Abstract

Photon-limited imaging technique is desired in tasks of capturing and reconstructing images by detecting a small number of photons. However, it is still a challenge to achieve high photon-efficiency. Here, we propose a novel photon-limited imaging technique that explores the consistency of photon detection probability in a single pulse and light intensity distribution in a single-pixel correlated imaging system. We demonstrated theoretically and experimentally that our technique can reconstruct a high-quality 3D image by using only one pulse each frame, thereby achieving a high photon efficiency of 0.01 detected photons per pixel. Long-distance field experiments for 100 km cooperative target and 3 km practical target are conducted to verify its feasibility. Compared with the conventional single-pixel imaging, which requires hundreds or thousands of pulses per frame, our technique saves two orders of magnitude in the consumption of total light power and acquisition time.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Photon efficiency of computational ghost imaging with single-photon detection

Xialin Liu, Yiwei Sun, Jianhong Shi, and Guihua Zeng
J. Opt. Soc. Am. A 35(10) 1741-1748 (2018)

Imaging high-speed moving targets with a single-pixel detector

Wenjie Jiang, Xianye Li, Xinglei Peng, and Baoqing Sun
Opt. Express 28(6) 7889-7897 (2020)

Hadamard single-pixel imaging versus Fourier single-pixel imaging

Zibang Zhang, Xueying Wang, Guoan Zheng, and Jingang Zhong
Opt. Express 25(16) 19619-19639 (2017)

References

  • View by:
  • |
  • |
  • |

  1. W. M. Ruyten, “Ccd arrays, cameras, and displays, by gerald c. holst,” Optics & Photonics News 8 (1997).
  2. Y. Chen, J. D. Müller, P. T. So, and E. Gratton, “The photon counting histogram in fluorescence fluctuation spectroscopy,” Biophys. J. 77(1), 553–567 (1999).
    [Crossref]
  3. A. McCarthy, R. J. Collins, N. J. Krichel, V. Fernández, A. M. Wallace, and G. S. Buller, “Long-range time-of-flight scanning sensor based on high-speed time-correlated single-photon counting,” Appl. Opt. 48(32), 6241–6251 (2009).
    [Crossref]
  4. J.-E. Kallhammer, “Imaging: The road ahead for car night-vision,” Nat. Photonics sample, 12–13 (2006).
    [Crossref]
  5. D. M. McClatchy, E. J. Rizzo, W. A. Wells, P. P. Cheney, J. C. Hwang, K. D. Paulsen, B. W. Pogue, and S. C. Kanick, “Wide-field quantitative imaging of tissue microstructure using sub-diffuse spatial frequency domain imaging,” Optica 3(6), 613–621 (2016).
    [Crossref]
  6. A. McCarthy, N. J. Krichel, N. R. Gemmell, X. Ren, M. G. Tanner, S. N. Dorenbos, V. Zwiller, R. H. Hadfield, and G. S. Buller, “Kilometer-range, high resolution depth imaging via 1560 nm wavelength single-photon detection,” Opt. Express 21(7), 8904–8915 (2013).
    [Crossref]
  7. A. Kirmani, D. Venkatraman, D. Shin, A. Colaço, F. N. Wong, J. H. Shapiro, and V. K. Goyal, “First-photon imaging,” Science 343(6166), 58–61 (2014).
    [Crossref]
  8. D. Shin, F. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K. Goyal, F. N. Wong, and J. H. Shapiro, “Photon-efficient imaging with a single-photon camera,” Nat. Commun. 7(1), 12046 (2016).
    [Crossref]
  9. A. Halimi, Y. Altmann, A. McCarthy, X. Ren, R. Tobin, G. S. Buller, and S. McLaughlin, “Restoration of intensity and depth images constructed using sparse single-photon data,” in 2016 24th European Signal Processing Conference (EUSIPCO), (2016), pp. 86–90.
  10. E. D. Kolaczyk, “Bayesian multiscale models for poisson processes,” J. Am. Stat. Assoc. 94(447), 920–933 (1999).
    [Crossref]
  11. A. M. Pawlikowska, A. Halimi, R. A. Lamb, and G. S. Buller, “Single-photon three-dimensional imaging at up to 10 kilometers range,” Opt. Express 25(10), 11919–11931 (2017).
    [Crossref]
  12. J. P. Oliveira, J. M. Bioucas-Dias, and M. A. Figueiredo, “Adaptive total variation image deblurring: a majorization–minimization approach,” Signal Processing 89(9), 1683–1693 (2009).
    [Crossref]
  13. T. Pittman, Y. Shih, D. Strekalov, and A. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52(5), R3429–R3432 (1995).
    [Crossref]
  14. J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78(6), 061802 (2008).
    [Crossref]
  15. O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95(13), 131110 (2009).
    [Crossref]
  16. M. F. Duarte, M. A. Davenport, D. Takbar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE signal processing magazine 25(2), 83–91 (2008).
    [Crossref]
  17. B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3d computational imaging with single-pixel detectors,” Science 340(6134), 844–847 (2013).
    [Crossref]
  18. M.-J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7(1), 12010 (2016).
    [Crossref]
  19. W. Gong, C. Zhao, H. Yu, M. Chen, W. Xu, and S. Han, “Three-dimensional ghost imaging lidar via sparsity constraint,” Sci. Rep. 6(1), 26133 (2016).
    [Crossref]
  20. W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93(12), 121105 (2008).
    [Crossref]
  21. J. Ke and E. Y. Lam, “Fast compressive measurements acquisition using optimized binary sensing matrices for low-light-level imaging,” Opt. Express 24(9), 9869 (2016).
    [Crossref]
  22. P. A. Morris, R. S. Aspden, J. E. Bell, R. W. Boyd, and M. J. Padgett, “Imaging with a small number of photons,” Nat. Commun. 6(1), 5913 (2015).
    [Crossref]
  23. R. S. Aspden, N. R. Gemmell, P. A. Morris, D. S. Tasca, L. Mertens, M. G. Tanner, R. A. Kirkwood, A. Ruggeri, A. Tosi, R. W. Boyd, G. S. Buller, R. H. Hadfield, and M. J. Padgett, “Photon-sparse microscopy: visible light imaging using infrared illumination,” Optica 2(12), 1049–1052 (2015).
    [Crossref]
  24. Y. Yang, J. Shi, F. Cao, J. Peng, and G. Zeng, “Computational imaging based on time-correlated single-photon-counting technique at low light level,” Appl. Opt. 54(31), 9277–9283 (2015).
    [Crossref]
  25. X. Liu, J. Shi, X. Wu, and G. Zeng, “Fast first-photon ghost imaging,” Sci. Rep. 8(1), 5012 (2018).
    [Crossref]
  26. Z. Yang, Y. Sun, S. Qu, Y. Yu, R. Yan, A.-X. Zhang, and L.-A. Wu, “Noise reduction in computational ghost imaging by interpolated monitoring,” Appl. Opt. 57(21), 6097–6101 (2018).
    [Crossref]
  27. W. Dan, L. Quan, F. Junhong, J. Xiaowei, G. Rui, and L. Meiqi, “Change characteristic of low visibility along highways in hebei province during 2016-2017# br,” J. Arid Meteorol. 37, 639–647 (2019).
  28. Z. T. Harmany, R. F. Marcia, and R. M. Willett, “This is spiral-tap: Sparse poisson intensity reconstruction algorithms–theory and practice,” IEEE Trans. on Image Process. 21(3), 1084–1096 (2012).
    [Crossref]
  29. M.-J. Sun, M. P. Edgar, D. B. Phillips, G. M. Gibson, and M. J. Padgett, “Improving the signal-to-noise ratio of single-pixel imaging using digital microscanning,” Opt. Express 24(10), 10476–10485 (2016).
    [Crossref]

2019 (1)

W. Dan, L. Quan, F. Junhong, J. Xiaowei, G. Rui, and L. Meiqi, “Change characteristic of low visibility along highways in hebei province during 2016-2017# br,” J. Arid Meteorol. 37, 639–647 (2019).

2018 (2)

2017 (1)

2016 (6)

M.-J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7(1), 12010 (2016).
[Crossref]

W. Gong, C. Zhao, H. Yu, M. Chen, W. Xu, and S. Han, “Three-dimensional ghost imaging lidar via sparsity constraint,” Sci. Rep. 6(1), 26133 (2016).
[Crossref]

D. M. McClatchy, E. J. Rizzo, W. A. Wells, P. P. Cheney, J. C. Hwang, K. D. Paulsen, B. W. Pogue, and S. C. Kanick, “Wide-field quantitative imaging of tissue microstructure using sub-diffuse spatial frequency domain imaging,” Optica 3(6), 613–621 (2016).
[Crossref]

D. Shin, F. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K. Goyal, F. N. Wong, and J. H. Shapiro, “Photon-efficient imaging with a single-photon camera,” Nat. Commun. 7(1), 12046 (2016).
[Crossref]

J. Ke and E. Y. Lam, “Fast compressive measurements acquisition using optimized binary sensing matrices for low-light-level imaging,” Opt. Express 24(9), 9869 (2016).
[Crossref]

M.-J. Sun, M. P. Edgar, D. B. Phillips, G. M. Gibson, and M. J. Padgett, “Improving the signal-to-noise ratio of single-pixel imaging using digital microscanning,” Opt. Express 24(10), 10476–10485 (2016).
[Crossref]

2015 (3)

2014 (1)

A. Kirmani, D. Venkatraman, D. Shin, A. Colaço, F. N. Wong, J. H. Shapiro, and V. K. Goyal, “First-photon imaging,” Science 343(6166), 58–61 (2014).
[Crossref]

2013 (2)

2012 (1)

Z. T. Harmany, R. F. Marcia, and R. M. Willett, “This is spiral-tap: Sparse poisson intensity reconstruction algorithms–theory and practice,” IEEE Trans. on Image Process. 21(3), 1084–1096 (2012).
[Crossref]

2009 (3)

J. P. Oliveira, J. M. Bioucas-Dias, and M. A. Figueiredo, “Adaptive total variation image deblurring: a majorization–minimization approach,” Signal Processing 89(9), 1683–1693 (2009).
[Crossref]

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95(13), 131110 (2009).
[Crossref]

A. McCarthy, R. J. Collins, N. J. Krichel, V. Fernández, A. M. Wallace, and G. S. Buller, “Long-range time-of-flight scanning sensor based on high-speed time-correlated single-photon counting,” Appl. Opt. 48(32), 6241–6251 (2009).
[Crossref]

2008 (3)

M. F. Duarte, M. A. Davenport, D. Takbar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE signal processing magazine 25(2), 83–91 (2008).
[Crossref]

J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78(6), 061802 (2008).
[Crossref]

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93(12), 121105 (2008).
[Crossref]

2006 (1)

J.-E. Kallhammer, “Imaging: The road ahead for car night-vision,” Nat. Photonics sample, 12–13 (2006).
[Crossref]

1999 (2)

Y. Chen, J. D. Müller, P. T. So, and E. Gratton, “The photon counting histogram in fluorescence fluctuation spectroscopy,” Biophys. J. 77(1), 553–567 (1999).
[Crossref]

E. D. Kolaczyk, “Bayesian multiscale models for poisson processes,” J. Am. Stat. Assoc. 94(447), 920–933 (1999).
[Crossref]

1995 (1)

T. Pittman, Y. Shih, D. Strekalov, and A. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52(5), R3429–R3432 (1995).
[Crossref]

Altmann, Y.

A. Halimi, Y. Altmann, A. McCarthy, X. Ren, R. Tobin, G. S. Buller, and S. McLaughlin, “Restoration of intensity and depth images constructed using sparse single-photon data,” in 2016 24th European Signal Processing Conference (EUSIPCO), (2016), pp. 86–90.

Aspden, R. S.

Baraniuk, R. G.

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93(12), 121105 (2008).
[Crossref]

M. F. Duarte, M. A. Davenport, D. Takbar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE signal processing magazine 25(2), 83–91 (2008).
[Crossref]

Bell, J. E.

P. A. Morris, R. S. Aspden, J. E. Bell, R. W. Boyd, and M. J. Padgett, “Imaging with a small number of photons,” Nat. Commun. 6(1), 5913 (2015).
[Crossref]

Bioucas-Dias, J. M.

J. P. Oliveira, J. M. Bioucas-Dias, and M. A. Figueiredo, “Adaptive total variation image deblurring: a majorization–minimization approach,” Signal Processing 89(9), 1683–1693 (2009).
[Crossref]

Bowman, A.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3d computational imaging with single-pixel detectors,” Science 340(6134), 844–847 (2013).
[Crossref]

Bowman, R.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3d computational imaging with single-pixel detectors,” Science 340(6134), 844–847 (2013).
[Crossref]

Boyd, R. W.

Bromberg, Y.

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95(13), 131110 (2009).
[Crossref]

Buller, G. S.

Cao, F.

Chan, W. L.

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93(12), 121105 (2008).
[Crossref]

Charan, K.

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93(12), 121105 (2008).
[Crossref]

Chen, M.

W. Gong, C. Zhao, H. Yu, M. Chen, W. Xu, and S. Han, “Three-dimensional ghost imaging lidar via sparsity constraint,” Sci. Rep. 6(1), 26133 (2016).
[Crossref]

Chen, Y.

Y. Chen, J. D. Müller, P. T. So, and E. Gratton, “The photon counting histogram in fluorescence fluctuation spectroscopy,” Biophys. J. 77(1), 553–567 (1999).
[Crossref]

Cheney, P. P.

Colaço, A.

A. Kirmani, D. Venkatraman, D. Shin, A. Colaço, F. N. Wong, J. H. Shapiro, and V. K. Goyal, “First-photon imaging,” Science 343(6166), 58–61 (2014).
[Crossref]

Collins, R. J.

Dan, W.

W. Dan, L. Quan, F. Junhong, J. Xiaowei, G. Rui, and L. Meiqi, “Change characteristic of low visibility along highways in hebei province during 2016-2017# br,” J. Arid Meteorol. 37, 639–647 (2019).

Davenport, M. A.

M. F. Duarte, M. A. Davenport, D. Takbar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE signal processing magazine 25(2), 83–91 (2008).
[Crossref]

Dorenbos, S. N.

Duarte, M. F.

M. F. Duarte, M. A. Davenport, D. Takbar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE signal processing magazine 25(2), 83–91 (2008).
[Crossref]

Edgar, M. P.

M.-J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7(1), 12010 (2016).
[Crossref]

M.-J. Sun, M. P. Edgar, D. B. Phillips, G. M. Gibson, and M. J. Padgett, “Improving the signal-to-noise ratio of single-pixel imaging using digital microscanning,” Opt. Express 24(10), 10476–10485 (2016).
[Crossref]

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3d computational imaging with single-pixel detectors,” Science 340(6134), 844–847 (2013).
[Crossref]

Fernández, V.

Figueiredo, M. A.

J. P. Oliveira, J. M. Bioucas-Dias, and M. A. Figueiredo, “Adaptive total variation image deblurring: a majorization–minimization approach,” Signal Processing 89(9), 1683–1693 (2009).
[Crossref]

Gemmell, N. R.

Gibson, G. M.

M.-J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7(1), 12010 (2016).
[Crossref]

M.-J. Sun, M. P. Edgar, D. B. Phillips, G. M. Gibson, and M. J. Padgett, “Improving the signal-to-noise ratio of single-pixel imaging using digital microscanning,” Opt. Express 24(10), 10476–10485 (2016).
[Crossref]

Gong, W.

W. Gong, C. Zhao, H. Yu, M. Chen, W. Xu, and S. Han, “Three-dimensional ghost imaging lidar via sparsity constraint,” Sci. Rep. 6(1), 26133 (2016).
[Crossref]

Goyal, V. K.

D. Shin, F. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K. Goyal, F. N. Wong, and J. H. Shapiro, “Photon-efficient imaging with a single-photon camera,” Nat. Commun. 7(1), 12046 (2016).
[Crossref]

A. Kirmani, D. Venkatraman, D. Shin, A. Colaço, F. N. Wong, J. H. Shapiro, and V. K. Goyal, “First-photon imaging,” Science 343(6166), 58–61 (2014).
[Crossref]

Gratton, E.

Y. Chen, J. D. Müller, P. T. So, and E. Gratton, “The photon counting histogram in fluorescence fluctuation spectroscopy,” Biophys. J. 77(1), 553–567 (1999).
[Crossref]

Hadfield, R. H.

Halimi, A.

A. M. Pawlikowska, A. Halimi, R. A. Lamb, and G. S. Buller, “Single-photon three-dimensional imaging at up to 10 kilometers range,” Opt. Express 25(10), 11919–11931 (2017).
[Crossref]

A. Halimi, Y. Altmann, A. McCarthy, X. Ren, R. Tobin, G. S. Buller, and S. McLaughlin, “Restoration of intensity and depth images constructed using sparse single-photon data,” in 2016 24th European Signal Processing Conference (EUSIPCO), (2016), pp. 86–90.

Han, S.

W. Gong, C. Zhao, H. Yu, M. Chen, W. Xu, and S. Han, “Three-dimensional ghost imaging lidar via sparsity constraint,” Sci. Rep. 6(1), 26133 (2016).
[Crossref]

Harmany, Z. T.

Z. T. Harmany, R. F. Marcia, and R. M. Willett, “This is spiral-tap: Sparse poisson intensity reconstruction algorithms–theory and practice,” IEEE Trans. on Image Process. 21(3), 1084–1096 (2012).
[Crossref]

Hwang, J. C.

Junhong, F.

W. Dan, L. Quan, F. Junhong, J. Xiaowei, G. Rui, and L. Meiqi, “Change characteristic of low visibility along highways in hebei province during 2016-2017# br,” J. Arid Meteorol. 37, 639–647 (2019).

Kallhammer, J.-E.

J.-E. Kallhammer, “Imaging: The road ahead for car night-vision,” Nat. Photonics sample, 12–13 (2006).
[Crossref]

Kanick, S. C.

Katz, O.

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95(13), 131110 (2009).
[Crossref]

Ke, J.

Kelly, K. F.

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93(12), 121105 (2008).
[Crossref]

M. F. Duarte, M. A. Davenport, D. Takbar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE signal processing magazine 25(2), 83–91 (2008).
[Crossref]

Kirkwood, R. A.

Kirmani, A.

A. Kirmani, D. Venkatraman, D. Shin, A. Colaço, F. N. Wong, J. H. Shapiro, and V. K. Goyal, “First-photon imaging,” Science 343(6166), 58–61 (2014).
[Crossref]

Kolaczyk, E. D.

E. D. Kolaczyk, “Bayesian multiscale models for poisson processes,” J. Am. Stat. Assoc. 94(447), 920–933 (1999).
[Crossref]

Krichel, N. J.

Lam, E. Y.

Lamb, R.

M.-J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7(1), 12010 (2016).
[Crossref]

Lamb, R. A.

Laska, J. N.

M. F. Duarte, M. A. Davenport, D. Takbar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE signal processing magazine 25(2), 83–91 (2008).
[Crossref]

Liu, X.

X. Liu, J. Shi, X. Wu, and G. Zeng, “Fast first-photon ghost imaging,” Sci. Rep. 8(1), 5012 (2018).
[Crossref]

Lussana, R.

D. Shin, F. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K. Goyal, F. N. Wong, and J. H. Shapiro, “Photon-efficient imaging with a single-photon camera,” Nat. Commun. 7(1), 12046 (2016).
[Crossref]

Marcia, R. F.

Z. T. Harmany, R. F. Marcia, and R. M. Willett, “This is spiral-tap: Sparse poisson intensity reconstruction algorithms–theory and practice,” IEEE Trans. on Image Process. 21(3), 1084–1096 (2012).
[Crossref]

McCarthy, A.

McClatchy, D. M.

McLaughlin, S.

A. Halimi, Y. Altmann, A. McCarthy, X. Ren, R. Tobin, G. S. Buller, and S. McLaughlin, “Restoration of intensity and depth images constructed using sparse single-photon data,” in 2016 24th European Signal Processing Conference (EUSIPCO), (2016), pp. 86–90.

Meiqi, L.

W. Dan, L. Quan, F. Junhong, J. Xiaowei, G. Rui, and L. Meiqi, “Change characteristic of low visibility along highways in hebei province during 2016-2017# br,” J. Arid Meteorol. 37, 639–647 (2019).

Mertens, L.

Mittleman, D. M.

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93(12), 121105 (2008).
[Crossref]

Morris, P. A.

Müller, J. D.

Y. Chen, J. D. Müller, P. T. So, and E. Gratton, “The photon counting histogram in fluorescence fluctuation spectroscopy,” Biophys. J. 77(1), 553–567 (1999).
[Crossref]

Oliveira, J. P.

J. P. Oliveira, J. M. Bioucas-Dias, and M. A. Figueiredo, “Adaptive total variation image deblurring: a majorization–minimization approach,” Signal Processing 89(9), 1683–1693 (2009).
[Crossref]

Padgett, M. J.

M.-J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7(1), 12010 (2016).
[Crossref]

M.-J. Sun, M. P. Edgar, D. B. Phillips, G. M. Gibson, and M. J. Padgett, “Improving the signal-to-noise ratio of single-pixel imaging using digital microscanning,” Opt. Express 24(10), 10476–10485 (2016).
[Crossref]

P. A. Morris, R. S. Aspden, J. E. Bell, R. W. Boyd, and M. J. Padgett, “Imaging with a small number of photons,” Nat. Commun. 6(1), 5913 (2015).
[Crossref]

R. S. Aspden, N. R. Gemmell, P. A. Morris, D. S. Tasca, L. Mertens, M. G. Tanner, R. A. Kirkwood, A. Ruggeri, A. Tosi, R. W. Boyd, G. S. Buller, R. H. Hadfield, and M. J. Padgett, “Photon-sparse microscopy: visible light imaging using infrared illumination,” Optica 2(12), 1049–1052 (2015).
[Crossref]

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3d computational imaging with single-pixel detectors,” Science 340(6134), 844–847 (2013).
[Crossref]

Paulsen, K. D.

Pawlikowska, A. M.

Peng, J.

Phillips, D. B.

Pittman, T.

T. Pittman, Y. Shih, D. Strekalov, and A. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52(5), R3429–R3432 (1995).
[Crossref]

Pogue, B. W.

Qu, S.

Quan, L.

W. Dan, L. Quan, F. Junhong, J. Xiaowei, G. Rui, and L. Meiqi, “Change characteristic of low visibility along highways in hebei province during 2016-2017# br,” J. Arid Meteorol. 37, 639–647 (2019).

Radwell, N.

M.-J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7(1), 12010 (2016).
[Crossref]

Ren, X.

A. McCarthy, N. J. Krichel, N. R. Gemmell, X. Ren, M. G. Tanner, S. N. Dorenbos, V. Zwiller, R. H. Hadfield, and G. S. Buller, “Kilometer-range, high resolution depth imaging via 1560 nm wavelength single-photon detection,” Opt. Express 21(7), 8904–8915 (2013).
[Crossref]

A. Halimi, Y. Altmann, A. McCarthy, X. Ren, R. Tobin, G. S. Buller, and S. McLaughlin, “Restoration of intensity and depth images constructed using sparse single-photon data,” in 2016 24th European Signal Processing Conference (EUSIPCO), (2016), pp. 86–90.

Rizzo, E. J.

Ruggeri, A.

Rui, G.

W. Dan, L. Quan, F. Junhong, J. Xiaowei, G. Rui, and L. Meiqi, “Change characteristic of low visibility along highways in hebei province during 2016-2017# br,” J. Arid Meteorol. 37, 639–647 (2019).

Ruyten, W. M.

W. M. Ruyten, “Ccd arrays, cameras, and displays, by gerald c. holst,” Optics & Photonics News 8 (1997).

Sergienko, A.

T. Pittman, Y. Shih, D. Strekalov, and A. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52(5), R3429–R3432 (1995).
[Crossref]

Shapiro, J. H.

D. Shin, F. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K. Goyal, F. N. Wong, and J. H. Shapiro, “Photon-efficient imaging with a single-photon camera,” Nat. Commun. 7(1), 12046 (2016).
[Crossref]

A. Kirmani, D. Venkatraman, D. Shin, A. Colaço, F. N. Wong, J. H. Shapiro, and V. K. Goyal, “First-photon imaging,” Science 343(6166), 58–61 (2014).
[Crossref]

J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78(6), 061802 (2008).
[Crossref]

Shi, J.

Shih, Y.

T. Pittman, Y. Shih, D. Strekalov, and A. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52(5), R3429–R3432 (1995).
[Crossref]

Shin, D.

D. Shin, F. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K. Goyal, F. N. Wong, and J. H. Shapiro, “Photon-efficient imaging with a single-photon camera,” Nat. Commun. 7(1), 12046 (2016).
[Crossref]

A. Kirmani, D. Venkatraman, D. Shin, A. Colaço, F. N. Wong, J. H. Shapiro, and V. K. Goyal, “First-photon imaging,” Science 343(6166), 58–61 (2014).
[Crossref]

Silberberg, Y.

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95(13), 131110 (2009).
[Crossref]

So, P. T.

Y. Chen, J. D. Müller, P. T. So, and E. Gratton, “The photon counting histogram in fluorescence fluctuation spectroscopy,” Biophys. J. 77(1), 553–567 (1999).
[Crossref]

Strekalov, D.

T. Pittman, Y. Shih, D. Strekalov, and A. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52(5), R3429–R3432 (1995).
[Crossref]

Sun, B.

M.-J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7(1), 12010 (2016).
[Crossref]

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3d computational imaging with single-pixel detectors,” Science 340(6134), 844–847 (2013).
[Crossref]

Sun, M.-J.

M.-J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7(1), 12010 (2016).
[Crossref]

M.-J. Sun, M. P. Edgar, D. B. Phillips, G. M. Gibson, and M. J. Padgett, “Improving the signal-to-noise ratio of single-pixel imaging using digital microscanning,” Opt. Express 24(10), 10476–10485 (2016).
[Crossref]

Sun, T.

M. F. Duarte, M. A. Davenport, D. Takbar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE signal processing magazine 25(2), 83–91 (2008).
[Crossref]

Sun, Y.

Takbar, D.

M. F. Duarte, M. A. Davenport, D. Takbar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE signal processing magazine 25(2), 83–91 (2008).
[Crossref]

Takhar, D.

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93(12), 121105 (2008).
[Crossref]

Tanner, M. G.

Tasca, D. S.

Tobin, R.

A. Halimi, Y. Altmann, A. McCarthy, X. Ren, R. Tobin, G. S. Buller, and S. McLaughlin, “Restoration of intensity and depth images constructed using sparse single-photon data,” in 2016 24th European Signal Processing Conference (EUSIPCO), (2016), pp. 86–90.

Tosi, A.

Venkatraman, D.

D. Shin, F. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K. Goyal, F. N. Wong, and J. H. Shapiro, “Photon-efficient imaging with a single-photon camera,” Nat. Commun. 7(1), 12046 (2016).
[Crossref]

A. Kirmani, D. Venkatraman, D. Shin, A. Colaço, F. N. Wong, J. H. Shapiro, and V. K. Goyal, “First-photon imaging,” Science 343(6166), 58–61 (2014).
[Crossref]

Villa, F.

D. Shin, F. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K. Goyal, F. N. Wong, and J. H. Shapiro, “Photon-efficient imaging with a single-photon camera,” Nat. Commun. 7(1), 12046 (2016).
[Crossref]

Vittert, L. E.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3d computational imaging with single-pixel detectors,” Science 340(6134), 844–847 (2013).
[Crossref]

Wallace, A. M.

Wells, W. A.

Welsh, S.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3d computational imaging with single-pixel detectors,” Science 340(6134), 844–847 (2013).
[Crossref]

Willett, R. M.

Z. T. Harmany, R. F. Marcia, and R. M. Willett, “This is spiral-tap: Sparse poisson intensity reconstruction algorithms–theory and practice,” IEEE Trans. on Image Process. 21(3), 1084–1096 (2012).
[Crossref]

Wong, F. N.

D. Shin, F. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K. Goyal, F. N. Wong, and J. H. Shapiro, “Photon-efficient imaging with a single-photon camera,” Nat. Commun. 7(1), 12046 (2016).
[Crossref]

A. Kirmani, D. Venkatraman, D. Shin, A. Colaço, F. N. Wong, J. H. Shapiro, and V. K. Goyal, “First-photon imaging,” Science 343(6166), 58–61 (2014).
[Crossref]

Wu, L.-A.

Wu, X.

X. Liu, J. Shi, X. Wu, and G. Zeng, “Fast first-photon ghost imaging,” Sci. Rep. 8(1), 5012 (2018).
[Crossref]

Xiaowei, J.

W. Dan, L. Quan, F. Junhong, J. Xiaowei, G. Rui, and L. Meiqi, “Change characteristic of low visibility along highways in hebei province during 2016-2017# br,” J. Arid Meteorol. 37, 639–647 (2019).

Xu, F.

D. Shin, F. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K. Goyal, F. N. Wong, and J. H. Shapiro, “Photon-efficient imaging with a single-photon camera,” Nat. Commun. 7(1), 12046 (2016).
[Crossref]

Xu, W.

W. Gong, C. Zhao, H. Yu, M. Chen, W. Xu, and S. Han, “Three-dimensional ghost imaging lidar via sparsity constraint,” Sci. Rep. 6(1), 26133 (2016).
[Crossref]

Yan, R.

Yang, Y.

Yang, Z.

Yu, H.

W. Gong, C. Zhao, H. Yu, M. Chen, W. Xu, and S. Han, “Three-dimensional ghost imaging lidar via sparsity constraint,” Sci. Rep. 6(1), 26133 (2016).
[Crossref]

Yu, Y.

Zappa, F.

D. Shin, F. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K. Goyal, F. N. Wong, and J. H. Shapiro, “Photon-efficient imaging with a single-photon camera,” Nat. Commun. 7(1), 12046 (2016).
[Crossref]

Zeng, G.

Zhang, A.-X.

Zhao, C.

W. Gong, C. Zhao, H. Yu, M. Chen, W. Xu, and S. Han, “Three-dimensional ghost imaging lidar via sparsity constraint,” Sci. Rep. 6(1), 26133 (2016).
[Crossref]

Zwiller, V.

Appl. Opt. (3)

Appl. Phys. Lett. (2)

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93(12), 121105 (2008).
[Crossref]

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95(13), 131110 (2009).
[Crossref]

Biophys. J. (1)

Y. Chen, J. D. Müller, P. T. So, and E. Gratton, “The photon counting histogram in fluorescence fluctuation spectroscopy,” Biophys. J. 77(1), 553–567 (1999).
[Crossref]

IEEE signal processing magazine (1)

M. F. Duarte, M. A. Davenport, D. Takbar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE signal processing magazine 25(2), 83–91 (2008).
[Crossref]

IEEE Trans. on Image Process. (1)

Z. T. Harmany, R. F. Marcia, and R. M. Willett, “This is spiral-tap: Sparse poisson intensity reconstruction algorithms–theory and practice,” IEEE Trans. on Image Process. 21(3), 1084–1096 (2012).
[Crossref]

J. Am. Stat. Assoc. (1)

E. D. Kolaczyk, “Bayesian multiscale models for poisson processes,” J. Am. Stat. Assoc. 94(447), 920–933 (1999).
[Crossref]

J. Arid Meteorol. (1)

W. Dan, L. Quan, F. Junhong, J. Xiaowei, G. Rui, and L. Meiqi, “Change characteristic of low visibility along highways in hebei province during 2016-2017# br,” J. Arid Meteorol. 37, 639–647 (2019).

Nat. Commun. (3)

P. A. Morris, R. S. Aspden, J. E. Bell, R. W. Boyd, and M. J. Padgett, “Imaging with a small number of photons,” Nat. Commun. 6(1), 5913 (2015).
[Crossref]

M.-J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7(1), 12010 (2016).
[Crossref]

D. Shin, F. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K. Goyal, F. N. Wong, and J. H. Shapiro, “Photon-efficient imaging with a single-photon camera,” Nat. Commun. 7(1), 12046 (2016).
[Crossref]

Nat. Photonics (1)

J.-E. Kallhammer, “Imaging: The road ahead for car night-vision,” Nat. Photonics sample, 12–13 (2006).
[Crossref]

Opt. Express (4)

Optica (2)

Phys. Rev. A (2)

T. Pittman, Y. Shih, D. Strekalov, and A. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52(5), R3429–R3432 (1995).
[Crossref]

J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78(6), 061802 (2008).
[Crossref]

Sci. Rep. (2)

W. Gong, C. Zhao, H. Yu, M. Chen, W. Xu, and S. Han, “Three-dimensional ghost imaging lidar via sparsity constraint,” Sci. Rep. 6(1), 26133 (2016).
[Crossref]

X. Liu, J. Shi, X. Wu, and G. Zeng, “Fast first-photon ghost imaging,” Sci. Rep. 8(1), 5012 (2018).
[Crossref]

Science (2)

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3d computational imaging with single-pixel detectors,” Science 340(6134), 844–847 (2013).
[Crossref]

A. Kirmani, D. Venkatraman, D. Shin, A. Colaço, F. N. Wong, J. H. Shapiro, and V. K. Goyal, “First-photon imaging,” Science 343(6166), 58–61 (2014).
[Crossref]

Signal Processing (1)

J. P. Oliveira, J. M. Bioucas-Dias, and M. A. Figueiredo, “Adaptive total variation image deblurring: a majorization–minimization approach,” Signal Processing 89(9), 1683–1693 (2009).
[Crossref]

Other (2)

A. Halimi, Y. Altmann, A. McCarthy, X. Ren, R. Tobin, G. S. Buller, and S. McLaughlin, “Restoration of intensity and depth images constructed using sparse single-photon data,” in 2016 24th European Signal Processing Conference (EUSIPCO), (2016), pp. 86–90.

W. M. Ruyten, “Ccd arrays, cameras, and displays, by gerald c. holst,” Optics & Photonics News 8 (1997).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. The schematic diagram of our imaging system based on the SP $^3$ I technique. DMD: digital micromirror device, SPAD: single-photon avalanche diode, TCSPC: time-correlated single-photon-counting module.
Fig. 2.
Fig. 2. Comparison of the probability distributions $P_r(m)$ and $P_h(m)$ .
Fig. 3.
Fig. 3. Impacts of different variables on CNR. (a) CNR vs. sparsity of target and measurement patterns $M_1/M$ and $M_2/M$ ; (b) CNR vs. sparsity of measurement patterns $M_2/M$ and the photon counting rate $N_r$ ; (c)CNR vs. the total number of measurements $K$ and the sparsity of measurement patterns $M_2/M$ ; (d) CNR vs. $K$ and photon counting rate $N_r$ . The default values of $K$ , $N_r$ , $M_1$ , $M_2$ and $M$ are $2\times 10^4$ , $0.1$ , $200$ , $200$ and $20736$ respectively.
Fig. 4.
Fig. 4. Comparison of FPI and SP $^3$ I from different number of measurements. FPI is performed by scanning each pixel in turn from top to bottom, from left to right. The gray areas are waiting to be scanned. The number of scanning measurements is equal to the number of pixels recovered.
Fig. 5.
Fig. 5. Reconstructed images under different simulation conditions. (a-f) Results with the photon-counting rate from $0.01$ to $0.3$ ; (g-l) results under different numbers of measurements from $2$ k to $30$ k; (m-r) results with the number of measurements and photon-counting rate changing simultaneously at a photon-efficiency of $0.48$ ; (s-x) results of targets modulated by patterns of different sparsity.
Fig. 6.
Fig. 6. Simulaiton results for targets from different longitudinal distance. (a) The original target image; (b) Result by time slice at $CNR=8.64$ dB; (c) Intensity map; (d) Longitudinal distance map.
Fig. 7.
Fig. 7. 100Km field experiment. (a) Geographic map of the Qinghai Lake. (b) the transceiver devices a pulsed laser (Onefive GmbH Katana-10 XP, 532nm); a DMD (ViALUX V4395 DLP) with mirror pitch 10.8 $\mu m$ ; a telescope (Celestron EdgeHD 1100 279mm (11") Optical Tube Assembly (OTA)); a single-photon single-pixel detector with 64 optical fiber probes(SIMINICS MSPD64: Multichannel SPD System); a TCSPC module (SIMINICS MT6420). (c) One of ten reflector arrays, each composed of nine corner cubes.
Fig. 8.
Fig. 8. Experimental results for $100$ km targets including $5$ different longitudinal distances. (a) 2D reconstruction of $192\times 108$ pixels image with $11$ dB CNR by $0.1$ photons detection per pixel. (b) 3D Slice map. The distances are $99.993$ , $100.005$ , $100.017$ , $100.029$ , $100.041$ km, respectively, as calculated by the flight time of reflected photons. (c) Intensity map. (d) Longitudinal Distance map.
Fig. 9.
Fig. 9. Experimental results for the practical $3$ km target including two different longitudinal distances with a difference of $9$ cm. (a) Original target in field secene; (b) 2D reconstruction of $192\times 108$ pixels image with $10.4$ dB CNR by $0.1$ photons detection per pixel; (c) Intensity map; (d) Longitudinal distance map. The longitudinal distances are $3013.05$ , $3013.14$ meters as calculated by the two peaks of flight time of reflected photons at $2087000$ ps and $2087600$ ps.
Fig. 10.
Fig. 10. Comparison of CNR values of experimental results (scattered points) and theoretical CNR curves plotted by Eq.9.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

N i = N 0 R i ( x , y ) O ( x , y ) d x d y ,
N i ( m ) = N 0 j = 1 m α j = N 0 m α ¯ ,
P h ( m ) = C M 1 m C M M 1 M 2 m C M M 2 ,
P 0 = e η N i = e m N r / m ¯
P r ( m ) = P h ( 1 P 0 ) P ~ 1 .
O ( x , y ) = 1 K e j = 1 K e ( R j ( x , y ) R j ( x , y ) ¯ ) ,
I s ( m ) = m N r / M 1
I b ( m ) = N r ( M 2 m ) / ( M M 1 ) .
C N R = 20 log 10 μ s μ b ( σ s 2 + σ b 2 ) / 2 K ,
η p = N t M s . t . C N R ,

Metrics