Abstract

Noise suppression is one of the most important tasks in imaging through inhomogeneous mediums. Here, we proposed a denoising approach based on compressive in-line holography for imaging through an inhomogeneous medium. A reference-beam-free system with a low-cost continuous-wave laser is presented. The suppression against the noise, which is brought by the scattering photons, is presented in simulations using the proposed algorithm. The noise immunity is demonstrated in lensless imaging behind a random phase mask with an optical depth of 1.42 by single exposure, as well as behind a ground glass with an optical depth of 6.38 by multiple exposures.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Dynamic imaging through turbid media based on digital holography

Shiping Li and Jingang Zhong
J. Opt. Soc. Am. A 31(3) 480-486 (2014)

Ballistic imaging through an intense scattering medium using a supercontinuum with a roundabout spatial gate

Yipeng Zheng, Wenjiang Tan, Xiaojing Liu, and Junyi Tong
Opt. Express 25(17) 20431-20436 (2017)

Reconstruction of target image from inhomogeneous degradations through backscattering medium images using self-calibration

WenJun Yi, Haibo Liu, Ping Wang, MeiCheng Fu, JiChun Tan, and XiuJian Li
Opt. Express 25(7) 7392-7401 (2017)

References

  • View by:
  • |
  • |
  • |

  1. A. W. Lohmann and C. A. Shuman, “Image holography through convective fog,” Opt. Commun. 7(2), 93–97 (1973).
    [Crossref]
  2. Z. Guo, C. Li, T. Zhou, B. Chen, and M. Cui, “Off-axis spatiotemporally gated multimode detection toward deep fog imaging,” Opt. Express 27(23), 33326–33332 (2019).
    [Crossref]
  3. X. Xu, X. Xie, H. He, H. Zhuang, J. Zhou, A. Thendiyammal, and A. P. Mosk, “Imaging objects through scattering layers and around corners by retrieval of the scattered point spread function,” Opt. Express 25(26), 32829–32840 (2017).
    [Crossref]
  4. E. Edrei and G. Scarcelli, “Optical imaging through dynamic turbid media using the Fourier-domain shower-curtain effect,” Optica 3(1), 71–74 (2016).
    [Crossref]
  5. S. Kang, S. Jeong, W. Choi, H. Ko, T. D. Yang, J. H. Joo, J.S. Lee, Y.S. Lim, Q.H. Park, and W. Choi, “Imaging deep within a scattering medium using collective accumulation of single-scattered waves,” Nat. Photonics 9(4), 253–258 (2015).
    [Crossref]
  6. H. Jang, C. Yoon, E. Chung, W. Choi, and H.N. Lee, “Speckle suppression via sparse representation for wide-field imaging through turbid media,” Opt. Express 22(13), 16619–16628 (2014).
    [Crossref]
  7. O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8(10), 784–790 (2014).
    [Crossref]
  8. N. Koukourakis, B. Fregin, J. König, L. Büttner, and J. W. Czarske, “Wavefront shaping for imaging-based flow velocity measurements through distortions using a Fresnel guide star,” Opt. Express 24(19), 22074–22087 (2016).
    [Crossref]
  9. R. Horstmeyer, H. Ruan, and C. Yang, “Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue,” Nat. Photonics 9(9), 563–571 (2015).
    [Crossref]
  10. Y. Choi, C. Yoon, M. Kim, W. Choi, and W. Choi, “Optical imaging with the use of a scattering lens,” IEEE J. Sel. Top. Quantum Electron. 20(2), 61–73 (2014).
    [Crossref]
  11. V. Bianco, M. Paturzo, O. Gennari, A. Finizio, and P. Ferraro, “Imaging through scattering microfluidic channels by digital holography for information recovery in lab on chip,” Opt. Express 21(20), 23985–23996 (2013).
    [Crossref]
  12. V. Bianco, M. Paturzo, A. Finizio, A. Calabuig, B. Javidi, and P. Ferraro, “Clear microfluidics imaging through flowing blood by digital holography,” IEEE J. Sel. Top. Quantum Electron. 20(3), 89–95 (2014).
    [Crossref]
  13. L. Wang, P. Ho, C. Liu, G. Zhang, and R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253(5021), 769–771 (1991).
    [Crossref]
  14. M. Duguay and A. Mattick, “Ultrahigh speed photography of picosecond light pulses and echoes,” Appl. Opt. 10(9), 2162–2170 (1971).
    [Crossref]
  15. S. P. Schilders, X. S. Gan, and M. Gu, “Resolution improvement in microscopic imaging through turbid media based on differential polarization gating,” Appl. Opt. 37(19), 4300–4302 (1998).
    [Crossref]
  16. F. Vasefi, B. Kaminska, G. H. Chapman, and J. J. Carson, “Image contrast enhancement in angular domain optical imaging of turbid media,” Opt. Express 16(26), 21492–21504 (2008).
    [Crossref]
  17. S. Li and J. Zhong, “Dynamic imaging through turbid media based on digital holography,” J. Opt. Soc. Am. A 31(3), 480–486 (2014).
    [Crossref]
  18. E. Leith, C. Chen, H. Chen, Y. Chen, D. Dilworth, J. Lopez, J. Rudd, P.-C. Sun, J. Valdmanis, and G. Vossler, “Imaging through scattering media with holography,” J. Opt. Soc. Am. 9(7), 1148–1153 (1992).
    [Crossref]
  19. M. J. Purcell, M. Kumar, S. C. Rand, and V. Lakshminarayanan, “Holographic imaging through a scattering medium by diffuser-aided statistical averaging,” J. Opt. Soc. Am. A 33(7), 1291–1297 (2016).
    [Crossref]
  20. W. Harm, C. Roider, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Lensless imaging through thin diffusive media,” Opt. Express 22(18), 22146–22156 (2014).
    [Crossref]
  21. E. Leith and C.P. Kuei, “Interferometric method for imaging through inhomogeneities,” Opt. Lett. 12(3), 149–151 (1987).
    [Crossref]
  22. P. Naulleau and D. Dilworth, “Noise analysis for the holographic first-arriving-light technique,” Appl. Opt. 35(20), 3841–3852 (1996).
    [Crossref]
  23. K. Bromley, M. Monahan, J. Bryant, and B. Thompson, “Holographic subtraction,” Appl. Opt. 10(1), 174–181 (1971).
    [Crossref]
  24. H. Gerritsen, W. Hannan, and E. Ramberg, “Elimination of speckle noise in holograms with redundancy,” Appl. Opt. 7(11), 2301–2311 (1968).
    [Crossref]
  25. M. Locatelli, E. Pugliese, M. Paturzo, V. Bianco, A. Finizio, A. Pelagotti, P. Poggi, L. Miccio, R. Meucci, and P. Ferraro, “Imaging live humans through smoke and flames using far-infrared digital holography,” Opt. Express 21(5), 5379–5390 (2013).
    [Crossref]
  26. H. Gerritsen, W. Hannan, and E. Ramberg, “Elimination of speckle noise in holograms with redundancy,” Appl. Opt. 7(11), 2301–2311 (1968).
    [Crossref]
  27. S. Montrésor, P. Memmolo, V. Bianco, P. Ferraro, and P. Picart, “Comparative study of multi-look processing for phase map de-noising in digital Fresnel holographic interferometry,” J. Opt. Soc. Am. A 36(2), A59–A66 (2019).
    [Crossref]
  28. V. Bianco, M. Paturzo, A. Finizio, D. Balduzzi, R. Puglisi, A. Galli, and P. Ferraro, “Clear coherent imaging in turbid microfluidics by multiple holographic acquisitions,” Opt. Lett. 37(20), 4212–4214 (2012).
    [Crossref]
  29. M. Paturzo, A. Finizio, P. Memmolo, R. Puglisi, D. Balduzzi, A. Galli, and P. Ferraro, “Microscopy imaging and quantitative phase contrast mapping in turbid microfluidic channels by digital holography,” Lab Chip 12(17), 3073–3076 (2012).
    [Crossref]
  30. S. Montresor and P. Picart, “Quantitative appraisal for noise reduction in digital holographic phase imaging,” Opt. Express 24(13), 14322–14343 (2016).
    [Crossref]
  31. V. Bianco, V. Marchesano, A. Finizio, M. Paturzo, and P. Ferraro, “Self-propelling bacteria mimic coherent light decorrelation,” Opt. Express 23(7), 9388–9396 (2015).
    [Crossref]
  32. G. Barbastathis, A. Ozcan, and G. Situ, “On the use of deep learning for computational imaging,” Optica 6(8), 921–943 (2019).
    [Crossref]
  33. E. J. Candès, J. K. Romberg, and T. Tao, “Stable signal recovery from incomplete and inaccurate measurements,” Comm. Pure Appl. Math. 59(8), 1207–1223 (2006).
    [Crossref]
  34. D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006).
    [Crossref]
  35. J. Romberg, “Imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 14–20 (2008).
    [Crossref]
  36. H. Dennis and D. J. Brady, “Compression at the physical interface,” IEEE Signal Process. Mag. 25(2), 67–71 (2008).
    [Crossref]
  37. L. Fang, S. Li, Q. Nie, J. A. Izatt, C. A. Toth, and S. Farsiu, “Sparsity based denoising of spectral domain optical coherence tomography images,” Biomed. Opt. Express 3(5), 927–942 (2012).
    [Crossref]
  38. M. I. Akhlaghi and A. Dogariu, “Compressive correlation imaging with random illumination,” Opt. Lett. 40(19), 4464–4467 (2015).
    [Crossref]
  39. D. J. Brady, K. Choi, D. L. Marks, R. Horisaki, and S. Lim, “Compressive holography,” Opt. Express 17(15), 13040–13049 (2009).
    [Crossref]
  40. V. Durán, F. Soldevila, E. Irles, P. Clemente, E. Tajahuerce, P. Andrés, and J. Lancis, “Compressive imaging in scattering media,” Opt. Express 23(11), 14424–14433 (2015).
    [Crossref]
  41. D. A. Boas, C. Pitris, and N. Ramanujam, Handbook of biomedical optics, (CRC Press, 2011).
  42. M. Lyu, H. Wang, G. Li, S. Zheng, and G. Situ, “Learning-based lensless imaging through optically thick scattering media,” Adv. Photonics 1(3), 036002 (2019).
    [Crossref]
  43. J. M. Bioucas-Dias and M. A. T. Figueiredo, “A new TwIST: two-step iterative shrinkage/thresholding algorithms for image restoration,” IEEE Trans. Image Process. 16(12), 2992–3004 (2007).
    [Crossref]
  44. W. Zhang, L. Cao, D. J. Brady, H. Zhang, J. Cang, H. Zhang, and G. Jin, “Twin-image-free holography: a compressive sensing approach,” Phys. Rev. Lett. 121(9), 093902 (2018).
    [Crossref]
  45. https://github.com/THUHoloLab/Imaging_through_inhomogeneous_medium
  46. H. Zhang, L. Cao, H. Zhang, W. Zhang, G. Jin, and D. J. Brady, “Efficient block-wise algorithm for compressive holography,” Opt. Express 25(21), 24991–25003 (2017).
    [Crossref]
  47. J. W. Goodman, Introduction to Fourier Optics (Roberts and Company Publishers, 2005).

2019 (4)

2018 (1)

W. Zhang, L. Cao, D. J. Brady, H. Zhang, J. Cang, H. Zhang, and G. Jin, “Twin-image-free holography: a compressive sensing approach,” Phys. Rev. Lett. 121(9), 093902 (2018).
[Crossref]

2017 (2)

2016 (4)

2015 (5)

V. Bianco, V. Marchesano, A. Finizio, M. Paturzo, and P. Ferraro, “Self-propelling bacteria mimic coherent light decorrelation,” Opt. Express 23(7), 9388–9396 (2015).
[Crossref]

M. I. Akhlaghi and A. Dogariu, “Compressive correlation imaging with random illumination,” Opt. Lett. 40(19), 4464–4467 (2015).
[Crossref]

R. Horstmeyer, H. Ruan, and C. Yang, “Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue,” Nat. Photonics 9(9), 563–571 (2015).
[Crossref]

S. Kang, S. Jeong, W. Choi, H. Ko, T. D. Yang, J. H. Joo, J.S. Lee, Y.S. Lim, Q.H. Park, and W. Choi, “Imaging deep within a scattering medium using collective accumulation of single-scattered waves,” Nat. Photonics 9(4), 253–258 (2015).
[Crossref]

V. Durán, F. Soldevila, E. Irles, P. Clemente, E. Tajahuerce, P. Andrés, and J. Lancis, “Compressive imaging in scattering media,” Opt. Express 23(11), 14424–14433 (2015).
[Crossref]

2014 (6)

H. Jang, C. Yoon, E. Chung, W. Choi, and H.N. Lee, “Speckle suppression via sparse representation for wide-field imaging through turbid media,” Opt. Express 22(13), 16619–16628 (2014).
[Crossref]

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8(10), 784–790 (2014).
[Crossref]

Y. Choi, C. Yoon, M. Kim, W. Choi, and W. Choi, “Optical imaging with the use of a scattering lens,” IEEE J. Sel. Top. Quantum Electron. 20(2), 61–73 (2014).
[Crossref]

W. Harm, C. Roider, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Lensless imaging through thin diffusive media,” Opt. Express 22(18), 22146–22156 (2014).
[Crossref]

S. Li and J. Zhong, “Dynamic imaging through turbid media based on digital holography,” J. Opt. Soc. Am. A 31(3), 480–486 (2014).
[Crossref]

V. Bianco, M. Paturzo, A. Finizio, A. Calabuig, B. Javidi, and P. Ferraro, “Clear microfluidics imaging through flowing blood by digital holography,” IEEE J. Sel. Top. Quantum Electron. 20(3), 89–95 (2014).
[Crossref]

2013 (2)

2012 (3)

2009 (1)

2008 (3)

F. Vasefi, B. Kaminska, G. H. Chapman, and J. J. Carson, “Image contrast enhancement in angular domain optical imaging of turbid media,” Opt. Express 16(26), 21492–21504 (2008).
[Crossref]

J. Romberg, “Imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 14–20 (2008).
[Crossref]

H. Dennis and D. J. Brady, “Compression at the physical interface,” IEEE Signal Process. Mag. 25(2), 67–71 (2008).
[Crossref]

2007 (1)

J. M. Bioucas-Dias and M. A. T. Figueiredo, “A new TwIST: two-step iterative shrinkage/thresholding algorithms for image restoration,” IEEE Trans. Image Process. 16(12), 2992–3004 (2007).
[Crossref]

2006 (2)

E. J. Candès, J. K. Romberg, and T. Tao, “Stable signal recovery from incomplete and inaccurate measurements,” Comm. Pure Appl. Math. 59(8), 1207–1223 (2006).
[Crossref]

D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006).
[Crossref]

1998 (1)

1996 (1)

1992 (1)

E. Leith, C. Chen, H. Chen, Y. Chen, D. Dilworth, J. Lopez, J. Rudd, P.-C. Sun, J. Valdmanis, and G. Vossler, “Imaging through scattering media with holography,” J. Opt. Soc. Am. 9(7), 1148–1153 (1992).
[Crossref]

1991 (1)

L. Wang, P. Ho, C. Liu, G. Zhang, and R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253(5021), 769–771 (1991).
[Crossref]

1987 (1)

1973 (1)

A. W. Lohmann and C. A. Shuman, “Image holography through convective fog,” Opt. Commun. 7(2), 93–97 (1973).
[Crossref]

1971 (2)

1968 (2)

Akhlaghi, M. I.

Alfano, R.

L. Wang, P. Ho, C. Liu, G. Zhang, and R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253(5021), 769–771 (1991).
[Crossref]

Andrés, P.

Balduzzi, D.

V. Bianco, M. Paturzo, A. Finizio, D. Balduzzi, R. Puglisi, A. Galli, and P. Ferraro, “Clear coherent imaging in turbid microfluidics by multiple holographic acquisitions,” Opt. Lett. 37(20), 4212–4214 (2012).
[Crossref]

M. Paturzo, A. Finizio, P. Memmolo, R. Puglisi, D. Balduzzi, A. Galli, and P. Ferraro, “Microscopy imaging and quantitative phase contrast mapping in turbid microfluidic channels by digital holography,” Lab Chip 12(17), 3073–3076 (2012).
[Crossref]

Barbastathis, G.

Bernet, S.

Bianco, V.

Bioucas-Dias, J. M.

J. M. Bioucas-Dias and M. A. T. Figueiredo, “A new TwIST: two-step iterative shrinkage/thresholding algorithms for image restoration,” IEEE Trans. Image Process. 16(12), 2992–3004 (2007).
[Crossref]

Boas, D. A.

D. A. Boas, C. Pitris, and N. Ramanujam, Handbook of biomedical optics, (CRC Press, 2011).

Brady, D. J.

W. Zhang, L. Cao, D. J. Brady, H. Zhang, J. Cang, H. Zhang, and G. Jin, “Twin-image-free holography: a compressive sensing approach,” Phys. Rev. Lett. 121(9), 093902 (2018).
[Crossref]

H. Zhang, L. Cao, H. Zhang, W. Zhang, G. Jin, and D. J. Brady, “Efficient block-wise algorithm for compressive holography,” Opt. Express 25(21), 24991–25003 (2017).
[Crossref]

D. J. Brady, K. Choi, D. L. Marks, R. Horisaki, and S. Lim, “Compressive holography,” Opt. Express 17(15), 13040–13049 (2009).
[Crossref]

H. Dennis and D. J. Brady, “Compression at the physical interface,” IEEE Signal Process. Mag. 25(2), 67–71 (2008).
[Crossref]

Bromley, K.

Bryant, J.

Büttner, L.

Calabuig, A.

V. Bianco, M. Paturzo, A. Finizio, A. Calabuig, B. Javidi, and P. Ferraro, “Clear microfluidics imaging through flowing blood by digital holography,” IEEE J. Sel. Top. Quantum Electron. 20(3), 89–95 (2014).
[Crossref]

Candès, E. J.

E. J. Candès, J. K. Romberg, and T. Tao, “Stable signal recovery from incomplete and inaccurate measurements,” Comm. Pure Appl. Math. 59(8), 1207–1223 (2006).
[Crossref]

Cang, J.

W. Zhang, L. Cao, D. J. Brady, H. Zhang, J. Cang, H. Zhang, and G. Jin, “Twin-image-free holography: a compressive sensing approach,” Phys. Rev. Lett. 121(9), 093902 (2018).
[Crossref]

Cao, L.

W. Zhang, L. Cao, D. J. Brady, H. Zhang, J. Cang, H. Zhang, and G. Jin, “Twin-image-free holography: a compressive sensing approach,” Phys. Rev. Lett. 121(9), 093902 (2018).
[Crossref]

H. Zhang, L. Cao, H. Zhang, W. Zhang, G. Jin, and D. J. Brady, “Efficient block-wise algorithm for compressive holography,” Opt. Express 25(21), 24991–25003 (2017).
[Crossref]

Carson, J. J.

Chapman, G. H.

Chen, B.

Chen, C.

E. Leith, C. Chen, H. Chen, Y. Chen, D. Dilworth, J. Lopez, J. Rudd, P.-C. Sun, J. Valdmanis, and G. Vossler, “Imaging through scattering media with holography,” J. Opt. Soc. Am. 9(7), 1148–1153 (1992).
[Crossref]

Chen, H.

E. Leith, C. Chen, H. Chen, Y. Chen, D. Dilworth, J. Lopez, J. Rudd, P.-C. Sun, J. Valdmanis, and G. Vossler, “Imaging through scattering media with holography,” J. Opt. Soc. Am. 9(7), 1148–1153 (1992).
[Crossref]

Chen, Y.

E. Leith, C. Chen, H. Chen, Y. Chen, D. Dilworth, J. Lopez, J. Rudd, P.-C. Sun, J. Valdmanis, and G. Vossler, “Imaging through scattering media with holography,” J. Opt. Soc. Am. 9(7), 1148–1153 (1992).
[Crossref]

Choi, K.

Choi, W.

S. Kang, S. Jeong, W. Choi, H. Ko, T. D. Yang, J. H. Joo, J.S. Lee, Y.S. Lim, Q.H. Park, and W. Choi, “Imaging deep within a scattering medium using collective accumulation of single-scattered waves,” Nat. Photonics 9(4), 253–258 (2015).
[Crossref]

S. Kang, S. Jeong, W. Choi, H. Ko, T. D. Yang, J. H. Joo, J.S. Lee, Y.S. Lim, Q.H. Park, and W. Choi, “Imaging deep within a scattering medium using collective accumulation of single-scattered waves,” Nat. Photonics 9(4), 253–258 (2015).
[Crossref]

H. Jang, C. Yoon, E. Chung, W. Choi, and H.N. Lee, “Speckle suppression via sparse representation for wide-field imaging through turbid media,” Opt. Express 22(13), 16619–16628 (2014).
[Crossref]

Y. Choi, C. Yoon, M. Kim, W. Choi, and W. Choi, “Optical imaging with the use of a scattering lens,” IEEE J. Sel. Top. Quantum Electron. 20(2), 61–73 (2014).
[Crossref]

Y. Choi, C. Yoon, M. Kim, W. Choi, and W. Choi, “Optical imaging with the use of a scattering lens,” IEEE J. Sel. Top. Quantum Electron. 20(2), 61–73 (2014).
[Crossref]

Choi, Y.

Y. Choi, C. Yoon, M. Kim, W. Choi, and W. Choi, “Optical imaging with the use of a scattering lens,” IEEE J. Sel. Top. Quantum Electron. 20(2), 61–73 (2014).
[Crossref]

Chung, E.

Clemente, P.

Cui, M.

Czarske, J. W.

Dennis, H.

H. Dennis and D. J. Brady, “Compression at the physical interface,” IEEE Signal Process. Mag. 25(2), 67–71 (2008).
[Crossref]

Dilworth, D.

P. Naulleau and D. Dilworth, “Noise analysis for the holographic first-arriving-light technique,” Appl. Opt. 35(20), 3841–3852 (1996).
[Crossref]

E. Leith, C. Chen, H. Chen, Y. Chen, D. Dilworth, J. Lopez, J. Rudd, P.-C. Sun, J. Valdmanis, and G. Vossler, “Imaging through scattering media with holography,” J. Opt. Soc. Am. 9(7), 1148–1153 (1992).
[Crossref]

Dogariu, A.

Donoho, D. L.

D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006).
[Crossref]

Duguay, M.

Durán, V.

Edrei, E.

Fang, L.

Farsiu, S.

Ferraro, P.

S. Montrésor, P. Memmolo, V. Bianco, P. Ferraro, and P. Picart, “Comparative study of multi-look processing for phase map de-noising in digital Fresnel holographic interferometry,” J. Opt. Soc. Am. A 36(2), A59–A66 (2019).
[Crossref]

V. Bianco, V. Marchesano, A. Finizio, M. Paturzo, and P. Ferraro, “Self-propelling bacteria mimic coherent light decorrelation,” Opt. Express 23(7), 9388–9396 (2015).
[Crossref]

V. Bianco, M. Paturzo, A. Finizio, A. Calabuig, B. Javidi, and P. Ferraro, “Clear microfluidics imaging through flowing blood by digital holography,” IEEE J. Sel. Top. Quantum Electron. 20(3), 89–95 (2014).
[Crossref]

V. Bianco, M. Paturzo, O. Gennari, A. Finizio, and P. Ferraro, “Imaging through scattering microfluidic channels by digital holography for information recovery in lab on chip,” Opt. Express 21(20), 23985–23996 (2013).
[Crossref]

M. Locatelli, E. Pugliese, M. Paturzo, V. Bianco, A. Finizio, A. Pelagotti, P. Poggi, L. Miccio, R. Meucci, and P. Ferraro, “Imaging live humans through smoke and flames using far-infrared digital holography,” Opt. Express 21(5), 5379–5390 (2013).
[Crossref]

M. Paturzo, A. Finizio, P. Memmolo, R. Puglisi, D. Balduzzi, A. Galli, and P. Ferraro, “Microscopy imaging and quantitative phase contrast mapping in turbid microfluidic channels by digital holography,” Lab Chip 12(17), 3073–3076 (2012).
[Crossref]

V. Bianco, M. Paturzo, A. Finizio, D. Balduzzi, R. Puglisi, A. Galli, and P. Ferraro, “Clear coherent imaging in turbid microfluidics by multiple holographic acquisitions,” Opt. Lett. 37(20), 4212–4214 (2012).
[Crossref]

Figueiredo, M. A. T.

J. M. Bioucas-Dias and M. A. T. Figueiredo, “A new TwIST: two-step iterative shrinkage/thresholding algorithms for image restoration,” IEEE Trans. Image Process. 16(12), 2992–3004 (2007).
[Crossref]

Finizio, A.

Fink, M.

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8(10), 784–790 (2014).
[Crossref]

Fregin, B.

Galli, A.

M. Paturzo, A. Finizio, P. Memmolo, R. Puglisi, D. Balduzzi, A. Galli, and P. Ferraro, “Microscopy imaging and quantitative phase contrast mapping in turbid microfluidic channels by digital holography,” Lab Chip 12(17), 3073–3076 (2012).
[Crossref]

V. Bianco, M. Paturzo, A. Finizio, D. Balduzzi, R. Puglisi, A. Galli, and P. Ferraro, “Clear coherent imaging in turbid microfluidics by multiple holographic acquisitions,” Opt. Lett. 37(20), 4212–4214 (2012).
[Crossref]

Gan, X. S.

Gennari, O.

Gerritsen, H.

Gigan, S.

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8(10), 784–790 (2014).
[Crossref]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (Roberts and Company Publishers, 2005).

Gu, M.

Guo, Z.

Hannan, W.

Harm, W.

He, H.

Heidmann, P.

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8(10), 784–790 (2014).
[Crossref]

Ho, P.

L. Wang, P. Ho, C. Liu, G. Zhang, and R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253(5021), 769–771 (1991).
[Crossref]

Horisaki, R.

Horstmeyer, R.

R. Horstmeyer, H. Ruan, and C. Yang, “Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue,” Nat. Photonics 9(9), 563–571 (2015).
[Crossref]

Irles, E.

Izatt, J. A.

Jang, H.

Javidi, B.

V. Bianco, M. Paturzo, A. Finizio, A. Calabuig, B. Javidi, and P. Ferraro, “Clear microfluidics imaging through flowing blood by digital holography,” IEEE J. Sel. Top. Quantum Electron. 20(3), 89–95 (2014).
[Crossref]

Jeong, S.

S. Kang, S. Jeong, W. Choi, H. Ko, T. D. Yang, J. H. Joo, J.S. Lee, Y.S. Lim, Q.H. Park, and W. Choi, “Imaging deep within a scattering medium using collective accumulation of single-scattered waves,” Nat. Photonics 9(4), 253–258 (2015).
[Crossref]

Jesacher, A.

Jin, G.

W. Zhang, L. Cao, D. J. Brady, H. Zhang, J. Cang, H. Zhang, and G. Jin, “Twin-image-free holography: a compressive sensing approach,” Phys. Rev. Lett. 121(9), 093902 (2018).
[Crossref]

H. Zhang, L. Cao, H. Zhang, W. Zhang, G. Jin, and D. J. Brady, “Efficient block-wise algorithm for compressive holography,” Opt. Express 25(21), 24991–25003 (2017).
[Crossref]

Joo, J. H.

S. Kang, S. Jeong, W. Choi, H. Ko, T. D. Yang, J. H. Joo, J.S. Lee, Y.S. Lim, Q.H. Park, and W. Choi, “Imaging deep within a scattering medium using collective accumulation of single-scattered waves,” Nat. Photonics 9(4), 253–258 (2015).
[Crossref]

Kaminska, B.

Kang, S.

S. Kang, S. Jeong, W. Choi, H. Ko, T. D. Yang, J. H. Joo, J.S. Lee, Y.S. Lim, Q.H. Park, and W. Choi, “Imaging deep within a scattering medium using collective accumulation of single-scattered waves,” Nat. Photonics 9(4), 253–258 (2015).
[Crossref]

Katz, O.

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8(10), 784–790 (2014).
[Crossref]

Kim, M.

Y. Choi, C. Yoon, M. Kim, W. Choi, and W. Choi, “Optical imaging with the use of a scattering lens,” IEEE J. Sel. Top. Quantum Electron. 20(2), 61–73 (2014).
[Crossref]

Ko, H.

S. Kang, S. Jeong, W. Choi, H. Ko, T. D. Yang, J. H. Joo, J.S. Lee, Y.S. Lim, Q.H. Park, and W. Choi, “Imaging deep within a scattering medium using collective accumulation of single-scattered waves,” Nat. Photonics 9(4), 253–258 (2015).
[Crossref]

König, J.

Koukourakis, N.

Kuei, C.P.

Kumar, M.

Lakshminarayanan, V.

Lancis, J.

Lee, H.N.

Lee, J.S.

S. Kang, S. Jeong, W. Choi, H. Ko, T. D. Yang, J. H. Joo, J.S. Lee, Y.S. Lim, Q.H. Park, and W. Choi, “Imaging deep within a scattering medium using collective accumulation of single-scattered waves,” Nat. Photonics 9(4), 253–258 (2015).
[Crossref]

Leith, E.

E. Leith, C. Chen, H. Chen, Y. Chen, D. Dilworth, J. Lopez, J. Rudd, P.-C. Sun, J. Valdmanis, and G. Vossler, “Imaging through scattering media with holography,” J. Opt. Soc. Am. 9(7), 1148–1153 (1992).
[Crossref]

E. Leith and C.P. Kuei, “Interferometric method for imaging through inhomogeneities,” Opt. Lett. 12(3), 149–151 (1987).
[Crossref]

Li, C.

Li, G.

M. Lyu, H. Wang, G. Li, S. Zheng, and G. Situ, “Learning-based lensless imaging through optically thick scattering media,” Adv. Photonics 1(3), 036002 (2019).
[Crossref]

Li, S.

Lim, S.

Lim, Y.S.

S. Kang, S. Jeong, W. Choi, H. Ko, T. D. Yang, J. H. Joo, J.S. Lee, Y.S. Lim, Q.H. Park, and W. Choi, “Imaging deep within a scattering medium using collective accumulation of single-scattered waves,” Nat. Photonics 9(4), 253–258 (2015).
[Crossref]

Liu, C.

L. Wang, P. Ho, C. Liu, G. Zhang, and R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253(5021), 769–771 (1991).
[Crossref]

Locatelli, M.

Lohmann, A. W.

A. W. Lohmann and C. A. Shuman, “Image holography through convective fog,” Opt. Commun. 7(2), 93–97 (1973).
[Crossref]

Lopez, J.

E. Leith, C. Chen, H. Chen, Y. Chen, D. Dilworth, J. Lopez, J. Rudd, P.-C. Sun, J. Valdmanis, and G. Vossler, “Imaging through scattering media with holography,” J. Opt. Soc. Am. 9(7), 1148–1153 (1992).
[Crossref]

Lyu, M.

M. Lyu, H. Wang, G. Li, S. Zheng, and G. Situ, “Learning-based lensless imaging through optically thick scattering media,” Adv. Photonics 1(3), 036002 (2019).
[Crossref]

Marchesano, V.

Marks, D. L.

Mattick, A.

Memmolo, P.

S. Montrésor, P. Memmolo, V. Bianco, P. Ferraro, and P. Picart, “Comparative study of multi-look processing for phase map de-noising in digital Fresnel holographic interferometry,” J. Opt. Soc. Am. A 36(2), A59–A66 (2019).
[Crossref]

M. Paturzo, A. Finizio, P. Memmolo, R. Puglisi, D. Balduzzi, A. Galli, and P. Ferraro, “Microscopy imaging and quantitative phase contrast mapping in turbid microfluidic channels by digital holography,” Lab Chip 12(17), 3073–3076 (2012).
[Crossref]

Meucci, R.

Miccio, L.

Monahan, M.

Montresor, S.

Montrésor, S.

Mosk, A. P.

Naulleau, P.

Nie, Q.

Ozcan, A.

Park, Q.H.

S. Kang, S. Jeong, W. Choi, H. Ko, T. D. Yang, J. H. Joo, J.S. Lee, Y.S. Lim, Q.H. Park, and W. Choi, “Imaging deep within a scattering medium using collective accumulation of single-scattered waves,” Nat. Photonics 9(4), 253–258 (2015).
[Crossref]

Paturzo, M.

Pelagotti, A.

Picart, P.

Pitris, C.

D. A. Boas, C. Pitris, and N. Ramanujam, Handbook of biomedical optics, (CRC Press, 2011).

Poggi, P.

Pugliese, E.

Puglisi, R.

M. Paturzo, A. Finizio, P. Memmolo, R. Puglisi, D. Balduzzi, A. Galli, and P. Ferraro, “Microscopy imaging and quantitative phase contrast mapping in turbid microfluidic channels by digital holography,” Lab Chip 12(17), 3073–3076 (2012).
[Crossref]

V. Bianco, M. Paturzo, A. Finizio, D. Balduzzi, R. Puglisi, A. Galli, and P. Ferraro, “Clear coherent imaging in turbid microfluidics by multiple holographic acquisitions,” Opt. Lett. 37(20), 4212–4214 (2012).
[Crossref]

Purcell, M. J.

Ramanujam, N.

D. A. Boas, C. Pitris, and N. Ramanujam, Handbook of biomedical optics, (CRC Press, 2011).

Ramberg, E.

Rand, S. C.

Ritsch-Marte, M.

Roider, C.

Romberg, J.

J. Romberg, “Imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 14–20 (2008).
[Crossref]

Romberg, J. K.

E. J. Candès, J. K. Romberg, and T. Tao, “Stable signal recovery from incomplete and inaccurate measurements,” Comm. Pure Appl. Math. 59(8), 1207–1223 (2006).
[Crossref]

Ruan, H.

R. Horstmeyer, H. Ruan, and C. Yang, “Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue,” Nat. Photonics 9(9), 563–571 (2015).
[Crossref]

Rudd, J.

E. Leith, C. Chen, H. Chen, Y. Chen, D. Dilworth, J. Lopez, J. Rudd, P.-C. Sun, J. Valdmanis, and G. Vossler, “Imaging through scattering media with holography,” J. Opt. Soc. Am. 9(7), 1148–1153 (1992).
[Crossref]

Scarcelli, G.

Schilders, S. P.

Shuman, C. A.

A. W. Lohmann and C. A. Shuman, “Image holography through convective fog,” Opt. Commun. 7(2), 93–97 (1973).
[Crossref]

Situ, G.

G. Barbastathis, A. Ozcan, and G. Situ, “On the use of deep learning for computational imaging,” Optica 6(8), 921–943 (2019).
[Crossref]

M. Lyu, H. Wang, G. Li, S. Zheng, and G. Situ, “Learning-based lensless imaging through optically thick scattering media,” Adv. Photonics 1(3), 036002 (2019).
[Crossref]

Soldevila, F.

Sun, P.-C.

E. Leith, C. Chen, H. Chen, Y. Chen, D. Dilworth, J. Lopez, J. Rudd, P.-C. Sun, J. Valdmanis, and G. Vossler, “Imaging through scattering media with holography,” J. Opt. Soc. Am. 9(7), 1148–1153 (1992).
[Crossref]

Tajahuerce, E.

Tao, T.

E. J. Candès, J. K. Romberg, and T. Tao, “Stable signal recovery from incomplete and inaccurate measurements,” Comm. Pure Appl. Math. 59(8), 1207–1223 (2006).
[Crossref]

Thendiyammal, A.

Thompson, B.

Toth, C. A.

Valdmanis, J.

E. Leith, C. Chen, H. Chen, Y. Chen, D. Dilworth, J. Lopez, J. Rudd, P.-C. Sun, J. Valdmanis, and G. Vossler, “Imaging through scattering media with holography,” J. Opt. Soc. Am. 9(7), 1148–1153 (1992).
[Crossref]

Vasefi, F.

Vossler, G.

E. Leith, C. Chen, H. Chen, Y. Chen, D. Dilworth, J. Lopez, J. Rudd, P.-C. Sun, J. Valdmanis, and G. Vossler, “Imaging through scattering media with holography,” J. Opt. Soc. Am. 9(7), 1148–1153 (1992).
[Crossref]

Wang, H.

M. Lyu, H. Wang, G. Li, S. Zheng, and G. Situ, “Learning-based lensless imaging through optically thick scattering media,” Adv. Photonics 1(3), 036002 (2019).
[Crossref]

Wang, L.

L. Wang, P. Ho, C. Liu, G. Zhang, and R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253(5021), 769–771 (1991).
[Crossref]

Xie, X.

Xu, X.

Yang, C.

R. Horstmeyer, H. Ruan, and C. Yang, “Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue,” Nat. Photonics 9(9), 563–571 (2015).
[Crossref]

Yang, T. D.

S. Kang, S. Jeong, W. Choi, H. Ko, T. D. Yang, J. H. Joo, J.S. Lee, Y.S. Lim, Q.H. Park, and W. Choi, “Imaging deep within a scattering medium using collective accumulation of single-scattered waves,” Nat. Photonics 9(4), 253–258 (2015).
[Crossref]

Yoon, C.

H. Jang, C. Yoon, E. Chung, W. Choi, and H.N. Lee, “Speckle suppression via sparse representation for wide-field imaging through turbid media,” Opt. Express 22(13), 16619–16628 (2014).
[Crossref]

Y. Choi, C. Yoon, M. Kim, W. Choi, and W. Choi, “Optical imaging with the use of a scattering lens,” IEEE J. Sel. Top. Quantum Electron. 20(2), 61–73 (2014).
[Crossref]

Zhang, G.

L. Wang, P. Ho, C. Liu, G. Zhang, and R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253(5021), 769–771 (1991).
[Crossref]

Zhang, H.

W. Zhang, L. Cao, D. J. Brady, H. Zhang, J. Cang, H. Zhang, and G. Jin, “Twin-image-free holography: a compressive sensing approach,” Phys. Rev. Lett. 121(9), 093902 (2018).
[Crossref]

W. Zhang, L. Cao, D. J. Brady, H. Zhang, J. Cang, H. Zhang, and G. Jin, “Twin-image-free holography: a compressive sensing approach,” Phys. Rev. Lett. 121(9), 093902 (2018).
[Crossref]

H. Zhang, L. Cao, H. Zhang, W. Zhang, G. Jin, and D. J. Brady, “Efficient block-wise algorithm for compressive holography,” Opt. Express 25(21), 24991–25003 (2017).
[Crossref]

H. Zhang, L. Cao, H. Zhang, W. Zhang, G. Jin, and D. J. Brady, “Efficient block-wise algorithm for compressive holography,” Opt. Express 25(21), 24991–25003 (2017).
[Crossref]

Zhang, W.

W. Zhang, L. Cao, D. J. Brady, H. Zhang, J. Cang, H. Zhang, and G. Jin, “Twin-image-free holography: a compressive sensing approach,” Phys. Rev. Lett. 121(9), 093902 (2018).
[Crossref]

H. Zhang, L. Cao, H. Zhang, W. Zhang, G. Jin, and D. J. Brady, “Efficient block-wise algorithm for compressive holography,” Opt. Express 25(21), 24991–25003 (2017).
[Crossref]

Zheng, S.

M. Lyu, H. Wang, G. Li, S. Zheng, and G. Situ, “Learning-based lensless imaging through optically thick scattering media,” Adv. Photonics 1(3), 036002 (2019).
[Crossref]

Zhong, J.

Zhou, J.

Zhou, T.

Zhuang, H.

Adv. Photonics (1)

M. Lyu, H. Wang, G. Li, S. Zheng, and G. Situ, “Learning-based lensless imaging through optically thick scattering media,” Adv. Photonics 1(3), 036002 (2019).
[Crossref]

Appl. Opt. (6)

Biomed. Opt. Express (1)

Comm. Pure Appl. Math. (1)

E. J. Candès, J. K. Romberg, and T. Tao, “Stable signal recovery from incomplete and inaccurate measurements,” Comm. Pure Appl. Math. 59(8), 1207–1223 (2006).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

Y. Choi, C. Yoon, M. Kim, W. Choi, and W. Choi, “Optical imaging with the use of a scattering lens,” IEEE J. Sel. Top. Quantum Electron. 20(2), 61–73 (2014).
[Crossref]

V. Bianco, M. Paturzo, A. Finizio, A. Calabuig, B. Javidi, and P. Ferraro, “Clear microfluidics imaging through flowing blood by digital holography,” IEEE J. Sel. Top. Quantum Electron. 20(3), 89–95 (2014).
[Crossref]

IEEE Signal Process. Mag. (2)

J. Romberg, “Imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 14–20 (2008).
[Crossref]

H. Dennis and D. J. Brady, “Compression at the physical interface,” IEEE Signal Process. Mag. 25(2), 67–71 (2008).
[Crossref]

IEEE Trans. Image Process. (1)

J. M. Bioucas-Dias and M. A. T. Figueiredo, “A new TwIST: two-step iterative shrinkage/thresholding algorithms for image restoration,” IEEE Trans. Image Process. 16(12), 2992–3004 (2007).
[Crossref]

IEEE Trans. Inf. Theory (1)

D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006).
[Crossref]

J. Opt. Soc. Am. (1)

E. Leith, C. Chen, H. Chen, Y. Chen, D. Dilworth, J. Lopez, J. Rudd, P.-C. Sun, J. Valdmanis, and G. Vossler, “Imaging through scattering media with holography,” J. Opt. Soc. Am. 9(7), 1148–1153 (1992).
[Crossref]

J. Opt. Soc. Am. A (3)

Lab Chip (1)

M. Paturzo, A. Finizio, P. Memmolo, R. Puglisi, D. Balduzzi, A. Galli, and P. Ferraro, “Microscopy imaging and quantitative phase contrast mapping in turbid microfluidic channels by digital holography,” Lab Chip 12(17), 3073–3076 (2012).
[Crossref]

Nat. Photonics (3)

R. Horstmeyer, H. Ruan, and C. Yang, “Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue,” Nat. Photonics 9(9), 563–571 (2015).
[Crossref]

S. Kang, S. Jeong, W. Choi, H. Ko, T. D. Yang, J. H. Joo, J.S. Lee, Y.S. Lim, Q.H. Park, and W. Choi, “Imaging deep within a scattering medium using collective accumulation of single-scattered waves,” Nat. Photonics 9(4), 253–258 (2015).
[Crossref]

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8(10), 784–790 (2014).
[Crossref]

Opt. Commun. (1)

A. W. Lohmann and C. A. Shuman, “Image holography through convective fog,” Opt. Commun. 7(2), 93–97 (1973).
[Crossref]

Opt. Express (13)

Z. Guo, C. Li, T. Zhou, B. Chen, and M. Cui, “Off-axis spatiotemporally gated multimode detection toward deep fog imaging,” Opt. Express 27(23), 33326–33332 (2019).
[Crossref]

X. Xu, X. Xie, H. He, H. Zhuang, J. Zhou, A. Thendiyammal, and A. P. Mosk, “Imaging objects through scattering layers and around corners by retrieval of the scattered point spread function,” Opt. Express 25(26), 32829–32840 (2017).
[Crossref]

N. Koukourakis, B. Fregin, J. König, L. Büttner, and J. W. Czarske, “Wavefront shaping for imaging-based flow velocity measurements through distortions using a Fresnel guide star,” Opt. Express 24(19), 22074–22087 (2016).
[Crossref]

H. Jang, C. Yoon, E. Chung, W. Choi, and H.N. Lee, “Speckle suppression via sparse representation for wide-field imaging through turbid media,” Opt. Express 22(13), 16619–16628 (2014).
[Crossref]

F. Vasefi, B. Kaminska, G. H. Chapman, and J. J. Carson, “Image contrast enhancement in angular domain optical imaging of turbid media,” Opt. Express 16(26), 21492–21504 (2008).
[Crossref]

V. Bianco, M. Paturzo, O. Gennari, A. Finizio, and P. Ferraro, “Imaging through scattering microfluidic channels by digital holography for information recovery in lab on chip,” Opt. Express 21(20), 23985–23996 (2013).
[Crossref]

S. Montresor and P. Picart, “Quantitative appraisal for noise reduction in digital holographic phase imaging,” Opt. Express 24(13), 14322–14343 (2016).
[Crossref]

V. Bianco, V. Marchesano, A. Finizio, M. Paturzo, and P. Ferraro, “Self-propelling bacteria mimic coherent light decorrelation,” Opt. Express 23(7), 9388–9396 (2015).
[Crossref]

W. Harm, C. Roider, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Lensless imaging through thin diffusive media,” Opt. Express 22(18), 22146–22156 (2014).
[Crossref]

M. Locatelli, E. Pugliese, M. Paturzo, V. Bianco, A. Finizio, A. Pelagotti, P. Poggi, L. Miccio, R. Meucci, and P. Ferraro, “Imaging live humans through smoke and flames using far-infrared digital holography,” Opt. Express 21(5), 5379–5390 (2013).
[Crossref]

D. J. Brady, K. Choi, D. L. Marks, R. Horisaki, and S. Lim, “Compressive holography,” Opt. Express 17(15), 13040–13049 (2009).
[Crossref]

V. Durán, F. Soldevila, E. Irles, P. Clemente, E. Tajahuerce, P. Andrés, and J. Lancis, “Compressive imaging in scattering media,” Opt. Express 23(11), 14424–14433 (2015).
[Crossref]

H. Zhang, L. Cao, H. Zhang, W. Zhang, G. Jin, and D. J. Brady, “Efficient block-wise algorithm for compressive holography,” Opt. Express 25(21), 24991–25003 (2017).
[Crossref]

Opt. Lett. (3)

Optica (2)

Phys. Rev. Lett. (1)

W. Zhang, L. Cao, D. J. Brady, H. Zhang, J. Cang, H. Zhang, and G. Jin, “Twin-image-free holography: a compressive sensing approach,” Phys. Rev. Lett. 121(9), 093902 (2018).
[Crossref]

Science (1)

L. Wang, P. Ho, C. Liu, G. Zhang, and R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253(5021), 769–771 (1991).
[Crossref]

Other (3)

https://github.com/THUHoloLab/Imaging_through_inhomogeneous_medium

J. W. Goodman, Introduction to Fourier Optics (Roberts and Company Publishers, 2005).

D. A. Boas, C. Pitris, and N. Ramanujam, Handbook of biomedical optics, (CRC Press, 2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. Light propagation in inhomogeneous medium.
Fig. 2.
Fig. 2. Schematic diagram of the algorithm.
Fig. 3.
Fig. 3. (a) Regularization mechanism for noise suppression; (b) the reconstruction by compressive holography without the filter layer; (c) the reconstruction by compressive holography with the filter layer; (d) PSNR for the location of the filter layer.
Fig. 4.
Fig. 4. (a) The captured Gabor hologram added by Poisson noises; (b) the reconstructions using the back-propagation method; (c) the reconstructions using the compressive holography method.
Fig. 5.
Fig. 5. (a) PSNR and (b) SSIM of the reconstructions for different R1 of the degraded holograms.
Fig. 6.
Fig. 6. Imaging system through (a) a phase mask and (b) a ground glass; (c) the degraded Gabor hologram captured in (a), the inset gives the size of object; The reconstructions of (c) are obtained using (d) BPM and (e) CHM, the insets show the intensity varying in the red line; The data processing of (b) is shown in (f); Scale bar in (c-e) is 500 µm; Scale bar in (f) is 250 µm.
Fig. 7.
Fig. 7. Reconstructions using the BPM and the CHM when the number of captured hologram is equal to (a-b) 130 and (c-d) 500.
Fig. 8.
Fig. 8. Image contrast of the reconstructed image for the number of the captured holograms.
Fig. 9.
Fig. 9. Optical setup for measuring the optical depth of the diffuser.
Fig. 10.
Fig. 10. (a) The phase mask; (b) The ground glass.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

P b = P i e μ d
I c = I h + n s + n m
I h  =  | U s + U R | 2  =  2 Re [ U s U R ] + n t
U s ( x , y )  =  s ( x , y ) h ( x , y )
I c = 2 Re [ s ( x , y ) h ( x , y ) ] + n t  +  n s + n m
s ^  =  arg min s Γ ( s )  =  arg min E ( s ) + τ Υ ( s )
R 1  = 10lo g 10 ( i j I h i , j / i j ( I c i , j I h i , j ) )
γ TV ( s ) = i j ( | Δ i h s | + | Δ j v s | )
PSNR = 10lo g 10 ( M I N I B 2 i j ( s ^ i , j G i , j ) 2 )
K  =  I m ax I min I m ax + I min
d o  =  μ d  =  ln ( P i / P b ) = ln ( I i / I b )

Metrics