Abstract

Optical remote sensors are nowadays ubiquitously used, thanks to unprecedented advances in the last decade in photonics, machine learning and signal processing tools. In this work we study experimentally the remote recovery of audio signals from the silent videos of the movement of optical speckle patterns. This technique can be used even when in between the source and the receiver there is a medium that does not allow for the propagation of sound waves. We use a diode laser to generate a speckle pattern on the membrane of a loudspeaker and a low-cost CCD camera to record the video of the movement of the speckle pattern when the loudspeaker plays an audio signal. We perform a comparative analysis of six signal recovery algorithms. In spite of having different complexity and computational requirements, we find that the algorithms have (except for the simplest one) good performance in terms of the quality of the recovered signal. The best trade-off, in terms of computational costs and performance, is obtained with a new method that we propose, which recovers the signal from the weighted sum of the intensities of all the pixels, where the signs of the weights are determined by selecting a reference pixel and calculating the signs of the cross-correlations of the intensity of the reference pixel and the intensities of the other pixels.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Classification of time-domain waveforms using a speckle-based optical reservoir computer

Uttam Paudel, Marta Luengo-Kovac, Jacob Pilawa, T. Justin Shaw, and George C. Valley
Opt. Express 28(2) 1225-1237 (2020)

Simultaneous remote extraction of multiple speech sources and heart beats from secondary speckles pattern

Zeev Zalevsky, Yevgeny Beiderman, Israel Margalit, Shimshon Gingold, Mina Teicher, Vicente Mico, and Javier Garcia
Opt. Express 17(24) 21566-21580 (2009)

References

  • View by:
  • |
  • |
  • |

  1. S. Emeis, K. Schäfer, and C. Münkel, “Surface-based remote sensing of the mixing-layer height a review,” Meteorol. Zeitschrift 17(5), 621–630 (2008).
    [Crossref]
  2. Z. Zalevsky, Y. Beiderman, I. Margalit, S. Gingold, M. Teicher, V. Mico, and J. Garcia, “Simultaneous remote extraction of multiple speech sources and heart beats from secondary speckles pattern,” Opt. Express 17(24), 21566–21580 (2009).
    [Crossref]
  3. Y. L. Pichugina, R. M. Banta, W. A. Brewer, S. P. Sandberg, and R. M. Hardesty, “Doppler lidar-based wind-profile measurement system for offshore wind-energy and other marine boundary layer applications,” J. Appl. Meteor. Climatol. 51(2), 327–349 (2012).
    [Crossref]
  4. V. Klemas, “Fisheries applications of remote sensing: an overview,” Fish. Res. 148, 124–136 (2013).
    [Crossref]
  5. C. Kuenzer, M. Ottinger, M. Wegmann, H. Guo, C. Wang, J. Zhang, S. Dech, and M. Wikelski, “Earth observation satellite sensors for biodiversity monitoring: potentials and bottlenecks,” Int. J. Remote. Sens. 35(18), 6599–6647 (2014).
    [Crossref]
  6. W. Emery and A. Camps, Introduction to Satellite Remote Sensing (Elsevier, 2017), first edition ed.
  7. M. Eady, B. Park, and S. Choi, “Rapid and early detection of salmonella serotypes with hyperspectral microscopy and multivariate data analysis,” J. Food Protection 78(4), 668–674 (2015).
    [Crossref]
  8. S. C. Murray, “Optical sensors advancing precision in agricultural production,” Photon. Spectra 51, 48 (2018).
  9. C. A. Hostetler, M. J. Behrenfeld, Y. Hu, J. W. Hair, and J. A. Schulien, “Spaceborne lidar in the study of marine systems,” Annu. Rev. Mar. Sci. 10(1), 121–147 (2018).
    [Crossref]
  10. N. Masini, F. T. Gizzi, M. Biscione, V. Fundone, M. Sedile, M. Sileo, A. Pecci, B. Lacovara, and R. Lasaponara, “Medieval archaeology under the canopy with lidar. the (re)discovery of a medieval fortified settlement in southern Italy,” Remote Sens. 10(10), 1598 (2018).
    [Crossref]
  11. L. Rodriguez-Cobo, M. Lomer, and J. M. Lopez-Higuera, “Fiber specklegram-multiplexed sensor,” J. Lightwave Technol. 33(12), 2591–2597 (2015).
    [Crossref]
  12. I. Robles-Urquijo, M. Lomer, L. Rodriguez-Cobo, and J. M. Lopez-Higuera, “Non-contact vibration analysis using speckle-based techniques,” in 2017 25th Optical Fiber Sensors Conference (OFS), (2017), pp. 1–4.
  13. J. W. Goodman, Speckle Phenomena in Optics: Theory and Application (Roberts and Company Publishers, 2007).
  14. A. Davis, M. Rubinstein, N. Wadhwa, G. Mysore, F. Durand, and W. T. Freeman, “The visual microphone: Passive recovery of sound from video,” ACM Trans. Graph. 33(4), 1–10 (2014).
    [Crossref]
  15. J. B. Tenenbaum, V. De Silva, and J. C. Langford, “A global geometric framework for nonlinear dimensionality reduction,” Science 290(5500), 2319–2323 (2000).
    [Crossref]
  16. J. Portilla and E. P. Simoncelli, “A parametric texture model based on joint statistics of complex wavelet coefficients,” Intl. J. Comput. Vision 40(1), 49–70 (2000).
    [Crossref]
  17. E. P. Simoncelli, W. T. Freeman, E. H. Adelson, and D. J. Heeger, “Shiftable multiscale transforms,” IEEE Trans. Inf. Theory 38(2), 587–607 (1992).
    [Crossref]
  18. W. Kester, “Understand sinad, enob, snr, thd, thd + n, and sfdr so you don’t get lost in the noise floor,” https://www.analog.com/media/en/training-seminars/tutorials/MT-003.pdf (2008). [online; accessed 2020-01-15].
  19. A. Buscarino, C. Famoso, L. Fortuna, and M. Frasca, “Multi-jump resonance systems,” Int. J. Control 93(2), 282–292 (2020).
    [Crossref]

2020 (1)

A. Buscarino, C. Famoso, L. Fortuna, and M. Frasca, “Multi-jump resonance systems,” Int. J. Control 93(2), 282–292 (2020).
[Crossref]

2018 (3)

S. C. Murray, “Optical sensors advancing precision in agricultural production,” Photon. Spectra 51, 48 (2018).

C. A. Hostetler, M. J. Behrenfeld, Y. Hu, J. W. Hair, and J. A. Schulien, “Spaceborne lidar in the study of marine systems,” Annu. Rev. Mar. Sci. 10(1), 121–147 (2018).
[Crossref]

N. Masini, F. T. Gizzi, M. Biscione, V. Fundone, M. Sedile, M. Sileo, A. Pecci, B. Lacovara, and R. Lasaponara, “Medieval archaeology under the canopy with lidar. the (re)discovery of a medieval fortified settlement in southern Italy,” Remote Sens. 10(10), 1598 (2018).
[Crossref]

2015 (2)

L. Rodriguez-Cobo, M. Lomer, and J. M. Lopez-Higuera, “Fiber specklegram-multiplexed sensor,” J. Lightwave Technol. 33(12), 2591–2597 (2015).
[Crossref]

M. Eady, B. Park, and S. Choi, “Rapid and early detection of salmonella serotypes with hyperspectral microscopy and multivariate data analysis,” J. Food Protection 78(4), 668–674 (2015).
[Crossref]

2014 (2)

C. Kuenzer, M. Ottinger, M. Wegmann, H. Guo, C. Wang, J. Zhang, S. Dech, and M. Wikelski, “Earth observation satellite sensors for biodiversity monitoring: potentials and bottlenecks,” Int. J. Remote. Sens. 35(18), 6599–6647 (2014).
[Crossref]

A. Davis, M. Rubinstein, N. Wadhwa, G. Mysore, F. Durand, and W. T. Freeman, “The visual microphone: Passive recovery of sound from video,” ACM Trans. Graph. 33(4), 1–10 (2014).
[Crossref]

2013 (1)

V. Klemas, “Fisheries applications of remote sensing: an overview,” Fish. Res. 148, 124–136 (2013).
[Crossref]

2012 (1)

Y. L. Pichugina, R. M. Banta, W. A. Brewer, S. P. Sandberg, and R. M. Hardesty, “Doppler lidar-based wind-profile measurement system for offshore wind-energy and other marine boundary layer applications,” J. Appl. Meteor. Climatol. 51(2), 327–349 (2012).
[Crossref]

2009 (1)

2008 (1)

S. Emeis, K. Schäfer, and C. Münkel, “Surface-based remote sensing of the mixing-layer height a review,” Meteorol. Zeitschrift 17(5), 621–630 (2008).
[Crossref]

2000 (2)

J. B. Tenenbaum, V. De Silva, and J. C. Langford, “A global geometric framework for nonlinear dimensionality reduction,” Science 290(5500), 2319–2323 (2000).
[Crossref]

J. Portilla and E. P. Simoncelli, “A parametric texture model based on joint statistics of complex wavelet coefficients,” Intl. J. Comput. Vision 40(1), 49–70 (2000).
[Crossref]

1992 (1)

E. P. Simoncelli, W. T. Freeman, E. H. Adelson, and D. J. Heeger, “Shiftable multiscale transforms,” IEEE Trans. Inf. Theory 38(2), 587–607 (1992).
[Crossref]

Adelson, E. H.

E. P. Simoncelli, W. T. Freeman, E. H. Adelson, and D. J. Heeger, “Shiftable multiscale transforms,” IEEE Trans. Inf. Theory 38(2), 587–607 (1992).
[Crossref]

Banta, R. M.

Y. L. Pichugina, R. M. Banta, W. A. Brewer, S. P. Sandberg, and R. M. Hardesty, “Doppler lidar-based wind-profile measurement system for offshore wind-energy and other marine boundary layer applications,” J. Appl. Meteor. Climatol. 51(2), 327–349 (2012).
[Crossref]

Behrenfeld, M. J.

C. A. Hostetler, M. J. Behrenfeld, Y. Hu, J. W. Hair, and J. A. Schulien, “Spaceborne lidar in the study of marine systems,” Annu. Rev. Mar. Sci. 10(1), 121–147 (2018).
[Crossref]

Beiderman, Y.

Biscione, M.

N. Masini, F. T. Gizzi, M. Biscione, V. Fundone, M. Sedile, M. Sileo, A. Pecci, B. Lacovara, and R. Lasaponara, “Medieval archaeology under the canopy with lidar. the (re)discovery of a medieval fortified settlement in southern Italy,” Remote Sens. 10(10), 1598 (2018).
[Crossref]

Brewer, W. A.

Y. L. Pichugina, R. M. Banta, W. A. Brewer, S. P. Sandberg, and R. M. Hardesty, “Doppler lidar-based wind-profile measurement system for offshore wind-energy and other marine boundary layer applications,” J. Appl. Meteor. Climatol. 51(2), 327–349 (2012).
[Crossref]

Buscarino, A.

A. Buscarino, C. Famoso, L. Fortuna, and M. Frasca, “Multi-jump resonance systems,” Int. J. Control 93(2), 282–292 (2020).
[Crossref]

Camps, A.

W. Emery and A. Camps, Introduction to Satellite Remote Sensing (Elsevier, 2017), first edition ed.

Choi, S.

M. Eady, B. Park, and S. Choi, “Rapid and early detection of salmonella serotypes with hyperspectral microscopy and multivariate data analysis,” J. Food Protection 78(4), 668–674 (2015).
[Crossref]

Davis, A.

A. Davis, M. Rubinstein, N. Wadhwa, G. Mysore, F. Durand, and W. T. Freeman, “The visual microphone: Passive recovery of sound from video,” ACM Trans. Graph. 33(4), 1–10 (2014).
[Crossref]

De Silva, V.

J. B. Tenenbaum, V. De Silva, and J. C. Langford, “A global geometric framework for nonlinear dimensionality reduction,” Science 290(5500), 2319–2323 (2000).
[Crossref]

Dech, S.

C. Kuenzer, M. Ottinger, M. Wegmann, H. Guo, C. Wang, J. Zhang, S. Dech, and M. Wikelski, “Earth observation satellite sensors for biodiversity monitoring: potentials and bottlenecks,” Int. J. Remote. Sens. 35(18), 6599–6647 (2014).
[Crossref]

Durand, F.

A. Davis, M. Rubinstein, N. Wadhwa, G. Mysore, F. Durand, and W. T. Freeman, “The visual microphone: Passive recovery of sound from video,” ACM Trans. Graph. 33(4), 1–10 (2014).
[Crossref]

Eady, M.

M. Eady, B. Park, and S. Choi, “Rapid and early detection of salmonella serotypes with hyperspectral microscopy and multivariate data analysis,” J. Food Protection 78(4), 668–674 (2015).
[Crossref]

Emeis, S.

S. Emeis, K. Schäfer, and C. Münkel, “Surface-based remote sensing of the mixing-layer height a review,” Meteorol. Zeitschrift 17(5), 621–630 (2008).
[Crossref]

Emery, W.

W. Emery and A. Camps, Introduction to Satellite Remote Sensing (Elsevier, 2017), first edition ed.

Famoso, C.

A. Buscarino, C. Famoso, L. Fortuna, and M. Frasca, “Multi-jump resonance systems,” Int. J. Control 93(2), 282–292 (2020).
[Crossref]

Fortuna, L.

A. Buscarino, C. Famoso, L. Fortuna, and M. Frasca, “Multi-jump resonance systems,” Int. J. Control 93(2), 282–292 (2020).
[Crossref]

Frasca, M.

A. Buscarino, C. Famoso, L. Fortuna, and M. Frasca, “Multi-jump resonance systems,” Int. J. Control 93(2), 282–292 (2020).
[Crossref]

Freeman, W. T.

A. Davis, M. Rubinstein, N. Wadhwa, G. Mysore, F. Durand, and W. T. Freeman, “The visual microphone: Passive recovery of sound from video,” ACM Trans. Graph. 33(4), 1–10 (2014).
[Crossref]

E. P. Simoncelli, W. T. Freeman, E. H. Adelson, and D. J. Heeger, “Shiftable multiscale transforms,” IEEE Trans. Inf. Theory 38(2), 587–607 (1992).
[Crossref]

Fundone, V.

N. Masini, F. T. Gizzi, M. Biscione, V. Fundone, M. Sedile, M. Sileo, A. Pecci, B. Lacovara, and R. Lasaponara, “Medieval archaeology under the canopy with lidar. the (re)discovery of a medieval fortified settlement in southern Italy,” Remote Sens. 10(10), 1598 (2018).
[Crossref]

Garcia, J.

Gingold, S.

Gizzi, F. T.

N. Masini, F. T. Gizzi, M. Biscione, V. Fundone, M. Sedile, M. Sileo, A. Pecci, B. Lacovara, and R. Lasaponara, “Medieval archaeology under the canopy with lidar. the (re)discovery of a medieval fortified settlement in southern Italy,” Remote Sens. 10(10), 1598 (2018).
[Crossref]

Goodman, J. W.

J. W. Goodman, Speckle Phenomena in Optics: Theory and Application (Roberts and Company Publishers, 2007).

Guo, H.

C. Kuenzer, M. Ottinger, M. Wegmann, H. Guo, C. Wang, J. Zhang, S. Dech, and M. Wikelski, “Earth observation satellite sensors for biodiversity monitoring: potentials and bottlenecks,” Int. J. Remote. Sens. 35(18), 6599–6647 (2014).
[Crossref]

Hair, J. W.

C. A. Hostetler, M. J. Behrenfeld, Y. Hu, J. W. Hair, and J. A. Schulien, “Spaceborne lidar in the study of marine systems,” Annu. Rev. Mar. Sci. 10(1), 121–147 (2018).
[Crossref]

Hardesty, R. M.

Y. L. Pichugina, R. M. Banta, W. A. Brewer, S. P. Sandberg, and R. M. Hardesty, “Doppler lidar-based wind-profile measurement system for offshore wind-energy and other marine boundary layer applications,” J. Appl. Meteor. Climatol. 51(2), 327–349 (2012).
[Crossref]

Heeger, D. J.

E. P. Simoncelli, W. T. Freeman, E. H. Adelson, and D. J. Heeger, “Shiftable multiscale transforms,” IEEE Trans. Inf. Theory 38(2), 587–607 (1992).
[Crossref]

Hostetler, C. A.

C. A. Hostetler, M. J. Behrenfeld, Y. Hu, J. W. Hair, and J. A. Schulien, “Spaceborne lidar in the study of marine systems,” Annu. Rev. Mar. Sci. 10(1), 121–147 (2018).
[Crossref]

Hu, Y.

C. A. Hostetler, M. J. Behrenfeld, Y. Hu, J. W. Hair, and J. A. Schulien, “Spaceborne lidar in the study of marine systems,” Annu. Rev. Mar. Sci. 10(1), 121–147 (2018).
[Crossref]

Kester, W.

W. Kester, “Understand sinad, enob, snr, thd, thd + n, and sfdr so you don’t get lost in the noise floor,” https://www.analog.com/media/en/training-seminars/tutorials/MT-003.pdf (2008). [online; accessed 2020-01-15].

Klemas, V.

V. Klemas, “Fisheries applications of remote sensing: an overview,” Fish. Res. 148, 124–136 (2013).
[Crossref]

Kuenzer, C.

C. Kuenzer, M. Ottinger, M. Wegmann, H. Guo, C. Wang, J. Zhang, S. Dech, and M. Wikelski, “Earth observation satellite sensors for biodiversity monitoring: potentials and bottlenecks,” Int. J. Remote. Sens. 35(18), 6599–6647 (2014).
[Crossref]

Lacovara, B.

N. Masini, F. T. Gizzi, M. Biscione, V. Fundone, M. Sedile, M. Sileo, A. Pecci, B. Lacovara, and R. Lasaponara, “Medieval archaeology under the canopy with lidar. the (re)discovery of a medieval fortified settlement in southern Italy,” Remote Sens. 10(10), 1598 (2018).
[Crossref]

Langford, J. C.

J. B. Tenenbaum, V. De Silva, and J. C. Langford, “A global geometric framework for nonlinear dimensionality reduction,” Science 290(5500), 2319–2323 (2000).
[Crossref]

Lasaponara, R.

N. Masini, F. T. Gizzi, M. Biscione, V. Fundone, M. Sedile, M. Sileo, A. Pecci, B. Lacovara, and R. Lasaponara, “Medieval archaeology under the canopy with lidar. the (re)discovery of a medieval fortified settlement in southern Italy,” Remote Sens. 10(10), 1598 (2018).
[Crossref]

Lomer, M.

L. Rodriguez-Cobo, M. Lomer, and J. M. Lopez-Higuera, “Fiber specklegram-multiplexed sensor,” J. Lightwave Technol. 33(12), 2591–2597 (2015).
[Crossref]

I. Robles-Urquijo, M. Lomer, L. Rodriguez-Cobo, and J. M. Lopez-Higuera, “Non-contact vibration analysis using speckle-based techniques,” in 2017 25th Optical Fiber Sensors Conference (OFS), (2017), pp. 1–4.

Lopez-Higuera, J. M.

L. Rodriguez-Cobo, M. Lomer, and J. M. Lopez-Higuera, “Fiber specklegram-multiplexed sensor,” J. Lightwave Technol. 33(12), 2591–2597 (2015).
[Crossref]

I. Robles-Urquijo, M. Lomer, L. Rodriguez-Cobo, and J. M. Lopez-Higuera, “Non-contact vibration analysis using speckle-based techniques,” in 2017 25th Optical Fiber Sensors Conference (OFS), (2017), pp. 1–4.

Margalit, I.

Masini, N.

N. Masini, F. T. Gizzi, M. Biscione, V. Fundone, M. Sedile, M. Sileo, A. Pecci, B. Lacovara, and R. Lasaponara, “Medieval archaeology under the canopy with lidar. the (re)discovery of a medieval fortified settlement in southern Italy,” Remote Sens. 10(10), 1598 (2018).
[Crossref]

Mico, V.

Münkel, C.

S. Emeis, K. Schäfer, and C. Münkel, “Surface-based remote sensing of the mixing-layer height a review,” Meteorol. Zeitschrift 17(5), 621–630 (2008).
[Crossref]

Murray, S. C.

S. C. Murray, “Optical sensors advancing precision in agricultural production,” Photon. Spectra 51, 48 (2018).

Mysore, G.

A. Davis, M. Rubinstein, N. Wadhwa, G. Mysore, F. Durand, and W. T. Freeman, “The visual microphone: Passive recovery of sound from video,” ACM Trans. Graph. 33(4), 1–10 (2014).
[Crossref]

Ottinger, M.

C. Kuenzer, M. Ottinger, M. Wegmann, H. Guo, C. Wang, J. Zhang, S. Dech, and M. Wikelski, “Earth observation satellite sensors for biodiversity monitoring: potentials and bottlenecks,” Int. J. Remote. Sens. 35(18), 6599–6647 (2014).
[Crossref]

Park, B.

M. Eady, B. Park, and S. Choi, “Rapid and early detection of salmonella serotypes with hyperspectral microscopy and multivariate data analysis,” J. Food Protection 78(4), 668–674 (2015).
[Crossref]

Pecci, A.

N. Masini, F. T. Gizzi, M. Biscione, V. Fundone, M. Sedile, M. Sileo, A. Pecci, B. Lacovara, and R. Lasaponara, “Medieval archaeology under the canopy with lidar. the (re)discovery of a medieval fortified settlement in southern Italy,” Remote Sens. 10(10), 1598 (2018).
[Crossref]

Pichugina, Y. L.

Y. L. Pichugina, R. M. Banta, W. A. Brewer, S. P. Sandberg, and R. M. Hardesty, “Doppler lidar-based wind-profile measurement system for offshore wind-energy and other marine boundary layer applications,” J. Appl. Meteor. Climatol. 51(2), 327–349 (2012).
[Crossref]

Portilla, J.

J. Portilla and E. P. Simoncelli, “A parametric texture model based on joint statistics of complex wavelet coefficients,” Intl. J. Comput. Vision 40(1), 49–70 (2000).
[Crossref]

Robles-Urquijo, I.

I. Robles-Urquijo, M. Lomer, L. Rodriguez-Cobo, and J. M. Lopez-Higuera, “Non-contact vibration analysis using speckle-based techniques,” in 2017 25th Optical Fiber Sensors Conference (OFS), (2017), pp. 1–4.

Rodriguez-Cobo, L.

L. Rodriguez-Cobo, M. Lomer, and J. M. Lopez-Higuera, “Fiber specklegram-multiplexed sensor,” J. Lightwave Technol. 33(12), 2591–2597 (2015).
[Crossref]

I. Robles-Urquijo, M. Lomer, L. Rodriguez-Cobo, and J. M. Lopez-Higuera, “Non-contact vibration analysis using speckle-based techniques,” in 2017 25th Optical Fiber Sensors Conference (OFS), (2017), pp. 1–4.

Rubinstein, M.

A. Davis, M. Rubinstein, N. Wadhwa, G. Mysore, F. Durand, and W. T. Freeman, “The visual microphone: Passive recovery of sound from video,” ACM Trans. Graph. 33(4), 1–10 (2014).
[Crossref]

Sandberg, S. P.

Y. L. Pichugina, R. M. Banta, W. A. Brewer, S. P. Sandberg, and R. M. Hardesty, “Doppler lidar-based wind-profile measurement system for offshore wind-energy and other marine boundary layer applications,” J. Appl. Meteor. Climatol. 51(2), 327–349 (2012).
[Crossref]

Schäfer, K.

S. Emeis, K. Schäfer, and C. Münkel, “Surface-based remote sensing of the mixing-layer height a review,” Meteorol. Zeitschrift 17(5), 621–630 (2008).
[Crossref]

Schulien, J. A.

C. A. Hostetler, M. J. Behrenfeld, Y. Hu, J. W. Hair, and J. A. Schulien, “Spaceborne lidar in the study of marine systems,” Annu. Rev. Mar. Sci. 10(1), 121–147 (2018).
[Crossref]

Sedile, M.

N. Masini, F. T. Gizzi, M. Biscione, V. Fundone, M. Sedile, M. Sileo, A. Pecci, B. Lacovara, and R. Lasaponara, “Medieval archaeology under the canopy with lidar. the (re)discovery of a medieval fortified settlement in southern Italy,” Remote Sens. 10(10), 1598 (2018).
[Crossref]

Sileo, M.

N. Masini, F. T. Gizzi, M. Biscione, V. Fundone, M. Sedile, M. Sileo, A. Pecci, B. Lacovara, and R. Lasaponara, “Medieval archaeology under the canopy with lidar. the (re)discovery of a medieval fortified settlement in southern Italy,” Remote Sens. 10(10), 1598 (2018).
[Crossref]

Simoncelli, E. P.

J. Portilla and E. P. Simoncelli, “A parametric texture model based on joint statistics of complex wavelet coefficients,” Intl. J. Comput. Vision 40(1), 49–70 (2000).
[Crossref]

E. P. Simoncelli, W. T. Freeman, E. H. Adelson, and D. J. Heeger, “Shiftable multiscale transforms,” IEEE Trans. Inf. Theory 38(2), 587–607 (1992).
[Crossref]

Teicher, M.

Tenenbaum, J. B.

J. B. Tenenbaum, V. De Silva, and J. C. Langford, “A global geometric framework for nonlinear dimensionality reduction,” Science 290(5500), 2319–2323 (2000).
[Crossref]

Wadhwa, N.

A. Davis, M. Rubinstein, N. Wadhwa, G. Mysore, F. Durand, and W. T. Freeman, “The visual microphone: Passive recovery of sound from video,” ACM Trans. Graph. 33(4), 1–10 (2014).
[Crossref]

Wang, C.

C. Kuenzer, M. Ottinger, M. Wegmann, H. Guo, C. Wang, J. Zhang, S. Dech, and M. Wikelski, “Earth observation satellite sensors for biodiversity monitoring: potentials and bottlenecks,” Int. J. Remote. Sens. 35(18), 6599–6647 (2014).
[Crossref]

Wegmann, M.

C. Kuenzer, M. Ottinger, M. Wegmann, H. Guo, C. Wang, J. Zhang, S. Dech, and M. Wikelski, “Earth observation satellite sensors for biodiversity monitoring: potentials and bottlenecks,” Int. J. Remote. Sens. 35(18), 6599–6647 (2014).
[Crossref]

Wikelski, M.

C. Kuenzer, M. Ottinger, M. Wegmann, H. Guo, C. Wang, J. Zhang, S. Dech, and M. Wikelski, “Earth observation satellite sensors for biodiversity monitoring: potentials and bottlenecks,” Int. J. Remote. Sens. 35(18), 6599–6647 (2014).
[Crossref]

Zalevsky, Z.

Zhang, J.

C. Kuenzer, M. Ottinger, M. Wegmann, H. Guo, C. Wang, J. Zhang, S. Dech, and M. Wikelski, “Earth observation satellite sensors for biodiversity monitoring: potentials and bottlenecks,” Int. J. Remote. Sens. 35(18), 6599–6647 (2014).
[Crossref]

ACM Trans. Graph. (1)

A. Davis, M. Rubinstein, N. Wadhwa, G. Mysore, F. Durand, and W. T. Freeman, “The visual microphone: Passive recovery of sound from video,” ACM Trans. Graph. 33(4), 1–10 (2014).
[Crossref]

Annu. Rev. Mar. Sci. (1)

C. A. Hostetler, M. J. Behrenfeld, Y. Hu, J. W. Hair, and J. A. Schulien, “Spaceborne lidar in the study of marine systems,” Annu. Rev. Mar. Sci. 10(1), 121–147 (2018).
[Crossref]

Fish. Res. (1)

V. Klemas, “Fisheries applications of remote sensing: an overview,” Fish. Res. 148, 124–136 (2013).
[Crossref]

IEEE Trans. Inf. Theory (1)

E. P. Simoncelli, W. T. Freeman, E. H. Adelson, and D. J. Heeger, “Shiftable multiscale transforms,” IEEE Trans. Inf. Theory 38(2), 587–607 (1992).
[Crossref]

Int. J. Control (1)

A. Buscarino, C. Famoso, L. Fortuna, and M. Frasca, “Multi-jump resonance systems,” Int. J. Control 93(2), 282–292 (2020).
[Crossref]

Int. J. Remote. Sens. (1)

C. Kuenzer, M. Ottinger, M. Wegmann, H. Guo, C. Wang, J. Zhang, S. Dech, and M. Wikelski, “Earth observation satellite sensors for biodiversity monitoring: potentials and bottlenecks,” Int. J. Remote. Sens. 35(18), 6599–6647 (2014).
[Crossref]

Intl. J. Comput. Vision (1)

J. Portilla and E. P. Simoncelli, “A parametric texture model based on joint statistics of complex wavelet coefficients,” Intl. J. Comput. Vision 40(1), 49–70 (2000).
[Crossref]

J. Appl. Meteor. Climatol. (1)

Y. L. Pichugina, R. M. Banta, W. A. Brewer, S. P. Sandberg, and R. M. Hardesty, “Doppler lidar-based wind-profile measurement system for offshore wind-energy and other marine boundary layer applications,” J. Appl. Meteor. Climatol. 51(2), 327–349 (2012).
[Crossref]

J. Food Protection (1)

M. Eady, B. Park, and S. Choi, “Rapid and early detection of salmonella serotypes with hyperspectral microscopy and multivariate data analysis,” J. Food Protection 78(4), 668–674 (2015).
[Crossref]

J. Lightwave Technol. (1)

Meteorol. Zeitschrift (1)

S. Emeis, K. Schäfer, and C. Münkel, “Surface-based remote sensing of the mixing-layer height a review,” Meteorol. Zeitschrift 17(5), 621–630 (2008).
[Crossref]

Opt. Express (1)

Photon. Spectra (1)

S. C. Murray, “Optical sensors advancing precision in agricultural production,” Photon. Spectra 51, 48 (2018).

Remote Sens. (1)

N. Masini, F. T. Gizzi, M. Biscione, V. Fundone, M. Sedile, M. Sileo, A. Pecci, B. Lacovara, and R. Lasaponara, “Medieval archaeology under the canopy with lidar. the (re)discovery of a medieval fortified settlement in southern Italy,” Remote Sens. 10(10), 1598 (2018).
[Crossref]

Science (1)

J. B. Tenenbaum, V. De Silva, and J. C. Langford, “A global geometric framework for nonlinear dimensionality reduction,” Science 290(5500), 2319–2323 (2000).
[Crossref]

Other (4)

W. Kester, “Understand sinad, enob, snr, thd, thd + n, and sfdr so you don’t get lost in the noise floor,” https://www.analog.com/media/en/training-seminars/tutorials/MT-003.pdf (2008). [online; accessed 2020-01-15].

I. Robles-Urquijo, M. Lomer, L. Rodriguez-Cobo, and J. M. Lopez-Higuera, “Non-contact vibration analysis using speckle-based techniques,” in 2017 25th Optical Fiber Sensors Conference (OFS), (2017), pp. 1–4.

J. W. Goodman, Speckle Phenomena in Optics: Theory and Application (Roberts and Company Publishers, 2007).

W. Emery and A. Camps, Introduction to Satellite Remote Sensing (Elsevier, 2017), first edition ed.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1. (a) Experimental setup: A collimated laser beam shines onto a white paper glued to the membrane of a loudspeaker. The paper surface roughness generates a speckle pattern that is imaged by lens L onto the sensor of a CMOS camera. (b) Example a speckle image recorded by the camera. Examples of recorded videos and recovered audio signals can be found here.
Fig. 2.
Fig. 2. Evaluation of the Signal-to-Noise and Distortion ratio (SINAD) from the Fast Fourier Transform (FFT) of the recovered signal from the MI method: (a) the green line indicates the signal, i.e., the section of FFT centered at the applied frequency. In this example the applied frequency is $f_0=80$ Hz. (b) Spectrogram obtained with the Mean Intensity method that illustrates the appearance of additional peaks due to aliasing and harmonics.
Fig. 3.
Fig. 3. (a) Performance of the recovery algorithms quantified with the Signal-to-Noise and Distortion ratio (SINAD) when a sinusoidal signal is played by the loudspeaker and the volume of the signal is increased, while the signal frequency is kept constant (100 Hz). (b) SINAD for increasing signal frequency when the signal volume is kept constant (-30dB, dB refers to sound pressure levels).

Tables (2)

Tables Icon

Table 1. Computational costs of the recovery algorithms in terms of mean time of execution and standard deviation. All the methods were run using MatLab in a portable computer with an Intel i7-7700HQ processor and 16 GB of RAM.

Tables Icon

Table 2. Performance of the recovery algorithms quantified with the cross-correlation when a song is played by the loudspeaker, for three volume levels.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

I i [ n ] = f i ( x [ n ] ) + σ i ϵ i [ n ] α i x [ n ] + σ i ϵ i [ n ] .
y [ n ] = i | α i ( x [ n ] x [ n 1 ] ) + σ i ( ϵ i [ n ] ϵ i [ n 1 ] ) | .
y [ n ] = ( i α i N ) x [ n ] + 1 N i σ i ϵ i [ n ] ,
C i = sign ( α i α r ) .
y [ n ] = i β i I i [ n ] .
y [ n ] = ( i β i α i ) x [ n ] + σ i β i ϵ i [ n ] .
β i = sign ( C i ) | β i | = sign ( C i ) RMS i 2 min i 2 ( RMS i ) .
y [ n ] = sign ( α r ) ( i | α i β i | ) x [ n ] + i sign ( α i α r ) | β i | σ i ϵ i [ n ] ,
S I N A D = P s i g n a l P n d

Metrics