Abstract

Lensless fiber microendoscopes enable optical diagnostics and therapy with minimal invasiveness. Because of their small diameters, multimode fibers are ideal candidates, but mode scrambling hinders the transmission of structured light fields. We present the generation of a localized fringe system at variable distances from the distal fiber end by exploiting digital optical phase conjugation. The replayed fringe system was used for quantitative metrology. Velocity measurements of a microchannel flow in the immediate proximity of the fiber end without the use of any imaging lenses are shown. Lensless multimode fiber systems are of interest especially for biomedical imaging and stimulation as well as technical inspection and flow measurements.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Structured light beams created through a multimode fiber via virtual Fourier filtering based on digital optical phase conjugation

Chaojie Ma, Jianglei Di, Jiazhen Dou, Peng Li, Fajun Xiao, Kaihui Liu, Xuedong Bai, and Jianlin Zhao
Appl. Opt. 59(3) 701-705 (2020)

Focusing and scanning light through a multimode optical fiber using digital phase conjugation

Ioannis N. Papadopoulos, Salma Farahi, Christophe Moser, and Demetri Psaltis
Opt. Express 20(10) 10583-10590 (2012)

Transmission of independent signals through a multimode fiber using digital optical phase conjugation

Jürgen W. Czarske, Daniel Haufe, Nektarios Koukourakis, and Lars Büttner
Opt. Express 24(13) 15128-15136 (2016)

References

  • View by:
  • |
  • |
  • |

  1. P. Vennemann, R. Lindken, and J. Westerweel, “In vivo whole-field blood velocity measurement techniques,” Exp. Fluids 42(4), 495–511 (2007).
    [Crossref]
  2. M. Chen, D. Wen, S. Huang, S. Gui, Z. Zhang, J. Lu, and P. Li, “Laser speckle contrast imaging of blood flow in the deep brain using microendoscopy,” Opt. Lett. 43(22), 5627–5630 (2018).
    [Crossref]
  3. M. Villiger, D. Lorenser, R. A. McLaughlin, B. C. Quirk, R. W. Kirk, B. E. Bouma, and D. D. Sampson, “Deep tissue volume imaging of birefringence through fibre-optic needle probes for the delineation of breast tumour,” Sci. Rep. 6(1), 28771 (2016).
    [Crossref]
  4. T. H. Kong, S. Yu, B. Jung, J. S. Choi, and Y. J. Seo, “Monitoring blood-flow in the mouse cochlea using an endoscopic laser speckle contrast imaging system,” PLoS One 13(2), e0191978 (2018).
    [Crossref]
  5. H. Albrecht, M. Borys, N. Damaschke, and C. Tropea, Laser-Doppler and phase-Doppler measurement techniques (Springer, 2002).
  6. L. Büttner, J. Czarske, and H. Knuppertz, “Laser-Doppler velocity profile sensor with submicrometer spatial resolution that employs fiber optics and a diffractive lens,” Appl. Opt. 44(12), 2274–2280 (2005).
    [Crossref]
  7. L. Büttner, C. Leithold, and J. Czarske, “Interferometric velocity measurements through a fluctuating gas-liquid interface employing adaptive optics,” Opt. Express 21(25), 30653–30663 (2013).
    [Crossref]
  8. A. A. Naqwi and S. Petrik, “Fiber-optic dual-cylindrical wave sensor for measurement of wall velocity gradient in a fluid flow,” Appl. Opt. 32(30), 6128–6131 (1993).
    [Crossref]
  9. R. Heintzmann and T. Huser, “Super-Resolution Structured Illumination Microscopy,” Chem. Rev. 117(23), 13890–13908 (2017).
    [Crossref]
  10. C. W. Ballmann, Z. Meng, A. J. Traverso, M. O. Scully, and V. V. Yakovlev, “Impulsive Brillouin microscopy,” Optica 4(1), 124–128 (2017).
    [Crossref]
  11. B. Krug, N. Koukourakis, and J. W. Czarske, “Impulsive stimulated Brillouin microscopy for non-contact, fast mechanical investigations of hydrogels,” Opt. Express 27(19), 26910–26923 (2019).
    [Crossref]
  12. S. A. Vasquez-Lopez, R. Turcotte, V. Koren, M. Plöschner, Z. Padamsey, M. J. Booth, T. Čižmár, and N. J. Emptage, “Subcellular spatial resolution achieved for deep-brain imaging in vivo using a minimally invasive multimode fiber,” Light: Sci. Appl. 7(1), 110 (2018).
    [Crossref]
  13. D. Loterie, S. Farahi, I. Papadopoulos, A. Goy, D. Psaltis, and C. Moser, “Digital confocal microscopy through a multimode fiber,” Opt. Express 23(18), 23845–23858 (2015).
    [Crossref]
  14. M. Plöschner, T. Tyc, and T. Čižmár, “Seeing through chaos in multimode fibres,” Nat. Photonics 9(8), 529–535 (2015).
    [Crossref]
  15. I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4(5), 320–322 (2010).
    [Crossref]
  16. A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
    [Crossref]
  17. C. Stockbridge, Y. Lu, J. Moore, S. Hoffman, R. Paxman, K. Toussaint, and T. Bifano, “Focusing through dynamic scattering media,” Opt. Express 20(14), 15086–15092 (2012).
    [Crossref]
  18. X. Tao, O. Azucena, M. Fu, Y. Zuo, D. C. Chen, and J. Kubby, “Adaptive optics microscopy with direct wavefront sensing using fluorescent protein guide stars,” Opt. Lett. 36(17), 3389–3391 (2011).
    [Crossref]
  19. Y. M. Wang, B. Judkewitz, C. A. Dimarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Commun. 3(1), 928 (2012).
    [Crossref]
  20. H. Radner, L. Büttner, and J. Czarske, “Interferometric velocity measurements through a fluctuating phase boundary using two Fresnel guide stars,” Opt. Lett. 40(16), 3766–3769 (2015).
    [Crossref]
  21. I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “Focusing and scanning light through a multimode optical fiber using digital phase conjugation,” Opt. Express 20(10), 10583–10590 (2012).
    [Crossref]
  22. I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “High-resolution, lensless endoscope based on digital scanning through a multimode optical fiber,” Biomed. Opt. Express 4(2), 260–270 (2013).
    [Crossref]
  23. A. M. Caravaca-Aguirre and R. Piestun, “Single multimode fiber endoscope,” Opt. Express 25(3), 1656–1665 (2017).
    [Crossref]
  24. S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: An approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
    [Crossref]
  25. S. Turtaev, I. T. Leite, T. Altwegg-Boussac, J. M. P. Pakan, N. L. Rochefort, and T. Čižmár, “High-fidelity multimode fibre-based endoscopy for deep brain in vivo imaging,” Light: Sci. Appl. 7(1), 92 (2018).
    [Crossref]
  26. T. Čižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3(1), 1027 (2012).
    [Crossref]
  27. P. Yu, Q. Zhao, X. Hu, Y. Li, and L. Gong, “Tailoring arbitrary polarization states of light through scattering media,” Appl. Phys. Lett. 113(12), 121102 (2018).
    [Crossref]
  28. N. Borhani, E. Kakkava, C. Moser, and D. Psaltis, “Learning to see through multimode fibers,” Optica 5(8), 960–966 (2018).
    [Crossref]
  29. C. Ma, J. Di, Y. Zhang, P. Li, F. Xiao, K. Liu, X. Bai, and J. Zhao, “Reconstruction of structured laser beams through a multimode fiber based on digital optical phase conjugation,” Opt. Lett. 43(14), 3333–3336 (2018).
    [Crossref]
  30. A. Boniface, M. Mounaix, B. Blochet, R. Piestun, and S. Gigan, “Transmission-matrix-based point-spread-function engineering through a complex medium,” Optica 4(1), 54–59 (2017).
    [Crossref]
  31. J. W. Czarske, D. Haufe, N. Koukourakis, and L. Büttner, “Transmission of independent signals through a multimode fiber using digital optical phase conjugation,” Opt. Express 24(13), 15128–15136 (2016).
    [Crossref]
  32. I. M. Vellekoop and A. P. Mosk, “Phase control algorithms for focusing light through turbid media,” Opt. Commun. 281(11), 3071–3080 (2008).
    [Crossref]
  33. S. Turtaev, I. T. Leite, K. J. Mitchell, M. J. Padgett, D. B. Phillips, and T. Čižmár, “Comparison of nematic liquid-crystal and DMD based spatial light modulation in complex photonics,” Opt. Express 25(24), 29874–29884 (2017).
    [Crossref]
  34. J. Li, E. Schartner, S. Musolino, B. C. Quirk, R. W. Kirk, H. Ebendorff-Heidepriem, and R. A. McLaughlin, “Miniaturized single-fiber-based needle probe for combined imaging and sensing in deep tissue,” Opt. Lett. 43(8), 1682–1685 (2018).
    [Crossref]
  35. D. E. Boonzajer Flaes, J. Stopka, S. Turtaev, J. F. de Boer, T. Tyc, and T. Čižmár, “Robustness of Light-Transport Processes to Bending Deformations in Graded-Index Multimode Waveguides,” Phys. Rev. Lett. 120(23), 233901 (2018).
    [Crossref]

2019 (1)

2018 (9)

S. A. Vasquez-Lopez, R. Turcotte, V. Koren, M. Plöschner, Z. Padamsey, M. J. Booth, T. Čižmár, and N. J. Emptage, “Subcellular spatial resolution achieved for deep-brain imaging in vivo using a minimally invasive multimode fiber,” Light: Sci. Appl. 7(1), 110 (2018).
[Crossref]

M. Chen, D. Wen, S. Huang, S. Gui, Z. Zhang, J. Lu, and P. Li, “Laser speckle contrast imaging of blood flow in the deep brain using microendoscopy,” Opt. Lett. 43(22), 5627–5630 (2018).
[Crossref]

T. H. Kong, S. Yu, B. Jung, J. S. Choi, and Y. J. Seo, “Monitoring blood-flow in the mouse cochlea using an endoscopic laser speckle contrast imaging system,” PLoS One 13(2), e0191978 (2018).
[Crossref]

P. Yu, Q. Zhao, X. Hu, Y. Li, and L. Gong, “Tailoring arbitrary polarization states of light through scattering media,” Appl. Phys. Lett. 113(12), 121102 (2018).
[Crossref]

N. Borhani, E. Kakkava, C. Moser, and D. Psaltis, “Learning to see through multimode fibers,” Optica 5(8), 960–966 (2018).
[Crossref]

C. Ma, J. Di, Y. Zhang, P. Li, F. Xiao, K. Liu, X. Bai, and J. Zhao, “Reconstruction of structured laser beams through a multimode fiber based on digital optical phase conjugation,” Opt. Lett. 43(14), 3333–3336 (2018).
[Crossref]

S. Turtaev, I. T. Leite, T. Altwegg-Boussac, J. M. P. Pakan, N. L. Rochefort, and T. Čižmár, “High-fidelity multimode fibre-based endoscopy for deep brain in vivo imaging,” Light: Sci. Appl. 7(1), 92 (2018).
[Crossref]

J. Li, E. Schartner, S. Musolino, B. C. Quirk, R. W. Kirk, H. Ebendorff-Heidepriem, and R. A. McLaughlin, “Miniaturized single-fiber-based needle probe for combined imaging and sensing in deep tissue,” Opt. Lett. 43(8), 1682–1685 (2018).
[Crossref]

D. E. Boonzajer Flaes, J. Stopka, S. Turtaev, J. F. de Boer, T. Tyc, and T. Čižmár, “Robustness of Light-Transport Processes to Bending Deformations in Graded-Index Multimode Waveguides,” Phys. Rev. Lett. 120(23), 233901 (2018).
[Crossref]

2017 (5)

2016 (2)

M. Villiger, D. Lorenser, R. A. McLaughlin, B. C. Quirk, R. W. Kirk, B. E. Bouma, and D. D. Sampson, “Deep tissue volume imaging of birefringence through fibre-optic needle probes for the delineation of breast tumour,” Sci. Rep. 6(1), 28771 (2016).
[Crossref]

J. W. Czarske, D. Haufe, N. Koukourakis, and L. Büttner, “Transmission of independent signals through a multimode fiber using digital optical phase conjugation,” Opt. Express 24(13), 15128–15136 (2016).
[Crossref]

2015 (3)

2013 (2)

2012 (5)

T. Čižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3(1), 1027 (2012).
[Crossref]

I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “Focusing and scanning light through a multimode optical fiber using digital phase conjugation,” Opt. Express 20(10), 10583–10590 (2012).
[Crossref]

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
[Crossref]

C. Stockbridge, Y. Lu, J. Moore, S. Hoffman, R. Paxman, K. Toussaint, and T. Bifano, “Focusing through dynamic scattering media,” Opt. Express 20(14), 15086–15092 (2012).
[Crossref]

Y. M. Wang, B. Judkewitz, C. A. Dimarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Commun. 3(1), 928 (2012).
[Crossref]

2011 (1)

2010 (2)

I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4(5), 320–322 (2010).
[Crossref]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: An approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref]

2008 (1)

I. M. Vellekoop and A. P. Mosk, “Phase control algorithms for focusing light through turbid media,” Opt. Commun. 281(11), 3071–3080 (2008).
[Crossref]

2007 (1)

P. Vennemann, R. Lindken, and J. Westerweel, “In vivo whole-field blood velocity measurement techniques,” Exp. Fluids 42(4), 495–511 (2007).
[Crossref]

2005 (1)

1993 (1)

Albrecht, H.

H. Albrecht, M. Borys, N. Damaschke, and C. Tropea, Laser-Doppler and phase-Doppler measurement techniques (Springer, 2002).

Altwegg-Boussac, T.

S. Turtaev, I. T. Leite, T. Altwegg-Boussac, J. M. P. Pakan, N. L. Rochefort, and T. Čižmár, “High-fidelity multimode fibre-based endoscopy for deep brain in vivo imaging,” Light: Sci. Appl. 7(1), 92 (2018).
[Crossref]

Azucena, O.

Bai, X.

Ballmann, C. W.

Bifano, T.

Blochet, B.

Boccara, A. C.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: An approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref]

Boniface, A.

Boonzajer Flaes, D. E.

D. E. Boonzajer Flaes, J. Stopka, S. Turtaev, J. F. de Boer, T. Tyc, and T. Čižmár, “Robustness of Light-Transport Processes to Bending Deformations in Graded-Index Multimode Waveguides,” Phys. Rev. Lett. 120(23), 233901 (2018).
[Crossref]

Booth, M. J.

S. A. Vasquez-Lopez, R. Turcotte, V. Koren, M. Plöschner, Z. Padamsey, M. J. Booth, T. Čižmár, and N. J. Emptage, “Subcellular spatial resolution achieved for deep-brain imaging in vivo using a minimally invasive multimode fiber,” Light: Sci. Appl. 7(1), 110 (2018).
[Crossref]

Borhani, N.

Borys, M.

H. Albrecht, M. Borys, N. Damaschke, and C. Tropea, Laser-Doppler and phase-Doppler measurement techniques (Springer, 2002).

Bouma, B. E.

M. Villiger, D. Lorenser, R. A. McLaughlin, B. C. Quirk, R. W. Kirk, B. E. Bouma, and D. D. Sampson, “Deep tissue volume imaging of birefringence through fibre-optic needle probes for the delineation of breast tumour,” Sci. Rep. 6(1), 28771 (2016).
[Crossref]

Büttner, L.

Caravaca-Aguirre, A. M.

Carminati, R.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: An approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref]

Chen, D. C.

Chen, M.

Choi, J. S.

T. H. Kong, S. Yu, B. Jung, J. S. Choi, and Y. J. Seo, “Monitoring blood-flow in the mouse cochlea using an endoscopic laser speckle contrast imaging system,” PLoS One 13(2), e0191978 (2018).
[Crossref]

Cižmár, T.

S. A. Vasquez-Lopez, R. Turcotte, V. Koren, M. Plöschner, Z. Padamsey, M. J. Booth, T. Čižmár, and N. J. Emptage, “Subcellular spatial resolution achieved for deep-brain imaging in vivo using a minimally invasive multimode fiber,” Light: Sci. Appl. 7(1), 110 (2018).
[Crossref]

S. Turtaev, I. T. Leite, T. Altwegg-Boussac, J. M. P. Pakan, N. L. Rochefort, and T. Čižmár, “High-fidelity multimode fibre-based endoscopy for deep brain in vivo imaging,” Light: Sci. Appl. 7(1), 92 (2018).
[Crossref]

D. E. Boonzajer Flaes, J. Stopka, S. Turtaev, J. F. de Boer, T. Tyc, and T. Čižmár, “Robustness of Light-Transport Processes to Bending Deformations in Graded-Index Multimode Waveguides,” Phys. Rev. Lett. 120(23), 233901 (2018).
[Crossref]

S. Turtaev, I. T. Leite, K. J. Mitchell, M. J. Padgett, D. B. Phillips, and T. Čižmár, “Comparison of nematic liquid-crystal and DMD based spatial light modulation in complex photonics,” Opt. Express 25(24), 29874–29884 (2017).
[Crossref]

M. Plöschner, T. Tyc, and T. Čižmár, “Seeing through chaos in multimode fibres,” Nat. Photonics 9(8), 529–535 (2015).
[Crossref]

T. Čižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3(1), 1027 (2012).
[Crossref]

Czarske, J.

Czarske, J. W.

Damaschke, N.

H. Albrecht, M. Borys, N. Damaschke, and C. Tropea, Laser-Doppler and phase-Doppler measurement techniques (Springer, 2002).

de Boer, J. F.

D. E. Boonzajer Flaes, J. Stopka, S. Turtaev, J. F. de Boer, T. Tyc, and T. Čižmár, “Robustness of Light-Transport Processes to Bending Deformations in Graded-Index Multimode Waveguides,” Phys. Rev. Lett. 120(23), 233901 (2018).
[Crossref]

Dholakia, K.

T. Čižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3(1), 1027 (2012).
[Crossref]

Di, J.

Dimarzio, C. A.

Y. M. Wang, B. Judkewitz, C. A. Dimarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Commun. 3(1), 928 (2012).
[Crossref]

Ebendorff-Heidepriem, H.

Emptage, N. J.

S. A. Vasquez-Lopez, R. Turcotte, V. Koren, M. Plöschner, Z. Padamsey, M. J. Booth, T. Čižmár, and N. J. Emptage, “Subcellular spatial resolution achieved for deep-brain imaging in vivo using a minimally invasive multimode fiber,” Light: Sci. Appl. 7(1), 110 (2018).
[Crossref]

Farahi, S.

Fink, M.

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
[Crossref]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: An approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref]

Fu, M.

Gigan, S.

A. Boniface, M. Mounaix, B. Blochet, R. Piestun, and S. Gigan, “Transmission-matrix-based point-spread-function engineering through a complex medium,” Optica 4(1), 54–59 (2017).
[Crossref]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: An approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref]

Gong, L.

P. Yu, Q. Zhao, X. Hu, Y. Li, and L. Gong, “Tailoring arbitrary polarization states of light through scattering media,” Appl. Phys. Lett. 113(12), 121102 (2018).
[Crossref]

Goy, A.

Gui, S.

Haufe, D.

Heintzmann, R.

R. Heintzmann and T. Huser, “Super-Resolution Structured Illumination Microscopy,” Chem. Rev. 117(23), 13890–13908 (2017).
[Crossref]

Hoffman, S.

Hu, X.

P. Yu, Q. Zhao, X. Hu, Y. Li, and L. Gong, “Tailoring arbitrary polarization states of light through scattering media,” Appl. Phys. Lett. 113(12), 121102 (2018).
[Crossref]

Huang, S.

Huser, T.

R. Heintzmann and T. Huser, “Super-Resolution Structured Illumination Microscopy,” Chem. Rev. 117(23), 13890–13908 (2017).
[Crossref]

Judkewitz, B.

Y. M. Wang, B. Judkewitz, C. A. Dimarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Commun. 3(1), 928 (2012).
[Crossref]

Jung, B.

T. H. Kong, S. Yu, B. Jung, J. S. Choi, and Y. J. Seo, “Monitoring blood-flow in the mouse cochlea using an endoscopic laser speckle contrast imaging system,” PLoS One 13(2), e0191978 (2018).
[Crossref]

Kakkava, E.

Kirk, R. W.

J. Li, E. Schartner, S. Musolino, B. C. Quirk, R. W. Kirk, H. Ebendorff-Heidepriem, and R. A. McLaughlin, “Miniaturized single-fiber-based needle probe for combined imaging and sensing in deep tissue,” Opt. Lett. 43(8), 1682–1685 (2018).
[Crossref]

M. Villiger, D. Lorenser, R. A. McLaughlin, B. C. Quirk, R. W. Kirk, B. E. Bouma, and D. D. Sampson, “Deep tissue volume imaging of birefringence through fibre-optic needle probes for the delineation of breast tumour,” Sci. Rep. 6(1), 28771 (2016).
[Crossref]

Knuppertz, H.

Kong, T. H.

T. H. Kong, S. Yu, B. Jung, J. S. Choi, and Y. J. Seo, “Monitoring blood-flow in the mouse cochlea using an endoscopic laser speckle contrast imaging system,” PLoS One 13(2), e0191978 (2018).
[Crossref]

Koren, V.

S. A. Vasquez-Lopez, R. Turcotte, V. Koren, M. Plöschner, Z. Padamsey, M. J. Booth, T. Čižmár, and N. J. Emptage, “Subcellular spatial resolution achieved for deep-brain imaging in vivo using a minimally invasive multimode fiber,” Light: Sci. Appl. 7(1), 110 (2018).
[Crossref]

Koukourakis, N.

Krug, B.

Kubby, J.

Lagendijk, A.

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
[Crossref]

I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4(5), 320–322 (2010).
[Crossref]

Leite, I. T.

S. Turtaev, I. T. Leite, T. Altwegg-Boussac, J. M. P. Pakan, N. L. Rochefort, and T. Čižmár, “High-fidelity multimode fibre-based endoscopy for deep brain in vivo imaging,” Light: Sci. Appl. 7(1), 92 (2018).
[Crossref]

S. Turtaev, I. T. Leite, K. J. Mitchell, M. J. Padgett, D. B. Phillips, and T. Čižmár, “Comparison of nematic liquid-crystal and DMD based spatial light modulation in complex photonics,” Opt. Express 25(24), 29874–29884 (2017).
[Crossref]

Leithold, C.

Lerosey, G.

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
[Crossref]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: An approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref]

Li, J.

Li, P.

Li, Y.

P. Yu, Q. Zhao, X. Hu, Y. Li, and L. Gong, “Tailoring arbitrary polarization states of light through scattering media,” Appl. Phys. Lett. 113(12), 121102 (2018).
[Crossref]

Lindken, R.

P. Vennemann, R. Lindken, and J. Westerweel, “In vivo whole-field blood velocity measurement techniques,” Exp. Fluids 42(4), 495–511 (2007).
[Crossref]

Liu, K.

Lorenser, D.

M. Villiger, D. Lorenser, R. A. McLaughlin, B. C. Quirk, R. W. Kirk, B. E. Bouma, and D. D. Sampson, “Deep tissue volume imaging of birefringence through fibre-optic needle probes for the delineation of breast tumour,” Sci. Rep. 6(1), 28771 (2016).
[Crossref]

Loterie, D.

Lu, J.

Lu, Y.

Ma, C.

McLaughlin, R. A.

J. Li, E. Schartner, S. Musolino, B. C. Quirk, R. W. Kirk, H. Ebendorff-Heidepriem, and R. A. McLaughlin, “Miniaturized single-fiber-based needle probe for combined imaging and sensing in deep tissue,” Opt. Lett. 43(8), 1682–1685 (2018).
[Crossref]

M. Villiger, D. Lorenser, R. A. McLaughlin, B. C. Quirk, R. W. Kirk, B. E. Bouma, and D. D. Sampson, “Deep tissue volume imaging of birefringence through fibre-optic needle probes for the delineation of breast tumour,” Sci. Rep. 6(1), 28771 (2016).
[Crossref]

Meng, Z.

Mitchell, K. J.

Moore, J.

Moser, C.

Mosk, A. P.

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
[Crossref]

I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4(5), 320–322 (2010).
[Crossref]

I. M. Vellekoop and A. P. Mosk, “Phase control algorithms for focusing light through turbid media,” Opt. Commun. 281(11), 3071–3080 (2008).
[Crossref]

Mounaix, M.

Musolino, S.

Naqwi, A. A.

Padamsey, Z.

S. A. Vasquez-Lopez, R. Turcotte, V. Koren, M. Plöschner, Z. Padamsey, M. J. Booth, T. Čižmár, and N. J. Emptage, “Subcellular spatial resolution achieved for deep-brain imaging in vivo using a minimally invasive multimode fiber,” Light: Sci. Appl. 7(1), 110 (2018).
[Crossref]

Padgett, M. J.

Pakan, J. M. P.

S. Turtaev, I. T. Leite, T. Altwegg-Boussac, J. M. P. Pakan, N. L. Rochefort, and T. Čižmár, “High-fidelity multimode fibre-based endoscopy for deep brain in vivo imaging,” Light: Sci. Appl. 7(1), 92 (2018).
[Crossref]

Papadopoulos, I.

Papadopoulos, I. N.

Paxman, R.

Petrik, S.

Phillips, D. B.

Piestun, R.

Plöschner, M.

S. A. Vasquez-Lopez, R. Turcotte, V. Koren, M. Plöschner, Z. Padamsey, M. J. Booth, T. Čižmár, and N. J. Emptage, “Subcellular spatial resolution achieved for deep-brain imaging in vivo using a minimally invasive multimode fiber,” Light: Sci. Appl. 7(1), 110 (2018).
[Crossref]

M. Plöschner, T. Tyc, and T. Čižmár, “Seeing through chaos in multimode fibres,” Nat. Photonics 9(8), 529–535 (2015).
[Crossref]

Popoff, S. M.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: An approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref]

Psaltis, D.

Quirk, B. C.

J. Li, E. Schartner, S. Musolino, B. C. Quirk, R. W. Kirk, H. Ebendorff-Heidepriem, and R. A. McLaughlin, “Miniaturized single-fiber-based needle probe for combined imaging and sensing in deep tissue,” Opt. Lett. 43(8), 1682–1685 (2018).
[Crossref]

M. Villiger, D. Lorenser, R. A. McLaughlin, B. C. Quirk, R. W. Kirk, B. E. Bouma, and D. D. Sampson, “Deep tissue volume imaging of birefringence through fibre-optic needle probes for the delineation of breast tumour,” Sci. Rep. 6(1), 28771 (2016).
[Crossref]

Radner, H.

Rochefort, N. L.

S. Turtaev, I. T. Leite, T. Altwegg-Boussac, J. M. P. Pakan, N. L. Rochefort, and T. Čižmár, “High-fidelity multimode fibre-based endoscopy for deep brain in vivo imaging,” Light: Sci. Appl. 7(1), 92 (2018).
[Crossref]

Sampson, D. D.

M. Villiger, D. Lorenser, R. A. McLaughlin, B. C. Quirk, R. W. Kirk, B. E. Bouma, and D. D. Sampson, “Deep tissue volume imaging of birefringence through fibre-optic needle probes for the delineation of breast tumour,” Sci. Rep. 6(1), 28771 (2016).
[Crossref]

Schartner, E.

Scully, M. O.

Seo, Y. J.

T. H. Kong, S. Yu, B. Jung, J. S. Choi, and Y. J. Seo, “Monitoring blood-flow in the mouse cochlea using an endoscopic laser speckle contrast imaging system,” PLoS One 13(2), e0191978 (2018).
[Crossref]

Stockbridge, C.

Stopka, J.

D. E. Boonzajer Flaes, J. Stopka, S. Turtaev, J. F. de Boer, T. Tyc, and T. Čižmár, “Robustness of Light-Transport Processes to Bending Deformations in Graded-Index Multimode Waveguides,” Phys. Rev. Lett. 120(23), 233901 (2018).
[Crossref]

Tao, X.

Toussaint, K.

Traverso, A. J.

Tropea, C.

H. Albrecht, M. Borys, N. Damaschke, and C. Tropea, Laser-Doppler and phase-Doppler measurement techniques (Springer, 2002).

Turcotte, R.

S. A. Vasquez-Lopez, R. Turcotte, V. Koren, M. Plöschner, Z. Padamsey, M. J. Booth, T. Čižmár, and N. J. Emptage, “Subcellular spatial resolution achieved for deep-brain imaging in vivo using a minimally invasive multimode fiber,” Light: Sci. Appl. 7(1), 110 (2018).
[Crossref]

Turtaev, S.

S. Turtaev, I. T. Leite, T. Altwegg-Boussac, J. M. P. Pakan, N. L. Rochefort, and T. Čižmár, “High-fidelity multimode fibre-based endoscopy for deep brain in vivo imaging,” Light: Sci. Appl. 7(1), 92 (2018).
[Crossref]

D. E. Boonzajer Flaes, J. Stopka, S. Turtaev, J. F. de Boer, T. Tyc, and T. Čižmár, “Robustness of Light-Transport Processes to Bending Deformations in Graded-Index Multimode Waveguides,” Phys. Rev. Lett. 120(23), 233901 (2018).
[Crossref]

S. Turtaev, I. T. Leite, K. J. Mitchell, M. J. Padgett, D. B. Phillips, and T. Čižmár, “Comparison of nematic liquid-crystal and DMD based spatial light modulation in complex photonics,” Opt. Express 25(24), 29874–29884 (2017).
[Crossref]

Tyc, T.

D. E. Boonzajer Flaes, J. Stopka, S. Turtaev, J. F. de Boer, T. Tyc, and T. Čižmár, “Robustness of Light-Transport Processes to Bending Deformations in Graded-Index Multimode Waveguides,” Phys. Rev. Lett. 120(23), 233901 (2018).
[Crossref]

M. Plöschner, T. Tyc, and T. Čižmár, “Seeing through chaos in multimode fibres,” Nat. Photonics 9(8), 529–535 (2015).
[Crossref]

Vasquez-Lopez, S. A.

S. A. Vasquez-Lopez, R. Turcotte, V. Koren, M. Plöschner, Z. Padamsey, M. J. Booth, T. Čižmár, and N. J. Emptage, “Subcellular spatial resolution achieved for deep-brain imaging in vivo using a minimally invasive multimode fiber,” Light: Sci. Appl. 7(1), 110 (2018).
[Crossref]

Vellekoop, I. M.

I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4(5), 320–322 (2010).
[Crossref]

I. M. Vellekoop and A. P. Mosk, “Phase control algorithms for focusing light through turbid media,” Opt. Commun. 281(11), 3071–3080 (2008).
[Crossref]

Vennemann, P.

P. Vennemann, R. Lindken, and J. Westerweel, “In vivo whole-field blood velocity measurement techniques,” Exp. Fluids 42(4), 495–511 (2007).
[Crossref]

Villiger, M.

M. Villiger, D. Lorenser, R. A. McLaughlin, B. C. Quirk, R. W. Kirk, B. E. Bouma, and D. D. Sampson, “Deep tissue volume imaging of birefringence through fibre-optic needle probes for the delineation of breast tumour,” Sci. Rep. 6(1), 28771 (2016).
[Crossref]

Wang, Y. M.

Y. M. Wang, B. Judkewitz, C. A. Dimarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Commun. 3(1), 928 (2012).
[Crossref]

Wen, D.

Westerweel, J.

P. Vennemann, R. Lindken, and J. Westerweel, “In vivo whole-field blood velocity measurement techniques,” Exp. Fluids 42(4), 495–511 (2007).
[Crossref]

Xiao, F.

Yakovlev, V. V.

Yang, C.

Y. M. Wang, B. Judkewitz, C. A. Dimarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Commun. 3(1), 928 (2012).
[Crossref]

Yu, P.

P. Yu, Q. Zhao, X. Hu, Y. Li, and L. Gong, “Tailoring arbitrary polarization states of light through scattering media,” Appl. Phys. Lett. 113(12), 121102 (2018).
[Crossref]

Yu, S.

T. H. Kong, S. Yu, B. Jung, J. S. Choi, and Y. J. Seo, “Monitoring blood-flow in the mouse cochlea using an endoscopic laser speckle contrast imaging system,” PLoS One 13(2), e0191978 (2018).
[Crossref]

Zhang, Y.

Zhang, Z.

Zhao, J.

Zhao, Q.

P. Yu, Q. Zhao, X. Hu, Y. Li, and L. Gong, “Tailoring arbitrary polarization states of light through scattering media,” Appl. Phys. Lett. 113(12), 121102 (2018).
[Crossref]

Zuo, Y.

Appl. Opt. (2)

Appl. Phys. Lett. (1)

P. Yu, Q. Zhao, X. Hu, Y. Li, and L. Gong, “Tailoring arbitrary polarization states of light through scattering media,” Appl. Phys. Lett. 113(12), 121102 (2018).
[Crossref]

Biomed. Opt. Express (1)

Chem. Rev. (1)

R. Heintzmann and T. Huser, “Super-Resolution Structured Illumination Microscopy,” Chem. Rev. 117(23), 13890–13908 (2017).
[Crossref]

Exp. Fluids (1)

P. Vennemann, R. Lindken, and J. Westerweel, “In vivo whole-field blood velocity measurement techniques,” Exp. Fluids 42(4), 495–511 (2007).
[Crossref]

Light: Sci. Appl. (2)

S. A. Vasquez-Lopez, R. Turcotte, V. Koren, M. Plöschner, Z. Padamsey, M. J. Booth, T. Čižmár, and N. J. Emptage, “Subcellular spatial resolution achieved for deep-brain imaging in vivo using a minimally invasive multimode fiber,” Light: Sci. Appl. 7(1), 110 (2018).
[Crossref]

S. Turtaev, I. T. Leite, T. Altwegg-Boussac, J. M. P. Pakan, N. L. Rochefort, and T. Čižmár, “High-fidelity multimode fibre-based endoscopy for deep brain in vivo imaging,” Light: Sci. Appl. 7(1), 92 (2018).
[Crossref]

Nat. Commun. (2)

T. Čižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3(1), 1027 (2012).
[Crossref]

Y. M. Wang, B. Judkewitz, C. A. Dimarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Commun. 3(1), 928 (2012).
[Crossref]

Nat. Photonics (3)

M. Plöschner, T. Tyc, and T. Čižmár, “Seeing through chaos in multimode fibres,” Nat. Photonics 9(8), 529–535 (2015).
[Crossref]

I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4(5), 320–322 (2010).
[Crossref]

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
[Crossref]

Opt. Commun. (1)

I. M. Vellekoop and A. P. Mosk, “Phase control algorithms for focusing light through turbid media,” Opt. Commun. 281(11), 3071–3080 (2008).
[Crossref]

Opt. Express (8)

I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “Focusing and scanning light through a multimode optical fiber using digital phase conjugation,” Opt. Express 20(10), 10583–10590 (2012).
[Crossref]

D. Loterie, S. Farahi, I. Papadopoulos, A. Goy, D. Psaltis, and C. Moser, “Digital confocal microscopy through a multimode fiber,” Opt. Express 23(18), 23845–23858 (2015).
[Crossref]

J. W. Czarske, D. Haufe, N. Koukourakis, and L. Büttner, “Transmission of independent signals through a multimode fiber using digital optical phase conjugation,” Opt. Express 24(13), 15128–15136 (2016).
[Crossref]

B. Krug, N. Koukourakis, and J. W. Czarske, “Impulsive stimulated Brillouin microscopy for non-contact, fast mechanical investigations of hydrogels,” Opt. Express 27(19), 26910–26923 (2019).
[Crossref]

A. M. Caravaca-Aguirre and R. Piestun, “Single multimode fiber endoscope,” Opt. Express 25(3), 1656–1665 (2017).
[Crossref]

L. Büttner, C. Leithold, and J. Czarske, “Interferometric velocity measurements through a fluctuating gas-liquid interface employing adaptive optics,” Opt. Express 21(25), 30653–30663 (2013).
[Crossref]

C. Stockbridge, Y. Lu, J. Moore, S. Hoffman, R. Paxman, K. Toussaint, and T. Bifano, “Focusing through dynamic scattering media,” Opt. Express 20(14), 15086–15092 (2012).
[Crossref]

S. Turtaev, I. T. Leite, K. J. Mitchell, M. J. Padgett, D. B. Phillips, and T. Čižmár, “Comparison of nematic liquid-crystal and DMD based spatial light modulation in complex photonics,” Opt. Express 25(24), 29874–29884 (2017).
[Crossref]

Opt. Lett. (5)

Optica (3)

Phys. Rev. Lett. (2)

D. E. Boonzajer Flaes, J. Stopka, S. Turtaev, J. F. de Boer, T. Tyc, and T. Čižmár, “Robustness of Light-Transport Processes to Bending Deformations in Graded-Index Multimode Waveguides,” Phys. Rev. Lett. 120(23), 233901 (2018).
[Crossref]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: An approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref]

PLoS One (1)

T. H. Kong, S. Yu, B. Jung, J. S. Choi, and Y. J. Seo, “Monitoring blood-flow in the mouse cochlea using an endoscopic laser speckle contrast imaging system,” PLoS One 13(2), e0191978 (2018).
[Crossref]

Sci. Rep. (1)

M. Villiger, D. Lorenser, R. A. McLaughlin, B. C. Quirk, R. W. Kirk, B. E. Bouma, and D. D. Sampson, “Deep tissue volume imaging of birefringence through fibre-optic needle probes for the delineation of breast tumour,” Sci. Rep. 6(1), 28771 (2016).
[Crossref]

Other (1)

H. Albrecht, M. Borys, N. Damaschke, and C. Tropea, Laser-Doppler and phase-Doppler measurement techniques (Springer, 2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Scheme of phase conjugation setup with polarization multiplex for the transmission of an interference fringe system through a multimode fiber. λ/2 – half-wave plate, BS – beam splitter, PBS – polarizing beam splitter, MO – microscope objective, MMF – multimode fiber, MZI – Mach Zehnder interferometer guide star, SLM – liquid crystal spatial light modulator, CAM – CMOS (Complementary metal–oxide–semiconductor) camera
Fig. 2.
Fig. 2. Simulation of a phase-only conjugated light field emitted from a multimode fiber forming a localized two-beam interference fringe pattern with λ = 532 nm, D=50 µm, NA = 0.22, V = 65. (a) Light intensity in the direction of propagation (x-z-plane). The core of the MMF is represented by the white bar. (b) Intensity distribution on the fiber end facet at z = 0, showing the separated partial beams. (c) Intensity distribution in the center of the replayed fringe system at z = 75 µm.
Fig. 3.
Fig. 3. Measured intensity distribution in five different axial planes at distance z for three different positions of the replayed fringe system. The light field emitted from the MMF (D = 50 µm, NA=0.22, L = 1.5 m) was magnified, imaged into free space and recorded with a camera. The white scale bar corresponds to 890 µm in the camera plane or 5 µm in the original imaged plane. The center of the fringe system is located (from left to right) at (a) z = 6 mm, (b) 12 mm, and (c) 18 mm.
Fig. 4.
Fig. 4. Axial scanning of the localized fringe system by displaying different phase masks on the SLM. The plot shows the size and position of the fringe system by means of the AC part of the fringe system for four different phase masks that correspond to different distances of the fringe system with respect to the distal fiber facet
Fig. 5.
Fig. 5. Recorded photoelectric signal from a single scattering particle (a) in the time domain and (b) in the frequency domain as an example. Despite the remaining speckle background, the spectrum exhibits a clear peak (Doppler peak), whose center frequency is used to calculate the velocity of the particle.
Fig. 6.
Fig. 6. Lensless velocity profile measurement of a microchannel flow. (a) Experimental setup (schematic, at the distal fiber end) for realizing a lensless velocity measurement in a microchannel. MMF: multimode fiber, SL: light scattered from seeding particles in the flow, PD: photo detector. (b) Flow velocity profile with z as the position with respect to the distal fiber facet. Blue dots: measurement. Red line: theoretical laminar flow profile estimated from the flow rate. Green line: expected velocity profile under consideration of the spatial averaging effect.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

d m i n = λ 2 sin θ m a x = λ 2 N A = r ¯ s p e c k l e
v = f D d .

Metrics