Abstract

Line-field confocal optical coherence tomography (LC-OCT) is an imaging technique in which A-scans are acquired in parallel through line illumination with a broadband laser and line detection with a line-scan camera. B-scan imaging at high spatial resolution is achieved by dynamic focusing in a Linnik interferometer. This paper presents an LC-OCT device based on a custom-designed Mirau interferometer that offers similar spatial resolution and detection sensitivity. The device has the advantage of being more compact and lighter. In vivo imaging of human skin with a resolution of 1.3 µm × 1.1 µm (lateral × axial) is demonstrated over a field of 0.9 mm × 0.4 mm (lateral × axial) at 12 frames per second.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Dual-mode line-field confocal optical coherence tomography for ultrahigh-resolution vertical and horizontal section imaging of human skin in vivo

Jonas Ogien, Olivier Levecq, Hicham Azimani, and Arnaud Dubois
Biomed. Opt. Express 11(3) 1327-1335 (2020)

Line-field confocal time-domain optical coherence tomography with dynamic focusing

Arnaud Dubois, Olivier Levecq, Hicham Azimani, Arthur Davis, Jonas Ogien, David Siret, and Anaïs Barut
Opt. Express 26(26) 33534-33542 (2018)

Simultaneous dual-band line-field confocal optical coherence tomography: application to skin imaging

Arthur Davis, Olivier Levecq, Hicham Azimani, David Siret, and Arnaud Dubois
Biomed. Opt. Express 10(2) 694-706 (2019)

References

  • View by:
  • |
  • |
  • |

  1. A. Gh. Podoleanu, “Optical coherence tomography,” J. Microsc. 247(3), 209–219 (2012).
    [Crossref]
  2. A. Dubois, O. Levecq, H. Azimani, A. Davis, J. Ogien, D. Siret, and A. Barut, “Line-field confocal time-domain optical coherence tomography with dynamic focusing,” Opt. Express 26(26), 33534–33542 (2018).
    [Crossref]
  3. W. Drexler, U. Morgner, F. Kärtner, C. Pitris, S. Boppart, X. Li, E. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24(17), 1221–1223 (1999).
    [Crossref]
  4. A. F. Zuluaga and R. Richards-Kortum, “Spatially resolved spectral interferometry for determination of subsurface structure,” Opt. Lett. 24(8), 519–521 (1999).
    [Crossref]
  5. B. Grajciar, M. Pircher, A. Fercher, and R. Leitgeb, “Parallel Fourier domain optical coherence tomography for in vivo measurement of the human eye,” Opt. Express 13(4), 1131–1137 (2005).
    [Crossref]
  6. Y. Nakamura, S. Makita, M. Yamanari, M. Itoh, T. Yatagai, and Y. Yasuno, “High-speed three-dimensional human retinal imaging by line-field spectral domain optical coherence tomography,” Opt. Express 15(12), 7103–7116 (2007).
    [Crossref]
  7. S. Lawman, Y. Dong, B. M. Williams, V. Romano, S. Kaye, S. P. Harding, C. Willoughby, Y.-C. Shen, and Y. Zheng, “High resolution corneal and single pulse imaging with line field spectral domain optical coherence tomography,” Opt. Express 24(11), 12395–12405 (2016).
    [Crossref]
  8. M. Mujat, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, “Swept-source parallel OCT,” Proc. SPIE 7168, 71681E (2009).
    [Crossref]
  9. D. J. Fechtig, B. Grajciar, T. Schmoll, C. Blatter, R. M. Werkmeister, W. Drexler, and R. A. Leitgeb, “Line-field parallel swept source MHz OCT for structural and functional retinal imaging,” Biomed. Opt. Express 6(3), 716–735 (2015).
    [Crossref]
  10. J. P. Rolland, P. Meemon, S. Murali, K. P. Thompson, and K.-S. Lee, “Gabor-based fusion technique for optical coherence microscopy,” Opt. Express 18(4), 3632–3642 (2010).
    [Crossref]
  11. D. J. Fechtig, A. Kumar, W. Drexler, and R. A. Leitgeb, “Full range line-field parallel swept source imaging utilizing digital refocusing,” J. Mod. Opt. 62(21), 1801–1807 (2015).
    [Crossref]
  12. S. Liu, J. A. Mulligan, and S. G. Adie, “Volumetric optical coherence microscopy with a high space-bandwidth-time product enabled by hybrid adaptive optics,” Biomed. Opt. Express 9(7), 3137–3152 (2018).
    [Crossref]
  13. J. M. Schmitt, S. L. Lee, and K. M. Yung, “An optical coherence microscope with enhanced resolving power in thick tissue,” Opt. Commun. 142(4-6), 203–207 (1997).
    [Crossref]
  14. F. Lexer, C. K. Hitzenberger, W. Drexler, S. Molebny, H. Sattmann, M. Sticker, and A. F. Fercher, “Dynamic coherent focus OCT with depth-independent transversal resolution,” J. Mod. Opt. 46(3), 541–553 (1999).
    [Crossref]
  15. B. Qi, P. A. Himmer, M. L. Gordon, V. X. D. Yang, D. L. Dickensheets, and I. A. Vitkin, “Dynamic focus control in high-speed optical coherence tomography based on a microelectromechanical mirror,” Opt. Commun. 232(1-6), 123–128 (2004).
    [Crossref]
  16. A. Divetia, T.-H. Hsieh, J. Zhang, Z. Chen, M. Bachman, and G.-P. Li, “Dynamically focused optical coherence tomography for endoscopic applications,” Appl. Phys. Lett. 86(10), 103902 (2005).
    [Crossref]
  17. Y. Chen, S.-W. Huang, A. D. Aguirre, and J. G. Fujimoto, “High-resolution line-scanning optical coherence microscopy,” Opt. Lett. 32(14), 1971–1973 (2007).
    [Crossref]
  18. D. S. Gareau, J. G. Krueger, J. E. Hawkes, S. R. Lish, M. P. Dietz, A. G. Mülberger, E. W. Mu, M. L. Stevenson, J. M. Lewin, S. A. Meehan, and J. A. Carucci, “Line scanning, stage scanning confocal microscope (LSSSCM),” Biomed. Opt. Express 8(8), 3807–3815 (2017).
    [Crossref]
  19. Y. Chen, S.-W. Huang, C. Zhou, B. Potsaid, and J. G. Fujimoto, “Improved detection sensitivity of line-scanning optical coherence microscopy,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1094–1099 (2012).
    [Crossref]
  20. M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003).
    [Crossref]
  21. A. Levine, K. Wang, and O. Markowitz, “Optical Coherence Tomography in the Diagnosis of Skin Cancer,” Dermatol. Clin. 35(4), 465–488 (2017).
    [Crossref]
  22. A. Dubois, O. Levecq, H. Azimani, D. Siret, A. Barut, M. Suppa, V. Del Marmol, J. Malvehy, E. Cinotti, and J. L. Perrot, “Line-field confocal optical coherence tomography for high-resolution noninvasive imaging of skin tumors,',” J. Biomed. Opt. 23(10), 1 (2018).
    [Crossref]
  23. M. Cazalas, O. Levecq, H. Azimani, D. Siret, A. Barut, M. Suppa, V. del Marmol, J. Malvehy, E. Cinotti, P. Rubegni, J. L. Perrot, and A. Dubois, “Skin lesion imaging with line-field confocal optical coherence tomography,” in Photonics in Dermatology and Plastic Surgery 2019, vol. 10851B. Choi and H. Zeng, eds., International Society for Optics and Photonics (SPIE, 2019), pp. 61–68.
  24. A. Davis, O. Levecq, H. Azimani, D. Siret, and A. Dubois, “Simultaneous dual-band line-field confocal optical coherence tomography. Application to skin imaging,” Biomed. Opt. Express 10(2), 694–706 (2019).
    [Crossref]
  25. J. Ogien, D. Siret, O. Levecq, H. Azimani, A. David, W. Xue, J. L. Perrot, and A. Dubois, “Line-field confocal optical coherence tomography,” in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXIII, J. A. Izatt and J. G. Fujimoto, eds. (SPIE, 2019).
  26. A. Dubois, “Focus defect and dispersion mismatch in full-field optical coherence microscopy,” Appl. Opt. 56(9), D142–D150 (2017).
    [Crossref]
  27. A. Dubois, G. Moneron, and A. C. Boccara, “Thermal-light full-field optical coherence tomography in the 1.2 micron wavelength region,” Opt. Commun. 266(2), 738–743 (2006).
    [Crossref]
  28. S. Labiau, G. David, S. Gigan, and A. C. Boccara, “Defocus test and defocus correction in full-field optical coherence tomography,” Opt. Lett. 34(10), 1576–1578 (2009).
    [Crossref]
  29. E. Beaurepaire, A. C. Boccara, M. Lebec, L. Blanchot, and H. Saint-Jalmes, “Full-field optical coherence microscopy,” Opt. Lett. 23(4), 244–246 (1998).
    [Crossref]
  30. O. V. Lyulko, G. Randers-Pehrson, and D. J. Brenner, “Simultaneous immersion Mirau interferometry,” Rev. Sci. Instrum. 84(5), 053701 (2013).
    [Crossref]
  31. S.-H. Lu, C.-J. Chang, and C.-F. Kao, “Full-field optical coherence tomography using immersion Mirau interference microscope,” Appl. Opt. 52(18), 4400–4403 (2013).
    [Crossref]
  32. C.-C. Tsai, C.-K. Chang, K.-Y. Hsu, T.-S. Ho, M.-Y. Lin, J.-W. Tjiu, and S.-L. Huang, “Full-depth epidermis tomography using a Mirau-based full-field optical coherence tomography,” Biomed. Opt. Express 5(9), 3001–3010 (2014).
    [Crossref]
  33. K. G. Larkin, “Efficient nonlinear algorithm for envelope detection in white light interferometry,” J. Opt. Soc. Am. A 13(4), 832–843 (1996).
    [Crossref]
  34. A. Dubois and A. C. Boccara, (2008) “Full-Field Optical Coherence Tomography,” In: W. Drexler and J. G Fujimoto, eds. Optical Coherence Tomography. Biological and Medical Physics, Biomedical Engineering. Springer, Berlin, Heidelberg.
  35. A. Dubois, K. Grieve, G. Moneron, R. Lecaque, L. Vabre, and C. Boccara, “Ultrahigh-resolution full-field optical coherence tomography,” Appl. Opt. 43(14), 2874–2883 (2004).
    [Crossref]
  36. A. Dubois, L. Vabre, A. C. Boccara, and E. Beaurepaire, “High-resolution full-field optical coherence tomography with a Linnik microscope,',” Appl. Opt. 41(4), 805–812 (2002).
    [Crossref]
  37. D. Borycki, M. Hamkało, M. Nowakowski, M. Szkulmowski, and M. Wojtkowski, “Spatiotemporal optical coherence (STOC) manipulation suppresses coherent crosstalk in full-field swept-source optical coherence tomography,” Biomed. Opt. Express 10(4), 2032–2054 (2019).
    [Crossref]
  38. P. Stremplewski, E. Auksorius, P. Wnuk, Ł. Kozoń, P. Garstecki, and M. Wojtkowski, “In vivo volumetric imaging by crosstalk-free full-field OCT,” Optica 6(5), 608–617 (2019).
    [Crossref]
  39. B. Karamata, M. Laubscher, P. Lambelet, R. P. Salathé, and T. Lasser, “Spatially incoherent illumination as a mechanism for crosstalk suppression in wide-field optical coherence tomography,” Opt. Lett. 29(7), 736–738 (2004).
    [Crossref]

2019 (3)

2018 (3)

2017 (3)

2016 (1)

2015 (2)

D. J. Fechtig, B. Grajciar, T. Schmoll, C. Blatter, R. M. Werkmeister, W. Drexler, and R. A. Leitgeb, “Line-field parallel swept source MHz OCT for structural and functional retinal imaging,” Biomed. Opt. Express 6(3), 716–735 (2015).
[Crossref]

D. J. Fechtig, A. Kumar, W. Drexler, and R. A. Leitgeb, “Full range line-field parallel swept source imaging utilizing digital refocusing,” J. Mod. Opt. 62(21), 1801–1807 (2015).
[Crossref]

2014 (1)

2013 (2)

O. V. Lyulko, G. Randers-Pehrson, and D. J. Brenner, “Simultaneous immersion Mirau interferometry,” Rev. Sci. Instrum. 84(5), 053701 (2013).
[Crossref]

S.-H. Lu, C.-J. Chang, and C.-F. Kao, “Full-field optical coherence tomography using immersion Mirau interference microscope,” Appl. Opt. 52(18), 4400–4403 (2013).
[Crossref]

2012 (2)

Y. Chen, S.-W. Huang, C. Zhou, B. Potsaid, and J. G. Fujimoto, “Improved detection sensitivity of line-scanning optical coherence microscopy,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1094–1099 (2012).
[Crossref]

A. Gh. Podoleanu, “Optical coherence tomography,” J. Microsc. 247(3), 209–219 (2012).
[Crossref]

2010 (1)

2009 (2)

2007 (2)

2006 (1)

A. Dubois, G. Moneron, and A. C. Boccara, “Thermal-light full-field optical coherence tomography in the 1.2 micron wavelength region,” Opt. Commun. 266(2), 738–743 (2006).
[Crossref]

2005 (2)

A. Divetia, T.-H. Hsieh, J. Zhang, Z. Chen, M. Bachman, and G.-P. Li, “Dynamically focused optical coherence tomography for endoscopic applications,” Appl. Phys. Lett. 86(10), 103902 (2005).
[Crossref]

B. Grajciar, M. Pircher, A. Fercher, and R. Leitgeb, “Parallel Fourier domain optical coherence tomography for in vivo measurement of the human eye,” Opt. Express 13(4), 1131–1137 (2005).
[Crossref]

2004 (3)

2003 (1)

2002 (1)

1999 (3)

1998 (1)

1997 (1)

J. M. Schmitt, S. L. Lee, and K. M. Yung, “An optical coherence microscope with enhanced resolving power in thick tissue,” Opt. Commun. 142(4-6), 203–207 (1997).
[Crossref]

1996 (1)

Adie, S. G.

Aguirre, A. D.

Auksorius, E.

Azimani, H.

A. Davis, O. Levecq, H. Azimani, D. Siret, and A. Dubois, “Simultaneous dual-band line-field confocal optical coherence tomography. Application to skin imaging,” Biomed. Opt. Express 10(2), 694–706 (2019).
[Crossref]

A. Dubois, O. Levecq, H. Azimani, D. Siret, A. Barut, M. Suppa, V. Del Marmol, J. Malvehy, E. Cinotti, and J. L. Perrot, “Line-field confocal optical coherence tomography for high-resolution noninvasive imaging of skin tumors,',” J. Biomed. Opt. 23(10), 1 (2018).
[Crossref]

A. Dubois, O. Levecq, H. Azimani, A. Davis, J. Ogien, D. Siret, and A. Barut, “Line-field confocal time-domain optical coherence tomography with dynamic focusing,” Opt. Express 26(26), 33534–33542 (2018).
[Crossref]

M. Cazalas, O. Levecq, H. Azimani, D. Siret, A. Barut, M. Suppa, V. del Marmol, J. Malvehy, E. Cinotti, P. Rubegni, J. L. Perrot, and A. Dubois, “Skin lesion imaging with line-field confocal optical coherence tomography,” in Photonics in Dermatology and Plastic Surgery 2019, vol. 10851B. Choi and H. Zeng, eds., International Society for Optics and Photonics (SPIE, 2019), pp. 61–68.

J. Ogien, D. Siret, O. Levecq, H. Azimani, A. David, W. Xue, J. L. Perrot, and A. Dubois, “Line-field confocal optical coherence tomography,” in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXIII, J. A. Izatt and J. G. Fujimoto, eds. (SPIE, 2019).

Bachman, M.

A. Divetia, T.-H. Hsieh, J. Zhang, Z. Chen, M. Bachman, and G.-P. Li, “Dynamically focused optical coherence tomography for endoscopic applications,” Appl. Phys. Lett. 86(10), 103902 (2005).
[Crossref]

Barut, A.

A. Dubois, O. Levecq, H. Azimani, D. Siret, A. Barut, M. Suppa, V. Del Marmol, J. Malvehy, E. Cinotti, and J. L. Perrot, “Line-field confocal optical coherence tomography for high-resolution noninvasive imaging of skin tumors,',” J. Biomed. Opt. 23(10), 1 (2018).
[Crossref]

A. Dubois, O. Levecq, H. Azimani, A. Davis, J. Ogien, D. Siret, and A. Barut, “Line-field confocal time-domain optical coherence tomography with dynamic focusing,” Opt. Express 26(26), 33534–33542 (2018).
[Crossref]

M. Cazalas, O. Levecq, H. Azimani, D. Siret, A. Barut, M. Suppa, V. del Marmol, J. Malvehy, E. Cinotti, P. Rubegni, J. L. Perrot, and A. Dubois, “Skin lesion imaging with line-field confocal optical coherence tomography,” in Photonics in Dermatology and Plastic Surgery 2019, vol. 10851B. Choi and H. Zeng, eds., International Society for Optics and Photonics (SPIE, 2019), pp. 61–68.

Beaurepaire, E.

Blanchot, L.

Blatter, C.

Boccara, A. C.

S. Labiau, G. David, S. Gigan, and A. C. Boccara, “Defocus test and defocus correction in full-field optical coherence tomography,” Opt. Lett. 34(10), 1576–1578 (2009).
[Crossref]

A. Dubois, G. Moneron, and A. C. Boccara, “Thermal-light full-field optical coherence tomography in the 1.2 micron wavelength region,” Opt. Commun. 266(2), 738–743 (2006).
[Crossref]

A. Dubois, L. Vabre, A. C. Boccara, and E. Beaurepaire, “High-resolution full-field optical coherence tomography with a Linnik microscope,',” Appl. Opt. 41(4), 805–812 (2002).
[Crossref]

E. Beaurepaire, A. C. Boccara, M. Lebec, L. Blanchot, and H. Saint-Jalmes, “Full-field optical coherence microscopy,” Opt. Lett. 23(4), 244–246 (1998).
[Crossref]

A. Dubois and A. C. Boccara, (2008) “Full-Field Optical Coherence Tomography,” In: W. Drexler and J. G Fujimoto, eds. Optical Coherence Tomography. Biological and Medical Physics, Biomedical Engineering. Springer, Berlin, Heidelberg.

Boccara, C.

Boppart, S.

Borycki, D.

Brenner, D. J.

O. V. Lyulko, G. Randers-Pehrson, and D. J. Brenner, “Simultaneous immersion Mirau interferometry,” Rev. Sci. Instrum. 84(5), 053701 (2013).
[Crossref]

Carucci, J. A.

Cazalas, M.

M. Cazalas, O. Levecq, H. Azimani, D. Siret, A. Barut, M. Suppa, V. del Marmol, J. Malvehy, E. Cinotti, P. Rubegni, J. L. Perrot, and A. Dubois, “Skin lesion imaging with line-field confocal optical coherence tomography,” in Photonics in Dermatology and Plastic Surgery 2019, vol. 10851B. Choi and H. Zeng, eds., International Society for Optics and Photonics (SPIE, 2019), pp. 61–68.

Chang, C.-J.

Chang, C.-K.

Chen, Y.

Y. Chen, S.-W. Huang, C. Zhou, B. Potsaid, and J. G. Fujimoto, “Improved detection sensitivity of line-scanning optical coherence microscopy,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1094–1099 (2012).
[Crossref]

Y. Chen, S.-W. Huang, A. D. Aguirre, and J. G. Fujimoto, “High-resolution line-scanning optical coherence microscopy,” Opt. Lett. 32(14), 1971–1973 (2007).
[Crossref]

Chen, Z.

A. Divetia, T.-H. Hsieh, J. Zhang, Z. Chen, M. Bachman, and G.-P. Li, “Dynamically focused optical coherence tomography for endoscopic applications,” Appl. Phys. Lett. 86(10), 103902 (2005).
[Crossref]

Choma, M. A.

Cinotti, E.

A. Dubois, O. Levecq, H. Azimani, D. Siret, A. Barut, M. Suppa, V. Del Marmol, J. Malvehy, E. Cinotti, and J. L. Perrot, “Line-field confocal optical coherence tomography for high-resolution noninvasive imaging of skin tumors,',” J. Biomed. Opt. 23(10), 1 (2018).
[Crossref]

M. Cazalas, O. Levecq, H. Azimani, D. Siret, A. Barut, M. Suppa, V. del Marmol, J. Malvehy, E. Cinotti, P. Rubegni, J. L. Perrot, and A. Dubois, “Skin lesion imaging with line-field confocal optical coherence tomography,” in Photonics in Dermatology and Plastic Surgery 2019, vol. 10851B. Choi and H. Zeng, eds., International Society for Optics and Photonics (SPIE, 2019), pp. 61–68.

David, A.

J. Ogien, D. Siret, O. Levecq, H. Azimani, A. David, W. Xue, J. L. Perrot, and A. Dubois, “Line-field confocal optical coherence tomography,” in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXIII, J. A. Izatt and J. G. Fujimoto, eds. (SPIE, 2019).

David, G.

Davis, A.

Del Marmol, V.

A. Dubois, O. Levecq, H. Azimani, D. Siret, A. Barut, M. Suppa, V. Del Marmol, J. Malvehy, E. Cinotti, and J. L. Perrot, “Line-field confocal optical coherence tomography for high-resolution noninvasive imaging of skin tumors,',” J. Biomed. Opt. 23(10), 1 (2018).
[Crossref]

M. Cazalas, O. Levecq, H. Azimani, D. Siret, A. Barut, M. Suppa, V. del Marmol, J. Malvehy, E. Cinotti, P. Rubegni, J. L. Perrot, and A. Dubois, “Skin lesion imaging with line-field confocal optical coherence tomography,” in Photonics in Dermatology and Plastic Surgery 2019, vol. 10851B. Choi and H. Zeng, eds., International Society for Optics and Photonics (SPIE, 2019), pp. 61–68.

Dickensheets, D. L.

B. Qi, P. A. Himmer, M. L. Gordon, V. X. D. Yang, D. L. Dickensheets, and I. A. Vitkin, “Dynamic focus control in high-speed optical coherence tomography based on a microelectromechanical mirror,” Opt. Commun. 232(1-6), 123–128 (2004).
[Crossref]

Dietz, M. P.

Divetia, A.

A. Divetia, T.-H. Hsieh, J. Zhang, Z. Chen, M. Bachman, and G.-P. Li, “Dynamically focused optical coherence tomography for endoscopic applications,” Appl. Phys. Lett. 86(10), 103902 (2005).
[Crossref]

Dong, Y.

Drexler, W.

D. J. Fechtig, B. Grajciar, T. Schmoll, C. Blatter, R. M. Werkmeister, W. Drexler, and R. A. Leitgeb, “Line-field parallel swept source MHz OCT for structural and functional retinal imaging,” Biomed. Opt. Express 6(3), 716–735 (2015).
[Crossref]

D. J. Fechtig, A. Kumar, W. Drexler, and R. A. Leitgeb, “Full range line-field parallel swept source imaging utilizing digital refocusing,” J. Mod. Opt. 62(21), 1801–1807 (2015).
[Crossref]

F. Lexer, C. K. Hitzenberger, W. Drexler, S. Molebny, H. Sattmann, M. Sticker, and A. F. Fercher, “Dynamic coherent focus OCT with depth-independent transversal resolution,” J. Mod. Opt. 46(3), 541–553 (1999).
[Crossref]

W. Drexler, U. Morgner, F. Kärtner, C. Pitris, S. Boppart, X. Li, E. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24(17), 1221–1223 (1999).
[Crossref]

Dubois, A.

A. Davis, O. Levecq, H. Azimani, D. Siret, and A. Dubois, “Simultaneous dual-band line-field confocal optical coherence tomography. Application to skin imaging,” Biomed. Opt. Express 10(2), 694–706 (2019).
[Crossref]

A. Dubois, O. Levecq, H. Azimani, D. Siret, A. Barut, M. Suppa, V. Del Marmol, J. Malvehy, E. Cinotti, and J. L. Perrot, “Line-field confocal optical coherence tomography for high-resolution noninvasive imaging of skin tumors,',” J. Biomed. Opt. 23(10), 1 (2018).
[Crossref]

A. Dubois, O. Levecq, H. Azimani, A. Davis, J. Ogien, D. Siret, and A. Barut, “Line-field confocal time-domain optical coherence tomography with dynamic focusing,” Opt. Express 26(26), 33534–33542 (2018).
[Crossref]

A. Dubois, “Focus defect and dispersion mismatch in full-field optical coherence microscopy,” Appl. Opt. 56(9), D142–D150 (2017).
[Crossref]

A. Dubois, G. Moneron, and A. C. Boccara, “Thermal-light full-field optical coherence tomography in the 1.2 micron wavelength region,” Opt. Commun. 266(2), 738–743 (2006).
[Crossref]

A. Dubois, K. Grieve, G. Moneron, R. Lecaque, L. Vabre, and C. Boccara, “Ultrahigh-resolution full-field optical coherence tomography,” Appl. Opt. 43(14), 2874–2883 (2004).
[Crossref]

A. Dubois, L. Vabre, A. C. Boccara, and E. Beaurepaire, “High-resolution full-field optical coherence tomography with a Linnik microscope,',” Appl. Opt. 41(4), 805–812 (2002).
[Crossref]

A. Dubois and A. C. Boccara, (2008) “Full-Field Optical Coherence Tomography,” In: W. Drexler and J. G Fujimoto, eds. Optical Coherence Tomography. Biological and Medical Physics, Biomedical Engineering. Springer, Berlin, Heidelberg.

J. Ogien, D. Siret, O. Levecq, H. Azimani, A. David, W. Xue, J. L. Perrot, and A. Dubois, “Line-field confocal optical coherence tomography,” in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXIII, J. A. Izatt and J. G. Fujimoto, eds. (SPIE, 2019).

M. Cazalas, O. Levecq, H. Azimani, D. Siret, A. Barut, M. Suppa, V. del Marmol, J. Malvehy, E. Cinotti, P. Rubegni, J. L. Perrot, and A. Dubois, “Skin lesion imaging with line-field confocal optical coherence tomography,” in Photonics in Dermatology and Plastic Surgery 2019, vol. 10851B. Choi and H. Zeng, eds., International Society for Optics and Photonics (SPIE, 2019), pp. 61–68.

Fechtig, D. J.

D. J. Fechtig, A. Kumar, W. Drexler, and R. A. Leitgeb, “Full range line-field parallel swept source imaging utilizing digital refocusing,” J. Mod. Opt. 62(21), 1801–1807 (2015).
[Crossref]

D. J. Fechtig, B. Grajciar, T. Schmoll, C. Blatter, R. M. Werkmeister, W. Drexler, and R. A. Leitgeb, “Line-field parallel swept source MHz OCT for structural and functional retinal imaging,” Biomed. Opt. Express 6(3), 716–735 (2015).
[Crossref]

Fercher, A.

Fercher, A. F.

F. Lexer, C. K. Hitzenberger, W. Drexler, S. Molebny, H. Sattmann, M. Sticker, and A. F. Fercher, “Dynamic coherent focus OCT with depth-independent transversal resolution,” J. Mod. Opt. 46(3), 541–553 (1999).
[Crossref]

Ferguson, R. D.

M. Mujat, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, “Swept-source parallel OCT,” Proc. SPIE 7168, 71681E (2009).
[Crossref]

Fujimoto, J. G.

Gareau, D. S.

Garstecki, P.

Gigan, S.

Gordon, M. L.

B. Qi, P. A. Himmer, M. L. Gordon, V. X. D. Yang, D. L. Dickensheets, and I. A. Vitkin, “Dynamic focus control in high-speed optical coherence tomography based on a microelectromechanical mirror,” Opt. Commun. 232(1-6), 123–128 (2004).
[Crossref]

Grajciar, B.

Grieve, K.

Hamkalo, M.

Hammer, D. X.

M. Mujat, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, “Swept-source parallel OCT,” Proc. SPIE 7168, 71681E (2009).
[Crossref]

Harding, S. P.

Hawkes, J. E.

Himmer, P. A.

B. Qi, P. A. Himmer, M. L. Gordon, V. X. D. Yang, D. L. Dickensheets, and I. A. Vitkin, “Dynamic focus control in high-speed optical coherence tomography based on a microelectromechanical mirror,” Opt. Commun. 232(1-6), 123–128 (2004).
[Crossref]

Hitzenberger, C. K.

F. Lexer, C. K. Hitzenberger, W. Drexler, S. Molebny, H. Sattmann, M. Sticker, and A. F. Fercher, “Dynamic coherent focus OCT with depth-independent transversal resolution,” J. Mod. Opt. 46(3), 541–553 (1999).
[Crossref]

Ho, T.-S.

Hsieh, T.-H.

A. Divetia, T.-H. Hsieh, J. Zhang, Z. Chen, M. Bachman, and G.-P. Li, “Dynamically focused optical coherence tomography for endoscopic applications,” Appl. Phys. Lett. 86(10), 103902 (2005).
[Crossref]

Hsu, K.-Y.

Huang, S.-L.

Huang, S.-W.

Y. Chen, S.-W. Huang, C. Zhou, B. Potsaid, and J. G. Fujimoto, “Improved detection sensitivity of line-scanning optical coherence microscopy,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1094–1099 (2012).
[Crossref]

Y. Chen, S.-W. Huang, A. D. Aguirre, and J. G. Fujimoto, “High-resolution line-scanning optical coherence microscopy,” Opt. Lett. 32(14), 1971–1973 (2007).
[Crossref]

Iftimia, N. V.

M. Mujat, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, “Swept-source parallel OCT,” Proc. SPIE 7168, 71681E (2009).
[Crossref]

Ippen, E.

Itoh, M.

Izatt, J. A.

Kao, C.-F.

Karamata, B.

Kärtner, F.

Kaye, S.

Kozon, L.

Krueger, J. G.

Kumar, A.

D. J. Fechtig, A. Kumar, W. Drexler, and R. A. Leitgeb, “Full range line-field parallel swept source imaging utilizing digital refocusing,” J. Mod. Opt. 62(21), 1801–1807 (2015).
[Crossref]

Labiau, S.

Lambelet, P.

Larkin, K. G.

Lasser, T.

Laubscher, M.

Lawman, S.

Lebec, M.

Lecaque, R.

Lee, K.-S.

Lee, S. L.

J. M. Schmitt, S. L. Lee, and K. M. Yung, “An optical coherence microscope with enhanced resolving power in thick tissue,” Opt. Commun. 142(4-6), 203–207 (1997).
[Crossref]

Leitgeb, R.

Leitgeb, R. A.

D. J. Fechtig, A. Kumar, W. Drexler, and R. A. Leitgeb, “Full range line-field parallel swept source imaging utilizing digital refocusing,” J. Mod. Opt. 62(21), 1801–1807 (2015).
[Crossref]

D. J. Fechtig, B. Grajciar, T. Schmoll, C. Blatter, R. M. Werkmeister, W. Drexler, and R. A. Leitgeb, “Line-field parallel swept source MHz OCT for structural and functional retinal imaging,” Biomed. Opt. Express 6(3), 716–735 (2015).
[Crossref]

Levecq, O.

A. Davis, O. Levecq, H. Azimani, D. Siret, and A. Dubois, “Simultaneous dual-band line-field confocal optical coherence tomography. Application to skin imaging,” Biomed. Opt. Express 10(2), 694–706 (2019).
[Crossref]

A. Dubois, O. Levecq, H. Azimani, D. Siret, A. Barut, M. Suppa, V. Del Marmol, J. Malvehy, E. Cinotti, and J. L. Perrot, “Line-field confocal optical coherence tomography for high-resolution noninvasive imaging of skin tumors,',” J. Biomed. Opt. 23(10), 1 (2018).
[Crossref]

A. Dubois, O. Levecq, H. Azimani, A. Davis, J. Ogien, D. Siret, and A. Barut, “Line-field confocal time-domain optical coherence tomography with dynamic focusing,” Opt. Express 26(26), 33534–33542 (2018).
[Crossref]

M. Cazalas, O. Levecq, H. Azimani, D. Siret, A. Barut, M. Suppa, V. del Marmol, J. Malvehy, E. Cinotti, P. Rubegni, J. L. Perrot, and A. Dubois, “Skin lesion imaging with line-field confocal optical coherence tomography,” in Photonics in Dermatology and Plastic Surgery 2019, vol. 10851B. Choi and H. Zeng, eds., International Society for Optics and Photonics (SPIE, 2019), pp. 61–68.

J. Ogien, D. Siret, O. Levecq, H. Azimani, A. David, W. Xue, J. L. Perrot, and A. Dubois, “Line-field confocal optical coherence tomography,” in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXIII, J. A. Izatt and J. G. Fujimoto, eds. (SPIE, 2019).

Levine, A.

A. Levine, K. Wang, and O. Markowitz, “Optical Coherence Tomography in the Diagnosis of Skin Cancer,” Dermatol. Clin. 35(4), 465–488 (2017).
[Crossref]

Lewin, J. M.

Lexer, F.

F. Lexer, C. K. Hitzenberger, W. Drexler, S. Molebny, H. Sattmann, M. Sticker, and A. F. Fercher, “Dynamic coherent focus OCT with depth-independent transversal resolution,” J. Mod. Opt. 46(3), 541–553 (1999).
[Crossref]

Li, G.-P.

A. Divetia, T.-H. Hsieh, J. Zhang, Z. Chen, M. Bachman, and G.-P. Li, “Dynamically focused optical coherence tomography for endoscopic applications,” Appl. Phys. Lett. 86(10), 103902 (2005).
[Crossref]

Li, X.

Lin, M.-Y.

Lish, S. R.

Liu, S.

Lu, S.-H.

Lyulko, O. V.

O. V. Lyulko, G. Randers-Pehrson, and D. J. Brenner, “Simultaneous immersion Mirau interferometry,” Rev. Sci. Instrum. 84(5), 053701 (2013).
[Crossref]

Makita, S.

Malvehy, J.

A. Dubois, O. Levecq, H. Azimani, D. Siret, A. Barut, M. Suppa, V. Del Marmol, J. Malvehy, E. Cinotti, and J. L. Perrot, “Line-field confocal optical coherence tomography for high-resolution noninvasive imaging of skin tumors,',” J. Biomed. Opt. 23(10), 1 (2018).
[Crossref]

M. Cazalas, O. Levecq, H. Azimani, D. Siret, A. Barut, M. Suppa, V. del Marmol, J. Malvehy, E. Cinotti, P. Rubegni, J. L. Perrot, and A. Dubois, “Skin lesion imaging with line-field confocal optical coherence tomography,” in Photonics in Dermatology and Plastic Surgery 2019, vol. 10851B. Choi and H. Zeng, eds., International Society for Optics and Photonics (SPIE, 2019), pp. 61–68.

Markowitz, O.

A. Levine, K. Wang, and O. Markowitz, “Optical Coherence Tomography in the Diagnosis of Skin Cancer,” Dermatol. Clin. 35(4), 465–488 (2017).
[Crossref]

Meehan, S. A.

Meemon, P.

Molebny, S.

F. Lexer, C. K. Hitzenberger, W. Drexler, S. Molebny, H. Sattmann, M. Sticker, and A. F. Fercher, “Dynamic coherent focus OCT with depth-independent transversal resolution,” J. Mod. Opt. 46(3), 541–553 (1999).
[Crossref]

Moneron, G.

A. Dubois, G. Moneron, and A. C. Boccara, “Thermal-light full-field optical coherence tomography in the 1.2 micron wavelength region,” Opt. Commun. 266(2), 738–743 (2006).
[Crossref]

A. Dubois, K. Grieve, G. Moneron, R. Lecaque, L. Vabre, and C. Boccara, “Ultrahigh-resolution full-field optical coherence tomography,” Appl. Opt. 43(14), 2874–2883 (2004).
[Crossref]

Morgner, U.

Mu, E. W.

Mujat, M.

M. Mujat, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, “Swept-source parallel OCT,” Proc. SPIE 7168, 71681E (2009).
[Crossref]

Mülberger, A. G.

Mulligan, J. A.

Murali, S.

Nakamura, Y.

Nowakowski, M.

Ogien, J.

A. Dubois, O. Levecq, H. Azimani, A. Davis, J. Ogien, D. Siret, and A. Barut, “Line-field confocal time-domain optical coherence tomography with dynamic focusing,” Opt. Express 26(26), 33534–33542 (2018).
[Crossref]

J. Ogien, D. Siret, O. Levecq, H. Azimani, A. David, W. Xue, J. L. Perrot, and A. Dubois, “Line-field confocal optical coherence tomography,” in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXIII, J. A. Izatt and J. G. Fujimoto, eds. (SPIE, 2019).

Perrot, J. L.

A. Dubois, O. Levecq, H. Azimani, D. Siret, A. Barut, M. Suppa, V. Del Marmol, J. Malvehy, E. Cinotti, and J. L. Perrot, “Line-field confocal optical coherence tomography for high-resolution noninvasive imaging of skin tumors,',” J. Biomed. Opt. 23(10), 1 (2018).
[Crossref]

M. Cazalas, O. Levecq, H. Azimani, D. Siret, A. Barut, M. Suppa, V. del Marmol, J. Malvehy, E. Cinotti, P. Rubegni, J. L. Perrot, and A. Dubois, “Skin lesion imaging with line-field confocal optical coherence tomography,” in Photonics in Dermatology and Plastic Surgery 2019, vol. 10851B. Choi and H. Zeng, eds., International Society for Optics and Photonics (SPIE, 2019), pp. 61–68.

J. Ogien, D. Siret, O. Levecq, H. Azimani, A. David, W. Xue, J. L. Perrot, and A. Dubois, “Line-field confocal optical coherence tomography,” in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXIII, J. A. Izatt and J. G. Fujimoto, eds. (SPIE, 2019).

Pircher, M.

Pitris, C.

Podoleanu, A. Gh.

A. Gh. Podoleanu, “Optical coherence tomography,” J. Microsc. 247(3), 209–219 (2012).
[Crossref]

Potsaid, B.

Y. Chen, S.-W. Huang, C. Zhou, B. Potsaid, and J. G. Fujimoto, “Improved detection sensitivity of line-scanning optical coherence microscopy,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1094–1099 (2012).
[Crossref]

Qi, B.

B. Qi, P. A. Himmer, M. L. Gordon, V. X. D. Yang, D. L. Dickensheets, and I. A. Vitkin, “Dynamic focus control in high-speed optical coherence tomography based on a microelectromechanical mirror,” Opt. Commun. 232(1-6), 123–128 (2004).
[Crossref]

Randers-Pehrson, G.

O. V. Lyulko, G. Randers-Pehrson, and D. J. Brenner, “Simultaneous immersion Mirau interferometry,” Rev. Sci. Instrum. 84(5), 053701 (2013).
[Crossref]

Richards-Kortum, R.

Rolland, J. P.

Romano, V.

Rubegni, P.

M. Cazalas, O. Levecq, H. Azimani, D. Siret, A. Barut, M. Suppa, V. del Marmol, J. Malvehy, E. Cinotti, P. Rubegni, J. L. Perrot, and A. Dubois, “Skin lesion imaging with line-field confocal optical coherence tomography,” in Photonics in Dermatology and Plastic Surgery 2019, vol. 10851B. Choi and H. Zeng, eds., International Society for Optics and Photonics (SPIE, 2019), pp. 61–68.

Saint-Jalmes, H.

Salathé, R. P.

Sarunic, M. V.

Sattmann, H.

F. Lexer, C. K. Hitzenberger, W. Drexler, S. Molebny, H. Sattmann, M. Sticker, and A. F. Fercher, “Dynamic coherent focus OCT with depth-independent transversal resolution,” J. Mod. Opt. 46(3), 541–553 (1999).
[Crossref]

Schmitt, J. M.

J. M. Schmitt, S. L. Lee, and K. M. Yung, “An optical coherence microscope with enhanced resolving power in thick tissue,” Opt. Commun. 142(4-6), 203–207 (1997).
[Crossref]

Schmoll, T.

Shen, Y.-C.

Siret, D.

A. Davis, O. Levecq, H. Azimani, D. Siret, and A. Dubois, “Simultaneous dual-band line-field confocal optical coherence tomography. Application to skin imaging,” Biomed. Opt. Express 10(2), 694–706 (2019).
[Crossref]

A. Dubois, O. Levecq, H. Azimani, D. Siret, A. Barut, M. Suppa, V. Del Marmol, J. Malvehy, E. Cinotti, and J. L. Perrot, “Line-field confocal optical coherence tomography for high-resolution noninvasive imaging of skin tumors,',” J. Biomed. Opt. 23(10), 1 (2018).
[Crossref]

A. Dubois, O. Levecq, H. Azimani, A. Davis, J. Ogien, D. Siret, and A. Barut, “Line-field confocal time-domain optical coherence tomography with dynamic focusing,” Opt. Express 26(26), 33534–33542 (2018).
[Crossref]

J. Ogien, D. Siret, O. Levecq, H. Azimani, A. David, W. Xue, J. L. Perrot, and A. Dubois, “Line-field confocal optical coherence tomography,” in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXIII, J. A. Izatt and J. G. Fujimoto, eds. (SPIE, 2019).

M. Cazalas, O. Levecq, H. Azimani, D. Siret, A. Barut, M. Suppa, V. del Marmol, J. Malvehy, E. Cinotti, P. Rubegni, J. L. Perrot, and A. Dubois, “Skin lesion imaging with line-field confocal optical coherence tomography,” in Photonics in Dermatology and Plastic Surgery 2019, vol. 10851B. Choi and H. Zeng, eds., International Society for Optics and Photonics (SPIE, 2019), pp. 61–68.

Stevenson, M. L.

Sticker, M.

F. Lexer, C. K. Hitzenberger, W. Drexler, S. Molebny, H. Sattmann, M. Sticker, and A. F. Fercher, “Dynamic coherent focus OCT with depth-independent transversal resolution,” J. Mod. Opt. 46(3), 541–553 (1999).
[Crossref]

Stremplewski, P.

Suppa, M.

A. Dubois, O. Levecq, H. Azimani, D. Siret, A. Barut, M. Suppa, V. Del Marmol, J. Malvehy, E. Cinotti, and J. L. Perrot, “Line-field confocal optical coherence tomography for high-resolution noninvasive imaging of skin tumors,',” J. Biomed. Opt. 23(10), 1 (2018).
[Crossref]

M. Cazalas, O. Levecq, H. Azimani, D. Siret, A. Barut, M. Suppa, V. del Marmol, J. Malvehy, E. Cinotti, P. Rubegni, J. L. Perrot, and A. Dubois, “Skin lesion imaging with line-field confocal optical coherence tomography,” in Photonics in Dermatology and Plastic Surgery 2019, vol. 10851B. Choi and H. Zeng, eds., International Society for Optics and Photonics (SPIE, 2019), pp. 61–68.

Szkulmowski, M.

Thompson, K. P.

Tjiu, J.-W.

Tsai, C.-C.

Vabre, L.

Vitkin, I. A.

B. Qi, P. A. Himmer, M. L. Gordon, V. X. D. Yang, D. L. Dickensheets, and I. A. Vitkin, “Dynamic focus control in high-speed optical coherence tomography based on a microelectromechanical mirror,” Opt. Commun. 232(1-6), 123–128 (2004).
[Crossref]

Wang, K.

A. Levine, K. Wang, and O. Markowitz, “Optical Coherence Tomography in the Diagnosis of Skin Cancer,” Dermatol. Clin. 35(4), 465–488 (2017).
[Crossref]

Werkmeister, R. M.

Williams, B. M.

Willoughby, C.

Wnuk, P.

Wojtkowski, M.

Xue, W.

J. Ogien, D. Siret, O. Levecq, H. Azimani, A. David, W. Xue, J. L. Perrot, and A. Dubois, “Line-field confocal optical coherence tomography,” in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXIII, J. A. Izatt and J. G. Fujimoto, eds. (SPIE, 2019).

Yamanari, M.

Yang, C.

Yang, V. X. D.

B. Qi, P. A. Himmer, M. L. Gordon, V. X. D. Yang, D. L. Dickensheets, and I. A. Vitkin, “Dynamic focus control in high-speed optical coherence tomography based on a microelectromechanical mirror,” Opt. Commun. 232(1-6), 123–128 (2004).
[Crossref]

Yasuno, Y.

Yatagai, T.

Yung, K. M.

J. M. Schmitt, S. L. Lee, and K. M. Yung, “An optical coherence microscope with enhanced resolving power in thick tissue,” Opt. Commun. 142(4-6), 203–207 (1997).
[Crossref]

Zhang, J.

A. Divetia, T.-H. Hsieh, J. Zhang, Z. Chen, M. Bachman, and G.-P. Li, “Dynamically focused optical coherence tomography for endoscopic applications,” Appl. Phys. Lett. 86(10), 103902 (2005).
[Crossref]

Zheng, Y.

Zhou, C.

Y. Chen, S.-W. Huang, C. Zhou, B. Potsaid, and J. G. Fujimoto, “Improved detection sensitivity of line-scanning optical coherence microscopy,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1094–1099 (2012).
[Crossref]

Zuluaga, A. F.

Appl. Opt. (4)

Appl. Phys. Lett. (1)

A. Divetia, T.-H. Hsieh, J. Zhang, Z. Chen, M. Bachman, and G.-P. Li, “Dynamically focused optical coherence tomography for endoscopic applications,” Appl. Phys. Lett. 86(10), 103902 (2005).
[Crossref]

Biomed. Opt. Express (6)

A. Davis, O. Levecq, H. Azimani, D. Siret, and A. Dubois, “Simultaneous dual-band line-field confocal optical coherence tomography. Application to skin imaging,” Biomed. Opt. Express 10(2), 694–706 (2019).
[Crossref]

D. Borycki, M. Hamkało, M. Nowakowski, M. Szkulmowski, and M. Wojtkowski, “Spatiotemporal optical coherence (STOC) manipulation suppresses coherent crosstalk in full-field swept-source optical coherence tomography,” Biomed. Opt. Express 10(4), 2032–2054 (2019).
[Crossref]

D. J. Fechtig, B. Grajciar, T. Schmoll, C. Blatter, R. M. Werkmeister, W. Drexler, and R. A. Leitgeb, “Line-field parallel swept source MHz OCT for structural and functional retinal imaging,” Biomed. Opt. Express 6(3), 716–735 (2015).
[Crossref]

S. Liu, J. A. Mulligan, and S. G. Adie, “Volumetric optical coherence microscopy with a high space-bandwidth-time product enabled by hybrid adaptive optics,” Biomed. Opt. Express 9(7), 3137–3152 (2018).
[Crossref]

C.-C. Tsai, C.-K. Chang, K.-Y. Hsu, T.-S. Ho, M.-Y. Lin, J.-W. Tjiu, and S.-L. Huang, “Full-depth epidermis tomography using a Mirau-based full-field optical coherence tomography,” Biomed. Opt. Express 5(9), 3001–3010 (2014).
[Crossref]

D. S. Gareau, J. G. Krueger, J. E. Hawkes, S. R. Lish, M. P. Dietz, A. G. Mülberger, E. W. Mu, M. L. Stevenson, J. M. Lewin, S. A. Meehan, and J. A. Carucci, “Line scanning, stage scanning confocal microscope (LSSSCM),” Biomed. Opt. Express 8(8), 3807–3815 (2017).
[Crossref]

Dermatol. Clin. (1)

A. Levine, K. Wang, and O. Markowitz, “Optical Coherence Tomography in the Diagnosis of Skin Cancer,” Dermatol. Clin. 35(4), 465–488 (2017).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

Y. Chen, S.-W. Huang, C. Zhou, B. Potsaid, and J. G. Fujimoto, “Improved detection sensitivity of line-scanning optical coherence microscopy,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1094–1099 (2012).
[Crossref]

J. Biomed. Opt. (1)

A. Dubois, O. Levecq, H. Azimani, D. Siret, A. Barut, M. Suppa, V. Del Marmol, J. Malvehy, E. Cinotti, and J. L. Perrot, “Line-field confocal optical coherence tomography for high-resolution noninvasive imaging of skin tumors,',” J. Biomed. Opt. 23(10), 1 (2018).
[Crossref]

J. Microsc. (1)

A. Gh. Podoleanu, “Optical coherence tomography,” J. Microsc. 247(3), 209–219 (2012).
[Crossref]

J. Mod. Opt. (2)

D. J. Fechtig, A. Kumar, W. Drexler, and R. A. Leitgeb, “Full range line-field parallel swept source imaging utilizing digital refocusing,” J. Mod. Opt. 62(21), 1801–1807 (2015).
[Crossref]

F. Lexer, C. K. Hitzenberger, W. Drexler, S. Molebny, H. Sattmann, M. Sticker, and A. F. Fercher, “Dynamic coherent focus OCT with depth-independent transversal resolution,” J. Mod. Opt. 46(3), 541–553 (1999).
[Crossref]

J. Opt. Soc. Am. A (1)

Opt. Commun. (3)

A. Dubois, G. Moneron, and A. C. Boccara, “Thermal-light full-field optical coherence tomography in the 1.2 micron wavelength region,” Opt. Commun. 266(2), 738–743 (2006).
[Crossref]

B. Qi, P. A. Himmer, M. L. Gordon, V. X. D. Yang, D. L. Dickensheets, and I. A. Vitkin, “Dynamic focus control in high-speed optical coherence tomography based on a microelectromechanical mirror,” Opt. Commun. 232(1-6), 123–128 (2004).
[Crossref]

J. M. Schmitt, S. L. Lee, and K. M. Yung, “An optical coherence microscope with enhanced resolving power in thick tissue,” Opt. Commun. 142(4-6), 203–207 (1997).
[Crossref]

Opt. Express (6)

Opt. Lett. (6)

Optica (1)

Proc. SPIE (1)

M. Mujat, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, “Swept-source parallel OCT,” Proc. SPIE 7168, 71681E (2009).
[Crossref]

Rev. Sci. Instrum. (1)

O. V. Lyulko, G. Randers-Pehrson, and D. J. Brenner, “Simultaneous immersion Mirau interferometry,” Rev. Sci. Instrum. 84(5), 053701 (2013).
[Crossref]

Other (3)

A. Dubois and A. C. Boccara, (2008) “Full-Field Optical Coherence Tomography,” In: W. Drexler and J. G Fujimoto, eds. Optical Coherence Tomography. Biological and Medical Physics, Biomedical Engineering. Springer, Berlin, Heidelberg.

M. Cazalas, O. Levecq, H. Azimani, D. Siret, A. Barut, M. Suppa, V. del Marmol, J. Malvehy, E. Cinotti, P. Rubegni, J. L. Perrot, and A. Dubois, “Skin lesion imaging with line-field confocal optical coherence tomography,” in Photonics in Dermatology and Plastic Surgery 2019, vol. 10851B. Choi and H. Zeng, eds., International Society for Optics and Photonics (SPIE, 2019), pp. 61–68.

J. Ogien, D. Siret, O. Levecq, H. Azimani, A. David, W. Xue, J. L. Perrot, and A. Dubois, “Line-field confocal optical coherence tomography,” in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXIII, J. A. Izatt and J. G. Fujimoto, eds. (SPIE, 2019).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Schematic representation of elements to move in LC-OCT devices based on the Linnik interferometer for B-scan imaging. MO1, MO2: microscope objectives; BS: beam splitter; RM: reference mirror.
Fig. 2.
Fig. 2. Michelson (a) and Mirau (b) interference objectives incorporating a microscope objective (MO), a beam-splitter (BS) and a reference mirror (RM). The interference objectives are displaced axially to scan the sample depth.
Fig. 3.
Fig. 3. (a) Schematic of the custom-designed immersion Mirau interferometer. The interferometric attachment, mounted to a threaded water immersion microscope objective, contains a beam splitter and a reference mirror (RM). It is filled with immersion oil. (b) Schematic of the Mirau interferometer immersed in a tank filled with immersion oil. The bottom of the tank has a glass window. The Mirau interferometer is displaced axially to image inside the sample placed against the window.
Fig. 4.
Fig. 4. Layout of the Mirau-based LC-OCT device. The Mirau interferometer is mounted on a piezoelectric (PZT) translation stage (gray dashed frame) for scanning the sample depth. NLF: nonlinear fiber; CL: cylindrical lens; PBS: polarization beam-splitter; QWP: quarter-wave plate; TL: tube lens. The solid red lines represent the beam in the plane of the figure (the cylindrical lens has no effect in this plane). The dotted red lines represent the beam in the direction orthogonal to the plane of the figure.
Fig. 5.
Fig. 5. Periodic current driving the oscillation of the piezoelectric stage. The asymmetric triangle signal has a frequency of ${{{f}}_{{{PZT}}}} = {1}/{{T}} = {12}\;{\rm{Hz}}$ and a duty cycle of 80%. Only images acquired during the slow positive ramps are used.
Fig. 6.
Fig. 6. Axial response to a weak reflectivity (8${\times} $10-5) plane interface, calibrated in reflectivity and plotted in decibels (dB). The measured noise-floor (black solid line) corresponds to the opposite of the detection sensitivity.
Fig. 7.
Fig. 7. Measurement of the axial resolution. The red dotted line is the axial response to a plane interface, obtained from digital demodulation of the interference fringes (blue solid line). The axial resolution is defined as the FWHM of the fringe envelope.
Fig. 8.
Fig. 8. Image of human skin acquired with Mirau-based LC-OCT. Several skin features are revealed including keratinocytes (K); CF: collagen fibers (CF); blood vessels (BV) and the dermal-epidermal junction (DEJ). Scale bar: 200 µm.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

f c a m = Z 0.8 δ f P Z T = 84 k H z .
I R e f = ( I 0 / 2 ) B B S 2 R R e f ,
I S = ( I 0 / 2 ) ( 1 R B S ) 2 R S ,
ρ M i r a u = ( 1 R B S ) 2 R S R B S 2 R R e f .
I R e f , L i n n i k = ( I 0 / 4 ) R R e f , L i n n i k ,
I S , L i n n i k = ( I 0 / 4 ) R S ,
ρ L i n n i k = R S R R e f , L i n n i k .

Metrics