Abstract

We demonstrate a novel Er:LuSGG active gain medium emitting laser wavelength at 2795 nm for the first time. The Er:LuSGG crystal is grown successfully by the Czochralski method with high crystalline and optical quality. The spectra properties, including absorption and fluorescence emission cross-section are presented in contrast with similar Er-doped garnet crystals. The fluorescence lifetimes of the upper (4I11/2) and lower (4I13/2) laser levels are 1.75 and 4.64 ms, respectively. Under 973 nm laser diode pumping, a maximum output power of 789 mW in continuous-wave mode, corresponding to optical-to-optical efficiency of 20.2% and slope efficiency of 24.4%, is achieved with high laser beam quality. The results show that the Er:LuSGG is a promising MIR laser material operated at 2.8 µm.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High-efficiency ∼2 µm CW laser operation of LD-pumped Tm3+:CaF2 single-crystal fibers

Yangxiao Wang, Shaozhao Wang, Jingya Wang, Zhonghan Zhang, Zhen Zhang, Rongrong Liu, Yuqian Zu, Jie Liu, and Liangbi Su
Opt. Express 28(5) 6684-6695 (2020)

Highly-efficient mid-infrared CW laser operation in a lightly-doped 3 at.% Er:SrF2 single crystal

Liangbi Su, Xinsheng Guo, Dapeng Jiang, Qinghui Wu, Zhipeng Qin, and Guoqiang Xie
Opt. Express 26(5) 5558-5563 (2018)

Efficient 1620 nm continuous-wave laser operation of Czochralski grown Er:Yb:Lu2Si2O7 crystal

Jianhua Huang, Yujin Chen, Han Wang, Yanfu Lin, Xinghong Gong, Zundu Luo, and Yidong Huang
Opt. Express 25(20) 24001-24006 (2017)

References

  • View by:
  • |
  • |
  • |

  1. A. Zajac, M. Skorczakowski, J. Swiderski, and P. Nyga, “Electrooptically Q-switched mid-infrared Er:YAG laser for medical applications,” Opt. Express 12(21), 5125–5130 (2004).
    [Crossref]
  2. M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
    [Crossref]
  3. P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, “Near-and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002).
    [Crossref]
  4. K. L. Vodopyanov, F. Ganikhanov, J. P. Maffetone, I. Zwieback, and W. Ruderman, “ZnGeP2 optical parametric oscillator with 3.8-12.4 µm tenability,” Opt. Lett. 25(11), 841–843 (2000).
    [Crossref]
  5. L. Wang, H. Huang, X. Ren, J. Wang, D. Shen, Y. Zhao, W. Zhou, P. Liu, and D. Tang, “Nanosecond pulse generation at 2.7 µm from a passively Q-switched Er:Y2O3 ceramic laser,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1600906 (2018).
    [Crossref]
  6. H. Uehara, S. Tokita, J. Kawanaka, D. Konishi, M. Murakami, and R. Yasuhara, “A passively Q-switched compact Er:Lu2O3 ceramics laser at 2.8 µm with a graphene saturable absorber,” Appl. Phys. Express 12(2), 022002 (2019).
    [Crossref]
  7. C. Ziolek, H. Ernst, G. F. Will, H. Lubatschowski, and H. Welling, “Highrepetition-rate, high-average-power, diode-pumped 2.94-µm Er:YAG laser,” Opt. Lett. 26(9), 599–601 (2001).
    [Crossref]
  8. Z. You, Y. Wang, J. Xu, Z. Zhu, J. Li, H. Wang, and C. Tu, “Single-longitudinal-mode Er:GGG microchip laser operating at 2.7 µm,” Opt. Lett. 40(16), 3846–3849 (2015).
    [Crossref]
  9. Z. You, J. Li, Y. Wang, H. Chen, Z. Zhu, and C. Tu, “Spectroscopic and laser properties of Er:LuGG crystal at ∼2.8 µm,” Appl. Phys. Express 12(5), 052019 (2019).
    [Crossref]
  10. H. Nie, Q. Hu, B. Zhang, X. Sun, H. Tian, Y. Wang, B. Yan, Z. Jia, K. Yang, X. Tao, and J. He, “Highly Efficient Continuous-Wave and Passively Q-Switching 2.8-µm Er:YSGG Laser,” IEEE Photonics Technol. Lett. 30(15), 1400–1403 (2018).
    [Crossref]
  11. N. Ter-Gabrielyan and V. Fromzel, “Cascade generation at 1.62, 1.73 and 2.8 µm in the Er:YLF Q-switched laser,” Opt. Express 27(15), 20199–20210 (2019).
    [Crossref]
  12. C. Li, J. Liu, Z. Guo, H. Zhang, W. Ma, J. Wang, X. Xu, and L. Su, “Black phosphorus saturable absorber for a diode-pumped passively Q-switched Er:CaF2 mid-infrared laser,” Opt. Commun. 406, 158–162 (2018).
    [Crossref]
  13. M. Fan, T. Li, J. Zhao, S. Zhao, G. Li, K. Yang, L. Su, H. Ma, and C. Kränkel, “Continuous wave and ReS2 passively Q-switched Er : SrF2 laser at ∼3 µm,” Opt. Lett. 43(8), 1726–1729 (2018).
    [Crossref]
  14. R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 32(5), 751–767 (1976).
    [Crossref]
  15. Q. Hu, H. Nie, W. Mu, Y. Yin, J. Zhang, B. Zhang, J. He, Z. Jia, and X. Tao, “Bulk growth and an efficient mid-IR laser of high-quality Er:YSGG crystals,” CrystEngComm 21(12), 1928–1933 (2019).
    [Crossref]
  16. T. Li, K. Beil, C. Kränkel, and G. Huber, “Efficient high-power continuous wave Er:Lu2O3 laser at 2.85 µm,” Opt. Lett. 37(13), 2568–2570 (2012).
    [Crossref]
  17. M. G. Jani, N. P. Barnes, K. E. Murray, D. W. Hart, G. J. Quarles, and V. K. Castillo, “Diode-pumped Ho:Tm:LuLiF4 laser at room temperature,” IEEE J. Quantum Electron. 33(1), 112–115 (1997).
    [Crossref]
  18. B. Malysaa, A. Meijerinkb, and T. Jüstela, “Temperature dependent Cr3+ photoluminescence in garnets of the type X3Sc2Ga3O12 (X = Lu, Y, Gd, La),” J. Lumin. 202, 523–531 (2018).
    [Crossref]
  19. B. M. Walsh, G. W. Grew, and N. P. Barnes, “Energy levels and intensity parameters of Ho3+ ions in Y3Al5O12 and Lu3Al5O12” J,” J. Phys. Chem. Solids 67(7), 1567–1582 (2006).
    [Crossref]
  20. K. Wu, L. Hao, H. Zhang, H. Yu, H. Cong, and J. Wang, “Growth and characterization of Nd:Lu3ScxGa5−xO12 series laser crystals,” Opt. Commun. 284(21), 5192–5198 (2011).
    [Crossref]
  21. K. Wu, L. Z. Hao, H. H. Yu, Z. P. Wang, J. Y. Wang, and H. J. Zhang, “Thermal and laser properties of Nd:Lu3Sc1.5Ga3.5O12 for high power dual-wavelength laser,” Opt. Express 20(7), 6944–6951 (2012).
    [Crossref]
  22. M. Pollnau and S. D. Jackson, “Erbium 3-µm Fiber Lasers,” IEEE J. Sel. Top. Quantum Electron. 7(1), 30–40 (2001).
    [Crossref]
  23. S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Cross - section measurements for crystals doped with Er3+, Tm3+, and Ho3+ dopants in crystals,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
    [Crossref]
  24. B. J. Dinerman and P. F. Moulton, “3-µm cw laser operations in erbium-doped YSGG, GGG, and YAG,” Opt. Lett. 19(15), 1143–1145 (1994).
    [Crossref]
  25. E. Arbabzadah, S. Chard, H. Amrania, C. Phillips, and M. Damzen, “Comparison of a diode pumped Er:YSGG and Er:YAG laser in the bounce geometry at the 3 µm transition,” Opt. Express 19(27), 25860–25865 (2011).
    [Crossref]
  26. Z. You, Y. Wang, J. Xu, Z. Zhu, J. Li, and C. Tu, “Diode-end-pumped midinfrared multiwavelength Er:Pr:GGG Laser,” IEEE Photonics Technol. Lett. 26(7), 667–670 (2014).
    [Crossref]
  27. P. A. Loiko, E. A. Arbabzadah, M. J. Damzen, X. Mateos, E. B. Dunina, A. A. Kornienko, A. S. Yasukevich, N. A. Skoptsov, and K. V. Yumashev, “Judd–Ofelt analysis and stimulated-emission cross-sections for highly doped (38 at%) Er:YSGG laser crystal,” J. Lumin. 171, 226–233 (2016).
    [Crossref]
  28. D. Sun, J. Luo, J. Xiao, Q. Zhang, J. Chen, W. Liu, H. Kang, and S. Yin, “Luminescence and thermal properties of Er:GSGG and Yb,Er:GSGG laser crystals,” Chin. Phys. Lett. 29(5), 054209 (2012).
    [Crossref]
  29. Y. Zhang, B. Xu, Q. Tian, Z. Luo, H. Xu, Z. Cai, D. Sun, Q. Zhang, W. Liu, X. Xu, and J. Zhang, “Sub-15-ns Passively Q-Switched Er:YSGG Laser at 2.8 µm With Fe:ZnSe Saturable Absorber,” IEEE Photonics Technol. Lett. 31(7), 565–568 (2019).
    [Crossref]
  30. Z. Wu, D. Sun, S. Wang, J. Luo, X. Li, L. Huang, A. Hu, Y. Tang, and Q. Guo, “Performance of a 967 nm CW diode end-pumped Er:GSGG laser at 2.79 µm,” Laser Phys. 23(5), 055801 (2013).
    [Crossref]
  31. A. E. Siengman, “Defining and measuring laser beam quality,” in Solid State Lasers: New Developments and Applications, M. Inguscio and R. Wallenstein, eds. (Plenum, 1993), pp.13–28.

2019 (5)

H. Uehara, S. Tokita, J. Kawanaka, D. Konishi, M. Murakami, and R. Yasuhara, “A passively Q-switched compact Er:Lu2O3 ceramics laser at 2.8 µm with a graphene saturable absorber,” Appl. Phys. Express 12(2), 022002 (2019).
[Crossref]

Z. You, J. Li, Y. Wang, H. Chen, Z. Zhu, and C. Tu, “Spectroscopic and laser properties of Er:LuGG crystal at ∼2.8 µm,” Appl. Phys. Express 12(5), 052019 (2019).
[Crossref]

N. Ter-Gabrielyan and V. Fromzel, “Cascade generation at 1.62, 1.73 and 2.8 µm in the Er:YLF Q-switched laser,” Opt. Express 27(15), 20199–20210 (2019).
[Crossref]

Q. Hu, H. Nie, W. Mu, Y. Yin, J. Zhang, B. Zhang, J. He, Z. Jia, and X. Tao, “Bulk growth and an efficient mid-IR laser of high-quality Er:YSGG crystals,” CrystEngComm 21(12), 1928–1933 (2019).
[Crossref]

Y. Zhang, B. Xu, Q. Tian, Z. Luo, H. Xu, Z. Cai, D. Sun, Q. Zhang, W. Liu, X. Xu, and J. Zhang, “Sub-15-ns Passively Q-Switched Er:YSGG Laser at 2.8 µm With Fe:ZnSe Saturable Absorber,” IEEE Photonics Technol. Lett. 31(7), 565–568 (2019).
[Crossref]

2018 (5)

B. Malysaa, A. Meijerinkb, and T. Jüstela, “Temperature dependent Cr3+ photoluminescence in garnets of the type X3Sc2Ga3O12 (X = Lu, Y, Gd, La),” J. Lumin. 202, 523–531 (2018).
[Crossref]

C. Li, J. Liu, Z. Guo, H. Zhang, W. Ma, J. Wang, X. Xu, and L. Su, “Black phosphorus saturable absorber for a diode-pumped passively Q-switched Er:CaF2 mid-infrared laser,” Opt. Commun. 406, 158–162 (2018).
[Crossref]

M. Fan, T. Li, J. Zhao, S. Zhao, G. Li, K. Yang, L. Su, H. Ma, and C. Kränkel, “Continuous wave and ReS2 passively Q-switched Er : SrF2 laser at ∼3 µm,” Opt. Lett. 43(8), 1726–1729 (2018).
[Crossref]

H. Nie, Q. Hu, B. Zhang, X. Sun, H. Tian, Y. Wang, B. Yan, Z. Jia, K. Yang, X. Tao, and J. He, “Highly Efficient Continuous-Wave and Passively Q-Switching 2.8-µm Er:YSGG Laser,” IEEE Photonics Technol. Lett. 30(15), 1400–1403 (2018).
[Crossref]

L. Wang, H. Huang, X. Ren, J. Wang, D. Shen, Y. Zhao, W. Zhou, P. Liu, and D. Tang, “Nanosecond pulse generation at 2.7 µm from a passively Q-switched Er:Y2O3 ceramic laser,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1600906 (2018).
[Crossref]

2016 (1)

P. A. Loiko, E. A. Arbabzadah, M. J. Damzen, X. Mateos, E. B. Dunina, A. A. Kornienko, A. S. Yasukevich, N. A. Skoptsov, and K. V. Yumashev, “Judd–Ofelt analysis and stimulated-emission cross-sections for highly doped (38 at%) Er:YSGG laser crystal,” J. Lumin. 171, 226–233 (2016).
[Crossref]

2015 (1)

2014 (1)

Z. You, Y. Wang, J. Xu, Z. Zhu, J. Li, and C. Tu, “Diode-end-pumped midinfrared multiwavelength Er:Pr:GGG Laser,” IEEE Photonics Technol. Lett. 26(7), 667–670 (2014).
[Crossref]

2013 (1)

Z. Wu, D. Sun, S. Wang, J. Luo, X. Li, L. Huang, A. Hu, Y. Tang, and Q. Guo, “Performance of a 967 nm CW diode end-pumped Er:GSGG laser at 2.79 µm,” Laser Phys. 23(5), 055801 (2013).
[Crossref]

2012 (3)

2011 (2)

E. Arbabzadah, S. Chard, H. Amrania, C. Phillips, and M. Damzen, “Comparison of a diode pumped Er:YSGG and Er:YAG laser in the bounce geometry at the 3 µm transition,” Opt. Express 19(27), 25860–25865 (2011).
[Crossref]

K. Wu, L. Hao, H. Zhang, H. Yu, H. Cong, and J. Wang, “Growth and characterization of Nd:Lu3ScxGa5−xO12 series laser crystals,” Opt. Commun. 284(21), 5192–5198 (2011).
[Crossref]

2010 (1)

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
[Crossref]

2006 (1)

B. M. Walsh, G. W. Grew, and N. P. Barnes, “Energy levels and intensity parameters of Ho3+ ions in Y3Al5O12 and Lu3Al5O12” J,” J. Phys. Chem. Solids 67(7), 1567–1582 (2006).
[Crossref]

2004 (1)

2002 (1)

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, “Near-and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002).
[Crossref]

2001 (2)

2000 (1)

1997 (1)

M. G. Jani, N. P. Barnes, K. E. Murray, D. W. Hart, G. J. Quarles, and V. K. Castillo, “Diode-pumped Ho:Tm:LuLiF4 laser at room temperature,” IEEE J. Quantum Electron. 33(1), 112–115 (1997).
[Crossref]

1994 (1)

1992 (1)

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Cross - section measurements for crystals doped with Er3+, Tm3+, and Ho3+ dopants in crystals,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[Crossref]

1976 (1)

R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 32(5), 751–767 (1976).
[Crossref]

Amrania, H.

Arbabzadah, E.

Arbabzadah, E. A.

P. A. Loiko, E. A. Arbabzadah, M. J. Damzen, X. Mateos, E. B. Dunina, A. A. Kornienko, A. S. Yasukevich, N. A. Skoptsov, and K. V. Yumashev, “Judd–Ofelt analysis and stimulated-emission cross-sections for highly doped (38 at%) Er:YSGG laser crystal,” J. Lumin. 171, 226–233 (2016).
[Crossref]

Barnes, N. P.

B. M. Walsh, G. W. Grew, and N. P. Barnes, “Energy levels and intensity parameters of Ho3+ ions in Y3Al5O12 and Lu3Al5O12” J,” J. Phys. Chem. Solids 67(7), 1567–1582 (2006).
[Crossref]

M. G. Jani, N. P. Barnes, K. E. Murray, D. W. Hart, G. J. Quarles, and V. K. Castillo, “Diode-pumped Ho:Tm:LuLiF4 laser at room temperature,” IEEE J. Quantum Electron. 33(1), 112–115 (1997).
[Crossref]

Beil, K.

Bragagna, T.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
[Crossref]

Cai, Z.

Y. Zhang, B. Xu, Q. Tian, Z. Luo, H. Xu, Z. Cai, D. Sun, Q. Zhang, W. Liu, X. Xu, and J. Zhang, “Sub-15-ns Passively Q-Switched Er:YSGG Laser at 2.8 µm With Fe:ZnSe Saturable Absorber,” IEEE Photonics Technol. Lett. 31(7), 565–568 (2019).
[Crossref]

Castillo, V. K.

M. G. Jani, N. P. Barnes, K. E. Murray, D. W. Hart, G. J. Quarles, and V. K. Castillo, “Diode-pumped Ho:Tm:LuLiF4 laser at room temperature,” IEEE J. Quantum Electron. 33(1), 112–115 (1997).
[Crossref]

Chard, S.

Chase, L. L.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Cross - section measurements for crystals doped with Er3+, Tm3+, and Ho3+ dopants in crystals,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[Crossref]

Chen, H.

Z. You, J. Li, Y. Wang, H. Chen, Z. Zhu, and C. Tu, “Spectroscopic and laser properties of Er:LuGG crystal at ∼2.8 µm,” Appl. Phys. Express 12(5), 052019 (2019).
[Crossref]

Chen, J.

D. Sun, J. Luo, J. Xiao, Q. Zhang, J. Chen, W. Liu, H. Kang, and S. Yin, “Luminescence and thermal properties of Er:GSGG and Yb,Er:GSGG laser crystals,” Chin. Phys. Lett. 29(5), 054209 (2012).
[Crossref]

Cong, H.

K. Wu, L. Hao, H. Zhang, H. Yu, H. Cong, and J. Wang, “Growth and characterization of Nd:Lu3ScxGa5−xO12 series laser crystals,” Opt. Commun. 284(21), 5192–5198 (2011).
[Crossref]

Damzen, M.

Damzen, M. J.

P. A. Loiko, E. A. Arbabzadah, M. J. Damzen, X. Mateos, E. B. Dunina, A. A. Kornienko, A. S. Yasukevich, N. A. Skoptsov, and K. V. Yumashev, “Judd–Ofelt analysis and stimulated-emission cross-sections for highly doped (38 at%) Er:YSGG laser crystal,” J. Lumin. 171, 226–233 (2016).
[Crossref]

Dinerman, B. J.

Dunina, E. B.

P. A. Loiko, E. A. Arbabzadah, M. J. Damzen, X. Mateos, E. B. Dunina, A. A. Kornienko, A. S. Yasukevich, N. A. Skoptsov, and K. V. Yumashev, “Judd–Ofelt analysis and stimulated-emission cross-sections for highly doped (38 at%) Er:YSGG laser crystal,” J. Lumin. 171, 226–233 (2016).
[Crossref]

Ernst, H.

Fan, M.

Fromzel, V.

Galecki, L.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
[Crossref]

Ganikhanov, F.

Grew, G. W.

B. M. Walsh, G. W. Grew, and N. P. Barnes, “Energy levels and intensity parameters of Ho3+ ions in Y3Al5O12 and Lu3Al5O12” J,” J. Phys. Chem. Solids 67(7), 1567–1582 (2006).
[Crossref]

Gross, S.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
[Crossref]

Guo, Q.

Z. Wu, D. Sun, S. Wang, J. Luo, X. Li, L. Huang, A. Hu, Y. Tang, and Q. Guo, “Performance of a 967 nm CW diode end-pumped Er:GSGG laser at 2.79 µm,” Laser Phys. 23(5), 055801 (2013).
[Crossref]

Guo, Z.

C. Li, J. Liu, Z. Guo, H. Zhang, W. Ma, J. Wang, X. Xu, and L. Su, “Black phosphorus saturable absorber for a diode-pumped passively Q-switched Er:CaF2 mid-infrared laser,” Opt. Commun. 406, 158–162 (2018).
[Crossref]

Hao, L.

K. Wu, L. Hao, H. Zhang, H. Yu, H. Cong, and J. Wang, “Growth and characterization of Nd:Lu3ScxGa5−xO12 series laser crystals,” Opt. Commun. 284(21), 5192–5198 (2011).
[Crossref]

Hao, L. Z.

Hart, D. W.

M. G. Jani, N. P. Barnes, K. E. Murray, D. W. Hart, G. J. Quarles, and V. K. Castillo, “Diode-pumped Ho:Tm:LuLiF4 laser at room temperature,” IEEE J. Quantum Electron. 33(1), 112–115 (1997).
[Crossref]

He, J.

Q. Hu, H. Nie, W. Mu, Y. Yin, J. Zhang, B. Zhang, J. He, Z. Jia, and X. Tao, “Bulk growth and an efficient mid-IR laser of high-quality Er:YSGG crystals,” CrystEngComm 21(12), 1928–1933 (2019).
[Crossref]

H. Nie, Q. Hu, B. Zhang, X. Sun, H. Tian, Y. Wang, B. Yan, Z. Jia, K. Yang, X. Tao, and J. He, “Highly Efficient Continuous-Wave and Passively Q-Switching 2.8-µm Er:YSGG Laser,” IEEE Photonics Technol. Lett. 30(15), 1400–1403 (2018).
[Crossref]

Heinrich, A.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
[Crossref]

Hu, A.

Z. Wu, D. Sun, S. Wang, J. Luo, X. Li, L. Huang, A. Hu, Y. Tang, and Q. Guo, “Performance of a 967 nm CW diode end-pumped Er:GSGG laser at 2.79 µm,” Laser Phys. 23(5), 055801 (2013).
[Crossref]

Hu, Q.

Q. Hu, H. Nie, W. Mu, Y. Yin, J. Zhang, B. Zhang, J. He, Z. Jia, and X. Tao, “Bulk growth and an efficient mid-IR laser of high-quality Er:YSGG crystals,” CrystEngComm 21(12), 1928–1933 (2019).
[Crossref]

H. Nie, Q. Hu, B. Zhang, X. Sun, H. Tian, Y. Wang, B. Yan, Z. Jia, K. Yang, X. Tao, and J. He, “Highly Efficient Continuous-Wave and Passively Q-Switching 2.8-µm Er:YSGG Laser,” IEEE Photonics Technol. Lett. 30(15), 1400–1403 (2018).
[Crossref]

Huang, H.

L. Wang, H. Huang, X. Ren, J. Wang, D. Shen, Y. Zhao, W. Zhou, P. Liu, and D. Tang, “Nanosecond pulse generation at 2.7 µm from a passively Q-switched Er:Y2O3 ceramic laser,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1600906 (2018).
[Crossref]

Huang, L.

Z. Wu, D. Sun, S. Wang, J. Luo, X. Li, L. Huang, A. Hu, Y. Tang, and Q. Guo, “Performance of a 967 nm CW diode end-pumped Er:GSGG laser at 2.79 µm,” Laser Phys. 23(5), 055801 (2013).
[Crossref]

Huber, G.

Jackson, S. D.

M. Pollnau and S. D. Jackson, “Erbium 3-µm Fiber Lasers,” IEEE J. Sel. Top. Quantum Electron. 7(1), 30–40 (2001).
[Crossref]

Jani, M. G.

M. G. Jani, N. P. Barnes, K. E. Murray, D. W. Hart, G. J. Quarles, and V. K. Castillo, “Diode-pumped Ho:Tm:LuLiF4 laser at room temperature,” IEEE J. Quantum Electron. 33(1), 112–115 (1997).
[Crossref]

Jänker, B.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, “Near-and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002).
[Crossref]

Jia, Z.

Q. Hu, H. Nie, W. Mu, Y. Yin, J. Zhang, B. Zhang, J. He, Z. Jia, and X. Tao, “Bulk growth and an efficient mid-IR laser of high-quality Er:YSGG crystals,” CrystEngComm 21(12), 1928–1933 (2019).
[Crossref]

H. Nie, Q. Hu, B. Zhang, X. Sun, H. Tian, Y. Wang, B. Yan, Z. Jia, K. Yang, X. Tao, and J. He, “Highly Efficient Continuous-Wave and Passively Q-Switching 2.8-µm Er:YSGG Laser,” IEEE Photonics Technol. Lett. 30(15), 1400–1403 (2018).
[Crossref]

Jüstela, T.

B. Malysaa, A. Meijerinkb, and T. Jüstela, “Temperature dependent Cr3+ photoluminescence in garnets of the type X3Sc2Ga3O12 (X = Lu, Y, Gd, La),” J. Lumin. 202, 523–531 (2018).
[Crossref]

Kang, H.

D. Sun, J. Luo, J. Xiao, Q. Zhang, J. Chen, W. Liu, H. Kang, and S. Yin, “Luminescence and thermal properties of Er:GSGG and Yb,Er:GSGG laser crystals,” Chin. Phys. Lett. 29(5), 054209 (2012).
[Crossref]

Kasprzak, J.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
[Crossref]

Kawanaka, J.

H. Uehara, S. Tokita, J. Kawanaka, D. Konishi, M. Murakami, and R. Yasuhara, “A passively Q-switched compact Er:Lu2O3 ceramics laser at 2.8 µm with a graphene saturable absorber,” Appl. Phys. Express 12(2), 022002 (2019).
[Crossref]

Konishi, D.

H. Uehara, S. Tokita, J. Kawanaka, D. Konishi, M. Murakami, and R. Yasuhara, “A passively Q-switched compact Er:Lu2O3 ceramics laser at 2.8 µm with a graphene saturable absorber,” Appl. Phys. Express 12(2), 022002 (2019).
[Crossref]

Kormann, R.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, “Near-and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002).
[Crossref]

Kornienko, A. A.

P. A. Loiko, E. A. Arbabzadah, M. J. Damzen, X. Mateos, E. B. Dunina, A. A. Kornienko, A. S. Yasukevich, N. A. Skoptsov, and K. V. Yumashev, “Judd–Ofelt analysis and stimulated-emission cross-sections for highly doped (38 at%) Er:YSGG laser crystal,” J. Lumin. 171, 226–233 (2016).
[Crossref]

Kränkel, C.

Krupke, W. F.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Cross - section measurements for crystals doped with Er3+, Tm3+, and Ho3+ dopants in crystals,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[Crossref]

Kway, W. L.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Cross - section measurements for crystals doped with Er3+, Tm3+, and Ho3+ dopants in crystals,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[Crossref]

Li, C.

C. Li, J. Liu, Z. Guo, H. Zhang, W. Ma, J. Wang, X. Xu, and L. Su, “Black phosphorus saturable absorber for a diode-pumped passively Q-switched Er:CaF2 mid-infrared laser,” Opt. Commun. 406, 158–162 (2018).
[Crossref]

Li, G.

Li, J.

Z. You, J. Li, Y. Wang, H. Chen, Z. Zhu, and C. Tu, “Spectroscopic and laser properties of Er:LuGG crystal at ∼2.8 µm,” Appl. Phys. Express 12(5), 052019 (2019).
[Crossref]

Z. You, Y. Wang, J. Xu, Z. Zhu, J. Li, H. Wang, and C. Tu, “Single-longitudinal-mode Er:GGG microchip laser operating at 2.7 µm,” Opt. Lett. 40(16), 3846–3849 (2015).
[Crossref]

Z. You, Y. Wang, J. Xu, Z. Zhu, J. Li, and C. Tu, “Diode-end-pumped midinfrared multiwavelength Er:Pr:GGG Laser,” IEEE Photonics Technol. Lett. 26(7), 667–670 (2014).
[Crossref]

Li, T.

Li, X.

Z. Wu, D. Sun, S. Wang, J. Luo, X. Li, L. Huang, A. Hu, Y. Tang, and Q. Guo, “Performance of a 967 nm CW diode end-pumped Er:GSGG laser at 2.79 µm,” Laser Phys. 23(5), 055801 (2013).
[Crossref]

Liu, J.

C. Li, J. Liu, Z. Guo, H. Zhang, W. Ma, J. Wang, X. Xu, and L. Su, “Black phosphorus saturable absorber for a diode-pumped passively Q-switched Er:CaF2 mid-infrared laser,” Opt. Commun. 406, 158–162 (2018).
[Crossref]

Liu, P.

L. Wang, H. Huang, X. Ren, J. Wang, D. Shen, Y. Zhao, W. Zhou, P. Liu, and D. Tang, “Nanosecond pulse generation at 2.7 µm from a passively Q-switched Er:Y2O3 ceramic laser,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1600906 (2018).
[Crossref]

Liu, W.

Y. Zhang, B. Xu, Q. Tian, Z. Luo, H. Xu, Z. Cai, D. Sun, Q. Zhang, W. Liu, X. Xu, and J. Zhang, “Sub-15-ns Passively Q-Switched Er:YSGG Laser at 2.8 µm With Fe:ZnSe Saturable Absorber,” IEEE Photonics Technol. Lett. 31(7), 565–568 (2019).
[Crossref]

D. Sun, J. Luo, J. Xiao, Q. Zhang, J. Chen, W. Liu, H. Kang, and S. Yin, “Luminescence and thermal properties of Er:GSGG and Yb,Er:GSGG laser crystals,” Chin. Phys. Lett. 29(5), 054209 (2012).
[Crossref]

Loiko, P. A.

P. A. Loiko, E. A. Arbabzadah, M. J. Damzen, X. Mateos, E. B. Dunina, A. A. Kornienko, A. S. Yasukevich, N. A. Skoptsov, and K. V. Yumashev, “Judd–Ofelt analysis and stimulated-emission cross-sections for highly doped (38 at%) Er:YSGG laser crystal,” J. Lumin. 171, 226–233 (2016).
[Crossref]

Lubatschowski, H.

Luo, J.

Z. Wu, D. Sun, S. Wang, J. Luo, X. Li, L. Huang, A. Hu, Y. Tang, and Q. Guo, “Performance of a 967 nm CW diode end-pumped Er:GSGG laser at 2.79 µm,” Laser Phys. 23(5), 055801 (2013).
[Crossref]

D. Sun, J. Luo, J. Xiao, Q. Zhang, J. Chen, W. Liu, H. Kang, and S. Yin, “Luminescence and thermal properties of Er:GSGG and Yb,Er:GSGG laser crystals,” Chin. Phys. Lett. 29(5), 054209 (2012).
[Crossref]

Luo, Z.

Y. Zhang, B. Xu, Q. Tian, Z. Luo, H. Xu, Z. Cai, D. Sun, Q. Zhang, W. Liu, X. Xu, and J. Zhang, “Sub-15-ns Passively Q-Switched Er:YSGG Laser at 2.8 µm With Fe:ZnSe Saturable Absorber,” IEEE Photonics Technol. Lett. 31(7), 565–568 (2019).
[Crossref]

Ma, H.

Ma, W.

C. Li, J. Liu, Z. Guo, H. Zhang, W. Ma, J. Wang, X. Xu, and L. Su, “Black phosphorus saturable absorber for a diode-pumped passively Q-switched Er:CaF2 mid-infrared laser,” Opt. Commun. 406, 158–162 (2018).
[Crossref]

Maciejewska, M.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
[Crossref]

Maffetone, J. P.

Malysaa, B.

B. Malysaa, A. Meijerinkb, and T. Jüstela, “Temperature dependent Cr3+ photoluminescence in garnets of the type X3Sc2Ga3O12 (X = Lu, Y, Gd, La),” J. Lumin. 202, 523–531 (2018).
[Crossref]

Mateos, X.

P. A. Loiko, E. A. Arbabzadah, M. J. Damzen, X. Mateos, E. B. Dunina, A. A. Kornienko, A. S. Yasukevich, N. A. Skoptsov, and K. V. Yumashev, “Judd–Ofelt analysis and stimulated-emission cross-sections for highly doped (38 at%) Er:YSGG laser crystal,” J. Lumin. 171, 226–233 (2016).
[Crossref]

Maurer, K.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, “Near-and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002).
[Crossref]

Meijerinkb, A.

B. Malysaa, A. Meijerinkb, and T. Jüstela, “Temperature dependent Cr3+ photoluminescence in garnets of the type X3Sc2Ga3O12 (X = Lu, Y, Gd, La),” J. Lumin. 202, 523–531 (2018).
[Crossref]

Moulton, P. F.

Mu, W.

Q. Hu, H. Nie, W. Mu, Y. Yin, J. Zhang, B. Zhang, J. He, Z. Jia, and X. Tao, “Bulk growth and an efficient mid-IR laser of high-quality Er:YSGG crystals,” CrystEngComm 21(12), 1928–1933 (2019).
[Crossref]

Mücke, R.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, “Near-and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002).
[Crossref]

Murakami, M.

H. Uehara, S. Tokita, J. Kawanaka, D. Konishi, M. Murakami, and R. Yasuhara, “A passively Q-switched compact Er:Lu2O3 ceramics laser at 2.8 µm with a graphene saturable absorber,” Appl. Phys. Express 12(2), 022002 (2019).
[Crossref]

Murray, K. E.

M. G. Jani, N. P. Barnes, K. E. Murray, D. W. Hart, G. J. Quarles, and V. K. Castillo, “Diode-pumped Ho:Tm:LuLiF4 laser at room temperature,” IEEE J. Quantum Electron. 33(1), 112–115 (1997).
[Crossref]

Nie, H.

Q. Hu, H. Nie, W. Mu, Y. Yin, J. Zhang, B. Zhang, J. He, Z. Jia, and X. Tao, “Bulk growth and an efficient mid-IR laser of high-quality Er:YSGG crystals,” CrystEngComm 21(12), 1928–1933 (2019).
[Crossref]

H. Nie, Q. Hu, B. Zhang, X. Sun, H. Tian, Y. Wang, B. Yan, Z. Jia, K. Yang, X. Tao, and J. He, “Highly Efficient Continuous-Wave and Passively Q-Switching 2.8-µm Er:YSGG Laser,” IEEE Photonics Technol. Lett. 30(15), 1400–1403 (2018).
[Crossref]

Nyga, P.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
[Crossref]

A. Zajac, M. Skorczakowski, J. Swiderski, and P. Nyga, “Electrooptically Q-switched mid-infrared Er:YAG laser for medical applications,” Opt. Express 12(21), 5125–5130 (2004).
[Crossref]

Payne, S. A.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Cross - section measurements for crystals doped with Er3+, Tm3+, and Ho3+ dopants in crystals,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[Crossref]

Phillips, C.

Pichola, W.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
[Crossref]

Pollnau, M.

M. Pollnau and S. D. Jackson, “Erbium 3-µm Fiber Lasers,” IEEE J. Sel. Top. Quantum Electron. 7(1), 30–40 (2001).
[Crossref]

Quarles, G. J.

M. G. Jani, N. P. Barnes, K. E. Murray, D. W. Hart, G. J. Quarles, and V. K. Castillo, “Diode-pumped Ho:Tm:LuLiF4 laser at room temperature,” IEEE J. Quantum Electron. 33(1), 112–115 (1997).
[Crossref]

Ren, X.

L. Wang, H. Huang, X. Ren, J. Wang, D. Shen, Y. Zhao, W. Zhou, P. Liu, and D. Tang, “Nanosecond pulse generation at 2.7 µm from a passively Q-switched Er:Y2O3 ceramic laser,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1600906 (2018).
[Crossref]

Ruderman, W.

Shannon, R. D.

R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 32(5), 751–767 (1976).
[Crossref]

Shen, D.

L. Wang, H. Huang, X. Ren, J. Wang, D. Shen, Y. Zhao, W. Zhou, P. Liu, and D. Tang, “Nanosecond pulse generation at 2.7 µm from a passively Q-switched Er:Y2O3 ceramic laser,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1600906 (2018).
[Crossref]

Siengman, A. E.

A. E. Siengman, “Defining and measuring laser beam quality,” in Solid State Lasers: New Developments and Applications, M. Inguscio and R. Wallenstein, eds. (Plenum, 1993), pp.13–28.

Skoptsov, N. A.

P. A. Loiko, E. A. Arbabzadah, M. J. Damzen, X. Mateos, E. B. Dunina, A. A. Kornienko, A. S. Yasukevich, N. A. Skoptsov, and K. V. Yumashev, “Judd–Ofelt analysis and stimulated-emission cross-sections for highly doped (38 at%) Er:YSGG laser crystal,” J. Lumin. 171, 226–233 (2016).
[Crossref]

Skorczakowski, M.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
[Crossref]

A. Zajac, M. Skorczakowski, J. Swiderski, and P. Nyga, “Electrooptically Q-switched mid-infrared Er:YAG laser for medical applications,” Opt. Express 12(21), 5125–5130 (2004).
[Crossref]

Slemr, F.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, “Near-and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002).
[Crossref]

Smith, L. K.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Cross - section measurements for crystals doped with Er3+, Tm3+, and Ho3+ dopants in crystals,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[Crossref]

Su, L.

M. Fan, T. Li, J. Zhao, S. Zhao, G. Li, K. Yang, L. Su, H. Ma, and C. Kränkel, “Continuous wave and ReS2 passively Q-switched Er : SrF2 laser at ∼3 µm,” Opt. Lett. 43(8), 1726–1729 (2018).
[Crossref]

C. Li, J. Liu, Z. Guo, H. Zhang, W. Ma, J. Wang, X. Xu, and L. Su, “Black phosphorus saturable absorber for a diode-pumped passively Q-switched Er:CaF2 mid-infrared laser,” Opt. Commun. 406, 158–162 (2018).
[Crossref]

Sun, D.

Y. Zhang, B. Xu, Q. Tian, Z. Luo, H. Xu, Z. Cai, D. Sun, Q. Zhang, W. Liu, X. Xu, and J. Zhang, “Sub-15-ns Passively Q-Switched Er:YSGG Laser at 2.8 µm With Fe:ZnSe Saturable Absorber,” IEEE Photonics Technol. Lett. 31(7), 565–568 (2019).
[Crossref]

Z. Wu, D. Sun, S. Wang, J. Luo, X. Li, L. Huang, A. Hu, Y. Tang, and Q. Guo, “Performance of a 967 nm CW diode end-pumped Er:GSGG laser at 2.79 µm,” Laser Phys. 23(5), 055801 (2013).
[Crossref]

D. Sun, J. Luo, J. Xiao, Q. Zhang, J. Chen, W. Liu, H. Kang, and S. Yin, “Luminescence and thermal properties of Er:GSGG and Yb,Er:GSGG laser crystals,” Chin. Phys. Lett. 29(5), 054209 (2012).
[Crossref]

Sun, X.

H. Nie, Q. Hu, B. Zhang, X. Sun, H. Tian, Y. Wang, B. Yan, Z. Jia, K. Yang, X. Tao, and J. He, “Highly Efficient Continuous-Wave and Passively Q-Switching 2.8-µm Er:YSGG Laser,” IEEE Photonics Technol. Lett. 30(15), 1400–1403 (2018).
[Crossref]

Swiderski, J.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
[Crossref]

A. Zajac, M. Skorczakowski, J. Swiderski, and P. Nyga, “Electrooptically Q-switched mid-infrared Er:YAG laser for medical applications,” Opt. Express 12(21), 5125–5130 (2004).
[Crossref]

Tang, D.

L. Wang, H. Huang, X. Ren, J. Wang, D. Shen, Y. Zhao, W. Zhou, P. Liu, and D. Tang, “Nanosecond pulse generation at 2.7 µm from a passively Q-switched Er:Y2O3 ceramic laser,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1600906 (2018).
[Crossref]

Tang, Y.

Z. Wu, D. Sun, S. Wang, J. Luo, X. Li, L. Huang, A. Hu, Y. Tang, and Q. Guo, “Performance of a 967 nm CW diode end-pumped Er:GSGG laser at 2.79 µm,” Laser Phys. 23(5), 055801 (2013).
[Crossref]

Tao, X.

Q. Hu, H. Nie, W. Mu, Y. Yin, J. Zhang, B. Zhang, J. He, Z. Jia, and X. Tao, “Bulk growth and an efficient mid-IR laser of high-quality Er:YSGG crystals,” CrystEngComm 21(12), 1928–1933 (2019).
[Crossref]

H. Nie, Q. Hu, B. Zhang, X. Sun, H. Tian, Y. Wang, B. Yan, Z. Jia, K. Yang, X. Tao, and J. He, “Highly Efficient Continuous-Wave and Passively Q-Switching 2.8-µm Er:YSGG Laser,” IEEE Photonics Technol. Lett. 30(15), 1400–1403 (2018).
[Crossref]

Ter-Gabrielyan, N.

Tian, H.

H. Nie, Q. Hu, B. Zhang, X. Sun, H. Tian, Y. Wang, B. Yan, Z. Jia, K. Yang, X. Tao, and J. He, “Highly Efficient Continuous-Wave and Passively Q-Switching 2.8-µm Er:YSGG Laser,” IEEE Photonics Technol. Lett. 30(15), 1400–1403 (2018).
[Crossref]

Tian, Q.

Y. Zhang, B. Xu, Q. Tian, Z. Luo, H. Xu, Z. Cai, D. Sun, Q. Zhang, W. Liu, X. Xu, and J. Zhang, “Sub-15-ns Passively Q-Switched Er:YSGG Laser at 2.8 µm With Fe:ZnSe Saturable Absorber,” IEEE Photonics Technol. Lett. 31(7), 565–568 (2019).
[Crossref]

Tokita, S.

H. Uehara, S. Tokita, J. Kawanaka, D. Konishi, M. Murakami, and R. Yasuhara, “A passively Q-switched compact Er:Lu2O3 ceramics laser at 2.8 µm with a graphene saturable absorber,” Appl. Phys. Express 12(2), 022002 (2019).
[Crossref]

Tu, C.

Z. You, J. Li, Y. Wang, H. Chen, Z. Zhu, and C. Tu, “Spectroscopic and laser properties of Er:LuGG crystal at ∼2.8 µm,” Appl. Phys. Express 12(5), 052019 (2019).
[Crossref]

Z. You, Y. Wang, J. Xu, Z. Zhu, J. Li, H. Wang, and C. Tu, “Single-longitudinal-mode Er:GGG microchip laser operating at 2.7 µm,” Opt. Lett. 40(16), 3846–3849 (2015).
[Crossref]

Z. You, Y. Wang, J. Xu, Z. Zhu, J. Li, and C. Tu, “Diode-end-pumped midinfrared multiwavelength Er:Pr:GGG Laser,” IEEE Photonics Technol. Lett. 26(7), 667–670 (2014).
[Crossref]

Uehara, H.

H. Uehara, S. Tokita, J. Kawanaka, D. Konishi, M. Murakami, and R. Yasuhara, “A passively Q-switched compact Er:Lu2O3 ceramics laser at 2.8 µm with a graphene saturable absorber,” Appl. Phys. Express 12(2), 022002 (2019).
[Crossref]

Vodopyanov, K. L.

Walsh, B. M.

B. M. Walsh, G. W. Grew, and N. P. Barnes, “Energy levels and intensity parameters of Ho3+ ions in Y3Al5O12 and Lu3Al5O12” J,” J. Phys. Chem. Solids 67(7), 1567–1582 (2006).
[Crossref]

Wang, H.

Wang, J.

L. Wang, H. Huang, X. Ren, J. Wang, D. Shen, Y. Zhao, W. Zhou, P. Liu, and D. Tang, “Nanosecond pulse generation at 2.7 µm from a passively Q-switched Er:Y2O3 ceramic laser,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1600906 (2018).
[Crossref]

C. Li, J. Liu, Z. Guo, H. Zhang, W. Ma, J. Wang, X. Xu, and L. Su, “Black phosphorus saturable absorber for a diode-pumped passively Q-switched Er:CaF2 mid-infrared laser,” Opt. Commun. 406, 158–162 (2018).
[Crossref]

K. Wu, L. Hao, H. Zhang, H. Yu, H. Cong, and J. Wang, “Growth and characterization of Nd:Lu3ScxGa5−xO12 series laser crystals,” Opt. Commun. 284(21), 5192–5198 (2011).
[Crossref]

Wang, J. Y.

Wang, L.

L. Wang, H. Huang, X. Ren, J. Wang, D. Shen, Y. Zhao, W. Zhou, P. Liu, and D. Tang, “Nanosecond pulse generation at 2.7 µm from a passively Q-switched Er:Y2O3 ceramic laser,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1600906 (2018).
[Crossref]

Wang, S.

Z. Wu, D. Sun, S. Wang, J. Luo, X. Li, L. Huang, A. Hu, Y. Tang, and Q. Guo, “Performance of a 967 nm CW diode end-pumped Er:GSGG laser at 2.79 µm,” Laser Phys. 23(5), 055801 (2013).
[Crossref]

Wang, Y.

Z. You, J. Li, Y. Wang, H. Chen, Z. Zhu, and C. Tu, “Spectroscopic and laser properties of Er:LuGG crystal at ∼2.8 µm,” Appl. Phys. Express 12(5), 052019 (2019).
[Crossref]

H. Nie, Q. Hu, B. Zhang, X. Sun, H. Tian, Y. Wang, B. Yan, Z. Jia, K. Yang, X. Tao, and J. He, “Highly Efficient Continuous-Wave and Passively Q-Switching 2.8-µm Er:YSGG Laser,” IEEE Photonics Technol. Lett. 30(15), 1400–1403 (2018).
[Crossref]

Z. You, Y. Wang, J. Xu, Z. Zhu, J. Li, H. Wang, and C. Tu, “Single-longitudinal-mode Er:GGG microchip laser operating at 2.7 µm,” Opt. Lett. 40(16), 3846–3849 (2015).
[Crossref]

Z. You, Y. Wang, J. Xu, Z. Zhu, J. Li, and C. Tu, “Diode-end-pumped midinfrared multiwavelength Er:Pr:GGG Laser,” IEEE Photonics Technol. Lett. 26(7), 667–670 (2014).
[Crossref]

Wang, Z. P.

Welling, H.

Werle, P.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, “Near-and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002).
[Crossref]

Will, G. F.

Wu, K.

K. Wu, L. Z. Hao, H. H. Yu, Z. P. Wang, J. Y. Wang, and H. J. Zhang, “Thermal and laser properties of Nd:Lu3Sc1.5Ga3.5O12 for high power dual-wavelength laser,” Opt. Express 20(7), 6944–6951 (2012).
[Crossref]

K. Wu, L. Hao, H. Zhang, H. Yu, H. Cong, and J. Wang, “Growth and characterization of Nd:Lu3ScxGa5−xO12 series laser crystals,” Opt. Commun. 284(21), 5192–5198 (2011).
[Crossref]

Wu, Z.

Z. Wu, D. Sun, S. Wang, J. Luo, X. Li, L. Huang, A. Hu, Y. Tang, and Q. Guo, “Performance of a 967 nm CW diode end-pumped Er:GSGG laser at 2.79 µm,” Laser Phys. 23(5), 055801 (2013).
[Crossref]

Xiao, J.

D. Sun, J. Luo, J. Xiao, Q. Zhang, J. Chen, W. Liu, H. Kang, and S. Yin, “Luminescence and thermal properties of Er:GSGG and Yb,Er:GSGG laser crystals,” Chin. Phys. Lett. 29(5), 054209 (2012).
[Crossref]

Xu, B.

Y. Zhang, B. Xu, Q. Tian, Z. Luo, H. Xu, Z. Cai, D. Sun, Q. Zhang, W. Liu, X. Xu, and J. Zhang, “Sub-15-ns Passively Q-Switched Er:YSGG Laser at 2.8 µm With Fe:ZnSe Saturable Absorber,” IEEE Photonics Technol. Lett. 31(7), 565–568 (2019).
[Crossref]

Xu, H.

Y. Zhang, B. Xu, Q. Tian, Z. Luo, H. Xu, Z. Cai, D. Sun, Q. Zhang, W. Liu, X. Xu, and J. Zhang, “Sub-15-ns Passively Q-Switched Er:YSGG Laser at 2.8 µm With Fe:ZnSe Saturable Absorber,” IEEE Photonics Technol. Lett. 31(7), 565–568 (2019).
[Crossref]

Xu, J.

Z. You, Y. Wang, J. Xu, Z. Zhu, J. Li, H. Wang, and C. Tu, “Single-longitudinal-mode Er:GGG microchip laser operating at 2.7 µm,” Opt. Lett. 40(16), 3846–3849 (2015).
[Crossref]

Z. You, Y. Wang, J. Xu, Z. Zhu, J. Li, and C. Tu, “Diode-end-pumped midinfrared multiwavelength Er:Pr:GGG Laser,” IEEE Photonics Technol. Lett. 26(7), 667–670 (2014).
[Crossref]

Xu, X.

Y. Zhang, B. Xu, Q. Tian, Z. Luo, H. Xu, Z. Cai, D. Sun, Q. Zhang, W. Liu, X. Xu, and J. Zhang, “Sub-15-ns Passively Q-Switched Er:YSGG Laser at 2.8 µm With Fe:ZnSe Saturable Absorber,” IEEE Photonics Technol. Lett. 31(7), 565–568 (2019).
[Crossref]

C. Li, J. Liu, Z. Guo, H. Zhang, W. Ma, J. Wang, X. Xu, and L. Su, “Black phosphorus saturable absorber for a diode-pumped passively Q-switched Er:CaF2 mid-infrared laser,” Opt. Commun. 406, 158–162 (2018).
[Crossref]

Yan, B.

H. Nie, Q. Hu, B. Zhang, X. Sun, H. Tian, Y. Wang, B. Yan, Z. Jia, K. Yang, X. Tao, and J. He, “Highly Efficient Continuous-Wave and Passively Q-Switching 2.8-µm Er:YSGG Laser,” IEEE Photonics Technol. Lett. 30(15), 1400–1403 (2018).
[Crossref]

Yang, K.

H. Nie, Q. Hu, B. Zhang, X. Sun, H. Tian, Y. Wang, B. Yan, Z. Jia, K. Yang, X. Tao, and J. He, “Highly Efficient Continuous-Wave and Passively Q-Switching 2.8-µm Er:YSGG Laser,” IEEE Photonics Technol. Lett. 30(15), 1400–1403 (2018).
[Crossref]

M. Fan, T. Li, J. Zhao, S. Zhao, G. Li, K. Yang, L. Su, H. Ma, and C. Kränkel, “Continuous wave and ReS2 passively Q-switched Er : SrF2 laser at ∼3 µm,” Opt. Lett. 43(8), 1726–1729 (2018).
[Crossref]

Yasuhara, R.

H. Uehara, S. Tokita, J. Kawanaka, D. Konishi, M. Murakami, and R. Yasuhara, “A passively Q-switched compact Er:Lu2O3 ceramics laser at 2.8 µm with a graphene saturable absorber,” Appl. Phys. Express 12(2), 022002 (2019).
[Crossref]

Yasukevich, A. S.

P. A. Loiko, E. A. Arbabzadah, M. J. Damzen, X. Mateos, E. B. Dunina, A. A. Kornienko, A. S. Yasukevich, N. A. Skoptsov, and K. V. Yumashev, “Judd–Ofelt analysis and stimulated-emission cross-sections for highly doped (38 at%) Er:YSGG laser crystal,” J. Lumin. 171, 226–233 (2016).
[Crossref]

Yin, S.

D. Sun, J. Luo, J. Xiao, Q. Zhang, J. Chen, W. Liu, H. Kang, and S. Yin, “Luminescence and thermal properties of Er:GSGG and Yb,Er:GSGG laser crystals,” Chin. Phys. Lett. 29(5), 054209 (2012).
[Crossref]

Yin, Y.

Q. Hu, H. Nie, W. Mu, Y. Yin, J. Zhang, B. Zhang, J. He, Z. Jia, and X. Tao, “Bulk growth and an efficient mid-IR laser of high-quality Er:YSGG crystals,” CrystEngComm 21(12), 1928–1933 (2019).
[Crossref]

You, Z.

Z. You, J. Li, Y. Wang, H. Chen, Z. Zhu, and C. Tu, “Spectroscopic and laser properties of Er:LuGG crystal at ∼2.8 µm,” Appl. Phys. Express 12(5), 052019 (2019).
[Crossref]

Z. You, Y. Wang, J. Xu, Z. Zhu, J. Li, H. Wang, and C. Tu, “Single-longitudinal-mode Er:GGG microchip laser operating at 2.7 µm,” Opt. Lett. 40(16), 3846–3849 (2015).
[Crossref]

Z. You, Y. Wang, J. Xu, Z. Zhu, J. Li, and C. Tu, “Diode-end-pumped midinfrared multiwavelength Er:Pr:GGG Laser,” IEEE Photonics Technol. Lett. 26(7), 667–670 (2014).
[Crossref]

Yu, H.

K. Wu, L. Hao, H. Zhang, H. Yu, H. Cong, and J. Wang, “Growth and characterization of Nd:Lu3ScxGa5−xO12 series laser crystals,” Opt. Commun. 284(21), 5192–5198 (2011).
[Crossref]

Yu, H. H.

Yumashev, K. V.

P. A. Loiko, E. A. Arbabzadah, M. J. Damzen, X. Mateos, E. B. Dunina, A. A. Kornienko, A. S. Yasukevich, N. A. Skoptsov, and K. V. Yumashev, “Judd–Ofelt analysis and stimulated-emission cross-sections for highly doped (38 at%) Er:YSGG laser crystal,” J. Lumin. 171, 226–233 (2016).
[Crossref]

Zajac, A.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
[Crossref]

A. Zajac, M. Skorczakowski, J. Swiderski, and P. Nyga, “Electrooptically Q-switched mid-infrared Er:YAG laser for medical applications,” Opt. Express 12(21), 5125–5130 (2004).
[Crossref]

Zhang, B.

Q. Hu, H. Nie, W. Mu, Y. Yin, J. Zhang, B. Zhang, J. He, Z. Jia, and X. Tao, “Bulk growth and an efficient mid-IR laser of high-quality Er:YSGG crystals,” CrystEngComm 21(12), 1928–1933 (2019).
[Crossref]

H. Nie, Q. Hu, B. Zhang, X. Sun, H. Tian, Y. Wang, B. Yan, Z. Jia, K. Yang, X. Tao, and J. He, “Highly Efficient Continuous-Wave and Passively Q-Switching 2.8-µm Er:YSGG Laser,” IEEE Photonics Technol. Lett. 30(15), 1400–1403 (2018).
[Crossref]

Zhang, H.

C. Li, J. Liu, Z. Guo, H. Zhang, W. Ma, J. Wang, X. Xu, and L. Su, “Black phosphorus saturable absorber for a diode-pumped passively Q-switched Er:CaF2 mid-infrared laser,” Opt. Commun. 406, 158–162 (2018).
[Crossref]

K. Wu, L. Hao, H. Zhang, H. Yu, H. Cong, and J. Wang, “Growth and characterization of Nd:Lu3ScxGa5−xO12 series laser crystals,” Opt. Commun. 284(21), 5192–5198 (2011).
[Crossref]

Zhang, H. J.

Zhang, J.

Q. Hu, H. Nie, W. Mu, Y. Yin, J. Zhang, B. Zhang, J. He, Z. Jia, and X. Tao, “Bulk growth and an efficient mid-IR laser of high-quality Er:YSGG crystals,” CrystEngComm 21(12), 1928–1933 (2019).
[Crossref]

Y. Zhang, B. Xu, Q. Tian, Z. Luo, H. Xu, Z. Cai, D. Sun, Q. Zhang, W. Liu, X. Xu, and J. Zhang, “Sub-15-ns Passively Q-Switched Er:YSGG Laser at 2.8 µm With Fe:ZnSe Saturable Absorber,” IEEE Photonics Technol. Lett. 31(7), 565–568 (2019).
[Crossref]

Zhang, Q.

Y. Zhang, B. Xu, Q. Tian, Z. Luo, H. Xu, Z. Cai, D. Sun, Q. Zhang, W. Liu, X. Xu, and J. Zhang, “Sub-15-ns Passively Q-Switched Er:YSGG Laser at 2.8 µm With Fe:ZnSe Saturable Absorber,” IEEE Photonics Technol. Lett. 31(7), 565–568 (2019).
[Crossref]

D. Sun, J. Luo, J. Xiao, Q. Zhang, J. Chen, W. Liu, H. Kang, and S. Yin, “Luminescence and thermal properties of Er:GSGG and Yb,Er:GSGG laser crystals,” Chin. Phys. Lett. 29(5), 054209 (2012).
[Crossref]

Zhang, Y.

Y. Zhang, B. Xu, Q. Tian, Z. Luo, H. Xu, Z. Cai, D. Sun, Q. Zhang, W. Liu, X. Xu, and J. Zhang, “Sub-15-ns Passively Q-Switched Er:YSGG Laser at 2.8 µm With Fe:ZnSe Saturable Absorber,” IEEE Photonics Technol. Lett. 31(7), 565–568 (2019).
[Crossref]

Zhao, J.

Zhao, S.

Zhao, Y.

L. Wang, H. Huang, X. Ren, J. Wang, D. Shen, Y. Zhao, W. Zhou, P. Liu, and D. Tang, “Nanosecond pulse generation at 2.7 µm from a passively Q-switched Er:Y2O3 ceramic laser,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1600906 (2018).
[Crossref]

Zhou, W.

L. Wang, H. Huang, X. Ren, J. Wang, D. Shen, Y. Zhao, W. Zhou, P. Liu, and D. Tang, “Nanosecond pulse generation at 2.7 µm from a passively Q-switched Er:Y2O3 ceramic laser,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1600906 (2018).
[Crossref]

Zhu, Z.

Z. You, J. Li, Y. Wang, H. Chen, Z. Zhu, and C. Tu, “Spectroscopic and laser properties of Er:LuGG crystal at ∼2.8 µm,” Appl. Phys. Express 12(5), 052019 (2019).
[Crossref]

Z. You, Y. Wang, J. Xu, Z. Zhu, J. Li, H. Wang, and C. Tu, “Single-longitudinal-mode Er:GGG microchip laser operating at 2.7 µm,” Opt. Lett. 40(16), 3846–3849 (2015).
[Crossref]

Z. You, Y. Wang, J. Xu, Z. Zhu, J. Li, and C. Tu, “Diode-end-pumped midinfrared multiwavelength Er:Pr:GGG Laser,” IEEE Photonics Technol. Lett. 26(7), 667–670 (2014).
[Crossref]

Ziolek, C.

Zwieback, I.

Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. (1)

R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 32(5), 751–767 (1976).
[Crossref]

Appl. Phys. Express (2)

H. Uehara, S. Tokita, J. Kawanaka, D. Konishi, M. Murakami, and R. Yasuhara, “A passively Q-switched compact Er:Lu2O3 ceramics laser at 2.8 µm with a graphene saturable absorber,” Appl. Phys. Express 12(2), 022002 (2019).
[Crossref]

Z. You, J. Li, Y. Wang, H. Chen, Z. Zhu, and C. Tu, “Spectroscopic and laser properties of Er:LuGG crystal at ∼2.8 µm,” Appl. Phys. Express 12(5), 052019 (2019).
[Crossref]

Chin. Phys. Lett. (1)

D. Sun, J. Luo, J. Xiao, Q. Zhang, J. Chen, W. Liu, H. Kang, and S. Yin, “Luminescence and thermal properties of Er:GSGG and Yb,Er:GSGG laser crystals,” Chin. Phys. Lett. 29(5), 054209 (2012).
[Crossref]

CrystEngComm (1)

Q. Hu, H. Nie, W. Mu, Y. Yin, J. Zhang, B. Zhang, J. He, Z. Jia, and X. Tao, “Bulk growth and an efficient mid-IR laser of high-quality Er:YSGG crystals,” CrystEngComm 21(12), 1928–1933 (2019).
[Crossref]

IEEE J. Quantum Electron. (2)

M. G. Jani, N. P. Barnes, K. E. Murray, D. W. Hart, G. J. Quarles, and V. K. Castillo, “Diode-pumped Ho:Tm:LuLiF4 laser at room temperature,” IEEE J. Quantum Electron. 33(1), 112–115 (1997).
[Crossref]

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Cross - section measurements for crystals doped with Er3+, Tm3+, and Ho3+ dopants in crystals,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

L. Wang, H. Huang, X. Ren, J. Wang, D. Shen, Y. Zhao, W. Zhou, P. Liu, and D. Tang, “Nanosecond pulse generation at 2.7 µm from a passively Q-switched Er:Y2O3 ceramic laser,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1600906 (2018).
[Crossref]

M. Pollnau and S. D. Jackson, “Erbium 3-µm Fiber Lasers,” IEEE J. Sel. Top. Quantum Electron. 7(1), 30–40 (2001).
[Crossref]

IEEE Photonics Technol. Lett. (3)

Z. You, Y. Wang, J. Xu, Z. Zhu, J. Li, and C. Tu, “Diode-end-pumped midinfrared multiwavelength Er:Pr:GGG Laser,” IEEE Photonics Technol. Lett. 26(7), 667–670 (2014).
[Crossref]

Y. Zhang, B. Xu, Q. Tian, Z. Luo, H. Xu, Z. Cai, D. Sun, Q. Zhang, W. Liu, X. Xu, and J. Zhang, “Sub-15-ns Passively Q-Switched Er:YSGG Laser at 2.8 µm With Fe:ZnSe Saturable Absorber,” IEEE Photonics Technol. Lett. 31(7), 565–568 (2019).
[Crossref]

H. Nie, Q. Hu, B. Zhang, X. Sun, H. Tian, Y. Wang, B. Yan, Z. Jia, K. Yang, X. Tao, and J. He, “Highly Efficient Continuous-Wave and Passively Q-Switching 2.8-µm Er:YSGG Laser,” IEEE Photonics Technol. Lett. 30(15), 1400–1403 (2018).
[Crossref]

J. Lumin. (2)

B. Malysaa, A. Meijerinkb, and T. Jüstela, “Temperature dependent Cr3+ photoluminescence in garnets of the type X3Sc2Ga3O12 (X = Lu, Y, Gd, La),” J. Lumin. 202, 523–531 (2018).
[Crossref]

P. A. Loiko, E. A. Arbabzadah, M. J. Damzen, X. Mateos, E. B. Dunina, A. A. Kornienko, A. S. Yasukevich, N. A. Skoptsov, and K. V. Yumashev, “Judd–Ofelt analysis and stimulated-emission cross-sections for highly doped (38 at%) Er:YSGG laser crystal,” J. Lumin. 171, 226–233 (2016).
[Crossref]

J. Phys. Chem. Solids (1)

B. M. Walsh, G. W. Grew, and N. P. Barnes, “Energy levels and intensity parameters of Ho3+ ions in Y3Al5O12 and Lu3Al5O12” J,” J. Phys. Chem. Solids 67(7), 1567–1582 (2006).
[Crossref]

Laser Phys. (1)

Z. Wu, D. Sun, S. Wang, J. Luo, X. Li, L. Huang, A. Hu, Y. Tang, and Q. Guo, “Performance of a 967 nm CW diode end-pumped Er:GSGG laser at 2.79 µm,” Laser Phys. 23(5), 055801 (2013).
[Crossref]

Laser Phys. Lett. (1)

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
[Crossref]

Opt. Commun. (2)

C. Li, J. Liu, Z. Guo, H. Zhang, W. Ma, J. Wang, X. Xu, and L. Su, “Black phosphorus saturable absorber for a diode-pumped passively Q-switched Er:CaF2 mid-infrared laser,” Opt. Commun. 406, 158–162 (2018).
[Crossref]

K. Wu, L. Hao, H. Zhang, H. Yu, H. Cong, and J. Wang, “Growth and characterization of Nd:Lu3ScxGa5−xO12 series laser crystals,” Opt. Commun. 284(21), 5192–5198 (2011).
[Crossref]

Opt. Express (4)

Opt. Lasers Eng. (1)

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, “Near-and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002).
[Crossref]

Opt. Lett. (6)

Other (1)

A. E. Siengman, “Defining and measuring laser beam quality,” in Solid State Lasers: New Developments and Applications, M. Inguscio and R. Wallenstein, eds. (Plenum, 1993), pp.13–28.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Photograph of as-grown Er:LuSGG laser crystal.
Fig. 2.
Fig. 2. Schematic diagram of LD pumped Er:LuSGG laser.
Fig. 3.
Fig. 3. XRD pattern of Er:LuSGG single crystal.
Fig. 4.
Fig. 4. XRC of the Er:LuSGG crystal on the <111 > diffraction plane.
Fig. 5.
Fig. 5. Absorption spectra of the Er:LuSGG crystal. Inset: enlarged curve in the range of 950-990 nm.
Fig. 6.
Fig. 6. Fluorescence spectrum of the Er:LuSGG crystal excited by 972 nm LD.
Fig. 7.
Fig. 7. Fluorescence decay curves of the Er:LuSGG crystal at (a) upper laser level 4I11/2 and (b) lower laser level 4I13/2.
Fig. 8.
Fig. 8. (a) CW laser output power versus absorbed pump power and (b) spectrum of the lasers with insets showing two-dimensional and three-dimensional beam profiles at the maximum output power of 789 mW.
Fig. 9.
Fig. 9. Laser beam diameter versus propagation distance.

Tables (2)

Tables Icon

Table 1. Spectral parameters of several erbium activated garnet crystals

Tables Icon

Table 2. Comparison of ∼2.8 µm laser performance in several erbium activated garnet crystals

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

σ e m ( λ ) = β λ 5 8 π c n 2 τ I ( λ ) λ I ( λ ) d λ
M 2 = ϖ Θ π 4 λ

Metrics