X. X. Guo, L. Lin, and Y. Hao, “Stdp-based unsupervised spike pattern learning in a photonic spiking neural network with vcsels and vcsoas,” IEEE J. Sel. Top. Quantum Electron. 25(6), 1–9 (2019).
    [Crossref]
  13. A. Apostolos, B. Julián, and F. Ingo, “Photonic machine learning implementation for signal recovery in optical communications,” Sci. Rep. 8(1), 8487 (2018).
    [Crossref]
  14. K. P. Singh and S. Sinha, “Enhancement of “logical” responses by noise in a bistable optical system,” Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 83(4), 046219 (2011).
    [Crossref]
  15. M. Beyki and M. Yaghoobi, “Chaotic logic gate: A new approach in set and design by genetic algorithm,” Chaos, Solitons Fractals 77, 247–252 (2015).
    [Crossref]
  16. S. L. Yan, “Many all-optical logic gates for optics computation using chaotic laser synchronization,” The 2015 11th Int. Conf. on Nat. Comput. pp. 578–582 (2015).
  17. T. V. Lerber, L. Matti, L. V. S Y. Lauri, C. Arkadi, H. Klaus, and K. Franko, “All-optical majority gate based on an injection-locked laser,” Sci. Rep. 9(1), 14576 (2019).
    [Crossref]
  18. J. J. Dong, X. L. Zhang, S. N. Fu, J. Xu, P. Shum, and D. X. Huang, “Ultrafast all-optical signal processing based on single semiconductor optical amplifier and optical filtering,” IEEE J. Sel. Top. Quantum Electron. 14(3), 770–778 (2008).
    [Crossref]
  19. I. Glesk, P. R. Prucnal, and I. Andonovic, “Incoherent ultrafast ocdma receiver design with 2 ps all-optical time gate to suppress multiple-access interference,” IEEE J. Sel. Top. Quantum Electron. 14(3), 861–867 (2008).
    [Crossref]
  20. Y. Miyoshi, K. Ikeda, H. Tobioka, T. Inoue, S. Namiki, and K. Kitayama, “Ultrafast all-optical logic gate using a nonlinear optical loop mirror based multi-periodic transfer function,” Opt. Express 16(4), 2570–2577 (2008).
    [Crossref]
  21. W. R. Wang, J. L. Yu, J. Luo, B. C. Han, J. Z. Zhong, J. Wang, Y. Liu, and E. Z. Yang, “40 gb/s reconfigurable all-optical logic gate based on nonlinear optical loop mirror,” Acta Opt. Sin. 32(5), 0506003 (2012).
    [Crossref]
  22. S. Sharma and J. Kumar, “Numerical analysis of optical logic gate based on nonlinear optical loop mirror with a photonic crystal fiber,” J. Nonlinear Opt. Phys. Mater. 24(02), 1550019 (2015).
    [Crossref]
  23. M. Kazemi, A. M. Tehrani, T. Z. Khan, M. Namboodiri, and A. Materny, “Realization of an ultrafast all-optical toffoli logic gate based on the phase relation between two second order nonlinear optical signals,” Laser Phys. 25(12), 125402 (2015).
    [Crossref]
  24. Y. J. Jung, C. W. Son, Y. M. Jhon, S. Lee, and N. Park, “One-level simplification method for all-optical combinational logic circuits,” IEEE Photonics Technol. Lett. 20(10), 800–802 (2008).
    [Crossref]
  25. J. Zamora-Munt and C. Masoller, “Numerical implementation of a VCSEL-based stochastic logic gate via polarization bistability,” Opt. Express 18(16), 16418–16429 (2010).
    [Crossref]
  26. S. L. Yan, “All-optical and combinational optoelectronic logic gates using chaotic synchronization of coupling-feedback semiconductor lasers and amplitude modulation,” Chin. Sci. Bull. 56(16), 1264–1271 (2011).
    [Crossref]
  27. D. Z. Zhong, Y. Q. Ji, and W. Luo, “Controllable optoelectric composite logic gates based on the polarization switching in an optically injected VCSEL,” Opt. Express 23(23), 29823–29833 (2015).
    [Crossref]
  28. D. Z. Zhong, G. Z. Yang, Z. Z. Xiao, Y. Ding, J. T. Xi, N. Zeng, and H. Yang, “Optical chaotic data-selection logic operation with the fast response for picosecond magnitude,” Opt. Express 27(16), 23357–23367 (2019).
    [Crossref]
  29. M. Takenaka, M. Raburn, and Y. Nakano, “All-optical flip-flop multimode interference bistable laser diode,” IEEE Photonics Technol. Lett. 17(5), 968–970 (2005).
    [Crossref]
  30. A. Shinya, S. Mitsugi, T. Tanabe, M. Notomi, I. Yokohama, H. Takara, and S. Kawanishi, “All-optical flip-flop circuit composed of coupled two-port resonant tunneling filter in two-dimensional photonic crystal slab,” Opt. Express 14(3), 1230–1235 (2006).
    [Crossref]
  31. T. Mori, Y. Yamayoshi, and H. Kawaguchi, “Low-switching-energy and high-repetition-frequency all-optical flip-flop operations of a polarization bistable vertical-cavity surface-emitting laser,” Appl. Phys. Lett. 88(10), 101102 (2006).
    [Crossref]
  32. A. Malacarne, J. Wang, Y. Zhang, A. D. Barman, G. Berrettini, L. Potì, and A. Bogoni, “20 ps transition time all-optical soa-based flip-flop used for photonic 10 gb/s switching operation without any bit loss,” IEEE J. Sel. Top. Quantum Electron. 14(3), 808–815 (2008).
    [Crossref]
  33. K. Huybrechts, G. Morthier, and R. Baets, “Fast all-optical flip-flop based on a single distributed feedback laser diode,” Opt. Express 16(15), 11405–11410 (2008).
    [Crossref]
  34. A. Trita, G. Mezosi, M. J. Latorre-Vidal, M. Zanola, M. J. Strain, F. Bragheri, M. Sorel, and G. Guido, “All-optical directional switching in bistable semiconductor-ring lasers,” IEEE J. Quantum Electron. 49(10), 877–885 (2013).
    [Crossref]
  35. S. H. Lee, H. W. Jung, K. H. Kim, and M. H. Lee, “All-optical flip-flop operation based on polarization bistability of conventional-type 1.55-µm wavelength single-mode VCSELs,” J. Opt. Soc. Korea 14(2), 137–141 (2010).
    [Crossref]
  36. D. Hayashi, H. Takahashi, T. Katayama, and H. Kawaguchi, “Bit error rate measurements of all-optical flip-flop operations of a 1.55-µm polarization bistable VCSEL,” J. Lightwave Technol. 32(15), 2671–2677 (2014).
    [Crossref]
  37. X. J. Yang, J. J. Chen, G. Q. Xia, J. Wu, and Z. M. Wu, “Analyses of the time-delay signature and bandwidth of the chaotic output from a master-slave vertical-cavity surface-emitting laser dynamical system,” Acta Phys. Sinica 64(2), 224213 (2015).
    [Crossref]
  38. B. B. Su, J. J. Chen, Z. M. Wu, and G. Q. Xia, “Performances of time-delay signature and bandwidth of the chaos generated by a vertical-cavity surface-emitting laser under chaotic optical injection,” Acta Phys. Sinica 66(24), 224206 (2017).
    [Crossref]
  39. Q. Liang, L. Fan, J. Y. Yang, Z. M. Wu, and G. Q. Xia, “Narrow-linewidth photonic microwave acquisition based on an optically injected 1550 nm vertical-cavity surface-emitting laser under optoelectronic negative feedback,” Acta Phys. Sinica 46(3), 314001 (2017).
    [Crossref]
  40. W. Y. Yang, G. Q. Xia, Y. S. Hou, Z. F. Jiang, T. Deng, and Z. M. Wu, “Experimental investigation on nonlinear dynamics of a multi-transverse mode 1550 nm vertical-cavity surface-emitting laser subject to parallel optical injection,” Acta Phys. Sinica 47(7), 714002 (2018).
    [Crossref]
  41. D. Z. Zhong, G. L. Xu, W. Luo, and Z. Z. Xiao, “Recongurable dynamic all-optical chaotic logic operations in an optically injected VCSEL,” Chin. Phys. B 26(12), 124204 (2017).
    [Crossref]
  42. J. Martin-Regalado, F. Prati, M. S. Miguel, and N. B. Abraham, “Polarization properties of vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 33(5), 765–783 (1997).
    [Crossref]
  43. M. F. Salvide, C. Masoller, and M. S. Torre, “All-optical stochastic logic gate based on a vcsel with tunable optical injection,” IEEE J. Quantum Electron. 49(10), 886–893 (2013).
    [Crossref]

2019 (7)

X. S. Tan, Y. S. Hou, Z. M. Wu, and G. Q. Xia, “Parallel information processing by a reservoir computing system based on a vcsel subject to double optical feedback and optical injection,” Opt. Express 27(18), 26070–26079 (2019).
[Crossref]

N. Jiang, A. K. Zhao, C. P. Xue, J. M. Tang, and K. Qiu, “Physical secure optical communication based on private chaotic spectral phase encryption/decryption,” Opt. Lett. 44(7), 1536–1539 (2019).
[Crossref]

D. Z. Zhong, Z. Z. Xiao, G. Z. Yang, N. Zeng, and H. Yang, “Real-time ranging of the six orientational targets by using chaotic polarization radars in the three-node vcsel network,” Opt. Express 27(7), 9857–9867 (2019).
[Crossref]

Y. Wang, S. Y. Xiang, B. Wang, X. Y. Cao, A. J. Wen, and Y. Hao, “Time-delay signature concealment and physical random bits generation in mutually coupled semiconductor lasers with fbg filtered injection,” Opt. Express 27(6), 8446–8455 (2019).
[Crossref]

S. Y. Xiang, Y. H. Zhang, J. K. Gong, X. X. Guo, L. Lin, and Y. Hao, “Stdp-based unsupervised spike pattern learning in a photonic spiking neural network with vcsels and vcsoas,” IEEE J. Sel. Top. Quantum Electron. 25(6), 1–9 (2019).
[Crossref]

T. V. Lerber, L. Matti, L. V. S Y. Lauri, C. Arkadi, H. Klaus, and K. Franko, “All-optical majority gate based on an injection-locked laser,” Sci. Rep. 9(1), 14576 (2019).
[Crossref]

D. Z. Zhong, G. Z. Yang, Z. Z. Xiao, Y. Ding, J. T. Xi, N. Zeng, and H. Yang, “Optical chaotic data-selection logic operation with the fast response for picosecond magnitude,” Opt. Express 27(16), 23357–23367 (2019).
[Crossref]

2018 (4)

Q. Li, T. Deng, Z. M. Wu, and G. Q. Xia, “Security-enhanced bidirectional long-distance chaos secure communication,” Chin. J. Lasers 45(1), 0106001 (2018).
[Crossref]

A. Apostolos, B. Julián, and F. Ingo, “Photonic machine learning implementation for signal recovery in optical communications,” Sci. Rep. 8(1), 8487 (2018).
[Crossref]

Y. S. Hou, G. Q. Xia, W. Y. Yang, E. J. D. Wang, Z. F. Jiang, C. X. Hu, and Z. M. Wu, “Prediction performance of reservoir computing system based on a semiconductor laser subject to double optical feedback and optical injection,” Opt. Express 26(8), 10211–10219 (2018).
[Crossref]

W. Y. Yang, G. Q. Xia, Y. S. Hou, Z. F. Jiang, T. Deng, and Z. M. Wu, “Experimental investigation on nonlinear dynamics of a multi-transverse mode 1550 nm vertical-cavity surface-emitting laser subject to parallel optical injection,” Acta Phys. Sinica 47(7), 714002 (2018).
[Crossref]

2017 (4)

D. Z. Zhong, G. L. Xu, W. Luo, and Z. Z. Xiao, “Recongurable dynamic all-optical chaotic logic operations in an optically injected VCSEL,” Chin. Phys. B 26(12), 124204 (2017).
[Crossref]

B. B. Su, J. J. Chen, Z. M. Wu, and G. Q. Xia, “Performances of time-delay signature and bandwidth of the chaos generated by a vertical-cavity surface-emitting laser under chaotic optical injection,” Acta Phys. Sinica 66(24), 224206 (2017).
[Crossref]

Q. Liang, L. Fan, J. Y. Yang, Z. M. Wu, and G. Q. Xia, “Narrow-linewidth photonic microwave acquisition based on an optically injected 1550 nm vertical-cavity surface-emitting laser under optoelectronic negative feedback,” Acta Phys. Sinica 46(3), 314001 (2017).
[Crossref]

H. S. Gill, S. S. Gill, and K. S. Bhatia, “A novel chaos-based encryption approach for future-generation passive optical networks using sha-2,” J. Opt. Commun. Netw. 9(12), 1184–1190 (2017).
[Crossref]

2015 (6)

S. Ortín, M. C. Soriano, L. Pesquera, D. Brunner, D. San-Martín, I. Fischer, C. R. Mirasso, and J. M. Gutiérrez, “A unified framework for reservoir computing and extreme learning machines based on a single time-delayed neuron,” Sci. Rep. 5(1), 14945 (2015).
[Crossref]

M. Beyki and M. Yaghoobi, “Chaotic logic gate: A new approach in set and design by genetic algorithm,” Chaos, Solitons Fractals 77, 247–252 (2015).
[Crossref]

S. Sharma and J. Kumar, “Numerical analysis of optical logic gate based on nonlinear optical loop mirror with a photonic crystal fiber,” J. Nonlinear Opt. Phys. Mater. 24(02), 1550019 (2015).
[Crossref]

M. Kazemi, A. M. Tehrani, T. Z. Khan, M. Namboodiri, and A. Materny, “Realization of an ultrafast all-optical toffoli logic gate based on the phase relation between two second order nonlinear optical signals,” Laser Phys. 25(12), 125402 (2015).
[Crossref]

D. Z. Zhong, Y. Q. Ji, and W. Luo, “Controllable optoelectric composite logic gates based on the polarization switching in an optically injected VCSEL,” Opt. Express 23(23), 29823–29833 (2015).
[Crossref]

X. J. Yang, J. J. Chen, G. Q. Xia, J. Wu, and Z. M. Wu, “Analyses of the time-delay signature and bandwidth of the chaotic output from a master-slave vertical-cavity surface-emitting laser dynamical system,” Acta Phys. Sinica 64(2), 224213 (2015).
[Crossref]

2014 (1)

2013 (2)

M. F. Salvide, C. Masoller, and M. S. Torre, “All-optical stochastic logic gate based on a vcsel with tunable optical injection,” IEEE J. Quantum Electron. 49(10), 886–893 (2013).
[Crossref]

A. Trita, G. Mezosi, M. J. Latorre-Vidal, M. Zanola, M. J. Strain, F. Bragheri, M. Sorel, and G. Guido, “All-optical directional switching in bistable semiconductor-ring lasers,” IEEE J. Quantum Electron. 49(10), 877–885 (2013).
[Crossref]

2012 (2)

W. R. Wang, J. L. Yu, J. Luo, B. C. Han, J. Z. Zhong, J. Wang, Y. Liu, and E. Z. Yang, “40 gb/s reconfigurable all-optical logic gate based on nonlinear optical loop mirror,” Acta Opt. Sin. 32(5), 0506003 (2012).
[Crossref]

A. Smerieri, B. Schneider, F. Duport, M. Haelterman, and S. Massar, “All-optical reservoir computing,” Opt. Express 20(20), 22783–22795 (2012).
[Crossref]

2011 (2)

K. P. Singh and S. Sinha, “Enhancement of “logical” responses by noise in a bistable optical system,” Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 83(4), 046219 (2011).
[Crossref]

S. L. Yan, “All-optical and combinational optoelectronic logic gates using chaotic synchronization of coupling-feedback semiconductor lasers and amplitude modulation,” Chin. Sci. Bull. 56(16), 1264–1271 (2011).
[Crossref]

2010 (2)

2008 (6)

A. Malacarne, J. Wang, Y. Zhang, A. D. Barman, G. Berrettini, L. Potì, and A. Bogoni, “20 ps transition time all-optical soa-based flip-flop used for photonic 10 gb/s switching operation without any bit loss,” IEEE J. Sel. Top. Quantum Electron. 14(3), 808–815 (2008).
[Crossref]

K. Huybrechts, G. Morthier, and R. Baets, “Fast all-optical flip-flop based on a single distributed feedback laser diode,” Opt. Express 16(15), 11405–11410 (2008).
[Crossref]

Y. J. Jung, C. W. Son, Y. M. Jhon, S. Lee, and N. Park, “One-level simplification method for all-optical combinational logic circuits,” IEEE Photonics Technol. Lett. 20(10), 800–802 (2008).
[Crossref]

J. J. Dong, X. L. Zhang, S. N. Fu, J. Xu, P. Shum, and D. X. Huang, “Ultrafast all-optical signal processing based on single semiconductor optical amplifier and optical filtering,” IEEE J. Sel. Top. Quantum Electron. 14(3), 770–778 (2008).
[Crossref]

I. Glesk, P. R. Prucnal, and I. Andonovic, “Incoherent ultrafast ocdma receiver design with 2 ps all-optical time gate to suppress multiple-access interference,” IEEE J. Sel. Top. Quantum Electron. 14(3), 861–867 (2008).
[Crossref]

Y. Miyoshi, K. Ikeda, H. Tobioka, T. Inoue, S. Namiki, and K. Kitayama, “Ultrafast all-optical logic gate using a nonlinear optical loop mirror based multi-periodic transfer function,” Opt. Express 16(4), 2570–2577 (2008).
[Crossref]

2006 (2)

A. Shinya, S. Mitsugi, T. Tanabe, M. Notomi, I. Yokohama, H. Takara, and S. Kawanishi, “All-optical flip-flop circuit composed of coupled two-port resonant tunneling filter in two-dimensional photonic crystal slab,” Opt. Express 14(3), 1230–1235 (2006).
[Crossref]

T. Mori, Y. Yamayoshi, and H. Kawaguchi, “Low-switching-energy and high-repetition-frequency all-optical flip-flop operations of a polarization bistable vertical-cavity surface-emitting laser,” Appl. Phys. Lett. 88(10), 101102 (2006).
[Crossref]

2005 (2)

M. Takenaka, M. Raburn, and Y. Nakano, “All-optical flip-flop multimode interference bistable laser diode,” IEEE Photonics Technol. Lett. 17(5), 968–970 (2005).
[Crossref]

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref]

2004 (1)

F. Y. Lin and J. M. Liu, “Chaotic radar using nonlinear laser dynamics,” IEEE J. Quantum Electron. 40(6), 815–820 (2004).
[Crossref]

1997 (1)

J. Martin-Regalado, F. Prati, M. S. Miguel, and N. B. Abraham, “Polarization properties of vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 33(5), 765–783 (1997).
[Crossref]

Abraham, N. B.

J. Martin-Regalado, F. Prati, M. S. Miguel, and N. B. Abraham, “Polarization properties of vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 33(5), 765–783 (1997).
[Crossref]

Andonovic, I.

I. Glesk, P. R. Prucnal, and I. Andonovic, “Incoherent ultrafast ocdma receiver design with 2 ps all-optical time gate to suppress multiple-access interference,” IEEE J. Sel. Top. Quantum Electron. 14(3), 861–867 (2008).
[Crossref]

Annovazzi-Lodi, V.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref]

Apostolos, A.

A. Apostolos, B. Julián, and F. Ingo, “Photonic machine learning implementation for signal recovery in optical communications,” Sci. Rep. 8(1), 8487 (2018).
[Crossref]

Argyris, A.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref]

Arkadi, C.

T. V. Lerber, L. Matti, L. V. S Y. Lauri, C. Arkadi, H. Klaus, and K. Franko, “All-optical majority gate based on an injection-locked laser,” Sci. Rep. 9(1), 14576 (2019).
[Crossref]

Baets, R.

Barman, A. D.

A. Malacarne, J. Wang, Y. Zhang, A. D. Barman, G. Berrettini, L. Potì, and A. Bogoni, “20 ps transition time all-optical soa-based flip-flop used for photonic 10 gb/s switching operation without any bit loss,” IEEE J. Sel. Top. Quantum Electron. 14(3), 808–815 (2008).
[Crossref]

Berrettini, G.

A. Malacarne, J. Wang, Y. Zhang, A. D. Barman, G. Berrettini, L. Potì, and A. Bogoni, “20 ps transition time all-optical soa-based flip-flop used for photonic 10 gb/s switching operation without any bit loss,” IEEE J. Sel. Top. Quantum Electron. 14(3), 808–815 (2008).
[Crossref]

Beyki, M.

M. Beyki and M. Yaghoobi, “Chaotic logic gate: A new approach in set and design by genetic algorithm,” Chaos, Solitons Fractals 77, 247–252 (2015).
[Crossref]

Bhatia, K. S.

Bogoni, A.

A. Malacarne, J. Wang, Y. Zhang, A. D. Barman, G. Berrettini, L. Potì, and A. Bogoni, “20 ps transition time all-optical soa-based flip-flop used for photonic 10 gb/s switching operation without any bit loss,” IEEE J. Sel. Top. Quantum Electron. 14(3), 808–815 (2008).
[Crossref]

Bragheri, F.

A. Trita, G. Mezosi, M. J. Latorre-Vidal, M. Zanola, M. J. Strain, F. Bragheri, M. Sorel, and G. Guido, “All-optical directional switching in bistable semiconductor-ring lasers,” IEEE J. Quantum Electron. 49(10), 877–885 (2013).
[Crossref]

Brunner, D.

S. Ortín, M. C. Soriano, L. Pesquera, D. Brunner, D. San-Martín, I. Fischer, C. R. Mirasso, and J. M. Gutiérrez, “A unified framework for reservoir computing and extreme learning machines based on a single time-delayed neuron,” Sci. Rep. 5(1), 14945 (2015).
[Crossref]

Cao, X. Y.

Chen, J. J.

B. B. Su, J. J. Chen, Z. M. Wu, and G. Q. Xia, “Performances of time-delay signature and bandwidth of the chaos generated by a vertical-cavity surface-emitting laser under chaotic optical injection,” Acta Phys. Sinica 66(24), 224206 (2017).
[Crossref]

X. J. Yang, J. J. Chen, G. Q. Xia, J. Wu, and Z. M. Wu, “Analyses of the time-delay signature and bandwidth of the chaotic output from a master-slave vertical-cavity surface-emitting laser dynamical system,” Acta Phys. Sinica 64(2), 224213 (2015).
[Crossref]

Colet, P.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref]

Deng, T.

W. Y. Yang, G. Q. Xia, Y. S. Hou, Z. F. Jiang, T. Deng, and Z. M. Wu, “Experimental investigation on nonlinear dynamics of a multi-transverse mode 1550 nm vertical-cavity surface-emitting laser subject to parallel optical injection,” Acta Phys. Sinica 47(7), 714002 (2018).
[Crossref]

Q. Li, T. Deng, Z. M. Wu, and G. Q. Xia, “Security-enhanced bidirectional long-distance chaos secure communication,” Chin. J. Lasers 45(1), 0106001 (2018).
[Crossref]

Ding, Y.

Dong, J. J.

J. J. Dong, X. L. Zhang, S. N. Fu, J. Xu, P. Shum, and D. X. Huang, “Ultrafast all-optical signal processing based on single semiconductor optical amplifier and optical filtering,” IEEE J. Sel. Top. Quantum Electron. 14(3), 770–778 (2008).
[Crossref]

Duport, F.

Fan, L.

Q. Liang, L. Fan, J. Y. Yang, Z. M. Wu, and G. Q. Xia, “Narrow-linewidth photonic microwave acquisition based on an optically injected 1550 nm vertical-cavity surface-emitting laser under optoelectronic negative feedback,” Acta Phys. Sinica 46(3), 314001 (2017).
[Crossref]

Fischer, I.

S. Ortín, M. C. Soriano, L. Pesquera, D. Brunner, D. San-Martín, I. Fischer, C. R. Mirasso, and J. M. Gutiérrez, “A unified framework for reservoir computing and extreme learning machines based on a single time-delayed neuron,” Sci. Rep. 5(1), 14945 (2015).
[Crossref]

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref]

Franko, K.

T. V. Lerber, L. Matti, L. V. S Y. Lauri, C. Arkadi, H. Klaus, and K. Franko, “All-optical majority gate based on an injection-locked laser,” Sci. Rep. 9(1), 14576 (2019).
[Crossref]

Fu, S. N.

J. J. Dong, X. L. Zhang, S. N. Fu, J. Xu, P. Shum, and D. X. Huang, “Ultrafast all-optical signal processing based on single semiconductor optical amplifier and optical filtering,” IEEE J. Sel. Top. Quantum Electron. 14(3), 770–778 (2008).
[Crossref]

García-Ojalvo, J.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref]

Gill, H. S.

Gill, S. S.

Glesk, I.

I. Glesk, P. R. Prucnal, and I. Andonovic, “Incoherent ultrafast ocdma receiver design with 2 ps all-optical time gate to suppress multiple-access interference,” IEEE J. Sel. Top. Quantum Electron. 14(3), 861–867 (2008).
[Crossref]

Gong, J. K.

S. Y. Xiang, Y. H. Zhang, J. K. Gong, X. X. Guo, L. Lin, and Y. Hao, “Stdp-based unsupervised spike pattern learning in a photonic spiking neural network with vcsels and vcsoas,” IEEE J. Sel. Top. Quantum Electron. 25(6), 1–9 (2019).
[Crossref]

Guido, G.

A. Trita, G. Mezosi, M. J. Latorre-Vidal, M. Zanola, M. J. Strain, F. Bragheri, M. Sorel, and G. Guido, “All-optical directional switching in bistable semiconductor-ring lasers,” IEEE J. Quantum Electron. 49(10), 877–885 (2013).
[Crossref]

Guo, X. X.

S. Y. Xiang, Y. H. Zhang, J. K. Gong, X. X. Guo, L. Lin, and Y. Hao, “Stdp-based unsupervised spike pattern learning in a photonic spiking neural network with vcsels and vcsoas,” IEEE J. Sel. Top. Quantum Electron. 25(6), 1–9 (2019).
[Crossref]

Gutiérrez, J. M.

S. Ortín, M. C. Soriano, L. Pesquera, D. Brunner, D. San-Martín, I. Fischer, C. R. Mirasso, and J. M. Gutiérrez, “A unified framework for reservoir computing and extreme learning machines based on a single time-delayed neuron,” Sci. Rep. 5(1), 14945 (2015).
[Crossref]

Haelterman, M.

Han, B. C.

W. R. Wang, J. L. Yu, J. Luo, B. C. Han, J. Z. Zhong, J. Wang, Y. Liu, and E. Z. Yang, “40 gb/s reconfigurable all-optical logic gate based on nonlinear optical loop mirror,” Acta Opt. Sin. 32(5), 0506003 (2012).
[Crossref]

Hao, Y.

S. Y. Xiang, Y. H. Zhang, J. K. Gong, X. X. Guo, L. Lin, and Y. Hao, “Stdp-based unsupervised spike pattern learning in a photonic spiking neural network with vcsels and vcsoas,” IEEE J. Sel. Top. Quantum Electron. 25(6), 1–9 (2019).
[Crossref]

Y. Wang, S. Y. Xiang, B. Wang, X. Y. Cao, A. J. Wen, and Y. Hao, “Time-delay signature concealment and physical random bits generation in mutually coupled semiconductor lasers with fbg filtered injection,” Opt. Express 27(6), 8446–8455 (2019).
[Crossref]

Hayashi, D.

Hou, Y. S.

Hu, C. X.

Huang, D. X.

J. J. Dong, X. L. Zhang, S. N. Fu, J. Xu, P. Shum, and D. X. Huang, “Ultrafast all-optical signal processing based on single semiconductor optical amplifier and optical filtering,” IEEE J. Sel. Top. Quantum Electron. 14(3), 770–778 (2008).
[Crossref]

Huybrechts, K.

Ikeda, K.

Ingo, F.

A. Apostolos, B. Julián, and F. Ingo, “Photonic machine learning implementation for signal recovery in optical communications,” Sci. Rep. 8(1), 8487 (2018).
[Crossref]

Inoue, T.

Jhon, Y. M.

Y. J. Jung, C. W. Son, Y. M. Jhon, S. Lee, and N. Park, “One-level simplification method for all-optical combinational logic circuits,” IEEE Photonics Technol. Lett. 20(10), 800–802 (2008).
[Crossref]

Ji, Y. Q.

Jiang, N.

Jiang, Z. F.

W. Y. Yang, G. Q. Xia, Y. S. Hou, Z. F. Jiang, T. Deng, and Z. M. Wu, “Experimental investigation on nonlinear dynamics of a multi-transverse mode 1550 nm vertical-cavity surface-emitting laser subject to parallel optical injection,” Acta Phys. Sinica 47(7), 714002 (2018).
[Crossref]

Y. S. Hou, G. Q. Xia, W. Y. Yang, E. J. D. Wang, Z. F. Jiang, C. X. Hu, and Z. M. Wu, “Prediction performance of reservoir computing system based on a semiconductor laser subject to double optical feedback and optical injection,” Opt. Express 26(8), 10211–10219 (2018).
[Crossref]

Julián, B.

A. Apostolos, B. Julián, and F. Ingo, “Photonic machine learning implementation for signal recovery in optical communications,” Sci. Rep. 8(1), 8487 (2018).
[Crossref]

Jung, H. W.

Jung, Y. J.

Y. J. Jung, C. W. Son, Y. M. Jhon, S. Lee, and N. Park, “One-level simplification method for all-optical combinational logic circuits,” IEEE Photonics Technol. Lett. 20(10), 800–802 (2008).
[Crossref]

Katayama, T.

Kawaguchi, H.

D. Hayashi, H. Takahashi, T. Katayama, and H. Kawaguchi, “Bit error rate measurements of all-optical flip-flop operations of a 1.55-µm polarization bistable VCSEL,” J. Lightwave Technol. 32(15), 2671–2677 (2014).
[Crossref]

T. Mori, Y. Yamayoshi, and H. Kawaguchi, “Low-switching-energy and high-repetition-frequency all-optical flip-flop operations of a polarization bistable vertical-cavity surface-emitting laser,” Appl. Phys. Lett. 88(10), 101102 (2006).
[Crossref]

Kawanishi, S.

Kazemi, M.

M. Kazemi, A. M. Tehrani, T. Z. Khan, M. Namboodiri, and A. Materny, “Realization of an ultrafast all-optical toffoli logic gate based on the phase relation between two second order nonlinear optical signals,” Laser Phys. 25(12), 125402 (2015).
[Crossref]

Khan, T. Z.

M. Kazemi, A. M. Tehrani, T. Z. Khan, M. Namboodiri, and A. Materny, “Realization of an ultrafast all-optical toffoli logic gate based on the phase relation between two second order nonlinear optical signals,” Laser Phys. 25(12), 125402 (2015).
[Crossref]

Kim, K. H.

Kitayama, K.

Klaus, H.

T. V. Lerber, L. Matti, L. V. S Y. Lauri, C. Arkadi, H. Klaus, and K. Franko, “All-optical majority gate based on an injection-locked laser,” Sci. Rep. 9(1), 14576 (2019).
[Crossref]

Kumar, J.

S. Sharma and J. Kumar, “Numerical analysis of optical logic gate based on nonlinear optical loop mirror with a photonic crystal fiber,” J. Nonlinear Opt. Phys. Mater. 24(02), 1550019 (2015).
[Crossref]

Larger, L.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref]

Latorre-Vidal, M. J.

A. Trita, G. Mezosi, M. J. Latorre-Vidal, M. Zanola, M. J. Strain, F. Bragheri, M. Sorel, and G. Guido, “All-optical directional switching in bistable semiconductor-ring lasers,” IEEE J. Quantum Electron. 49(10), 877–885 (2013).
[Crossref]

Lee, M. H.

Lee, S.

Y. J. Jung, C. W. Son, Y. M. Jhon, S. Lee, and N. Park, “One-level simplification method for all-optical combinational logic circuits,” IEEE Photonics Technol. Lett. 20(10), 800–802 (2008).
[Crossref]

Lee, S. H.

Lerber, T. V.

T. V. Lerber, L. Matti, L. V. S Y. Lauri, C. Arkadi, H. Klaus, and K. Franko, “All-optical majority gate based on an injection-locked laser,” Sci. Rep. 9(1), 14576 (2019).
[Crossref]

Li, Q.

Q. Li, T. Deng, Z. M. Wu, and G. Q. Xia, “Security-enhanced bidirectional long-distance chaos secure communication,” Chin. J. Lasers 45(1), 0106001 (2018).
[Crossref]

Liang, Q.

Q. Liang, L. Fan, J. Y. Yang, Z. M. Wu, and G. Q. Xia, “Narrow-linewidth photonic microwave acquisition based on an optically injected 1550 nm vertical-cavity surface-emitting laser under optoelectronic negative feedback,” Acta Phys. Sinica 46(3), 314001 (2017).
[Crossref]

Lin, F. Y.

F. Y. Lin and J. M. Liu, “Chaotic radar using nonlinear laser dynamics,” IEEE J. Quantum Electron. 40(6), 815–820 (2004).
[Crossref]

Lin, L.

S. Y. Xiang, Y. H. Zhang, J. K. Gong, X. X. Guo, L. Lin, and Y. Hao, “Stdp-based unsupervised spike pattern learning in a photonic spiking neural network with vcsels and vcsoas,” IEEE J. Sel. Top. Quantum Electron. 25(6), 1–9 (2019).
[Crossref]

Liu, J. M.

F. Y. Lin and J. M. Liu, “Chaotic radar using nonlinear laser dynamics,” IEEE J. Quantum Electron. 40(6), 815–820 (2004).
[Crossref]

Liu, Y.

W. R. Wang, J. L. Yu, J. Luo, B. C. Han, J. Z. Zhong, J. Wang, Y. Liu, and E. Z. Yang, “40 gb/s reconfigurable all-optical logic gate based on nonlinear optical loop mirror,” Acta Opt. Sin. 32(5), 0506003 (2012).
[Crossref]

Luo, J.

W. R. Wang, J. L. Yu, J. Luo, B. C. Han, J. Z. Zhong, J. Wang, Y. Liu, and E. Z. Yang, “40 gb/s reconfigurable all-optical logic gate based on nonlinear optical loop mirror,” Acta Opt. Sin. 32(5), 0506003 (2012).
[Crossref]

Luo, W.

D. Z. Zhong, G. L. Xu, W. Luo, and Z. Z. Xiao, “Recongurable dynamic all-optical chaotic logic operations in an optically injected VCSEL,” Chin. Phys. B 26(12), 124204 (2017).
[Crossref]

D. Z. Zhong, Y. Q. Ji, and W. Luo, “Controllable optoelectric composite logic gates based on the polarization switching in an optically injected VCSEL,” Opt. Express 23(23), 29823–29833 (2015).
[Crossref]

Malacarne, A.

A. Malacarne, J. Wang, Y. Zhang, A. D. Barman, G. Berrettini, L. Potì, and A. Bogoni, “20 ps transition time all-optical soa-based flip-flop used for photonic 10 gb/s switching operation without any bit loss,” IEEE J. Sel. Top. Quantum Electron. 14(3), 808–815 (2008).
[Crossref]

Martin-Regalado, J.

J. Martin-Regalado, F. Prati, M. S. Miguel, and N. B. Abraham, “Polarization properties of vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 33(5), 765–783 (1997).
[Crossref]

Masoller, C.

M. F. Salvide, C. Masoller, and M. S. Torre, “All-optical stochastic logic gate based on a vcsel with tunable optical injection,” IEEE J. Quantum Electron. 49(10), 886–893 (2013).
[Crossref]

J. Zamora-Munt and C. Masoller, “Numerical implementation of a VCSEL-based stochastic logic gate via polarization bistability,” Opt. Express 18(16), 16418–16429 (2010).
[Crossref]

Massar, S.

Materny, A.

M. Kazemi, A. M. Tehrani, T. Z. Khan, M. Namboodiri, and A. Materny, “Realization of an ultrafast all-optical toffoli logic gate based on the phase relation between two second order nonlinear optical signals,” Laser Phys. 25(12), 125402 (2015).
[Crossref]

Matti, L.

T. V. Lerber, L. Matti, L. V. S Y. Lauri, C. Arkadi, H. Klaus, and K. Franko, “All-optical majority gate based on an injection-locked laser,” Sci. Rep. 9(1), 14576 (2019).
[Crossref]

Mezosi, G.

A. Trita, G. Mezosi, M. J. Latorre-Vidal, M. Zanola, M. J. Strain, F. Bragheri, M. Sorel, and G. Guido, “All-optical directional switching in bistable semiconductor-ring lasers,” IEEE J. Quantum Electron. 49(10), 877–885 (2013).
[Crossref]

Miguel, M. S.

J. Martin-Regalado, F. Prati, M. S. Miguel, and N. B. Abraham, “Polarization properties of vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 33(5), 765–783 (1997).
[Crossref]

Mirasso, C. R.

S. Ortín, M. C. Soriano, L. Pesquera, D. Brunner, D. San-Martín, I. Fischer, C. R. Mirasso, and J. M. Gutiérrez, “A unified framework for reservoir computing and extreme learning machines based on a single time-delayed neuron,” Sci. Rep. 5(1), 14945 (2015).
[Crossref]

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref]

Mitsugi, S.

Miyoshi, Y.

Mori, T.

T. Mori, Y. Yamayoshi, and H. Kawaguchi, “Low-switching-energy and high-repetition-frequency all-optical flip-flop operations of a polarization bistable vertical-cavity surface-emitting laser,” Appl. Phys. Lett. 88(10), 101102 (2006).
[Crossref]

Morthier, G.

Nakano, Y.

M. Takenaka, M. Raburn, and Y. Nakano, “All-optical flip-flop multimode interference bistable laser diode,” IEEE Photonics Technol. Lett. 17(5), 968–970 (2005).
[Crossref]

Namboodiri, M.

M. Kazemi, A. M. Tehrani, T. Z. Khan, M. Namboodiri, and A. Materny, “Realization of an ultrafast all-optical toffoli logic gate based on the phase relation between two second order nonlinear optical signals,” Laser Phys. 25(12), 125402 (2015).
[Crossref]

Namiki, S.

Notomi, M.

Ortín, S.

S. Ortín, M. C. Soriano, L. Pesquera, D. Brunner, D. San-Martín, I. Fischer, C. R. Mirasso, and J. M. Gutiérrez, “A unified framework for reservoir computing and extreme learning machines based on a single time-delayed neuron,” Sci. Rep. 5(1), 14945 (2015).
[Crossref]

Park, N.

Y. J. Jung, C. W. Son, Y. M. Jhon, S. Lee, and N. Park, “One-level simplification method for all-optical combinational logic circuits,” IEEE Photonics Technol. Lett. 20(10), 800–802 (2008).
[Crossref]

Pesquera, L.

S. Ortín, M. C. Soriano, L. Pesquera, D. Brunner, D. San-Martín, I. Fischer, C. R. Mirasso, and J. M. Gutiérrez, “A unified framework for reservoir computing and extreme learning machines based on a single time-delayed neuron,” Sci. Rep. 5(1), 14945 (2015).
[Crossref]

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref]

Potì, L.

A. Malacarne, J. Wang, Y. Zhang, A. D. Barman, G. Berrettini, L. Potì, and A. Bogoni, “20 ps transition time all-optical soa-based flip-flop used for photonic 10 gb/s switching operation without any bit loss,” IEEE J. Sel. Top. Quantum Electron. 14(3), 808–815 (2008).
[Crossref]

Prati, F.

J. Martin-Regalado, F. Prati, M. S. Miguel, and N. B. Abraham, “Polarization properties of vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 33(5), 765–783 (1997).
[Crossref]

Prucnal, P. R.

I. Glesk, P. R. Prucnal, and I. Andonovic, “Incoherent ultrafast ocdma receiver design with 2 ps all-optical time gate to suppress multiple-access interference,” IEEE J. Sel. Top. Quantum Electron. 14(3), 861–867 (2008).
[Crossref]

Qiu, K.

Raburn, M.

M. Takenaka, M. Raburn, and Y. Nakano, “All-optical flip-flop multimode interference bistable laser diode,” IEEE Photonics Technol. Lett. 17(5), 968–970 (2005).
[Crossref]

Salvide, M. F.

M. F. Salvide, C. Masoller, and M. S. Torre, “All-optical stochastic logic gate based on a vcsel with tunable optical injection,” IEEE J. Quantum Electron. 49(10), 886–893 (2013).
[Crossref]

San-Martín, D.

S. Ortín, M. C. Soriano, L. Pesquera, D. Brunner, D. San-Martín, I. Fischer, C. R. Mirasso, and J. M. Gutiérrez, “A unified framework for reservoir computing and extreme learning machines based on a single time-delayed neuron,” Sci. Rep. 5(1), 14945 (2015).
[Crossref]

Schneider, B.

Sharma, S.

S. Sharma and J. Kumar, “Numerical analysis of optical logic gate based on nonlinear optical loop mirror with a photonic crystal fiber,” J. Nonlinear Opt. Phys. Mater. 24(02), 1550019 (2015).
[Crossref]

Shinya, A.

Shore, K. A.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref]

Shum, P.

J. J. Dong, X. L. Zhang, S. N. Fu, J. Xu, P. Shum, and D. X. Huang, “Ultrafast all-optical signal processing based on single semiconductor optical amplifier and optical filtering,” IEEE J. Sel. Top. Quantum Electron. 14(3), 770–778 (2008).
[Crossref]

Singh, K. P.

K. P. Singh and S. Sinha, “Enhancement of “logical” responses by noise in a bistable optical system,” Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 83(4), 046219 (2011).
[Crossref]

Sinha, S.

K. P. Singh and S. Sinha, “Enhancement of “logical” responses by noise in a bistable optical system,” Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 83(4), 046219 (2011).
[Crossref]

Smerieri, A.

Son, C. W.

Y. J. Jung, C. W. Son, Y. M. Jhon, S. Lee, and N. Park, “One-level simplification method for all-optical combinational logic circuits,” IEEE Photonics Technol. Lett. 20(10), 800–802 (2008).
[Crossref]

Sorel, M.

A. Trita, G. Mezosi, M. J. Latorre-Vidal, M. Zanola, M. J. Strain, F. Bragheri, M. Sorel, and G. Guido, “All-optical directional switching in bistable semiconductor-ring lasers,” IEEE J. Quantum Electron. 49(10), 877–885 (2013).
[Crossref]

Soriano, M. C.

S. Ortín, M. C. Soriano, L. Pesquera, D. Brunner, D. San-Martín, I. Fischer, C. R. Mirasso, and J. M. Gutiérrez, “A unified framework for reservoir computing and extreme learning machines based on a single time-delayed neuron,” Sci. Rep. 5(1), 14945 (2015).
[Crossref]

Strain, M. J.

A. Trita, G. Mezosi, M. J. Latorre-Vidal, M. Zanola, M. J. Strain, F. Bragheri, M. Sorel, and G. Guido, “All-optical directional switching in bistable semiconductor-ring lasers,” IEEE J. Quantum Electron. 49(10), 877–885 (2013).
[Crossref]

Su, B. B.

B. B. Su, J. J. Chen, Z. M. Wu, and G. Q. Xia, “Performances of time-delay signature and bandwidth of the chaos generated by a vertical-cavity surface-emitting laser under chaotic optical injection,” Acta Phys. Sinica 66(24), 224206 (2017).
[Crossref]

Syvridis, D.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref]

Takahashi, H.

Takara, H.

Takenaka, M.

M. Takenaka, M. Raburn, and Y. Nakano, “All-optical flip-flop multimode interference bistable laser diode,” IEEE Photonics Technol. Lett. 17(5), 968–970 (2005).
[Crossref]

Tan, X. S.

Tanabe, T.

Tang, J. M.

Tehrani, A. M.

M. Kazemi, A. M. Tehrani, T. Z. Khan, M. Namboodiri, and A. Materny, “Realization of an ultrafast all-optical toffoli logic gate based on the phase relation between two second order nonlinear optical signals,” Laser Phys. 25(12), 125402 (2015).
[Crossref]

Tobioka, H.

Torre, M. S.

M. F. Salvide, C. Masoller, and M. S. Torre, “All-optical stochastic logic gate based on a vcsel with tunable optical injection,” IEEE J. Quantum Electron. 49(10), 886–893 (2013).
[Crossref]

Trita, A.

A. Trita, G. Mezosi, M. J. Latorre-Vidal, M. Zanola, M. J. Strain, F. Bragheri, M. Sorel, and G. Guido, “All-optical directional switching in bistable semiconductor-ring lasers,” IEEE J. Quantum Electron. 49(10), 877–885 (2013).
[Crossref]

Wang, B.

Wang, E. J. D.

Wang, J.

W. R. Wang, J. L. Yu, J. Luo, B. C. Han, J. Z. Zhong, J. Wang, Y. Liu, and E. Z. Yang, “40 gb/s reconfigurable all-optical logic gate based on nonlinear optical loop mirror,” Acta Opt. Sin. 32(5), 0506003 (2012).
[Crossref]

A. Malacarne, J. Wang, Y. Zhang, A. D. Barman, G. Berrettini, L. Potì, and A. Bogoni, “20 ps transition time all-optical soa-based flip-flop used for photonic 10 gb/s switching operation without any bit loss,” IEEE J. Sel. Top. Quantum Electron. 14(3), 808–815 (2008).
[Crossref]

Wang, W. R.

W. R. Wang, J. L. Yu, J. Luo, B. C. Han, J. Z. Zhong, J. Wang, Y. Liu, and E. Z. Yang, “40 gb/s reconfigurable all-optical logic gate based on nonlinear optical loop mirror,” Acta Opt. Sin. 32(5), 0506003 (2012).
[Crossref]

Wang, Y.

Wen, A. J.

Wu, J.

X. J. Yang, J. J. Chen, G. Q. Xia, J. Wu, and Z. M. Wu, “Analyses of the time-delay signature and bandwidth of the chaotic output from a master-slave vertical-cavity surface-emitting laser dynamical system,” Acta Phys. Sinica 64(2), 224213 (2015).
[Crossref]

Wu, Z. M.

X. S. Tan, Y. S. Hou, Z. M. Wu, and G. Q. Xia, “Parallel information processing by a reservoir computing system based on a vcsel subject to double optical feedback and optical injection,” Opt. Express 27(18), 26070–26079 (2019).
[Crossref]

Y. S. Hou, G. Q. Xia, W. Y. Yang, E. J. D. Wang, Z. F. Jiang, C. X. Hu, and Z. M. Wu, “Prediction performance of reservoir computing system based on a semiconductor laser subject to double optical feedback and optical injection,” Opt. Express 26(8), 10211–10219 (2018).
[Crossref]

W. Y. Yang, G. Q. Xia, Y. S. Hou, Z. F. Jiang, T. Deng, and Z. M. Wu, “Experimental investigation on nonlinear dynamics of a multi-transverse mode 1550 nm vertical-cavity surface-emitting laser subject to parallel optical injection,” Acta Phys. Sinica 47(7), 714002 (2018).
[Crossref]

Q. Li, T. Deng, Z. M. Wu, and G. Q. Xia, “Security-enhanced bidirectional long-distance chaos secure communication,” Chin. J. Lasers 45(1), 0106001 (2018).
[Crossref]

Q. Liang, L. Fan, J. Y. Yang, Z. M. Wu, and G. Q. Xia, “Narrow-linewidth photonic microwave acquisition based on an optically injected 1550 nm vertical-cavity surface-emitting laser under optoelectronic negative feedback,” Acta Phys. Sinica 46(3), 314001 (2017).
[Crossref]

B. B. Su, J. J. Chen, Z. M. Wu, and G. Q. Xia, “Performances of time-delay signature and bandwidth of the chaos generated by a vertical-cavity surface-emitting laser under chaotic optical injection,” Acta Phys. Sinica 66(24), 224206 (2017).
[Crossref]

X. J. Yang, J. J. Chen, G. Q. Xia, J. Wu, and Z. M. Wu, “Analyses of the time-delay signature and bandwidth of the chaotic output from a master-slave vertical-cavity surface-emitting laser dynamical system,” Acta Phys. Sinica 64(2), 224213 (2015).
[Crossref]

Xi, J. T.

Xia, G. Q.

X. S. Tan, Y. S. Hou, Z. M. Wu, and G. Q. Xia, “Parallel information processing by a reservoir computing system based on a vcsel subject to double optical feedback and optical injection,” Opt. Express 27(18), 26070–26079 (2019).
[Crossref]

Y. S. Hou, G. Q. Xia, W. Y. Yang, E. J. D. Wang, Z. F. Jiang, C. X. Hu, and Z. M. Wu, “Prediction performance of reservoir computing system based on a semiconductor laser subject to double optical feedback and optical injection,” Opt. Express 26(8), 10211–10219 (2018).
[Crossref]

Q. Li, T. Deng, Z. M. Wu, and G. Q. Xia, “Security-enhanced bidirectional long-distance chaos secure communication,” Chin. J. Lasers 45(1), 0106001 (2018).
[Crossref]

W. Y. Yang, G. Q. Xia, Y. S. Hou, Z. F. Jiang, T. Deng, and Z. M. Wu, “Experimental investigation on nonlinear dynamics of a multi-transverse mode 1550 nm vertical-cavity surface-emitting laser subject to parallel optical injection,” Acta Phys. Sinica 47(7), 714002 (2018).
[Crossref]

Q. Liang, L. Fan, J. Y. Yang, Z. M. Wu, and G. Q. Xia, “Narrow-linewidth photonic microwave acquisition based on an optically injected 1550 nm vertical-cavity surface-emitting laser under optoelectronic negative feedback,” Acta Phys. Sinica 46(3), 314001 (2017).
[Crossref]

B. B. Su, J. J. Chen, Z. M. Wu, and G. Q. Xia, “Performances of time-delay signature and bandwidth of the chaos generated by a vertical-cavity surface-emitting laser under chaotic optical injection,” Acta Phys. Sinica 66(24), 224206 (2017).
[Crossref]

X. J. Yang, J. J. Chen, G. Q. Xia, J. Wu, and Z. M. Wu, “Analyses of the time-delay signature and bandwidth of the chaotic output from a master-slave vertical-cavity surface-emitting laser dynamical system,” Acta Phys. Sinica 64(2), 224213 (2015).
[Crossref]

Xiang, S. Y.

Y. Wang, S. Y. Xiang, B. Wang, X. Y. Cao, A. J. Wen, and Y. Hao, “Time-delay signature concealment and physical random bits generation in mutually coupled semiconductor lasers with fbg filtered injection,” Opt. Express 27(6), 8446–8455 (2019).
[Crossref]

S. Y. Xiang, Y. H. Zhang, J. K. Gong, X. X. Guo, L. Lin, and Y. Hao, “Stdp-based unsupervised spike pattern learning in a photonic spiking neural network with vcsels and vcsoas,” IEEE J. Sel. Top. Quantum Electron. 25(6), 1–9 (2019).
[Crossref]

Xiao, Z. Z.

Xu, G. L.

D. Z. Zhong, G. L. Xu, W. Luo, and Z. Z. Xiao, “Recongurable dynamic all-optical chaotic logic operations in an optically injected VCSEL,” Chin. Phys. B 26(12), 124204 (2017).
[Crossref]

Xu, J.

J. J. Dong, X. L. Zhang, S. N. Fu, J. Xu, P. Shum, and D. X. Huang, “Ultrafast all-optical signal processing based on single semiconductor optical amplifier and optical filtering,” IEEE J. Sel. Top. Quantum Electron. 14(3), 770–778 (2008).
[Crossref]

Xue, C. P.

Y. Lauri, L. V. S

T. V. Lerber, L. Matti, L. V. S Y. Lauri, C. Arkadi, H. Klaus, and K. Franko, “All-optical majority gate based on an injection-locked laser,” Sci. Rep. 9(1), 14576 (2019).
[Crossref]

Yaghoobi, M.

M. Beyki and M. Yaghoobi, “Chaotic logic gate: A new approach in set and design by genetic algorithm,” Chaos, Solitons Fractals 77, 247–252 (2015).
[Crossref]

Yamayoshi, Y.

T. Mori, Y. Yamayoshi, and H. Kawaguchi, “Low-switching-energy and high-repetition-frequency all-optical flip-flop operations of a polarization bistable vertical-cavity surface-emitting laser,” Appl. Phys. Lett. 88(10), 101102 (2006).
[Crossref]

Yan, S. L.

S. L. Yan, “All-optical and combinational optoelectronic logic gates using chaotic synchronization of coupling-feedback semiconductor lasers and amplitude modulation,” Chin. Sci. Bull. 56(16), 1264–1271 (2011).
[Crossref]

S. L. Yan, “Many all-optical logic gates for optics computation using chaotic laser synchronization,” The 2015 11th Int. Conf. on Nat. Comput. pp. 578–582 (2015).

Yang, E. Z.

W. R. Wang, J. L. Yu, J. Luo, B. C. Han, J. Z. Zhong, J. Wang, Y. Liu, and E. Z. Yang, “40 gb/s reconfigurable all-optical logic gate based on nonlinear optical loop mirror,” Acta Opt. Sin. 32(5), 0506003 (2012).
[Crossref]

Yang, G. Z.

Yang, H.

Yang, J. Y.

Q. Liang, L. Fan, J. Y. Yang, Z. M. Wu, and G. Q. Xia, “Narrow-linewidth photonic microwave acquisition based on an optically injected 1550 nm vertical-cavity surface-emitting laser under optoelectronic negative feedback,” Acta Phys. Sinica 46(3), 314001 (2017).
[Crossref]

Yang, W. Y.

W. Y. Yang, G. Q. Xia, Y. S. Hou, Z. F. Jiang, T. Deng, and Z. M. Wu, “Experimental investigation on nonlinear dynamics of a multi-transverse mode 1550 nm vertical-cavity surface-emitting laser subject to parallel optical injection,” Acta Phys. Sinica 47(7), 714002 (2018).
[Crossref]

Y. S. Hou, G. Q. Xia, W. Y. Yang, E. J. D. Wang, Z. F. Jiang, C. X. Hu, and Z. M. Wu, “Prediction performance of reservoir computing system based on a semiconductor laser subject to double optical feedback and optical injection,” Opt. Express 26(8), 10211–10219 (2018).
[Crossref]

Yang, X. J.

X. J. Yang, J. J. Chen, G. Q. Xia, J. Wu, and Z. M. Wu, “Analyses of the time-delay signature and bandwidth of the chaotic output from a master-slave vertical-cavity surface-emitting laser dynamical system,” Acta Phys. Sinica 64(2), 224213 (2015).
[Crossref]

Yokohama, I.

Yu, J. L.

W. R. Wang, J. L. Yu, J. Luo, B. C. Han, J. Z. Zhong, J. Wang, Y. Liu, and E. Z. Yang, “40 gb/s reconfigurable all-optical logic gate based on nonlinear optical loop mirror,” Acta Opt. Sin. 32(5), 0506003 (2012).
[Crossref]

Zamora-Munt, J.

Zanola, M.

A. Trita, G. Mezosi, M. J. Latorre-Vidal, M. Zanola, M. J. Strain, F. Bragheri, M. Sorel, and G. Guido, “All-optical directional switching in bistable semiconductor-ring lasers,” IEEE J. Quantum Electron. 49(10), 877–885 (2013).
[Crossref]

Zeng, N.

Zhang, X. L.

J. J. Dong, X. L. Zhang, S. N. Fu, J. Xu, P. Shum, and D. X. Huang, “Ultrafast all-optical signal processing based on single semiconductor optical amplifier and optical filtering,” IEEE J. Sel. Top. Quantum Electron. 14(3), 770–778 (2008).
[Crossref]

Zhang, Y.

A. Malacarne, J. Wang, Y. Zhang, A. D. Barman, G. Berrettini, L. Potì, and A. Bogoni, “20 ps transition time all-optical soa-based flip-flop used for photonic 10 gb/s switching operation without any bit loss,” IEEE J. Sel. Top. Quantum Electron. 14(3), 808–815 (2008).
[Crossref]

Zhang, Y. H.

S. Y. Xiang, Y. H. Zhang, J. K. Gong, X. X. Guo, L. Lin, and Y. Hao, “Stdp-based unsupervised spike pattern learning in a photonic spiking neural network with vcsels and vcsoas,” IEEE J. Sel. Top. Quantum Electron. 25(6), 1–9 (2019).
[Crossref]

Zhao, A. K.

Zhong, D. Z.

Zhong, J. Z.

W. R. Wang, J. L. Yu, J. Luo, B. C. Han, J. Z. Zhong, J. Wang, Y. Liu, and E. Z. Yang, “40 gb/s reconfigurable all-optical logic gate based on nonlinear optical loop mirror,” Acta Opt. Sin. 32(5), 0506003 (2012).
[Crossref]

Acta Opt. Sin. (1)

W. R. Wang, J. L. Yu, J. Luo, B. C. Han, J. Z. Zhong, J. Wang, Y. Liu, and E. Z. Yang, “40 gb/s reconfigurable all-optical logic gate based on nonlinear optical loop mirror,” Acta Opt. Sin. 32(5), 0506003 (2012).
[Crossref]

Acta Phys. Sinica (4)

X. J. Yang, J. J. Chen, G. Q. Xia, J. Wu, and Z. M. Wu, “Analyses of the time-delay signature and bandwidth of the chaotic output from a master-slave vertical-cavity surface-emitting laser dynamical system,” Acta Phys. Sinica 64(2), 224213 (2015).
[Crossref]

B. B. Su, J. J. Chen, Z. M. Wu, and G. Q. Xia, “Performances of time-delay signature and bandwidth of the chaos generated by a vertical-cavity surface-emitting laser under chaotic optical injection,” Acta Phys. Sinica 66(24), 224206 (2017).
[Crossref]

Q. Liang, L. Fan, J. Y. Yang, Z. M. Wu, and G. Q. Xia, “Narrow-linewidth photonic microwave acquisition based on an optically injected 1550 nm vertical-cavity surface-emitting laser under optoelectronic negative feedback,” Acta Phys. Sinica 46(3), 314001 (2017).
[Crossref]

W. Y. Yang, G. Q. Xia, Y. S. Hou, Z. F. Jiang, T. Deng, and Z. M. Wu, “Experimental investigation on nonlinear dynamics of a multi-transverse mode 1550 nm vertical-cavity surface-emitting laser subject to parallel optical injection,” Acta Phys. Sinica 47(7), 714002 (2018).
[Crossref]

Appl. Phys. Lett. (1)

T. Mori, Y. Yamayoshi, and H. Kawaguchi, “Low-switching-energy and high-repetition-frequency all-optical flip-flop operations of a polarization bistable vertical-cavity surface-emitting laser,” Appl. Phys. Lett. 88(10), 101102 (2006).
[Crossref]

Chaos, Solitons Fractals (1)

M. Beyki and M. Yaghoobi, “Chaotic logic gate: A new approach in set and design by genetic algorithm,” Chaos, Solitons Fractals 77, 247–252 (2015).
[Crossref]

Chin. J. Lasers (1)

Q. Li, T. Deng, Z. M. Wu, and G. Q. Xia, “Security-enhanced bidirectional long-distance chaos secure communication,” Chin. J. Lasers 45(1), 0106001 (2018).
[Crossref]

Chin. Phys. B (1)

D. Z. Zhong, G. L. Xu, W. Luo, and Z. Z. Xiao, “Recongurable dynamic all-optical chaotic logic operations in an optically injected VCSEL,” Chin. Phys. B 26(12), 124204 (2017).
[Crossref]

Chin. Sci. Bull. (1)

S. L. Yan, “All-optical and combinational optoelectronic logic gates using chaotic synchronization of coupling-feedback semiconductor lasers and amplitude modulation,” Chin. Sci. Bull. 56(16), 1264–1271 (2011).
[Crossref]

IEEE J. Quantum Electron. (4)

F. Y. Lin and J. M. Liu, “Chaotic radar using nonlinear laser dynamics,” IEEE J. Quantum Electron. 40(6), 815–820 (2004).
[Crossref]

J. Martin-Regalado, F. Prati, M. S. Miguel, and N. B. Abraham, “Polarization properties of vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 33(5), 765–783 (1997).
[Crossref]

M. F. Salvide, C. Masoller, and M. S. Torre, “All-optical stochastic logic gate based on a vcsel with tunable optical injection,” IEEE J. Quantum Electron. 49(10), 886–893 (2013).
[Crossref]

A. Trita, G. Mezosi, M. J. Latorre-Vidal, M. Zanola, M. J. Strain, F. Bragheri, M. Sorel, and G. Guido, “All-optical directional switching in bistable semiconductor-ring lasers,” IEEE J. Quantum Electron. 49(10), 877–885 (2013).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (4)

A. Malacarne, J. Wang, Y. Zhang, A. D. Barman, G. Berrettini, L. Potì, and A. Bogoni, “20 ps transition time all-optical soa-based flip-flop used for photonic 10 gb/s switching operation without any bit loss,” IEEE J. Sel. Top. Quantum Electron. 14(3), 808–815 (2008).
[Crossref]

S. Y. Xiang, Y. H. Zhang, J. K. Gong, X. X. Guo, L. Lin, and Y. Hao, “Stdp-based unsupervised spike pattern learning in a photonic spiking neural network with vcsels and vcsoas,” IEEE J. Sel. Top. Quantum Electron. 25(6), 1–9 (2019).
[Crossref]

J. J. Dong, X. L. Zhang, S. N. Fu, J. Xu, P. Shum, and D. X. Huang, “Ultrafast all-optical signal processing based on single semiconductor optical amplifier and optical filtering,” IEEE J. Sel. Top. Quantum Electron. 14(3), 770–778 (2008).
[Crossref]

I. Glesk, P. R. Prucnal, and I. Andonovic, “Incoherent ultrafast ocdma receiver design with 2 ps all-optical time gate to suppress multiple-access interference,” IEEE J. Sel. Top. Quantum Electron. 14(3), 861–867 (2008).
[Crossref]

IEEE Photonics Technol. Lett. (2)

M. Takenaka, M. Raburn, and Y. Nakano, “All-optical flip-flop multimode interference bistable laser diode,” IEEE Photonics Technol. Lett. 17(5), 968–970 (2005).
[Crossref]

Y. J. Jung, C. W. Son, Y. M. Jhon, S. Lee, and N. Park, “One-level simplification method for all-optical combinational logic circuits,” IEEE Photonics Technol. Lett. 20(10), 800–802 (2008).
[Crossref]

J. Lightwave Technol. (1)

J. Nonlinear Opt. Phys. Mater. (1)

S. Sharma and J. Kumar, “Numerical analysis of optical logic gate based on nonlinear optical loop mirror with a photonic crystal fiber,” J. Nonlinear Opt. Phys. Mater. 24(02), 1550019 (2015).
[Crossref]

J. Opt. Commun. Netw. (1)

J. Opt. Soc. Korea (1)

Laser Phys. (1)

M. Kazemi, A. M. Tehrani, T. Z. Khan, M. Namboodiri, and A. Materny, “Realization of an ultrafast all-optical toffoli logic gate based on the phase relation between two second order nonlinear optical signals,” Laser Phys. 25(12), 125402 (2015).
[Crossref]

Nature (1)

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref]

Opt. Express (11)

A. Smerieri, B. Schneider, F. Duport, M. Haelterman, and S. Massar, “All-optical reservoir computing,” Opt. Express 20(20), 22783–22795 (2012).
[Crossref]

Y. S. Hou, G. Q. Xia, W. Y. Yang, E. J. D. Wang, Z. F. Jiang, C. X. Hu, and Z. M. Wu, “Prediction performance of reservoir computing system based on a semiconductor laser subject to double optical feedback and optical injection,” Opt. Express 26(8), 10211–10219 (2018).
[Crossref]

Y. Wang, S. Y. Xiang, B. Wang, X. Y. Cao, A. J. Wen, and Y. Hao, “Time-delay signature concealment and physical random bits generation in mutually coupled semiconductor lasers with fbg filtered injection,” Opt. Express 27(6), 8446–8455 (2019).
[Crossref]

A. Shinya, S. Mitsugi, T. Tanabe, M. Notomi, I. Yokohama, H. Takara, and S. Kawanishi, “All-optical flip-flop circuit composed of coupled two-port resonant tunneling filter in two-dimensional photonic crystal slab,” Opt. Express 14(3), 1230–1235 (2006).
[Crossref]

Y. Miyoshi, K. Ikeda, H. Tobioka, T. Inoue, S. Namiki, and K. Kitayama, “Ultrafast all-optical logic gate using a nonlinear optical loop mirror based multi-periodic transfer function,” Opt. Express 16(4), 2570–2577 (2008).
[Crossref]

K. Huybrechts, G. Morthier, and R. Baets, “Fast all-optical flip-flop based on a single distributed feedback laser diode,” Opt. Express 16(15), 11405–11410 (2008).
[Crossref]

J. Zamora-Munt and C. Masoller, “Numerical implementation of a VCSEL-based stochastic logic gate via polarization bistability,” Opt. Express 18(16), 16418–16429 (2010).
[Crossref]

D. Z. Zhong, Y. Q. Ji, and W. Luo, “Controllable optoelectric composite logic gates based on the polarization switching in an optically injected VCSEL,” Opt. Express 23(23), 29823–29833 (2015).
[Crossref]

D. Z. Zhong, Z. Z. Xiao, G. Z. Yang, N. Zeng, and H. Yang, “Real-time ranging of the six orientational targets by using chaotic polarization radars in the three-node vcsel network,” Opt. Express 27(7), 9857–9867 (2019).
[Crossref]

D. Z. Zhong, G. Z. Yang, Z. Z. Xiao, Y. Ding, J. T. Xi, N. Zeng, and H. Yang, “Optical chaotic data-selection logic operation with the fast response for picosecond magnitude,” Opt. Express 27(16), 23357–23367 (2019).
[Crossref]

X. S. Tan, Y. S. Hou, Z. M. Wu, and G. Q. Xia, “Parallel information processing by a reservoir computing system based on a vcsel subject to double optical feedback and optical injection,” Opt. Express 27(18), 26070–26079 (2019).
[Crossref]

Opt. Lett. (1)

Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. (1)

K. P. Singh and S. Sinha, “Enhancement of “logical” responses by noise in a bistable optical system,” Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 83(4), 046219 (2011).
[Crossref]

Sci. Rep. (3)

T. V. Lerber, L. Matti, L. V. S Y. Lauri, C. Arkadi, H. Klaus, and K. Franko, “All-optical majority gate based on an injection-locked laser,” Sci. Rep. 9(1), 14576 (2019).
[Crossref]

S. Ortín, M. C. Soriano, L. Pesquera, D. Brunner, D. San-Martín, I. Fischer, C. R. Mirasso, and J. M. Gutiérrez, “A unified framework for reservoir computing and extreme learning machines based on a single time-delayed neuron,” Sci. Rep. 5(1), 14945 (2015).
[Crossref]

A. Apostolos, B. Julián, and F. Ingo, “Photonic machine learning implementation for signal recovery in optical communications,” Sci. Rep. 8(1), 8487 (2018).
[Crossref]

Other (1)

S. L. Yan, “Many all-optical logic gates for optics computation using chaotic laser synchronization,” The 2015 11th Int. Conf. on Nat. Comput. pp. 578–582 (2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. Schematic diagram of the optical chaotic flip-flops with multiple triggering under clock synchronization in the VCSEL with polarization-preserved optical injection (see texts for the detailed description).
Fig. 2.
Fig. 2. Maps of nonlinear dynamic behaviors of the optically injected 3-VCSEL evolution in the parameter space of $E^{(3)}\rm {_{inj}}$ and $\Delta \omega ^{(3)}$. Here, CO: chaotic state; QP: quasi-periodic oscillation; P$_{1}$: period-one oscillation; P$_{2}$: period-two oscillation.
Fig. 3.
Fig. 3. The chaotic polarization bistability evolutions with $E^{(3)}\rm {_{inj}}$ when $\Delta \omega ^{(3)}$ = 0 GHz. Here, $IN_{x}=(E^{(3)}_{x})^{2}$; $IN_y=(E^{(3)}_{y})^{2}$; the red-solid line: x-PC; the black-solid line: y-PC.
Fig. 4.
Fig. 4. Temporal traces of the x-PC and y-PC under the inducement of the set signal and clock signal, as well as that of the reset signal and clock signal.
Fig. 5.
Fig. 5. The implementations of two parallel optical chaotic reset-set flip-flops with the bit duration of 1 ns. The black line: the temporal traces of the output x-PC and y-PC; the red line: the logical outputs $O_{1}$ and $O_{2}$; the green line: the optical clock signal $I_{\textrm{C}}$; the purple line: the optical set pulse signal $I_{\textrm{S}}$; the blue line: the optical reset pulse signal $I_{\textrm{R}}$.
Fig. 6.
Fig. 6. The implementations of two parallel optical chaotic toggle flip-flops with the bit duration of 1 ns under $I_{\textrm{C}}=1$ and $I_{\textrm{S}}=0$, where the duration-time of the set signal with high-level $t_{\textrm{p}}=130$ ps. The black line: the temporal trace of the output x-PC and y-PC; the red line: the logical output $O_{1}$ and $O_{2}$; the blue line: the optical clock pulse signal $I_{\textrm{T}}$.
Fig. 7.
Fig. 7. The reconfiguration of two parallel optical chaotic reset-set and toggle flip-flops with clock synchronization in different time periods. The black line: the temporal trace of the output x-PC and y-PC; the red line: the logical output $O_{1}$ and $O_{2}$; the green line: the optical clock signal $I_{\textrm{C}}$; the purple line: the optical set pulse signal $I_{\textrm{S}}$; the blue line: the optical reset pulse signal $I_{\textrm{R}}$ or the optical clock pulse signal $I_{\textrm{T}}$.
Fig. 8.
Fig. 8. Dependences of the success probability $P$ for two parallel optical chaotic reset-set flip-flops with clock synchronization on $t_{\textrm{p}}$ when $\beta _{\textrm{sp}}=0$ and the other parameters are the same as those in Fig. 7. Here (a): $P$ of the logic output $O_{1}$ encoded in the output x-PC; (b): $P$ of the logic output $O_{2}$ encoded in the output y-PC.
Fig. 9.
Fig. 9. Dependences of the success probability $P$ for two parallel optical chaotic toggle flip-flops with clock synchronization on $t_{\textrm{p}}$ when $\beta _{\textrm{sp}}=0$ and the other parameters are the same as those in Fig. 7. Here (a): $P$ of the logic output $O_{1}$ encoded in the output x-PC; (b): $P$ of the logic output $O_{2}$ encoded in the output y-PC.
Fig. 10.
Fig. 10. Mappings of the evolution of the success probability $P$ for two parallel optical chaotic reset-set flip-flops with clock synchronization in the parameter space of $t_{\textrm{p}}$ and $\beta _{\textrm{sp}}$. Here, (a): $P$ of the logic output $O_{1}$ encoded in the output x-PC; (b): $P$ of the logic output $O_{2}$ encoded in the output y-PC.
Fig. 11.
Fig. 11. Mappings of the evolution of the success probability $P$ for two parallel optical chaotic toggle flip-flops with clock synchronization in the parameter space of $t_{\textrm{p}}$ and $\beta _{\textrm{sp}}$. Here, (a): $P$ of the logic output $O_{1}$ encoded in the output x-PC; (b): $P$ of the logic output $O_{2}$ encoded in the output y-PC.

Tables (4)

Tables Icon

Table 1. Numerical values for 1-VCSEL and 2-VCSEL [25].

Tables Icon

Table 2. Numerical values for the 3-VCSEL [25].

Tables Icon

Table 3. The truth table of two parallel optical chaotic reset-set flip-flops.

Tables Icon

Table 4. The truth table of two parallel optical chaotic toggle flip-flops.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

d E x ( q ) ( t ) d t = k ( q ) ( 1 + i a ( q ) ) [ N ( q ) ( t ) E x ( q ) ( t ) + i n ( q ) ( t ) E y ( q ) ( t ) E x ( q ) ( t ) ] i ( γ p ( q ) + Δ ω ( q ) ) E x ( q ) ( t ) γ a ( q ) E x ( q ) ( t ) + β s p ( q ) γ e ( q ) N ( q ) ( t ) ξ x ( q ) + K x ( q ) E x , i n j ( q ) ,
d E y ( q ) ( t ) d t = k ( q ) ( 1 + i a ( q ) ) [ N ( q ) ( t ) E y ( q ) ( t ) i n ( q ) ( t ) E x ( q ) ( t ) E y ( q ) ( t ) ] + i ( γ p ( q ) Δ ω ( q ) ) E y ( q ) ( t ) + γ a ( q ) E y ( q ) ( t ) + β s p ( q ) γ e ( q ) N ( q ) ( t ) ξ y ( q ) + K y ( q ) E y , i n j ( q ) ,
d N ( q ) ( t ) d t = γ e ( q ) [ N ( q ) ( t ) ( 1 + | E x ( q ) ( t ) | 2 + | E y ( q ) ( t ) | 2 ) ] + γ e ( q ) μ ( q ) i γ e ( q ) n ( q ) ( t ) [ E y ( q ) ( t ) E x ( q ) ( t ) E x ( q ) ( t ) E y ( q ) ( t ) ] ,
d n ( q ) ( t ) d t = γ s ( q ) n ( q ) ( t ) γ e ( q ) n ( q ) ( t ) [ | E x ( q ) ( t ) | 2 + | E y ( q ) ( t ) | 2 ] i γ e ( q ) N ( q ) ( t ) [ E y ( q ) ( t ) E x ( q ) ( t ) E x ( q ) ( t ) E y ( q ) ( t ) ] .
S x(i) = j = M 0 M ( E xi(j) ( 3 ) E xi ( 3 ) ¯ ) 2 M M 0
S y(i) = j = M 0 M ( E yi(j) ( 3 ) E yi ( 3 ) ¯ ) 2 M M 0 ,
E ( 3 ) ¯ xi = j = M 0 M E xi(j) ( 3 ) M M 0 ,
E ( 3 ) ¯ yi = j = M 0 M E yi(j) ( 3 ) M M 0 .
S xc = k = 1 M ( L i ) ( E ( 3 ) x(k) E xc ( 3 ) ¯ ) 2 M ( L i ) ,
S yc = k = 1 M ( L i ) ( E ( 3 ) y(k) E yc ( 3 ) ¯ ) 2 M ( L i ) .
E ( 3 ) ¯ xc = k = 1 M ( L i ) E ( 3 ) x(k) M ( L i ) , E ( 3 ) ¯ yc = k = 1 M ( L i ) E ( 3 ) y(k) M ( L i ) .
S xs = k = 1 M ( L i ) ( E ( 3 ) x(k) E xs ( 3 ) ¯ ) 2 M ( L i ) ,
S ys = k = 1 M ( L i ) ( E ( 3 ) y(k) E ys ( 3 ) ¯ ) 2 M ( L i ) ,
E xs ( 3 ) ¯ = k = 1 M ( L i ) E ( 3 ) x(k) M ( L i ) , E ys ( 3 ) ¯ = k = 1 M ( L i ) E ( 3 ) y(k) M ( L i ) .
S xth = S xc + S xs 2 , S yth = S yc + S ys 2 .
S cxMIN = min [ S x ( 1 ) , S x ( 2 ) , , S x ( n 0 ) ] , S cyMIN = min [ S y ( 1 ) , S y ( 2 ) , , S y ( n 0 ) ] ,
S sxMAX = max [ S x ( 1 ) , S x ( 2 ) , , S x ( n 1 ) ] , S syMAX = max [ S y ( 1 ) , S y ( 2 ) , , S y ( n 1 ) ] ,