Abstract

Laser scanning based on Micro-Electro-Mechanical Systems (MEMS) scanners has become very attractive for biomedical endoscopic imaging, such as confocal microscopy or Optical Coherence Tomography (OCT). These scanners are required to be fast to achieve real-time image reconstruction while working at low actuation voltage to comply with medical standards. In this context, we report a 2-axis Micro-Electro-Mechanical Systems (MEMS) electrothermal micro-scannercapable of imaging large fields of view at high frame rates, e.g. from 10 to 80 frames per second. For this purpose, Lissajous scan parameters are chosen to provide the optimal image quality within the scanner capabilities and the sampling rate limit, resulting from the limited A-scan rate of typical swept-sources used for OCT. Images of 233 px × 203 px and 53 px × 53 px at 10 fps and 61 fps, respectively, are experimentally obtained and demonstrate the potential of this micro-scannerfor high definition and high frame rate endoscopic Lissajous imaging.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
1.65 mm diameter forward-viewing confocal endomicroscopic catheter using a flip-chip bonded electrothermal MEMS fiber scanner

Yeong-Hyeon Seo, Kyungmin Hwang, and Ki-Hun Jeong
Opt. Express 26(4) 4780-4785 (2018)

Electrothermal MEMS fiber scanner for optical endomicroscopy

Yeong-Hyeon Seo, Kyungmin Hwang, Hyeon-Cheol Park, and Ki-Hun Jeong
Opt. Express 24(4) 3903-3909 (2016)

3D In Vivo optical coherence tomography based on a low-voltage, large-scan-range 2D MEMS mirror

Jingjing Sun, Shuguang Guo, Lei Wu, Lin Liu, Se-Woon Choe, Brian S. Sorg, and Huikai Xie
Opt. Express 18(12) 12065-12075 (2010)

References

  • View by:
  • |
  • |
  • |

  1. A. Hoffman, H. Manner, J. W. Rey, and R. Kiesslich, “A guide to multimodal endoscopy imaging for gastrointestinal malignancy-an early indicator,” Nat. Rev. Gastroenterol. Hepatol. 14(7), 421–434 (2017).
    [Crossref]
  2. G. Sakas, “Trends in medical imaging: From 2D to 3D,” Comput. Graph. (Pergamon) 26(4), 577–587 (2002).
    [Crossref]
  3. A. D. Aguirre, P. R. Hertz, Y. Chen, J. G. Fujimoto, W. Piyawattanametha, L. Fan, and M. C. Wu, “Two-axis MEMS scanning catheter for ultrahigh resolution three-dimensional and en face imaging,” Opt. Express 15(5), 2445–2453 (2007).
    [Crossref]
  4. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
    [Crossref]
  5. C. D. Lu, M. F. Kraus, B. Potsaid, J. J. Liu, W. Choi, V. Jayaraman, A. E. Cable, J. Hornegger, J. S. Duker, and J. G. Fujimoto, “Handheld ultrahigh speed swept source optical coherence tomography instrument using a MEMS scanning mirror,” Biomed. Opt. Express 5(1), 293–311 (2014).
    [Crossref]
  6. Z. Qiu and W. Piyawattanametha, “Mems based fiber optical microendoscopes,” Displays 37, 41–53 (2015).
    [Crossref]
  7. K. Aljasem, L. Froehly, A. Seifert, and H. Zappe, “Scanning and tunable micro-optics for endoscopic optical coherence tomography,” J. Microelectromech. Syst. 20(6), 1462–1472 (2011).
    [Crossref]
  8. A. Jovic, G. Pandraud, N. S. Losilla, J. Sancho, K. Zinoviev, J. L. Rubio, E. Margallo-Ballbas, and P. M. Sarro, “A mems actuator system for an integrated 3-d optical coherent tomography scanner,” J. Microelectromech. Syst. 27(2), 259–268 (2018).
    [Crossref]
  9. Y.-H. Seo, K. Hwang, and K.-H. Jeong, “1.65 mm diameter forward-viewing confocal endomicroscopic catheter using a flip-chip bonded electrothermal MEMS fiber scanner,” Opt. Express 26(4), 4780–4786 (2018).
    [Crossref]
  10. X. Duan, H. Li, J. Zhou, Q. Zhou, K. R. Oldham, and T. D. Wang, “Visualizing epithelial expression of EGFR in vivo with distal scanning side-viewing confocal endomicroscope,” Sci. Rep. 6(1), 37315 (2016).
    [Crossref]
  11. D. Y. Kim, K. Hwang, J. Ahn, Y.-H. Seo, J.-B. Kim, S. Lee, J.-H. Yoon, E. Kong, Y. Jeong, S. Jon, P. Kim, and K.-H. Jeong, “Lissajous Scanning Two-photon Endomicroscope for In vivo Tissue Imaging,” Sci. Rep. 9(1), 3560 (2019).
    [Crossref]
  12. J. Sun, S. Guo, L. Wu, L. Liu, S. W. Choe, B. S. Sorg, and H. Xie, “3D in vivo optical coherence tomography based on a low-voltage, large-scan-range 2D MEMS mirror,” Opt. Express 18(12), 12065–12075 (2010).
    [Crossref]
  13. E. Pengwang, K. Rabenorosoa, M. Rakotondrabe, and N. Andreff, “Scanning micromirror platform based on MEMS technology for medical application,” Micromachines 7(2), 24–29 (2016).
    [Crossref]
  14. C. Duan, D. Wang, Z. Zhou, P. Liang, S. R. Samuelson, A. Pozzi, and H. Xie, “Swept-source common-path optical coherence tomography with a MEMS endoscopic imaging probe,” in Proc. SPIE 8934, Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XVIII, vol. 8934 (2014), p. 89342N.
  15. D. Wang, S. Strassle Rojas, A. Shuping, Z. Tasneem, S. Koppal, and H. Xie, “An Integrated Forward-View 2-Axis Mems Scanner for Compact 3D Lidar,” in 2018 IEEE 13th Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), (2018), pp. 185–188.
  16. X. Zhang, B. Li, X. Li, and H. Xie, “A robust, fast electrothermal micromirror with symmetric bimorph actuators made of copper/tungsten,” in 2015 Transducers - 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), (2015), pp. 912–915.
  17. D. Wang, X. Zhang, L. Zhou, M. Liang, D. Zhang, and H. Xie, “An Ultra-Fast Electrothermal Micromirror with Bimorph Actuators Made of Copper / Tungsten,” in Optical MEMS and Nanophotonics (OMN), (2017), pp. 4–5.
  18. H. Wang, X. Zhang, D. Zhang, L. Zhou, and H. Xie, “Characterization and reliability study of a mems mirror based on electrothermal bimorph actuation,” in 2017 International Conference on Optical MEMS and Nanophotonics (OMN), (2017), pp. 1–2.
  19. O. M. Carrasco-Zevallos, C. Viehland, B. Keller, R. P. McNabb, A. N. Kuo, and J. A. Izatt, “Constant linear velocity spiral scanning for near video rate 4D OCT ophthalmic and surgical imaging with isotropic transverse sampling,” Biomed. Opt. Express 9(10), 5052 (2018).
    [Crossref]
  20. H.-C. Park, Y.-H. Seo, and K.-H. Jeong, “Lissajous fiber scanning for forward viewing optical endomicroscopy using asymmetric stiffness modulation,” Opt. Express 22(5), 5818–5825 (2014).
    [Crossref]
  21. K. Hwang, Y.-H. Seo, and K.-H. Jeong, “Microscanners for optical endomicroscopic applications,” Micro Nano Syst. Lett. 5(1), 1 (2017).
    [Crossref]
  22. T. Tuma, J. Lygeros, V. Kartik, A. Sebastian, and A. Pantazi, “High-speed multiresolution scanning probe microscopy based on Lissajous scan trajectories,” Nanotechnology 23(18), 185501 (2012).
    [Crossref]
  23. X. Liu, M. J. Cobb, Y. Chen, M. B. Kimmey, and X. Li, “Rapid-scanning forward-imaging miniature endoscope for real-time optical coherence tomography,” Opt. Lett. 29(15), 1763–1765 (2004).
    [Crossref]
  24. M. T. Myaing, D. J. MacDonald, and X. Li, “Fiber-optic scanning two-photon fluorescence endoscope,” Opt. Lett. 31(8), 1076–1078 (2006).
    [Crossref]
  25. Y. Wu, Y. Leng, J. Xi, and X. Li, “Scanning all-fiber-optic endomicroscopy system for 3d nonlinear optical imaging of biological tissues,” Opt. Express 17(10), 7907–7915 (2009).
    [Crossref]
  26. L. Huo, J. Xi, Y. Wu, and X. Li, “Forward-viewing resonant fiber-optic scanning endoscope of appropriate scanning speed for 3d oct imaging,” Opt. Express 18(14), 14375–14384 (2010).
    [Crossref]
  27. W. Liang, G. Hall, B. Messerschmidt, M.-J. Li, and X. Li, “Nonlinear optical endomicroscopy for label-free functional histology in vivo,” Light: Sci. Appl. 6(11), e17082 (2017).
    [Crossref]
  28. M. J. Gora, M. J. Suter, G. J. Tearney, and X. Li, “Endoscopic optical coherence tomography: technologies and clinical applications [Invited],” Biomed. Opt. Express 8(5), 2405 (2017).
    [Crossref]
  29. K. Hwang, Y. H. Seo, J. Ahn, P. Kim, and K. H. Jeong, “Frequency selection rule for high definition and high frame rate Lissajous scanning,” Sci. Rep. 7(1), 14075 (2017).
    [Crossref]
  30. M. J. Schnitzer, W. Piyawattanametha, E. L. M. Cheung, B. A. Flusberg, J. C. Jung, and E. D. Cocker, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
    [Crossref]
  31. C. L. Hoy, N. J. Durr, and A. Ben-Yakar, “Fast-updating and nonrepeating Lissajous image reconstruction method for capturing increased dynamic information,” Appl. Opt. 50(16), 2376 (2011).
    [Crossref]
  32. Q. A. A. Tanguy, S. Bargiel, H. Xie, N. Passilly, M. Barthès, O. Gaiffe, J. Rutkowski, P. Lutz, and C. Gorecki, “Design and Fabrication of a 2-Axis Electrothermal MEMS Micro-Scanner for Optical Coherence Tomography,” Micromachines 8(5), 146 (2017).
    [Crossref]
  33. C. Duan, W. Wang, X. Zhang, L. Zhou, A. Pozzi, and H. Xie, “A self-aligned 45°-tilted two-axis scanning micromirror for side-view imaging,” J. Microelectromech. Syst. 25(4), 799–811 (2016).
    [Crossref]
  34. C. Duan, Q. Tanguy, A. Pozzi, and H. Xie, “Optical coherence tomography endoscopic probe based on a tilted mems mirror,” Biomed. Opt. Express 7(9), 3345–3354 (2016).
    [Crossref]
  35. S. T. Todd, A. Jain, H. Qu, and H. Xie, “A multi-degree-of-freedom micromirror utilizing inverted-series-connected bimorph actuators,” J. Opt. A: Pure Appl. Opt. 8(7), S352–S359 (2006).
    [Crossref]
  36. K. Jia, S. Pal, and H. Xie, “An electrothermal tip-tilt-piston micromirror based on folded dual s-shaped bimorphs,” J. Microelectromech. Syst. 18(5), 1004–1015 (2009).
    [Crossref]
  37. J. M. Khosrofian and B. A. Garetz, “Measurement of a Gaussian laser beam diameter through the direct inversion of knife-edge data,” Appl. Opt. 22(21), 3406–3410 (1983).
    [Crossref]
  38. Y. Xu, J. Singh, T. Selvaratnam, and N. Chen, “Two-axis gimbal-less electrothermal micromirror for large-angle circumferential scanning,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1432–1438 (2009).
    [Crossref]
  39. A. Bazaei, Y. K. Yong, and S. O. Moheimani, “High-speed Lissajous-scan atomic force microscopy: Scan pattern planning and control design issues,” Rev. Sci. Instrum. 83(6), 063701 (2012).
    [Crossref]
  40. G. Dougherty, Digital Image Processing for Medical Applications (Cambridge University, 2009).
  41. E. H. K. Steltzer, “Contrast, resolution, pixelation, dynamic range and signal-to-noise ratio: fundamental limits to resolution in fluorescence light microscopy,” J. Microsc. 189(1), 15–24 (1998).
    [Crossref]
  42. Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. on Image Process. 13(4), 600–612 (2004).
    [Crossref]
  43. V.-F. Duma, P. Tankam, J. Huang, J. Won, and J. P. Rolland, “Optimization of galvanometer scanning for optical coherence tomography,” Appl. Opt. 54(17), 5495–5507 (2015).
    [Crossref]
  44. B. Braaf, K. A. Vermeer, K. V. Vienola, and J. F. de Boer, “Angiography of the retina and the choroid with phase-resolved OCT using interval-optimized backstitched B-scans,” Opt. Express 20(18), 20516–20534 (2012).
    [Crossref]

2019 (1)

D. Y. Kim, K. Hwang, J. Ahn, Y.-H. Seo, J.-B. Kim, S. Lee, J.-H. Yoon, E. Kong, Y. Jeong, S. Jon, P. Kim, and K.-H. Jeong, “Lissajous Scanning Two-photon Endomicroscope for In vivo Tissue Imaging,” Sci. Rep. 9(1), 3560 (2019).
[Crossref]

2018 (3)

2017 (6)

A. Hoffman, H. Manner, J. W. Rey, and R. Kiesslich, “A guide to multimodal endoscopy imaging for gastrointestinal malignancy-an early indicator,” Nat. Rev. Gastroenterol. Hepatol. 14(7), 421–434 (2017).
[Crossref]

K. Hwang, Y.-H. Seo, and K.-H. Jeong, “Microscanners for optical endomicroscopic applications,” Micro Nano Syst. Lett. 5(1), 1 (2017).
[Crossref]

W. Liang, G. Hall, B. Messerschmidt, M.-J. Li, and X. Li, “Nonlinear optical endomicroscopy for label-free functional histology in vivo,” Light: Sci. Appl. 6(11), e17082 (2017).
[Crossref]

M. J. Gora, M. J. Suter, G. J. Tearney, and X. Li, “Endoscopic optical coherence tomography: technologies and clinical applications [Invited],” Biomed. Opt. Express 8(5), 2405 (2017).
[Crossref]

K. Hwang, Y. H. Seo, J. Ahn, P. Kim, and K. H. Jeong, “Frequency selection rule for high definition and high frame rate Lissajous scanning,” Sci. Rep. 7(1), 14075 (2017).
[Crossref]

Q. A. A. Tanguy, S. Bargiel, H. Xie, N. Passilly, M. Barthès, O. Gaiffe, J. Rutkowski, P. Lutz, and C. Gorecki, “Design and Fabrication of a 2-Axis Electrothermal MEMS Micro-Scanner for Optical Coherence Tomography,” Micromachines 8(5), 146 (2017).
[Crossref]

2016 (4)

C. Duan, W. Wang, X. Zhang, L. Zhou, A. Pozzi, and H. Xie, “A self-aligned 45°-tilted two-axis scanning micromirror for side-view imaging,” J. Microelectromech. Syst. 25(4), 799–811 (2016).
[Crossref]

C. Duan, Q. Tanguy, A. Pozzi, and H. Xie, “Optical coherence tomography endoscopic probe based on a tilted mems mirror,” Biomed. Opt. Express 7(9), 3345–3354 (2016).
[Crossref]

E. Pengwang, K. Rabenorosoa, M. Rakotondrabe, and N. Andreff, “Scanning micromirror platform based on MEMS technology for medical application,” Micromachines 7(2), 24–29 (2016).
[Crossref]

X. Duan, H. Li, J. Zhou, Q. Zhou, K. R. Oldham, and T. D. Wang, “Visualizing epithelial expression of EGFR in vivo with distal scanning side-viewing confocal endomicroscope,” Sci. Rep. 6(1), 37315 (2016).
[Crossref]

2015 (2)

2014 (2)

2012 (3)

T. Tuma, J. Lygeros, V. Kartik, A. Sebastian, and A. Pantazi, “High-speed multiresolution scanning probe microscopy based on Lissajous scan trajectories,” Nanotechnology 23(18), 185501 (2012).
[Crossref]

A. Bazaei, Y. K. Yong, and S. O. Moheimani, “High-speed Lissajous-scan atomic force microscopy: Scan pattern planning and control design issues,” Rev. Sci. Instrum. 83(6), 063701 (2012).
[Crossref]

B. Braaf, K. A. Vermeer, K. V. Vienola, and J. F. de Boer, “Angiography of the retina and the choroid with phase-resolved OCT using interval-optimized backstitched B-scans,” Opt. Express 20(18), 20516–20534 (2012).
[Crossref]

2011 (2)

C. L. Hoy, N. J. Durr, and A. Ben-Yakar, “Fast-updating and nonrepeating Lissajous image reconstruction method for capturing increased dynamic information,” Appl. Opt. 50(16), 2376 (2011).
[Crossref]

K. Aljasem, L. Froehly, A. Seifert, and H. Zappe, “Scanning and tunable micro-optics for endoscopic optical coherence tomography,” J. Microelectromech. Syst. 20(6), 1462–1472 (2011).
[Crossref]

2010 (2)

2009 (3)

Y. Wu, Y. Leng, J. Xi, and X. Li, “Scanning all-fiber-optic endomicroscopy system for 3d nonlinear optical imaging of biological tissues,” Opt. Express 17(10), 7907–7915 (2009).
[Crossref]

K. Jia, S. Pal, and H. Xie, “An electrothermal tip-tilt-piston micromirror based on folded dual s-shaped bimorphs,” J. Microelectromech. Syst. 18(5), 1004–1015 (2009).
[Crossref]

Y. Xu, J. Singh, T. Selvaratnam, and N. Chen, “Two-axis gimbal-less electrothermal micromirror for large-angle circumferential scanning,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1432–1438 (2009).
[Crossref]

2007 (1)

2006 (2)

S. T. Todd, A. Jain, H. Qu, and H. Xie, “A multi-degree-of-freedom micromirror utilizing inverted-series-connected bimorph actuators,” J. Opt. A: Pure Appl. Opt. 8(7), S352–S359 (2006).
[Crossref]

M. T. Myaing, D. J. MacDonald, and X. Li, “Fiber-optic scanning two-photon fluorescence endoscope,” Opt. Lett. 31(8), 1076–1078 (2006).
[Crossref]

2005 (1)

M. J. Schnitzer, W. Piyawattanametha, E. L. M. Cheung, B. A. Flusberg, J. C. Jung, and E. D. Cocker, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[Crossref]

2004 (2)

X. Liu, M. J. Cobb, Y. Chen, M. B. Kimmey, and X. Li, “Rapid-scanning forward-imaging miniature endoscope for real-time optical coherence tomography,” Opt. Lett. 29(15), 1763–1765 (2004).
[Crossref]

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. on Image Process. 13(4), 600–612 (2004).
[Crossref]

2002 (1)

G. Sakas, “Trends in medical imaging: From 2D to 3D,” Comput. Graph. (Pergamon) 26(4), 577–587 (2002).
[Crossref]

1998 (1)

E. H. K. Steltzer, “Contrast, resolution, pixelation, dynamic range and signal-to-noise ratio: fundamental limits to resolution in fluorescence light microscopy,” J. Microsc. 189(1), 15–24 (1998).
[Crossref]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

1983 (1)

Aguirre, A. D.

Ahn, J.

D. Y. Kim, K. Hwang, J. Ahn, Y.-H. Seo, J.-B. Kim, S. Lee, J.-H. Yoon, E. Kong, Y. Jeong, S. Jon, P. Kim, and K.-H. Jeong, “Lissajous Scanning Two-photon Endomicroscope for In vivo Tissue Imaging,” Sci. Rep. 9(1), 3560 (2019).
[Crossref]

K. Hwang, Y. H. Seo, J. Ahn, P. Kim, and K. H. Jeong, “Frequency selection rule for high definition and high frame rate Lissajous scanning,” Sci. Rep. 7(1), 14075 (2017).
[Crossref]

Aljasem, K.

K. Aljasem, L. Froehly, A. Seifert, and H. Zappe, “Scanning and tunable micro-optics for endoscopic optical coherence tomography,” J. Microelectromech. Syst. 20(6), 1462–1472 (2011).
[Crossref]

Andreff, N.

E. Pengwang, K. Rabenorosoa, M. Rakotondrabe, and N. Andreff, “Scanning micromirror platform based on MEMS technology for medical application,” Micromachines 7(2), 24–29 (2016).
[Crossref]

Bargiel, S.

Q. A. A. Tanguy, S. Bargiel, H. Xie, N. Passilly, M. Barthès, O. Gaiffe, J. Rutkowski, P. Lutz, and C. Gorecki, “Design and Fabrication of a 2-Axis Electrothermal MEMS Micro-Scanner for Optical Coherence Tomography,” Micromachines 8(5), 146 (2017).
[Crossref]

Barthès, M.

Q. A. A. Tanguy, S. Bargiel, H. Xie, N. Passilly, M. Barthès, O. Gaiffe, J. Rutkowski, P. Lutz, and C. Gorecki, “Design and Fabrication of a 2-Axis Electrothermal MEMS Micro-Scanner for Optical Coherence Tomography,” Micromachines 8(5), 146 (2017).
[Crossref]

Bazaei, A.

A. Bazaei, Y. K. Yong, and S. O. Moheimani, “High-speed Lissajous-scan atomic force microscopy: Scan pattern planning and control design issues,” Rev. Sci. Instrum. 83(6), 063701 (2012).
[Crossref]

Ben-Yakar, A.

Bovik, A. C.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. on Image Process. 13(4), 600–612 (2004).
[Crossref]

Braaf, B.

Cable, A. E.

Carrasco-Zevallos, O. M.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Chen, N.

Y. Xu, J. Singh, T. Selvaratnam, and N. Chen, “Two-axis gimbal-less electrothermal micromirror for large-angle circumferential scanning,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1432–1438 (2009).
[Crossref]

Chen, Y.

Cheung, E. L. M.

M. J. Schnitzer, W. Piyawattanametha, E. L. M. Cheung, B. A. Flusberg, J. C. Jung, and E. D. Cocker, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[Crossref]

Choe, S. W.

Choi, W.

Cobb, M. J.

Cocker, E. D.

M. J. Schnitzer, W. Piyawattanametha, E. L. M. Cheung, B. A. Flusberg, J. C. Jung, and E. D. Cocker, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[Crossref]

de Boer, J. F.

Dougherty, G.

G. Dougherty, Digital Image Processing for Medical Applications (Cambridge University, 2009).

Duan, C.

C. Duan, Q. Tanguy, A. Pozzi, and H. Xie, “Optical coherence tomography endoscopic probe based on a tilted mems mirror,” Biomed. Opt. Express 7(9), 3345–3354 (2016).
[Crossref]

C. Duan, W. Wang, X. Zhang, L. Zhou, A. Pozzi, and H. Xie, “A self-aligned 45°-tilted two-axis scanning micromirror for side-view imaging,” J. Microelectromech. Syst. 25(4), 799–811 (2016).
[Crossref]

C. Duan, D. Wang, Z. Zhou, P. Liang, S. R. Samuelson, A. Pozzi, and H. Xie, “Swept-source common-path optical coherence tomography with a MEMS endoscopic imaging probe,” in Proc. SPIE 8934, Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XVIII, vol. 8934 (2014), p. 89342N.

Duan, X.

X. Duan, H. Li, J. Zhou, Q. Zhou, K. R. Oldham, and T. D. Wang, “Visualizing epithelial expression of EGFR in vivo with distal scanning side-viewing confocal endomicroscope,” Sci. Rep. 6(1), 37315 (2016).
[Crossref]

Duker, J. S.

Duma, V.-F.

Durr, N. J.

Fan, L.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Flusberg, B. A.

M. J. Schnitzer, W. Piyawattanametha, E. L. M. Cheung, B. A. Flusberg, J. C. Jung, and E. D. Cocker, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[Crossref]

Froehly, L.

K. Aljasem, L. Froehly, A. Seifert, and H. Zappe, “Scanning and tunable micro-optics for endoscopic optical coherence tomography,” J. Microelectromech. Syst. 20(6), 1462–1472 (2011).
[Crossref]

Fujimoto, J. G.

Gaiffe, O.

Q. A. A. Tanguy, S. Bargiel, H. Xie, N. Passilly, M. Barthès, O. Gaiffe, J. Rutkowski, P. Lutz, and C. Gorecki, “Design and Fabrication of a 2-Axis Electrothermal MEMS Micro-Scanner for Optical Coherence Tomography,” Micromachines 8(5), 146 (2017).
[Crossref]

Garetz, B. A.

Gora, M. J.

Gorecki, C.

Q. A. A. Tanguy, S. Bargiel, H. Xie, N. Passilly, M. Barthès, O. Gaiffe, J. Rutkowski, P. Lutz, and C. Gorecki, “Design and Fabrication of a 2-Axis Electrothermal MEMS Micro-Scanner for Optical Coherence Tomography,” Micromachines 8(5), 146 (2017).
[Crossref]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Guo, S.

Hall, G.

W. Liang, G. Hall, B. Messerschmidt, M.-J. Li, and X. Li, “Nonlinear optical endomicroscopy for label-free functional histology in vivo,” Light: Sci. Appl. 6(11), e17082 (2017).
[Crossref]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Hertz, P. R.

Hoffman, A.

A. Hoffman, H. Manner, J. W. Rey, and R. Kiesslich, “A guide to multimodal endoscopy imaging for gastrointestinal malignancy-an early indicator,” Nat. Rev. Gastroenterol. Hepatol. 14(7), 421–434 (2017).
[Crossref]

Hornegger, J.

Hoy, C. L.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Huang, J.

Huo, L.

Hwang, K.

D. Y. Kim, K. Hwang, J. Ahn, Y.-H. Seo, J.-B. Kim, S. Lee, J.-H. Yoon, E. Kong, Y. Jeong, S. Jon, P. Kim, and K.-H. Jeong, “Lissajous Scanning Two-photon Endomicroscope for In vivo Tissue Imaging,” Sci. Rep. 9(1), 3560 (2019).
[Crossref]

Y.-H. Seo, K. Hwang, and K.-H. Jeong, “1.65 mm diameter forward-viewing confocal endomicroscopic catheter using a flip-chip bonded electrothermal MEMS fiber scanner,” Opt. Express 26(4), 4780–4786 (2018).
[Crossref]

K. Hwang, Y.-H. Seo, and K.-H. Jeong, “Microscanners for optical endomicroscopic applications,” Micro Nano Syst. Lett. 5(1), 1 (2017).
[Crossref]

K. Hwang, Y. H. Seo, J. Ahn, P. Kim, and K. H. Jeong, “Frequency selection rule for high definition and high frame rate Lissajous scanning,” Sci. Rep. 7(1), 14075 (2017).
[Crossref]

Izatt, J. A.

Jain, A.

S. T. Todd, A. Jain, H. Qu, and H. Xie, “A multi-degree-of-freedom micromirror utilizing inverted-series-connected bimorph actuators,” J. Opt. A: Pure Appl. Opt. 8(7), S352–S359 (2006).
[Crossref]

Jayaraman, V.

Jeong, K. H.

K. Hwang, Y. H. Seo, J. Ahn, P. Kim, and K. H. Jeong, “Frequency selection rule for high definition and high frame rate Lissajous scanning,” Sci. Rep. 7(1), 14075 (2017).
[Crossref]

Jeong, K.-H.

D. Y. Kim, K. Hwang, J. Ahn, Y.-H. Seo, J.-B. Kim, S. Lee, J.-H. Yoon, E. Kong, Y. Jeong, S. Jon, P. Kim, and K.-H. Jeong, “Lissajous Scanning Two-photon Endomicroscope for In vivo Tissue Imaging,” Sci. Rep. 9(1), 3560 (2019).
[Crossref]

Y.-H. Seo, K. Hwang, and K.-H. Jeong, “1.65 mm diameter forward-viewing confocal endomicroscopic catheter using a flip-chip bonded electrothermal MEMS fiber scanner,” Opt. Express 26(4), 4780–4786 (2018).
[Crossref]

K. Hwang, Y.-H. Seo, and K.-H. Jeong, “Microscanners for optical endomicroscopic applications,” Micro Nano Syst. Lett. 5(1), 1 (2017).
[Crossref]

H.-C. Park, Y.-H. Seo, and K.-H. Jeong, “Lissajous fiber scanning for forward viewing optical endomicroscopy using asymmetric stiffness modulation,” Opt. Express 22(5), 5818–5825 (2014).
[Crossref]

Jeong, Y.

D. Y. Kim, K. Hwang, J. Ahn, Y.-H. Seo, J.-B. Kim, S. Lee, J.-H. Yoon, E. Kong, Y. Jeong, S. Jon, P. Kim, and K.-H. Jeong, “Lissajous Scanning Two-photon Endomicroscope for In vivo Tissue Imaging,” Sci. Rep. 9(1), 3560 (2019).
[Crossref]

Jia, K.

K. Jia, S. Pal, and H. Xie, “An electrothermal tip-tilt-piston micromirror based on folded dual s-shaped bimorphs,” J. Microelectromech. Syst. 18(5), 1004–1015 (2009).
[Crossref]

Jon, S.

D. Y. Kim, K. Hwang, J. Ahn, Y.-H. Seo, J.-B. Kim, S. Lee, J.-H. Yoon, E. Kong, Y. Jeong, S. Jon, P. Kim, and K.-H. Jeong, “Lissajous Scanning Two-photon Endomicroscope for In vivo Tissue Imaging,” Sci. Rep. 9(1), 3560 (2019).
[Crossref]

Jovic, A.

A. Jovic, G. Pandraud, N. S. Losilla, J. Sancho, K. Zinoviev, J. L. Rubio, E. Margallo-Ballbas, and P. M. Sarro, “A mems actuator system for an integrated 3-d optical coherent tomography scanner,” J. Microelectromech. Syst. 27(2), 259–268 (2018).
[Crossref]

Jung, J. C.

M. J. Schnitzer, W. Piyawattanametha, E. L. M. Cheung, B. A. Flusberg, J. C. Jung, and E. D. Cocker, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[Crossref]

Kartik, V.

T. Tuma, J. Lygeros, V. Kartik, A. Sebastian, and A. Pantazi, “High-speed multiresolution scanning probe microscopy based on Lissajous scan trajectories,” Nanotechnology 23(18), 185501 (2012).
[Crossref]

Keller, B.

Khosrofian, J. M.

Kiesslich, R.

A. Hoffman, H. Manner, J. W. Rey, and R. Kiesslich, “A guide to multimodal endoscopy imaging for gastrointestinal malignancy-an early indicator,” Nat. Rev. Gastroenterol. Hepatol. 14(7), 421–434 (2017).
[Crossref]

Kim, D. Y.

D. Y. Kim, K. Hwang, J. Ahn, Y.-H. Seo, J.-B. Kim, S. Lee, J.-H. Yoon, E. Kong, Y. Jeong, S. Jon, P. Kim, and K.-H. Jeong, “Lissajous Scanning Two-photon Endomicroscope for In vivo Tissue Imaging,” Sci. Rep. 9(1), 3560 (2019).
[Crossref]

Kim, J.-B.

D. Y. Kim, K. Hwang, J. Ahn, Y.-H. Seo, J.-B. Kim, S. Lee, J.-H. Yoon, E. Kong, Y. Jeong, S. Jon, P. Kim, and K.-H. Jeong, “Lissajous Scanning Two-photon Endomicroscope for In vivo Tissue Imaging,” Sci. Rep. 9(1), 3560 (2019).
[Crossref]

Kim, P.

D. Y. Kim, K. Hwang, J. Ahn, Y.-H. Seo, J.-B. Kim, S. Lee, J.-H. Yoon, E. Kong, Y. Jeong, S. Jon, P. Kim, and K.-H. Jeong, “Lissajous Scanning Two-photon Endomicroscope for In vivo Tissue Imaging,” Sci. Rep. 9(1), 3560 (2019).
[Crossref]

K. Hwang, Y. H. Seo, J. Ahn, P. Kim, and K. H. Jeong, “Frequency selection rule for high definition and high frame rate Lissajous scanning,” Sci. Rep. 7(1), 14075 (2017).
[Crossref]

Kimmey, M. B.

Kong, E.

D. Y. Kim, K. Hwang, J. Ahn, Y.-H. Seo, J.-B. Kim, S. Lee, J.-H. Yoon, E. Kong, Y. Jeong, S. Jon, P. Kim, and K.-H. Jeong, “Lissajous Scanning Two-photon Endomicroscope for In vivo Tissue Imaging,” Sci. Rep. 9(1), 3560 (2019).
[Crossref]

Koppal, S.

D. Wang, S. Strassle Rojas, A. Shuping, Z. Tasneem, S. Koppal, and H. Xie, “An Integrated Forward-View 2-Axis Mems Scanner for Compact 3D Lidar,” in 2018 IEEE 13th Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), (2018), pp. 185–188.

Kraus, M. F.

Kuo, A. N.

Lee, S.

D. Y. Kim, K. Hwang, J. Ahn, Y.-H. Seo, J.-B. Kim, S. Lee, J.-H. Yoon, E. Kong, Y. Jeong, S. Jon, P. Kim, and K.-H. Jeong, “Lissajous Scanning Two-photon Endomicroscope for In vivo Tissue Imaging,” Sci. Rep. 9(1), 3560 (2019).
[Crossref]

Leng, Y.

Li, B.

X. Zhang, B. Li, X. Li, and H. Xie, “A robust, fast electrothermal micromirror with symmetric bimorph actuators made of copper/tungsten,” in 2015 Transducers - 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), (2015), pp. 912–915.

Li, H.

X. Duan, H. Li, J. Zhou, Q. Zhou, K. R. Oldham, and T. D. Wang, “Visualizing epithelial expression of EGFR in vivo with distal scanning side-viewing confocal endomicroscope,” Sci. Rep. 6(1), 37315 (2016).
[Crossref]

Li, M.-J.

W. Liang, G. Hall, B. Messerschmidt, M.-J. Li, and X. Li, “Nonlinear optical endomicroscopy for label-free functional histology in vivo,” Light: Sci. Appl. 6(11), e17082 (2017).
[Crossref]

Li, X.

Liang, M.

D. Wang, X. Zhang, L. Zhou, M. Liang, D. Zhang, and H. Xie, “An Ultra-Fast Electrothermal Micromirror with Bimorph Actuators Made of Copper / Tungsten,” in Optical MEMS and Nanophotonics (OMN), (2017), pp. 4–5.

Liang, P.

C. Duan, D. Wang, Z. Zhou, P. Liang, S. R. Samuelson, A. Pozzi, and H. Xie, “Swept-source common-path optical coherence tomography with a MEMS endoscopic imaging probe,” in Proc. SPIE 8934, Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XVIII, vol. 8934 (2014), p. 89342N.

Liang, W.

W. Liang, G. Hall, B. Messerschmidt, M.-J. Li, and X. Li, “Nonlinear optical endomicroscopy for label-free functional histology in vivo,” Light: Sci. Appl. 6(11), e17082 (2017).
[Crossref]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Liu, J. J.

Liu, L.

Liu, X.

Losilla, N. S.

A. Jovic, G. Pandraud, N. S. Losilla, J. Sancho, K. Zinoviev, J. L. Rubio, E. Margallo-Ballbas, and P. M. Sarro, “A mems actuator system for an integrated 3-d optical coherent tomography scanner,” J. Microelectromech. Syst. 27(2), 259–268 (2018).
[Crossref]

Lu, C. D.

Lutz, P.

Q. A. A. Tanguy, S. Bargiel, H. Xie, N. Passilly, M. Barthès, O. Gaiffe, J. Rutkowski, P. Lutz, and C. Gorecki, “Design and Fabrication of a 2-Axis Electrothermal MEMS Micro-Scanner for Optical Coherence Tomography,” Micromachines 8(5), 146 (2017).
[Crossref]

Lygeros, J.

T. Tuma, J. Lygeros, V. Kartik, A. Sebastian, and A. Pantazi, “High-speed multiresolution scanning probe microscopy based on Lissajous scan trajectories,” Nanotechnology 23(18), 185501 (2012).
[Crossref]

MacDonald, D. J.

Manner, H.

A. Hoffman, H. Manner, J. W. Rey, and R. Kiesslich, “A guide to multimodal endoscopy imaging for gastrointestinal malignancy-an early indicator,” Nat. Rev. Gastroenterol. Hepatol. 14(7), 421–434 (2017).
[Crossref]

Margallo-Ballbas, E.

A. Jovic, G. Pandraud, N. S. Losilla, J. Sancho, K. Zinoviev, J. L. Rubio, E. Margallo-Ballbas, and P. M. Sarro, “A mems actuator system for an integrated 3-d optical coherent tomography scanner,” J. Microelectromech. Syst. 27(2), 259–268 (2018).
[Crossref]

McNabb, R. P.

Messerschmidt, B.

W. Liang, G. Hall, B. Messerschmidt, M.-J. Li, and X. Li, “Nonlinear optical endomicroscopy for label-free functional histology in vivo,” Light: Sci. Appl. 6(11), e17082 (2017).
[Crossref]

Moheimani, S. O.

A. Bazaei, Y. K. Yong, and S. O. Moheimani, “High-speed Lissajous-scan atomic force microscopy: Scan pattern planning and control design issues,” Rev. Sci. Instrum. 83(6), 063701 (2012).
[Crossref]

Myaing, M. T.

Oldham, K. R.

X. Duan, H. Li, J. Zhou, Q. Zhou, K. R. Oldham, and T. D. Wang, “Visualizing epithelial expression of EGFR in vivo with distal scanning side-viewing confocal endomicroscope,” Sci. Rep. 6(1), 37315 (2016).
[Crossref]

Pal, S.

K. Jia, S. Pal, and H. Xie, “An electrothermal tip-tilt-piston micromirror based on folded dual s-shaped bimorphs,” J. Microelectromech. Syst. 18(5), 1004–1015 (2009).
[Crossref]

Pandraud, G.

A. Jovic, G. Pandraud, N. S. Losilla, J. Sancho, K. Zinoviev, J. L. Rubio, E. Margallo-Ballbas, and P. M. Sarro, “A mems actuator system for an integrated 3-d optical coherent tomography scanner,” J. Microelectromech. Syst. 27(2), 259–268 (2018).
[Crossref]

Pantazi, A.

T. Tuma, J. Lygeros, V. Kartik, A. Sebastian, and A. Pantazi, “High-speed multiresolution scanning probe microscopy based on Lissajous scan trajectories,” Nanotechnology 23(18), 185501 (2012).
[Crossref]

Park, H.-C.

Passilly, N.

Q. A. A. Tanguy, S. Bargiel, H. Xie, N. Passilly, M. Barthès, O. Gaiffe, J. Rutkowski, P. Lutz, and C. Gorecki, “Design and Fabrication of a 2-Axis Electrothermal MEMS Micro-Scanner for Optical Coherence Tomography,” Micromachines 8(5), 146 (2017).
[Crossref]

Pengwang, E.

E. Pengwang, K. Rabenorosoa, M. Rakotondrabe, and N. Andreff, “Scanning micromirror platform based on MEMS technology for medical application,” Micromachines 7(2), 24–29 (2016).
[Crossref]

Piyawattanametha, W.

Z. Qiu and W. Piyawattanametha, “Mems based fiber optical microendoscopes,” Displays 37, 41–53 (2015).
[Crossref]

A. D. Aguirre, P. R. Hertz, Y. Chen, J. G. Fujimoto, W. Piyawattanametha, L. Fan, and M. C. Wu, “Two-axis MEMS scanning catheter for ultrahigh resolution three-dimensional and en face imaging,” Opt. Express 15(5), 2445–2453 (2007).
[Crossref]

M. J. Schnitzer, W. Piyawattanametha, E. L. M. Cheung, B. A. Flusberg, J. C. Jung, and E. D. Cocker, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[Crossref]

Potsaid, B.

Pozzi, A.

C. Duan, W. Wang, X. Zhang, L. Zhou, A. Pozzi, and H. Xie, “A self-aligned 45°-tilted two-axis scanning micromirror for side-view imaging,” J. Microelectromech. Syst. 25(4), 799–811 (2016).
[Crossref]

C. Duan, Q. Tanguy, A. Pozzi, and H. Xie, “Optical coherence tomography endoscopic probe based on a tilted mems mirror,” Biomed. Opt. Express 7(9), 3345–3354 (2016).
[Crossref]

C. Duan, D. Wang, Z. Zhou, P. Liang, S. R. Samuelson, A. Pozzi, and H. Xie, “Swept-source common-path optical coherence tomography with a MEMS endoscopic imaging probe,” in Proc. SPIE 8934, Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XVIII, vol. 8934 (2014), p. 89342N.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Qiu, Z.

Z. Qiu and W. Piyawattanametha, “Mems based fiber optical microendoscopes,” Displays 37, 41–53 (2015).
[Crossref]

Qu, H.

S. T. Todd, A. Jain, H. Qu, and H. Xie, “A multi-degree-of-freedom micromirror utilizing inverted-series-connected bimorph actuators,” J. Opt. A: Pure Appl. Opt. 8(7), S352–S359 (2006).
[Crossref]

Rabenorosoa, K.

E. Pengwang, K. Rabenorosoa, M. Rakotondrabe, and N. Andreff, “Scanning micromirror platform based on MEMS technology for medical application,” Micromachines 7(2), 24–29 (2016).
[Crossref]

Rakotondrabe, M.

E. Pengwang, K. Rabenorosoa, M. Rakotondrabe, and N. Andreff, “Scanning micromirror platform based on MEMS technology for medical application,” Micromachines 7(2), 24–29 (2016).
[Crossref]

Rey, J. W.

A. Hoffman, H. Manner, J. W. Rey, and R. Kiesslich, “A guide to multimodal endoscopy imaging for gastrointestinal malignancy-an early indicator,” Nat. Rev. Gastroenterol. Hepatol. 14(7), 421–434 (2017).
[Crossref]

Rolland, J. P.

Rubio, J. L.

A. Jovic, G. Pandraud, N. S. Losilla, J. Sancho, K. Zinoviev, J. L. Rubio, E. Margallo-Ballbas, and P. M. Sarro, “A mems actuator system for an integrated 3-d optical coherent tomography scanner,” J. Microelectromech. Syst. 27(2), 259–268 (2018).
[Crossref]

Rutkowski, J.

Q. A. A. Tanguy, S. Bargiel, H. Xie, N. Passilly, M. Barthès, O. Gaiffe, J. Rutkowski, P. Lutz, and C. Gorecki, “Design and Fabrication of a 2-Axis Electrothermal MEMS Micro-Scanner for Optical Coherence Tomography,” Micromachines 8(5), 146 (2017).
[Crossref]

Sakas, G.

G. Sakas, “Trends in medical imaging: From 2D to 3D,” Comput. Graph. (Pergamon) 26(4), 577–587 (2002).
[Crossref]

Samuelson, S. R.

C. Duan, D. Wang, Z. Zhou, P. Liang, S. R. Samuelson, A. Pozzi, and H. Xie, “Swept-source common-path optical coherence tomography with a MEMS endoscopic imaging probe,” in Proc. SPIE 8934, Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XVIII, vol. 8934 (2014), p. 89342N.

Sancho, J.

A. Jovic, G. Pandraud, N. S. Losilla, J. Sancho, K. Zinoviev, J. L. Rubio, E. Margallo-Ballbas, and P. M. Sarro, “A mems actuator system for an integrated 3-d optical coherent tomography scanner,” J. Microelectromech. Syst. 27(2), 259–268 (2018).
[Crossref]

Sarro, P. M.

A. Jovic, G. Pandraud, N. S. Losilla, J. Sancho, K. Zinoviev, J. L. Rubio, E. Margallo-Ballbas, and P. M. Sarro, “A mems actuator system for an integrated 3-d optical coherent tomography scanner,” J. Microelectromech. Syst. 27(2), 259–268 (2018).
[Crossref]

Schnitzer, M. J.

M. J. Schnitzer, W. Piyawattanametha, E. L. M. Cheung, B. A. Flusberg, J. C. Jung, and E. D. Cocker, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[Crossref]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Sebastian, A.

T. Tuma, J. Lygeros, V. Kartik, A. Sebastian, and A. Pantazi, “High-speed multiresolution scanning probe microscopy based on Lissajous scan trajectories,” Nanotechnology 23(18), 185501 (2012).
[Crossref]

Seifert, A.

K. Aljasem, L. Froehly, A. Seifert, and H. Zappe, “Scanning and tunable micro-optics for endoscopic optical coherence tomography,” J. Microelectromech. Syst. 20(6), 1462–1472 (2011).
[Crossref]

Selvaratnam, T.

Y. Xu, J. Singh, T. Selvaratnam, and N. Chen, “Two-axis gimbal-less electrothermal micromirror for large-angle circumferential scanning,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1432–1438 (2009).
[Crossref]

Seo, Y. H.

K. Hwang, Y. H. Seo, J. Ahn, P. Kim, and K. H. Jeong, “Frequency selection rule for high definition and high frame rate Lissajous scanning,” Sci. Rep. 7(1), 14075 (2017).
[Crossref]

Seo, Y.-H.

D. Y. Kim, K. Hwang, J. Ahn, Y.-H. Seo, J.-B. Kim, S. Lee, J.-H. Yoon, E. Kong, Y. Jeong, S. Jon, P. Kim, and K.-H. Jeong, “Lissajous Scanning Two-photon Endomicroscope for In vivo Tissue Imaging,” Sci. Rep. 9(1), 3560 (2019).
[Crossref]

Y.-H. Seo, K. Hwang, and K.-H. Jeong, “1.65 mm diameter forward-viewing confocal endomicroscopic catheter using a flip-chip bonded electrothermal MEMS fiber scanner,” Opt. Express 26(4), 4780–4786 (2018).
[Crossref]

K. Hwang, Y.-H. Seo, and K.-H. Jeong, “Microscanners for optical endomicroscopic applications,” Micro Nano Syst. Lett. 5(1), 1 (2017).
[Crossref]

H.-C. Park, Y.-H. Seo, and K.-H. Jeong, “Lissajous fiber scanning for forward viewing optical endomicroscopy using asymmetric stiffness modulation,” Opt. Express 22(5), 5818–5825 (2014).
[Crossref]

Sheikh, H. R.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. on Image Process. 13(4), 600–612 (2004).
[Crossref]

Shuping, A.

D. Wang, S. Strassle Rojas, A. Shuping, Z. Tasneem, S. Koppal, and H. Xie, “An Integrated Forward-View 2-Axis Mems Scanner for Compact 3D Lidar,” in 2018 IEEE 13th Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), (2018), pp. 185–188.

Simoncelli, E. P.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. on Image Process. 13(4), 600–612 (2004).
[Crossref]

Singh, J.

Y. Xu, J. Singh, T. Selvaratnam, and N. Chen, “Two-axis gimbal-less electrothermal micromirror for large-angle circumferential scanning,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1432–1438 (2009).
[Crossref]

Sorg, B. S.

Steltzer, E. H. K.

E. H. K. Steltzer, “Contrast, resolution, pixelation, dynamic range and signal-to-noise ratio: fundamental limits to resolution in fluorescence light microscopy,” J. Microsc. 189(1), 15–24 (1998).
[Crossref]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Strassle Rojas, S.

D. Wang, S. Strassle Rojas, A. Shuping, Z. Tasneem, S. Koppal, and H. Xie, “An Integrated Forward-View 2-Axis Mems Scanner for Compact 3D Lidar,” in 2018 IEEE 13th Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), (2018), pp. 185–188.

Sun, J.

Suter, M. J.

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Tanguy, Q.

Tanguy, Q. A. A.

Q. A. A. Tanguy, S. Bargiel, H. Xie, N. Passilly, M. Barthès, O. Gaiffe, J. Rutkowski, P. Lutz, and C. Gorecki, “Design and Fabrication of a 2-Axis Electrothermal MEMS Micro-Scanner for Optical Coherence Tomography,” Micromachines 8(5), 146 (2017).
[Crossref]

Tankam, P.

Tasneem, Z.

D. Wang, S. Strassle Rojas, A. Shuping, Z. Tasneem, S. Koppal, and H. Xie, “An Integrated Forward-View 2-Axis Mems Scanner for Compact 3D Lidar,” in 2018 IEEE 13th Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), (2018), pp. 185–188.

Tearney, G. J.

Todd, S. T.

S. T. Todd, A. Jain, H. Qu, and H. Xie, “A multi-degree-of-freedom micromirror utilizing inverted-series-connected bimorph actuators,” J. Opt. A: Pure Appl. Opt. 8(7), S352–S359 (2006).
[Crossref]

Tuma, T.

T. Tuma, J. Lygeros, V. Kartik, A. Sebastian, and A. Pantazi, “High-speed multiresolution scanning probe microscopy based on Lissajous scan trajectories,” Nanotechnology 23(18), 185501 (2012).
[Crossref]

Vermeer, K. A.

Viehland, C.

Vienola, K. V.

Wang, D.

D. Wang, X. Zhang, L. Zhou, M. Liang, D. Zhang, and H. Xie, “An Ultra-Fast Electrothermal Micromirror with Bimorph Actuators Made of Copper / Tungsten,” in Optical MEMS and Nanophotonics (OMN), (2017), pp. 4–5.

D. Wang, S. Strassle Rojas, A. Shuping, Z. Tasneem, S. Koppal, and H. Xie, “An Integrated Forward-View 2-Axis Mems Scanner for Compact 3D Lidar,” in 2018 IEEE 13th Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), (2018), pp. 185–188.

C. Duan, D. Wang, Z. Zhou, P. Liang, S. R. Samuelson, A. Pozzi, and H. Xie, “Swept-source common-path optical coherence tomography with a MEMS endoscopic imaging probe,” in Proc. SPIE 8934, Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XVIII, vol. 8934 (2014), p. 89342N.

Wang, H.

H. Wang, X. Zhang, D. Zhang, L. Zhou, and H. Xie, “Characterization and reliability study of a mems mirror based on electrothermal bimorph actuation,” in 2017 International Conference on Optical MEMS and Nanophotonics (OMN), (2017), pp. 1–2.

Wang, T. D.

X. Duan, H. Li, J. Zhou, Q. Zhou, K. R. Oldham, and T. D. Wang, “Visualizing epithelial expression of EGFR in vivo with distal scanning side-viewing confocal endomicroscope,” Sci. Rep. 6(1), 37315 (2016).
[Crossref]

Wang, W.

C. Duan, W. Wang, X. Zhang, L. Zhou, A. Pozzi, and H. Xie, “A self-aligned 45°-tilted two-axis scanning micromirror for side-view imaging,” J. Microelectromech. Syst. 25(4), 799–811 (2016).
[Crossref]

Wang, Z.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. on Image Process. 13(4), 600–612 (2004).
[Crossref]

Won, J.

Wu, L.

Wu, M. C.

Wu, Y.

Xi, J.

Xie, H.

Q. A. A. Tanguy, S. Bargiel, H. Xie, N. Passilly, M. Barthès, O. Gaiffe, J. Rutkowski, P. Lutz, and C. Gorecki, “Design and Fabrication of a 2-Axis Electrothermal MEMS Micro-Scanner for Optical Coherence Tomography,” Micromachines 8(5), 146 (2017).
[Crossref]

C. Duan, W. Wang, X. Zhang, L. Zhou, A. Pozzi, and H. Xie, “A self-aligned 45°-tilted two-axis scanning micromirror for side-view imaging,” J. Microelectromech. Syst. 25(4), 799–811 (2016).
[Crossref]

C. Duan, Q. Tanguy, A. Pozzi, and H. Xie, “Optical coherence tomography endoscopic probe based on a tilted mems mirror,” Biomed. Opt. Express 7(9), 3345–3354 (2016).
[Crossref]

J. Sun, S. Guo, L. Wu, L. Liu, S. W. Choe, B. S. Sorg, and H. Xie, “3D in vivo optical coherence tomography based on a low-voltage, large-scan-range 2D MEMS mirror,” Opt. Express 18(12), 12065–12075 (2010).
[Crossref]

K. Jia, S. Pal, and H. Xie, “An electrothermal tip-tilt-piston micromirror based on folded dual s-shaped bimorphs,” J. Microelectromech. Syst. 18(5), 1004–1015 (2009).
[Crossref]

S. T. Todd, A. Jain, H. Qu, and H. Xie, “A multi-degree-of-freedom micromirror utilizing inverted-series-connected bimorph actuators,” J. Opt. A: Pure Appl. Opt. 8(7), S352–S359 (2006).
[Crossref]

H. Wang, X. Zhang, D. Zhang, L. Zhou, and H. Xie, “Characterization and reliability study of a mems mirror based on electrothermal bimorph actuation,” in 2017 International Conference on Optical MEMS and Nanophotonics (OMN), (2017), pp. 1–2.

X. Zhang, B. Li, X. Li, and H. Xie, “A robust, fast electrothermal micromirror with symmetric bimorph actuators made of copper/tungsten,” in 2015 Transducers - 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), (2015), pp. 912–915.

D. Wang, X. Zhang, L. Zhou, M. Liang, D. Zhang, and H. Xie, “An Ultra-Fast Electrothermal Micromirror with Bimorph Actuators Made of Copper / Tungsten,” in Optical MEMS and Nanophotonics (OMN), (2017), pp. 4–5.

C. Duan, D. Wang, Z. Zhou, P. Liang, S. R. Samuelson, A. Pozzi, and H. Xie, “Swept-source common-path optical coherence tomography with a MEMS endoscopic imaging probe,” in Proc. SPIE 8934, Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XVIII, vol. 8934 (2014), p. 89342N.

D. Wang, S. Strassle Rojas, A. Shuping, Z. Tasneem, S. Koppal, and H. Xie, “An Integrated Forward-View 2-Axis Mems Scanner for Compact 3D Lidar,” in 2018 IEEE 13th Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), (2018), pp. 185–188.

Xu, Y.

Y. Xu, J. Singh, T. Selvaratnam, and N. Chen, “Two-axis gimbal-less electrothermal micromirror for large-angle circumferential scanning,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1432–1438 (2009).
[Crossref]

Yong, Y. K.

A. Bazaei, Y. K. Yong, and S. O. Moheimani, “High-speed Lissajous-scan atomic force microscopy: Scan pattern planning and control design issues,” Rev. Sci. Instrum. 83(6), 063701 (2012).
[Crossref]

Yoon, J.-H.

D. Y. Kim, K. Hwang, J. Ahn, Y.-H. Seo, J.-B. Kim, S. Lee, J.-H. Yoon, E. Kong, Y. Jeong, S. Jon, P. Kim, and K.-H. Jeong, “Lissajous Scanning Two-photon Endomicroscope for In vivo Tissue Imaging,” Sci. Rep. 9(1), 3560 (2019).
[Crossref]

Zappe, H.

K. Aljasem, L. Froehly, A. Seifert, and H. Zappe, “Scanning and tunable micro-optics for endoscopic optical coherence tomography,” J. Microelectromech. Syst. 20(6), 1462–1472 (2011).
[Crossref]

Zhang, D.

D. Wang, X. Zhang, L. Zhou, M. Liang, D. Zhang, and H. Xie, “An Ultra-Fast Electrothermal Micromirror with Bimorph Actuators Made of Copper / Tungsten,” in Optical MEMS and Nanophotonics (OMN), (2017), pp. 4–5.

H. Wang, X. Zhang, D. Zhang, L. Zhou, and H. Xie, “Characterization and reliability study of a mems mirror based on electrothermal bimorph actuation,” in 2017 International Conference on Optical MEMS and Nanophotonics (OMN), (2017), pp. 1–2.

Zhang, X.

C. Duan, W. Wang, X. Zhang, L. Zhou, A. Pozzi, and H. Xie, “A self-aligned 45°-tilted two-axis scanning micromirror for side-view imaging,” J. Microelectromech. Syst. 25(4), 799–811 (2016).
[Crossref]

H. Wang, X. Zhang, D. Zhang, L. Zhou, and H. Xie, “Characterization and reliability study of a mems mirror based on electrothermal bimorph actuation,” in 2017 International Conference on Optical MEMS and Nanophotonics (OMN), (2017), pp. 1–2.

D. Wang, X. Zhang, L. Zhou, M. Liang, D. Zhang, and H. Xie, “An Ultra-Fast Electrothermal Micromirror with Bimorph Actuators Made of Copper / Tungsten,” in Optical MEMS and Nanophotonics (OMN), (2017), pp. 4–5.

X. Zhang, B. Li, X. Li, and H. Xie, “A robust, fast electrothermal micromirror with symmetric bimorph actuators made of copper/tungsten,” in 2015 Transducers - 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), (2015), pp. 912–915.

Zhou, J.

X. Duan, H. Li, J. Zhou, Q. Zhou, K. R. Oldham, and T. D. Wang, “Visualizing epithelial expression of EGFR in vivo with distal scanning side-viewing confocal endomicroscope,” Sci. Rep. 6(1), 37315 (2016).
[Crossref]

Zhou, L.

C. Duan, W. Wang, X. Zhang, L. Zhou, A. Pozzi, and H. Xie, “A self-aligned 45°-tilted two-axis scanning micromirror for side-view imaging,” J. Microelectromech. Syst. 25(4), 799–811 (2016).
[Crossref]

D. Wang, X. Zhang, L. Zhou, M. Liang, D. Zhang, and H. Xie, “An Ultra-Fast Electrothermal Micromirror with Bimorph Actuators Made of Copper / Tungsten,” in Optical MEMS and Nanophotonics (OMN), (2017), pp. 4–5.

H. Wang, X. Zhang, D. Zhang, L. Zhou, and H. Xie, “Characterization and reliability study of a mems mirror based on electrothermal bimorph actuation,” in 2017 International Conference on Optical MEMS and Nanophotonics (OMN), (2017), pp. 1–2.

Zhou, Q.

X. Duan, H. Li, J. Zhou, Q. Zhou, K. R. Oldham, and T. D. Wang, “Visualizing epithelial expression of EGFR in vivo with distal scanning side-viewing confocal endomicroscope,” Sci. Rep. 6(1), 37315 (2016).
[Crossref]

Zhou, Z.

C. Duan, D. Wang, Z. Zhou, P. Liang, S. R. Samuelson, A. Pozzi, and H. Xie, “Swept-source common-path optical coherence tomography with a MEMS endoscopic imaging probe,” in Proc. SPIE 8934, Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XVIII, vol. 8934 (2014), p. 89342N.

Zinoviev, K.

A. Jovic, G. Pandraud, N. S. Losilla, J. Sancho, K. Zinoviev, J. L. Rubio, E. Margallo-Ballbas, and P. M. Sarro, “A mems actuator system for an integrated 3-d optical coherent tomography scanner,” J. Microelectromech. Syst. 27(2), 259–268 (2018).
[Crossref]

Appl. Opt. (3)

Biomed. Opt. Express (4)

Comput. Graph. (Pergamon) (1)

G. Sakas, “Trends in medical imaging: From 2D to 3D,” Comput. Graph. (Pergamon) 26(4), 577–587 (2002).
[Crossref]

Displays (1)

Z. Qiu and W. Piyawattanametha, “Mems based fiber optical microendoscopes,” Displays 37, 41–53 (2015).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

Y. Xu, J. Singh, T. Selvaratnam, and N. Chen, “Two-axis gimbal-less electrothermal micromirror for large-angle circumferential scanning,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1432–1438 (2009).
[Crossref]

IEEE Trans. on Image Process. (1)

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. on Image Process. 13(4), 600–612 (2004).
[Crossref]

J. Microelectromech. Syst. (4)

C. Duan, W. Wang, X. Zhang, L. Zhou, A. Pozzi, and H. Xie, “A self-aligned 45°-tilted two-axis scanning micromirror for side-view imaging,” J. Microelectromech. Syst. 25(4), 799–811 (2016).
[Crossref]

K. Jia, S. Pal, and H. Xie, “An electrothermal tip-tilt-piston micromirror based on folded dual s-shaped bimorphs,” J. Microelectromech. Syst. 18(5), 1004–1015 (2009).
[Crossref]

K. Aljasem, L. Froehly, A. Seifert, and H. Zappe, “Scanning and tunable micro-optics for endoscopic optical coherence tomography,” J. Microelectromech. Syst. 20(6), 1462–1472 (2011).
[Crossref]

A. Jovic, G. Pandraud, N. S. Losilla, J. Sancho, K. Zinoviev, J. L. Rubio, E. Margallo-Ballbas, and P. M. Sarro, “A mems actuator system for an integrated 3-d optical coherent tomography scanner,” J. Microelectromech. Syst. 27(2), 259–268 (2018).
[Crossref]

J. Microsc. (1)

E. H. K. Steltzer, “Contrast, resolution, pixelation, dynamic range and signal-to-noise ratio: fundamental limits to resolution in fluorescence light microscopy,” J. Microsc. 189(1), 15–24 (1998).
[Crossref]

J. Opt. A: Pure Appl. Opt. (1)

S. T. Todd, A. Jain, H. Qu, and H. Xie, “A multi-degree-of-freedom micromirror utilizing inverted-series-connected bimorph actuators,” J. Opt. A: Pure Appl. Opt. 8(7), S352–S359 (2006).
[Crossref]

Light: Sci. Appl. (1)

W. Liang, G. Hall, B. Messerschmidt, M.-J. Li, and X. Li, “Nonlinear optical endomicroscopy for label-free functional histology in vivo,” Light: Sci. Appl. 6(11), e17082 (2017).
[Crossref]

Micro Nano Syst. Lett. (1)

K. Hwang, Y.-H. Seo, and K.-H. Jeong, “Microscanners for optical endomicroscopic applications,” Micro Nano Syst. Lett. 5(1), 1 (2017).
[Crossref]

Micromachines (2)

E. Pengwang, K. Rabenorosoa, M. Rakotondrabe, and N. Andreff, “Scanning micromirror platform based on MEMS technology for medical application,” Micromachines 7(2), 24–29 (2016).
[Crossref]

Q. A. A. Tanguy, S. Bargiel, H. Xie, N. Passilly, M. Barthès, O. Gaiffe, J. Rutkowski, P. Lutz, and C. Gorecki, “Design and Fabrication of a 2-Axis Electrothermal MEMS Micro-Scanner for Optical Coherence Tomography,” Micromachines 8(5), 146 (2017).
[Crossref]

Nanotechnology (1)

T. Tuma, J. Lygeros, V. Kartik, A. Sebastian, and A. Pantazi, “High-speed multiresolution scanning probe microscopy based on Lissajous scan trajectories,” Nanotechnology 23(18), 185501 (2012).
[Crossref]

Nat. Methods (1)

M. J. Schnitzer, W. Piyawattanametha, E. L. M. Cheung, B. A. Flusberg, J. C. Jung, and E. D. Cocker, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[Crossref]

Nat. Rev. Gastroenterol. Hepatol. (1)

A. Hoffman, H. Manner, J. W. Rey, and R. Kiesslich, “A guide to multimodal endoscopy imaging for gastrointestinal malignancy-an early indicator,” Nat. Rev. Gastroenterol. Hepatol. 14(7), 421–434 (2017).
[Crossref]

Opt. Express (7)

A. D. Aguirre, P. R. Hertz, Y. Chen, J. G. Fujimoto, W. Piyawattanametha, L. Fan, and M. C. Wu, “Two-axis MEMS scanning catheter for ultrahigh resolution three-dimensional and en face imaging,” Opt. Express 15(5), 2445–2453 (2007).
[Crossref]

Y. Wu, Y. Leng, J. Xi, and X. Li, “Scanning all-fiber-optic endomicroscopy system for 3d nonlinear optical imaging of biological tissues,” Opt. Express 17(10), 7907–7915 (2009).
[Crossref]

J. Sun, S. Guo, L. Wu, L. Liu, S. W. Choe, B. S. Sorg, and H. Xie, “3D in vivo optical coherence tomography based on a low-voltage, large-scan-range 2D MEMS mirror,” Opt. Express 18(12), 12065–12075 (2010).
[Crossref]

L. Huo, J. Xi, Y. Wu, and X. Li, “Forward-viewing resonant fiber-optic scanning endoscope of appropriate scanning speed for 3d oct imaging,” Opt. Express 18(14), 14375–14384 (2010).
[Crossref]

H.-C. Park, Y.-H. Seo, and K.-H. Jeong, “Lissajous fiber scanning for forward viewing optical endomicroscopy using asymmetric stiffness modulation,” Opt. Express 22(5), 5818–5825 (2014).
[Crossref]

B. Braaf, K. A. Vermeer, K. V. Vienola, and J. F. de Boer, “Angiography of the retina and the choroid with phase-resolved OCT using interval-optimized backstitched B-scans,” Opt. Express 20(18), 20516–20534 (2012).
[Crossref]

Y.-H. Seo, K. Hwang, and K.-H. Jeong, “1.65 mm diameter forward-viewing confocal endomicroscopic catheter using a flip-chip bonded electrothermal MEMS fiber scanner,” Opt. Express 26(4), 4780–4786 (2018).
[Crossref]

Opt. Lett. (2)

Rev. Sci. Instrum. (1)

A. Bazaei, Y. K. Yong, and S. O. Moheimani, “High-speed Lissajous-scan atomic force microscopy: Scan pattern planning and control design issues,” Rev. Sci. Instrum. 83(6), 063701 (2012).
[Crossref]

Sci. Rep. (3)

X. Duan, H. Li, J. Zhou, Q. Zhou, K. R. Oldham, and T. D. Wang, “Visualizing epithelial expression of EGFR in vivo with distal scanning side-viewing confocal endomicroscope,” Sci. Rep. 6(1), 37315 (2016).
[Crossref]

D. Y. Kim, K. Hwang, J. Ahn, Y.-H. Seo, J.-B. Kim, S. Lee, J.-H. Yoon, E. Kong, Y. Jeong, S. Jon, P. Kim, and K.-H. Jeong, “Lissajous Scanning Two-photon Endomicroscope for In vivo Tissue Imaging,” Sci. Rep. 9(1), 3560 (2019).
[Crossref]

K. Hwang, Y. H. Seo, J. Ahn, P. Kim, and K. H. Jeong, “Frequency selection rule for high definition and high frame rate Lissajous scanning,” Sci. Rep. 7(1), 14075 (2017).
[Crossref]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref]

Other (6)

C. Duan, D. Wang, Z. Zhou, P. Liang, S. R. Samuelson, A. Pozzi, and H. Xie, “Swept-source common-path optical coherence tomography with a MEMS endoscopic imaging probe,” in Proc. SPIE 8934, Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XVIII, vol. 8934 (2014), p. 89342N.

D. Wang, S. Strassle Rojas, A. Shuping, Z. Tasneem, S. Koppal, and H. Xie, “An Integrated Forward-View 2-Axis Mems Scanner for Compact 3D Lidar,” in 2018 IEEE 13th Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), (2018), pp. 185–188.

X. Zhang, B. Li, X. Li, and H. Xie, “A robust, fast electrothermal micromirror with symmetric bimorph actuators made of copper/tungsten,” in 2015 Transducers - 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), (2015), pp. 912–915.

D. Wang, X. Zhang, L. Zhou, M. Liang, D. Zhang, and H. Xie, “An Ultra-Fast Electrothermal Micromirror with Bimorph Actuators Made of Copper / Tungsten,” in Optical MEMS and Nanophotonics (OMN), (2017), pp. 4–5.

H. Wang, X. Zhang, D. Zhang, L. Zhou, and H. Xie, “Characterization and reliability study of a mems mirror based on electrothermal bimorph actuation,” in 2017 International Conference on Optical MEMS and Nanophotonics (OMN), (2017), pp. 1–2.

G. Dougherty, Digital Image Processing for Medical Applications (Cambridge University, 2009).

Supplementary Material (1)

NameDescription
» Visualization 1       Video acquired at 61 fps of the swept femto-st sample over a 1.7 mm course.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. Pictures of the MEMS scanner after release. (a) Overall view. The footprint of the substrate measures $4\times$ 4 mm2 and the micro-mirror’s effective diameter is 1 mm. (b) Lateral close-up view of a single actuator. Scale bar = 100 µm. (c) Top close-up view of the stopper mechanism. Scale bar = 200 µm.
Fig. 2.
Fig. 2. MEMS scanner axis actuation drive sketch.
Fig. 3.
Fig. 3. Optical setup. (a) Schematic of the optical characterization setup used to measure the dynamic behavior and frequency response of the scanning device, and to image samples; [Lx]: lenses; [BE]: beam expander; [Mx]: fixed mirror; [BS]: beam splitter cube; [MM]: micro-mirror; [PSD]: PSD (Thorlabs PDP90A); [PDx]: photodiodes (Thorlabs PDA36A). (b) Photograph of the objective, sample and tracking system.
Fig. 4.
Fig. 4. Characterization of the MEMS scanner. (a) Full range normalized frequency response for an amplitude peak-to-peak $V_{pp}$ of 100 mV. The gain is displayed in degree, $\theta ^{\,opt}_{pp}$ is the total optical angular displacement. (b) Detail of the frequency response of the direct systems in the scan exploitable bandwidth. (c) Detail of the frequency response of the coupled systems in the exploitable bandwidth. $\vec {x}\cdot \vec {y}$ : measure of displacement on $\vec {y}$ axis when $\vec {x}$ axis is actuated alone. $\vec {y}\cdot \vec {x}$ : vice versa. (d) Beam angular amplitude vs. amplitude of the driving voltage at the resonance $\bullet$ and in quasi-static mode (at 10 Hz) $\blacktriangle$ .
Fig. 5.
Fig. 5. Example of a Lissajous pattern with 6 lobes along $\vec {x}$ and 5 along $\vec {y}$ . The small number of lobes has been chosen here for a reason of clarity. (a) Diamond-like pattern based on coordinated $P_0$ , $P_1$ , $P_2$ . (b) The same pattern plotted on top of a $11\;\textrm{px}\times 11\;\textrm{px}$ grid whose pixel size equals $\textrm {FWHM}/2$ . Pixels that are not crossed through by the beam trajectory are blackened out. The FF is calculated as the ratio between the blackened pixels and the total number of pixels ( $(121-4)/121 \approx 97\%$ in this example). (c) $16\;\textrm{px}\times 16\;\textrm{px}$ grid with pixel size of $\textrm {FWHM}/3$ . FF $\approx 86\%$ .
Fig. 6.
Fig. 6. (a) Evolution of the FF as a function of the reduced sampling frequency for the 4 considered $FR$ . (b) FF as a function of the FOV calculated at $f_s=$ 1 MHz and $dP=\textrm {FWHM}/3$ for the two demanding cases: 10 fps and 20 fps.
Fig. 7.
Fig. 7. Process of image construction based on Lissajous pattern at 61 fps. (a) Beam trajectory in a square of 265 µm × 265 µm with 39 lobes. (b) Pixelated image based on the intensity transmitted by the sample with a resolution set to 53 px × 53 px. $dP = \textrm {FWHM}/3 = 5$  µm. Pixels colored in blue correspond to NaN samples, not illuminated by the beam FWHM center part. (c) Image after scattered data interpolation (natural neighbor interpolation method).
Fig. 8.
Fig. 8. Images of the “gator” sample performed at different frame rates for which the FOV is adapted to maintain the same level of FF, (a) FR = 10 fps, (b) FR = 20 fps, (c) FR = 61 fps. Note that one specification for setting the FOV is the sampling frequency limited by purpose to 1 MHz.
Fig. 9.
Fig. 9. (a) Evolution of the image resolution (in µm) with respect to the sampling frequency for a pixel size of 5 µm ( $\textrm {FWHM}/3$ ) and $FR$ =10 fps . Image of the femto-st institute logo: (b) Cropped scanned image of femto-st pattern at $f_s = 1$  MHz. (c) $f_s = 200$ kHz. (d) $f_s = 100$ kHz.
Fig. 10.
Fig. 10. Image reconstitution by stitching of several sub-images acquired sequentially at 61 fps ( $f_s = 1$  MHz) over a 1.7 mm course along the femto-st sample.

Tables (1)

Tables Icon

Table 1. Parameters of representative configurations for high frame rate imaging according to the selection procedure and based on the device characterization.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

{ u x ( t ) = A x sin ( 2 π f x t + ψ ) u y ( t ) = A y sin ( 2 π f y t ) ,
F R = GCD ( f x , f y )
N = N x + N y = f x F R + f y F R 2 f m a x F R ,
P 0 = ( 0 0 ) , P 1 = ( A x sin π 2 N y A y sin π 2 N x ) , P 2 = ( A x sin π 2 N y A y sin π 2 N x )
h = 2 A x A y sin π 2 N x sin π 2 N y ( A x sin π 2 N y ) 2 + ( A y sin π 2 N x ) 2
A = FWHM sin 2 π 2 N x + sin 2 π 2 N y 2 sin π 2 N x sin π 2 N y FWHM π N x 2 + N y 2
FOV p x = 2 A = 2 FWHM d P sin 2 π 2 N y + sin 2 π 2 N x sin π 2 N y sin π 2 N x
F c p = 4   N x   N y   F R

Metrics