Abstract

We report on the excitation and polarization preserved propagation of a very large effective-area (Aeff ∼ 2240 μm2) higher-order-mode in an optical fiber. A laser signal operating in the 1 μm wavelength region is transported in a Bessel-like LP0,4 mode over a 10 m long section of the polarization-maintaining higher-order-mode fiber. We observe that the light propagates through the fiber with >10 dB polarization-extinction-ratio as the fiber is coiled into circular loops of 40 cm diameter.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Polarization-maintaining, large-effective-area, higher-order-mode fiber

Raja Ahmad, Man F. Yan, Jeffrey W. Nicholson, Kazi S. Abedin, Paul S. Westbrook, Clifford Headley, Patrick W. Wisk, Eric M. Monberg, and David J. DiGiovanni
Opt. Lett. 42(13) 2591-2594 (2017)

Scaling the effective area of higher-order-mode erbium-doped fiber amplifiers

J. W. Nicholson, J. M. Fini, A. M. DeSantolo, X. Liu, K. Feder, P. S. Westbrook, V. R. Supradeepa, E. Monberg, F. DiMarcello, R. Ortiz, C. Headley, and D. J. DiGiovanni
Opt. Express 20(22) 24575-24584 (2012)

SBS gain efficiency measurements and modeling in a 1714 µm2 effective area LP08 higher-order mode optical fiber

M. D. Mermelstein, S. Ramachandran, J. M. Fini, and S. Ghalmi
Opt. Express 15(24) 15952-15963 (2007)

References

  • View by:
  • |
  • |
  • |

  1. M. N. Zervas and C. A. Codemard, “High Power Fiber Lasers: A Review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 219–241 (2014).
    [Crossref]
  2. C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
    [Crossref]
  3. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives,” J. Opt. Soc. Am. B 27(11), B63 (2010).
    [Crossref]
  4. S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photonics Rev. 2(6), 429–448 (2008).
    [Crossref]
  5. J. Limpert, N. Deguil-Robin, I. Manek-Hönninger, F. Salin, F. Röser, A. Liem, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, J. Broeng, A. Petersson, and C. Jakobsen, “High-power rod-type photonic crystal fiber laser,” Opt. Express 13(4), 1055–1058 (2005).
    [Crossref]
  6. C-H. Liu, G. Chang, N. Litchinister, D. Guertin, N. Jacobson, K. Tankala, and A. Galvanauskas, “Chirally Coupled Core Fibers at 1550-nm and 1064-nm for Effectively Single-Mode Core Size Scaling,” CLEO (2007), paper CTuBB3.
  7. W. S. Wong, X. Peng, J. M. McLaughlin, and L. Dong, “Breaking the limit of maximum effective area for robust single-mode propagation in optical fibers,” Opt. Lett. 30(21), 2855–2857 (2005).
    [Crossref]
  8. Z. Jiang and J. R. Marciante, “Mode-Area Scaling of Helical-Core, Dual-Clad Fiber Lasers and Amplifiers,” CLEO (2005), paper CThR3.
  9. C-H. Liu, A. Galvanauskas, V. Khitrov, B. Samson, U. Manyam, K. Tankala, D. Machewirth, and S. Heinemann, “High-power single-polarization and single-transverse-mode fiber laser with an all-fiber cavity and fiber-grating stabilized spectrum,” Opt. Lett. 31(1), 17–19 (2006).
    [Crossref]
  10. T. Schreiber, F. Röser, O. Schmidt, J. Limpert, R. Iliew, F. Lederer, A. Petersson, C. Jacobsen, K. P. Hansen, J. Broeng, and A. Tünnermann, “Stress-induced single-polarization single-transverse mode photonic crystal fiber with low nonlinearity,” Opt. Express 13(19), 7621 (2005).
    [Crossref]
  11. X. Peng and L. Dong, “Fundamental-mode operation in polarization-maintaining ytterbium-doped fiber with an effective area of 1400 μm2,” Opt. Lett. 32(4), 358 (2007).
    [Crossref]
  12. J. W. Nicholson, A. DeSantolo, W. Kaenders, and A. Zach, “Self-frequency-shifted solitons in a polarization-maintaining, very-large-mode area, Er-doped fiber amplifier,” Opt. Express 24(20), 23396 (2016).
    [Crossref]
  13. J. M. Fini and S. Ramachandran, “Natural bend-distortion immunity of higher-order-mode large-mode-area fibers,” Opt. Lett. 32(7), 748 (2007).
    [Crossref]
  14. J. W. Nicholson, J. M. Fini, A. M. DeSantolo, X. Liu, K. Feder, P. S. Westbrook, V. R. Supradeepa, E. Monberg, F. DiMarcello, R. Ortiz, C. Headley, and D. J. DiGiovanni, “A higher-order-mode Erbium-doped-fiber amplifier,” Opt. Express 20(22), 24575 (2012).
    [Crossref]
  15. K. S. Abedin, R. Ahmad, A. M. DeSantolo, and D. J. DiGiovanni, “Reconversion of higher-order-mode (HOM) output from cladding-pumped hybrid Yb:HOM fiber amplifier,” Opt. Express 27(6), 8585–8595 (2019).
    [Crossref]
  16. R. Ahmad, M. F. Yan, J. W. Nicholson, K. S. Abedin, P. S. Westbrook, C. Headley, P. W. Wisk, E. M. Monberg, and D. J. DiGiovanni, “Polarization-maintaining, large-effective-area, higher-order-mode fiber,” Opt. Lett. 42(13), 2591 (2017).
    [Crossref]
  17. P. L. Chu and R. A. Sammut, “Analytical method for calculation of stresses and material birefringence in polarization-maintaining optical fiber,” J. Lightwave Technol. 2(5), 650–662 (1984).
    [Crossref]
  18. http://www.ofsoptics.com/fiber-laser-building-blocks.html
  19. D. Marcuse, Theory of dielectric optical waveguides, 2nd ed. Elsevier, 2013.
  20. G. P. Agrawal, Nonlinear Fiber Optics4th Ed. Academic Press, 2007.
  21. S. Timoshenko and J. N. Goodier, Theory of Elasticity, 3rd ed. McGraw-Hill, New York, 1970.
  22. M. P. Varnham, D. N. Payne, A. J. Barlow, and R. D. Birch, “Analytic solution for the birefringence produced by thermal stress in polarization-maintaining optical fibers,” J. Lightwave Technol. 1(2), 332–339 (1983).
    [Crossref]
  23. J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4(8), 1071–1089 (1986).
    [Crossref]

2019 (1)

2017 (1)

2016 (1)

2014 (1)

M. N. Zervas and C. A. Codemard, “High Power Fiber Lasers: A Review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 219–241 (2014).
[Crossref]

2013 (1)

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

2012 (1)

2010 (1)

2008 (1)

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photonics Rev. 2(6), 429–448 (2008).
[Crossref]

2007 (2)

2006 (1)

2005 (3)

1986 (1)

J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4(8), 1071–1089 (1986).
[Crossref]

1984 (1)

P. L. Chu and R. A. Sammut, “Analytical method for calculation of stresses and material birefringence in polarization-maintaining optical fiber,” J. Lightwave Technol. 2(5), 650–662 (1984).
[Crossref]

1983 (1)

M. P. Varnham, D. N. Payne, A. J. Barlow, and R. D. Birch, “Analytic solution for the birefringence produced by thermal stress in polarization-maintaining optical fibers,” J. Lightwave Technol. 1(2), 332–339 (1983).
[Crossref]

Abedin, K. S.

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics4th Ed. Academic Press, 2007.

Ahmad, R.

Barlow, A. J.

M. P. Varnham, D. N. Payne, A. J. Barlow, and R. D. Birch, “Analytic solution for the birefringence produced by thermal stress in polarization-maintaining optical fibers,” J. Lightwave Technol. 1(2), 332–339 (1983).
[Crossref]

Birch, R. D.

M. P. Varnham, D. N. Payne, A. J. Barlow, and R. D. Birch, “Analytic solution for the birefringence produced by thermal stress in polarization-maintaining optical fibers,” J. Lightwave Technol. 1(2), 332–339 (1983).
[Crossref]

Broeng, J.

Chang, G.

C-H. Liu, G. Chang, N. Litchinister, D. Guertin, N. Jacobson, K. Tankala, and A. Galvanauskas, “Chirally Coupled Core Fibers at 1550-nm and 1064-nm for Effectively Single-Mode Core Size Scaling,” CLEO (2007), paper CTuBB3.

Chu, P. L.

P. L. Chu and R. A. Sammut, “Analytical method for calculation of stresses and material birefringence in polarization-maintaining optical fiber,” J. Lightwave Technol. 2(5), 650–662 (1984).
[Crossref]

Clarkson, W. A.

Codemard, C. A.

M. N. Zervas and C. A. Codemard, “High Power Fiber Lasers: A Review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 219–241 (2014).
[Crossref]

Deguil-Robin, N.

DeSantolo, A.

DeSantolo, A. M.

DiGiovanni, D. J.

DiMarcello, F.

Dong, L.

Feder, K.

Fini, J. M.

Galvanauskas, A.

C-H. Liu, A. Galvanauskas, V. Khitrov, B. Samson, U. Manyam, K. Tankala, D. Machewirth, and S. Heinemann, “High-power single-polarization and single-transverse-mode fiber laser with an all-fiber cavity and fiber-grating stabilized spectrum,” Opt. Lett. 31(1), 17–19 (2006).
[Crossref]

C-H. Liu, G. Chang, N. Litchinister, D. Guertin, N. Jacobson, K. Tankala, and A. Galvanauskas, “Chirally Coupled Core Fibers at 1550-nm and 1064-nm for Effectively Single-Mode Core Size Scaling,” CLEO (2007), paper CTuBB3.

Ghalmi, S.

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photonics Rev. 2(6), 429–448 (2008).
[Crossref]

Goodier, J. N.

S. Timoshenko and J. N. Goodier, Theory of Elasticity, 3rd ed. McGraw-Hill, New York, 1970.

Guertin, D.

C-H. Liu, G. Chang, N. Litchinister, D. Guertin, N. Jacobson, K. Tankala, and A. Galvanauskas, “Chirally Coupled Core Fibers at 1550-nm and 1064-nm for Effectively Single-Mode Core Size Scaling,” CLEO (2007), paper CTuBB3.

Hansen, K. P.

Headley, C.

Heinemann, S.

Iliew, R.

Jacobsen, C.

Jacobson, N.

C-H. Liu, G. Chang, N. Litchinister, D. Guertin, N. Jacobson, K. Tankala, and A. Galvanauskas, “Chirally Coupled Core Fibers at 1550-nm and 1064-nm for Effectively Single-Mode Core Size Scaling,” CLEO (2007), paper CTuBB3.

Jakobsen, C.

Jauregui, C.

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

Jiang, Z.

Z. Jiang and J. R. Marciante, “Mode-Area Scaling of Helical-Core, Dual-Clad Fiber Lasers and Amplifiers,” CLEO (2005), paper CThR3.

Kaenders, W.

Khitrov, V.

Lederer, F.

Liem, A.

Limpert, J.

Litchinister, N.

C-H. Liu, G. Chang, N. Litchinister, D. Guertin, N. Jacobson, K. Tankala, and A. Galvanauskas, “Chirally Coupled Core Fibers at 1550-nm and 1064-nm for Effectively Single-Mode Core Size Scaling,” CLEO (2007), paper CTuBB3.

Liu, C-H.

C-H. Liu, A. Galvanauskas, V. Khitrov, B. Samson, U. Manyam, K. Tankala, D. Machewirth, and S. Heinemann, “High-power single-polarization and single-transverse-mode fiber laser with an all-fiber cavity and fiber-grating stabilized spectrum,” Opt. Lett. 31(1), 17–19 (2006).
[Crossref]

C-H. Liu, G. Chang, N. Litchinister, D. Guertin, N. Jacobson, K. Tankala, and A. Galvanauskas, “Chirally Coupled Core Fibers at 1550-nm and 1064-nm for Effectively Single-Mode Core Size Scaling,” CLEO (2007), paper CTuBB3.

Liu, X.

Machewirth, D.

Manek-Hönninger, I.

Manyam, U.

Marciante, J. R.

Z. Jiang and J. R. Marciante, “Mode-Area Scaling of Helical-Core, Dual-Clad Fiber Lasers and Amplifiers,” CLEO (2005), paper CThR3.

Marcuse, D.

D. Marcuse, Theory of dielectric optical waveguides, 2nd ed. Elsevier, 2013.

McLaughlin, J. M.

Mermelstein, M.

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photonics Rev. 2(6), 429–448 (2008).
[Crossref]

Monberg, E.

Monberg, E. M.

Nicholson, J. W.

Nilsson, J.

Noda, J.

J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4(8), 1071–1089 (1986).
[Crossref]

Nolte, S.

Okamoto, K.

J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4(8), 1071–1089 (1986).
[Crossref]

Ortiz, R.

Payne, D. N.

M. P. Varnham, D. N. Payne, A. J. Barlow, and R. D. Birch, “Analytic solution for the birefringence produced by thermal stress in polarization-maintaining optical fibers,” J. Lightwave Technol. 1(2), 332–339 (1983).
[Crossref]

Peng, X.

Petersson, A.

Ramachandran, S.

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photonics Rev. 2(6), 429–448 (2008).
[Crossref]

J. M. Fini and S. Ramachandran, “Natural bend-distortion immunity of higher-order-mode large-mode-area fibers,” Opt. Lett. 32(7), 748 (2007).
[Crossref]

Richardson, D. J.

Röser, F.

Salin, F.

Sammut, R. A.

P. L. Chu and R. A. Sammut, “Analytical method for calculation of stresses and material birefringence in polarization-maintaining optical fiber,” J. Lightwave Technol. 2(5), 650–662 (1984).
[Crossref]

Samson, B.

Sasaki, Y.

J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4(8), 1071–1089 (1986).
[Crossref]

Schmidt, O.

Schreiber, T.

Supradeepa, V. R.

Tankala, K.

C-H. Liu, A. Galvanauskas, V. Khitrov, B. Samson, U. Manyam, K. Tankala, D. Machewirth, and S. Heinemann, “High-power single-polarization and single-transverse-mode fiber laser with an all-fiber cavity and fiber-grating stabilized spectrum,” Opt. Lett. 31(1), 17–19 (2006).
[Crossref]

C-H. Liu, G. Chang, N. Litchinister, D. Guertin, N. Jacobson, K. Tankala, and A. Galvanauskas, “Chirally Coupled Core Fibers at 1550-nm and 1064-nm for Effectively Single-Mode Core Size Scaling,” CLEO (2007), paper CTuBB3.

Timoshenko, S.

S. Timoshenko and J. N. Goodier, Theory of Elasticity, 3rd ed. McGraw-Hill, New York, 1970.

Tünnermann, A.

Varnham, M. P.

M. P. Varnham, D. N. Payne, A. J. Barlow, and R. D. Birch, “Analytic solution for the birefringence produced by thermal stress in polarization-maintaining optical fibers,” J. Lightwave Technol. 1(2), 332–339 (1983).
[Crossref]

Westbrook, P. S.

Wisk, P. W.

Wong, W. S.

Yan, M. F.

R. Ahmad, M. F. Yan, J. W. Nicholson, K. S. Abedin, P. S. Westbrook, C. Headley, P. W. Wisk, E. M. Monberg, and D. J. DiGiovanni, “Polarization-maintaining, large-effective-area, higher-order-mode fiber,” Opt. Lett. 42(13), 2591 (2017).
[Crossref]

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photonics Rev. 2(6), 429–448 (2008).
[Crossref]

Zach, A.

Zellmer, H.

Zervas, M. N.

M. N. Zervas and C. A. Codemard, “High Power Fiber Lasers: A Review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 219–241 (2014).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. N. Zervas and C. A. Codemard, “High Power Fiber Lasers: A Review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 219–241 (2014).
[Crossref]

J. Lightwave Technol. (3)

P. L. Chu and R. A. Sammut, “Analytical method for calculation of stresses and material birefringence in polarization-maintaining optical fiber,” J. Lightwave Technol. 2(5), 650–662 (1984).
[Crossref]

M. P. Varnham, D. N. Payne, A. J. Barlow, and R. D. Birch, “Analytic solution for the birefringence produced by thermal stress in polarization-maintaining optical fibers,” J. Lightwave Technol. 1(2), 332–339 (1983).
[Crossref]

J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4(8), 1071–1089 (1986).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Photonics Rev. (1)

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photonics Rev. 2(6), 429–448 (2008).
[Crossref]

Nat. Photonics (1)

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

Opt. Express (5)

Opt. Lett. (5)

Other (6)

C-H. Liu, G. Chang, N. Litchinister, D. Guertin, N. Jacobson, K. Tankala, and A. Galvanauskas, “Chirally Coupled Core Fibers at 1550-nm and 1064-nm for Effectively Single-Mode Core Size Scaling,” CLEO (2007), paper CTuBB3.

Z. Jiang and J. R. Marciante, “Mode-Area Scaling of Helical-Core, Dual-Clad Fiber Lasers and Amplifiers,” CLEO (2005), paper CThR3.

http://www.ofsoptics.com/fiber-laser-building-blocks.html

D. Marcuse, Theory of dielectric optical waveguides, 2nd ed. Elsevier, 2013.

G. P. Agrawal, Nonlinear Fiber Optics4th Ed. Academic Press, 2007.

S. Timoshenko and J. N. Goodier, Theory of Elasticity, 3rd ed. McGraw-Hill, New York, 1970.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) Schematic diagram of the fiber cross-section; (b) a microscope photograph of the PM-HOM fiber.
Fig. 2.
Fig. 2. (a) Numerically computed effective-refractive-index of the various guided modes as a function of the wavelength, (inset): Measured refractive-index distribution within the modes-guiding region of the fiber; (b) Effective-area of the various LP0,N fiber modes; (c) and (d) transverse intensity distribution of the LP0,1 and LP0,4 modes guided within the fiber, respectively.
Fig. 3.
Fig. 3. (a) Birefringence at the center of the fiber computed for various combinations of the stress-rods location and size; (b) birefringence map across the fiber cross-section computed for the case of 125 μm diameter stress-rods with the inner-edge offset of 50 μm from the center of the fiber.
Fig. 4.
Fig. 4. (a) Experimental setup used for characterizing the spectrum of the LPG mode-converter inscribed within the PM-HOM fiber; (b) LPG spectra for the orthogonally polarized modes, showing the conversion of LP0,1 mode to the LP0,4 mode.
Fig. 5.
Fig. 5. (a) Experimental setup used for recording the mode-profile on a camera and measuring the PER for the various bend diameters of the fiber; (b)-(d) Near-field mode-images and the measured PER for the various launch conditions and bending conditions.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Number of x or y polarized L P 0,N modes [ V π ] int = 10.
B 2 E C 1 ν Δ α Δ T ( R 2 R 1 R 2 + R 1 ) 2 [ 1 3 ( R 2 + R 1 2 b ) 4 ] ,