Abstract

Recent developments and commercial availability of low-noise and bright infrared (IR) supercontinuum sources initiated intensive applied research in the last few years. Covering a significant part of near- and mid-infrared spectral ranges, supercontinuum radiation opened up unique possibilities and alternatives for the well-established imaging technique of optical coherence tomography (OCT). In this contribution, we demonstrate the development, performance, and maturity of a cost-efficient dual-band Fourier-domain IR OCT system (2 µm and 4 µm central wavelengths). The proposed OCT setup is elegantly employing a single supercontinuum source and a pyroelectric linear array. We discuss adapted application-oriented approaches to signal acquisition and post-processing when thermal detectors are applied in interferometers. In the experimental part, the efficiency of the dual-band detection is evaluated. Practical results and direct comparisons of the OCT system operating within the employed sub-bands are exhibited and discussed. Furthermore, we introduce the 2 µm OCT sub-system as an affordable alternative for art diagnosis; therefore, high resolution and sensitive measurements of the painting mock-ups are presented. Finally, potentials of the dual-band detection are demonstrated for lithography-based manufactured industrial ceramics.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Mid-infrared Fourier-domain optical coherence tomography with a pyroelectric linear array

Ivan Zorin, Rong Su, Andrii Prylepa, Jakob Kilgus, Markus Brandstetter, and Bettina Heise
Opt. Express 26(25) 33428-33439 (2018)

Combined photoacoustic and optical coherence tomography using a single near-infrared supercontinuum laser source

Changho Lee, Seunghoon Han, Sehui Kim, Mansik Jeon, Min Yong Jeon, Chulhong Kim, and Jeehyun Kim
Appl. Opt. 52(9) 1824-1828 (2013)

Noise of supercontinuum sources in spectral domain optical coherence tomography

Mikkel Jensen, Iván Bravo Gonzalo, Rasmus Dybbro Engelsholm, Michael Maria, Niels Møller Israelsen, Adrian Podoleanu, and Ole Bang
J. Opt. Soc. Am. B 36(2) A154-A160 (2019)

References

  • View by:
  • |
  • |
  • |

  1. L. Shaw, V. Nguyen, J. Sanghera, I. Aggarwal, P. Thielen, and F. Kung, “Ir supercontinuum generation in as-se photonic crystal fiber,” in Advanced Solid-State Photonics (TOPS), (Optical Society of America, 2005), p. 864.
  2. C. Xia, M. Kumar, O. P. Kulkarni, M. N. Islam, J. Fred L. Terry, M. J. Freeman, M. Poulain, and G. Mazé, “Mid-infrared supercontinuum generation to 4.5 µm in zblan fluoride fibers by nanosecond diode pumping,” Opt. Lett. 31(17), 2553–2555 (2006).
    [Crossref]
  3. P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. Cordeiro, J. Knight, and F. G. Omenetto, “Over 4000 nm bandwidth of mid-ir supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite pcfs,” Opt. Express 16(10), 7161–7168 (2008).
    [Crossref]
  4. P. M. Moselund, C. Petersen, S. Dupont, C. Agger, O. Bang, and S. R. Keiding, “Supercontinuum: broad as a lamp, bright as a laser, now in the mid-infrared,” in Laser Technology for Defense and Security VIII, vol. 8381M. Dubinskii and S. G. Post, eds., International Society for Optics and Photonics (SPIE, 2012), pp. 265–270.
  5. C. R. Petersen, P. M. Moselund, L. Huot, L. Hooper, and O. Bang, “Towards a table-top synchrotron based on supercontinuum generation,” Infrared Phys. Technol. 91, 182–186 (2018).
    [Crossref]
  6. S. Dai, Y. Wang, X. Peng, P. Zhang, X. Wang, and Y. Xu, “A review of mid-infrared supercontinuum generation in chalcogenide glass fibers,” Appl. Sci. 8(5), 707 (2018).
    [Crossref]
  7. A. M. Heidt, J. H. V. Price, C. Baskiotis, J. S. Feehan, Z. Li, S. U. Alam, and D. J. Richardson, “Mid-infrared zblan fiber supercontinuum source using picosecond diode-pumping at 2 µm,” Opt. Express 21(20), 24281–24287 (2013).
    [Crossref]
  8. P. M. Moselund, C. Petersen, L. Leick, J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Highly stable, all-fiber, high power zblan supercontinuum source reaching 4.75 µm used for nanosecond mid-ir spectroscopy,” in Advanced Solid-State Lasers Congress, (Optical Society of America, 2013), p. JTh5A.9.
  9. J. Swiderski and M. Michalska, “High-power supercontinuum generation in a zblan fiber with very efficient power distribution toward the mid-infrared,” Opt. Lett. 39(4), 910–913 (2014).
    [Crossref]
  10. W. Yang, B. Zhang, G. Xue, K. Yin, and J. Hou, “Thirteen watt all-fiber mid-infrared supercontinuum generation in a single mode zblan fiber pumped by a 2µm mopa system,” Opt. Lett. 39(7), 1849–1852 (2014).
    [Crossref]
  11. A. N. Ghosh, M. Meneghetti, C. R. Petersen, O. Bang, L. Brilland, S. Venck, J. Troles, J. M. Dudley, and T. Sylvestre, “Chalcogenide-glass polarization-maintaining photonic crystal fiber for mid-infrared supercontinuum generation,” JPhys Photonics 1(4), 044003 (2019).
    [Crossref]
  12. K. Ke, C. Xia, M. N. Islam, M. J. Welsh, and M. J. Freeman, “Mid-infrared absorption spectroscopy and differential damage in vitro between lipids and proteins by an all-fiber-integrated supercontinuum laser,” Opt. Express 17(15), 12627–12640 (2009).
    [Crossref]
  13. M. Kumar, M. N. Islam, F. L. Terry, M. J. Freeman, A. Chan, M. Neelakandan, and T. Manzur, “Stand-off detection of solid targets with diffuse reflection spectroscopy using a high-power mid-infrared supercontinuum source,” Appl. Opt. 51(15), 2794–2807 (2012).
    [Crossref]
  14. S. Dupont, C. Petersen, J. Thøgersen, C. Agger, O. Bang, and S. R. Keiding, “Ir microscopy utilizing intense supercontinuum light source,” Opt. Express 20(5), 4887–4892 (2012).
    [Crossref]
  15. C. R. Petersen, N. Prtljaga, M. Farries, J. Ward, B. Napier, G. R. Lloyd, J. Nallala, N. Stone, and O. Bang, “Mid-infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source,” Opt. Lett. 43(5), 999–1002 (2018).
    [Crossref]
  16. J. Kilgus, K. Duswald, G. Langer, and M. Brandstetter, “Mid-infrared standoff spectroscopy using a supercontinuum laser with compact fabry-pérot filter spectrometers,” Appl. Spectrosc. 72(4), 634–642 (2018).
    [Crossref]
  17. J. Kilgus, G. Langer, K. Duswald, R. Zimmerleiter, I. Zorin, T. Berer, and M. Brandstetter, “Diffraction limited mid-infrared reflectance microspectroscopy with a supercontinuum laser,” Opt. Express 26(23), 30644–30654 (2018).
    [Crossref]
  18. A. Saleh, A. Aalto, P. Ryczkowski, G. Genty, and J. Toivonen, “Short-range supercontinuum-based lidar for temperature profiling,” Opt. Lett. 44(17), 4223–4226 (2019).
    [Crossref]
  19. M. K. Dasa, G. Nteroli, P. Bowen, G. Messa, Y. Feng, C. R. Petersen, S. Koutsikou, M. Bondu, P. M. Moselund, A. Podoleanu, A. Bradu, C. Markos, and O. Bang, “All-fibre supercontinuum laser for in vivo multispectral photoacoustic microscopy of lipids in the extended near-infrared region,” Photoacoustics 18, 100163 (2020).
    [Crossref]
  20. K. Liu, J. Liu, H. Shi, F. Tan, and P. Wang, “High power mid-infrared supercontinuum generation in a single-mode zblan fiber with up to 21.8 w average output power,” Opt. Express 22(20), 24384–24391 (2014).
    [Crossref]
  21. Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0-16 µm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1700005 (2017).
    [Crossref]
  22. R. A. Martinez, G. Plant, K. Guo, B. Janiszewski, M. J. Freeman, R. L. Maynard, M. N. Islam, F. L. Terry, O. Alvarez, F. Chenard, R. Bedford, R. Gibson, and A. I. Ifarraguerri, “Mid-infrared supercontinuum generation from 1.6 to >11µm using concatenated step-index fluoride and chalcogenide fibers,” Opt. Lett. 43(2), 296–299 (2018).
    [Crossref]
  23. A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt. 12(5), 051403 (2007).
    [Crossref]
  24. N. D. Shemonski, F. A. South, Y.-Z. Liu, S. G. Adie, S. P. Carney, and S. A. Boppart, “Computational high-resolution optical imaging of the living human retina,” Nat. Photonics 9(7), 440–443 (2015).
    [Crossref]
  25. D. Stifter, “Beyond biomedicine: a review of alternative applications and developments for optical coherence tomography,” Appl. Phys. B 88(3), 337–357 (2007).
    [Crossref]
  26. R. Su, M. Kirillin, E. W. Chang, E. Sergeeva, S. H. Yun, and L. Mattsson, “Perspectives of mid-infrared optical coherence tomography for inspection and micrometrology of industrial ceramics,” Opt. Express 22(13), 15804–15819 (2014).
    [Crossref]
  27. I. Zorin, R. Su, A. Prylepa, J. Kilgus, M. Brandstetter, and B. Heise, “Mid-infrared fourier-domain optical coherence tomography with a pyroelectric linear array,” Opt. Express 26(25), 33428–33439 (2018).
    [Crossref]
  28. N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschläger, P. Tidemand-Lichtenberg, C. Pedersen, A. Podoleanu, and O. Bang, “Real-time high-resolution mid-infrared optical coherence tomography,” Light: Sci. Appl. 8(1), 11–7538 (2019).
    [Crossref]
  29. A. Vanselow, P. Kaufmann, I. Zorin, B. Heise, H. Chrzanowski, and S. Ramelow, “Mid-infrared frequency-domain optical coherence tomography with undetected photons,” in Quantum Information and Measurement (QIM) V: Quantum Technologies, (Optical Society of America, 2019), p. T5A.86.
  30. U. Scheithauer, E. Schwarzer, T. Moritz, and A. Michaelis, “Additive manufacturing of ceramic heat exchanger: Opportunities and limits of the lithography-based ceramic manufacturing (lcm),” J. Mater. Eng. Perform. 27(1), 14–20 (2018).
    [Crossref]
  31. A. Zocca, P. Colombo, C. M. Gomes, and J. Günster, “Additive manufacturing of ceramics: Issues, potentialities, and opportunities,” J. Am. Ceram. Soc. 98(7), 1983–2001 (2015).
    [Crossref]
  32. I. Zorin, J. Kilgus, R. Su, B. Lendl, M. Brandstetter, and B. Heise, “Multimodal mid-infrared optical coherence tomography and spectroscopy for non-destructive testing and art diagnosis,” in Optics for Arts, Architecture, and Archaeology VII, vol. 11058H. Liang, R. Groves, and P. Targowski, eds., International Society for Optics and Photonics (SPIE, 2019), pp. 74–88.
  33. C. S. Cheung, J. M. O. Daniel, M. Tokurakawa, W. A. Clarkson, and H. Liang, “High resolution fourier domain optical coherence tomography in the 2 µm wavelength range using a broadband supercontinuum source,” Opt. Express 23(3), 1992–2001 (2015).
    [Crossref]
  34. W. Drexler and J. G. Fujimoto, Optical Coherence Tomography, Technology and Applications (Springer International Publishing, 2008).
  35. S. W. Lee, H. W. Jeong, B. M. Kim, Y. C. Ahn, W. Jung, and Z. Chen, “Optimization for axial resolution, depth range, and sensitivity of spectral domain optical coherence tomography at 1.3 um,” J. Korean Phys. Soc. 55(6), 2354–2360 (2009).
    [Crossref]
  36. M. Jensen, I. B. Gonzalo, R. D. Engelsholm, M. Maria, N. M. Israelsen, A. Podoleanu, and O. Bang, “Noise of supercontinuum sources in spectral domain optical coherence tomography,” J. Opt. Soc. Am. B 36(2), A154–A160 (2019).
    [Crossref]
  37. C. Agger, C. Petersen, S. Dupont, H. Steffensen, J. K. Lyngsø, C. L. Thomsen, J. Thøgersen, S. R. Keiding, and O. Bang, “Supercontinuum generation in zblan fibers—detailed comparison between measurement and simulation,” J. Opt. Soc. Am. B 29(4), 635–645 (2012).
    [Crossref]
  38. G. Genty, S. Coen, and J. M. Dudley, “Fiber supercontinuum sources (invited),” J. Opt. Soc. Am. B 24(8), 1771–1785 (2007).
    [Crossref]
  39. I. Zorin, J. Kilgus, K. Duswald, B. Lendl, B. Heise, and M. Brandstetter, “Sensitivity-enhanced fourier transform mid-infrared spectroscopy using a supercontinuum laser source,” Appl. Spectrosc, doc. ID ASP-893364 (posted 17 November 2019, in press).
  40. H. H. Li, “Refractive index of alkaline earth halides and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9(1), 161–290 (1980).
    [Crossref]
  41. I. H. Malitson, “A redetermination of some optical properties of calcium fluoride,” Appl. Opt. 2(11), 1103–1107 (1963).
    [Crossref]
  42. A. Rogalski, Infrared Detectors 2nd Edition (CRC, 2011).
  43. R. Köhler, D. Wassilew, V. Norkus, M. Schossig, and G. Hofmann, “Enhanced pyroelectric linear arrays for infrared spectroscopy,” in Proceedings IRS2 2017, IR Sensors and Arrays, vol. I1 (2017).
  44. D. E. Marshall, “A review of pyroelectric detector technology,” in Utilization of Infrared Detectors, vol. 0132 (1978).
  45. A. Hossain and M. H. Rashid, “Pyroelectric detectors and their applications,” IEEE Trans. Ind. Appl. 27(5), 824–829 (1991).
    [Crossref]
  46. A. Agrawal, T. J. Pfefer, P. D. Woolliams, P. H. Tomlins, and G. Nehmetallah, “Methods to assess sensitivity of optical coherence tomography systems,” Biomed. Opt. Express 8(2), 902–917 (2017).
    [Crossref]
  47. S. H. Yun, G. J. Tearney, B. E. Bouma, B. H. Park, and J. F. de Boer, “High-speed spectral-domain optical coherence tomography at 1.3 µm wavelength,” Opt. Express 11(26), 3598–3604 (2003).
    [Crossref]
  48. H. Liang, R. Lange, B. Peric, and M. Spring, “Optimum spectral window for imaging of art with optical coherence tomography,” Appl. Phys. B 111(4), 589–602 (2013).
    [Crossref]
  49. C. S. Cheung, J. M. O. Daniel, M. Tokurakawa, W. A. Clarkson, and H. Liang, “Optical coherence tomography in the 2 µm wavelength regime for paint and other high opacity materials,” Opt. Lett. 39(22), 6509–6512 (2014).
    [Crossref]
  50. M. Schwentenwein and J. Homa, “Additive manufacturing of dense alumina ceramics,” Int. J. Appl. Ceram. Technol. 12(1), 1–7 (2015).
    [Crossref]

2020 (1)

M. K. Dasa, G. Nteroli, P. Bowen, G. Messa, Y. Feng, C. R. Petersen, S. Koutsikou, M. Bondu, P. M. Moselund, A. Podoleanu, A. Bradu, C. Markos, and O. Bang, “All-fibre supercontinuum laser for in vivo multispectral photoacoustic microscopy of lipids in the extended near-infrared region,” Photoacoustics 18, 100163 (2020).
[Crossref]

2019 (4)

A. Saleh, A. Aalto, P. Ryczkowski, G. Genty, and J. Toivonen, “Short-range supercontinuum-based lidar for temperature profiling,” Opt. Lett. 44(17), 4223–4226 (2019).
[Crossref]

A. N. Ghosh, M. Meneghetti, C. R. Petersen, O. Bang, L. Brilland, S. Venck, J. Troles, J. M. Dudley, and T. Sylvestre, “Chalcogenide-glass polarization-maintaining photonic crystal fiber for mid-infrared supercontinuum generation,” JPhys Photonics 1(4), 044003 (2019).
[Crossref]

N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschläger, P. Tidemand-Lichtenberg, C. Pedersen, A. Podoleanu, and O. Bang, “Real-time high-resolution mid-infrared optical coherence tomography,” Light: Sci. Appl. 8(1), 11–7538 (2019).
[Crossref]

M. Jensen, I. B. Gonzalo, R. D. Engelsholm, M. Maria, N. M. Israelsen, A. Podoleanu, and O. Bang, “Noise of supercontinuum sources in spectral domain optical coherence tomography,” J. Opt. Soc. Am. B 36(2), A154–A160 (2019).
[Crossref]

2018 (8)

I. Zorin, R. Su, A. Prylepa, J. Kilgus, M. Brandstetter, and B. Heise, “Mid-infrared fourier-domain optical coherence tomography with a pyroelectric linear array,” Opt. Express 26(25), 33428–33439 (2018).
[Crossref]

U. Scheithauer, E. Schwarzer, T. Moritz, and A. Michaelis, “Additive manufacturing of ceramic heat exchanger: Opportunities and limits of the lithography-based ceramic manufacturing (lcm),” J. Mater. Eng. Perform. 27(1), 14–20 (2018).
[Crossref]

R. A. Martinez, G. Plant, K. Guo, B. Janiszewski, M. J. Freeman, R. L. Maynard, M. N. Islam, F. L. Terry, O. Alvarez, F. Chenard, R. Bedford, R. Gibson, and A. I. Ifarraguerri, “Mid-infrared supercontinuum generation from 1.6 to >11µm using concatenated step-index fluoride and chalcogenide fibers,” Opt. Lett. 43(2), 296–299 (2018).
[Crossref]

C. R. Petersen, P. M. Moselund, L. Huot, L. Hooper, and O. Bang, “Towards a table-top synchrotron based on supercontinuum generation,” Infrared Phys. Technol. 91, 182–186 (2018).
[Crossref]

S. Dai, Y. Wang, X. Peng, P. Zhang, X. Wang, and Y. Xu, “A review of mid-infrared supercontinuum generation in chalcogenide glass fibers,” Appl. Sci. 8(5), 707 (2018).
[Crossref]

C. R. Petersen, N. Prtljaga, M. Farries, J. Ward, B. Napier, G. R. Lloyd, J. Nallala, N. Stone, and O. Bang, “Mid-infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source,” Opt. Lett. 43(5), 999–1002 (2018).
[Crossref]

J. Kilgus, K. Duswald, G. Langer, and M. Brandstetter, “Mid-infrared standoff spectroscopy using a supercontinuum laser with compact fabry-pérot filter spectrometers,” Appl. Spectrosc. 72(4), 634–642 (2018).
[Crossref]

J. Kilgus, G. Langer, K. Duswald, R. Zimmerleiter, I. Zorin, T. Berer, and M. Brandstetter, “Diffraction limited mid-infrared reflectance microspectroscopy with a supercontinuum laser,” Opt. Express 26(23), 30644–30654 (2018).
[Crossref]

2017 (2)

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0-16 µm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1700005 (2017).
[Crossref]

A. Agrawal, T. J. Pfefer, P. D. Woolliams, P. H. Tomlins, and G. Nehmetallah, “Methods to assess sensitivity of optical coherence tomography systems,” Biomed. Opt. Express 8(2), 902–917 (2017).
[Crossref]

2015 (4)

N. D. Shemonski, F. A. South, Y.-Z. Liu, S. G. Adie, S. P. Carney, and S. A. Boppart, “Computational high-resolution optical imaging of the living human retina,” Nat. Photonics 9(7), 440–443 (2015).
[Crossref]

A. Zocca, P. Colombo, C. M. Gomes, and J. Günster, “Additive manufacturing of ceramics: Issues, potentialities, and opportunities,” J. Am. Ceram. Soc. 98(7), 1983–2001 (2015).
[Crossref]

C. S. Cheung, J. M. O. Daniel, M. Tokurakawa, W. A. Clarkson, and H. Liang, “High resolution fourier domain optical coherence tomography in the 2 µm wavelength range using a broadband supercontinuum source,” Opt. Express 23(3), 1992–2001 (2015).
[Crossref]

M. Schwentenwein and J. Homa, “Additive manufacturing of dense alumina ceramics,” Int. J. Appl. Ceram. Technol. 12(1), 1–7 (2015).
[Crossref]

2014 (5)

2013 (2)

A. M. Heidt, J. H. V. Price, C. Baskiotis, J. S. Feehan, Z. Li, S. U. Alam, and D. J. Richardson, “Mid-infrared zblan fiber supercontinuum source using picosecond diode-pumping at 2 µm,” Opt. Express 21(20), 24281–24287 (2013).
[Crossref]

H. Liang, R. Lange, B. Peric, and M. Spring, “Optimum spectral window for imaging of art with optical coherence tomography,” Appl. Phys. B 111(4), 589–602 (2013).
[Crossref]

2012 (3)

2009 (2)

S. W. Lee, H. W. Jeong, B. M. Kim, Y. C. Ahn, W. Jung, and Z. Chen, “Optimization for axial resolution, depth range, and sensitivity of spectral domain optical coherence tomography at 1.3 um,” J. Korean Phys. Soc. 55(6), 2354–2360 (2009).
[Crossref]

K. Ke, C. Xia, M. N. Islam, M. J. Welsh, and M. J. Freeman, “Mid-infrared absorption spectroscopy and differential damage in vitro between lipids and proteins by an all-fiber-integrated supercontinuum laser,” Opt. Express 17(15), 12627–12640 (2009).
[Crossref]

2008 (1)

2007 (3)

D. Stifter, “Beyond biomedicine: a review of alternative applications and developments for optical coherence tomography,” Appl. Phys. B 88(3), 337–357 (2007).
[Crossref]

A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt. 12(5), 051403 (2007).
[Crossref]

G. Genty, S. Coen, and J. M. Dudley, “Fiber supercontinuum sources (invited),” J. Opt. Soc. Am. B 24(8), 1771–1785 (2007).
[Crossref]

2006 (1)

2003 (1)

1991 (1)

A. Hossain and M. H. Rashid, “Pyroelectric detectors and their applications,” IEEE Trans. Ind. Appl. 27(5), 824–829 (1991).
[Crossref]

1980 (1)

H. H. Li, “Refractive index of alkaline earth halides and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9(1), 161–290 (1980).
[Crossref]

1963 (1)

Aalto, A.

Adie, S. G.

N. D. Shemonski, F. A. South, Y.-Z. Liu, S. G. Adie, S. P. Carney, and S. A. Boppart, “Computational high-resolution optical imaging of the living human retina,” Nat. Photonics 9(7), 440–443 (2015).
[Crossref]

Aggarwal, I.

L. Shaw, V. Nguyen, J. Sanghera, I. Aggarwal, P. Thielen, and F. Kung, “Ir supercontinuum generation in as-se photonic crystal fiber,” in Advanced Solid-State Photonics (TOPS), (Optical Society of America, 2005), p. 864.

Agger, C.

S. Dupont, C. Petersen, J. Thøgersen, C. Agger, O. Bang, and S. R. Keiding, “Ir microscopy utilizing intense supercontinuum light source,” Opt. Express 20(5), 4887–4892 (2012).
[Crossref]

C. Agger, C. Petersen, S. Dupont, H. Steffensen, J. K. Lyngsø, C. L. Thomsen, J. Thøgersen, S. R. Keiding, and O. Bang, “Supercontinuum generation in zblan fibers—detailed comparison between measurement and simulation,” J. Opt. Soc. Am. B 29(4), 635–645 (2012).
[Crossref]

P. M. Moselund, C. Petersen, S. Dupont, C. Agger, O. Bang, and S. R. Keiding, “Supercontinuum: broad as a lamp, bright as a laser, now in the mid-infrared,” in Laser Technology for Defense and Security VIII, vol. 8381M. Dubinskii and S. G. Post, eds., International Society for Optics and Photonics (SPIE, 2012), pp. 265–270.

Agrawal, A.

Ahn, Y. C.

S. W. Lee, H. W. Jeong, B. M. Kim, Y. C. Ahn, W. Jung, and Z. Chen, “Optimization for axial resolution, depth range, and sensitivity of spectral domain optical coherence tomography at 1.3 um,” J. Korean Phys. Soc. 55(6), 2354–2360 (2009).
[Crossref]

Alam, S. U.

Alvarez, O.

Bang, O.

M. K. Dasa, G. Nteroli, P. Bowen, G. Messa, Y. Feng, C. R. Petersen, S. Koutsikou, M. Bondu, P. M. Moselund, A. Podoleanu, A. Bradu, C. Markos, and O. Bang, “All-fibre supercontinuum laser for in vivo multispectral photoacoustic microscopy of lipids in the extended near-infrared region,” Photoacoustics 18, 100163 (2020).
[Crossref]

A. N. Ghosh, M. Meneghetti, C. R. Petersen, O. Bang, L. Brilland, S. Venck, J. Troles, J. M. Dudley, and T. Sylvestre, “Chalcogenide-glass polarization-maintaining photonic crystal fiber for mid-infrared supercontinuum generation,” JPhys Photonics 1(4), 044003 (2019).
[Crossref]

N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschläger, P. Tidemand-Lichtenberg, C. Pedersen, A. Podoleanu, and O. Bang, “Real-time high-resolution mid-infrared optical coherence tomography,” Light: Sci. Appl. 8(1), 11–7538 (2019).
[Crossref]

M. Jensen, I. B. Gonzalo, R. D. Engelsholm, M. Maria, N. M. Israelsen, A. Podoleanu, and O. Bang, “Noise of supercontinuum sources in spectral domain optical coherence tomography,” J. Opt. Soc. Am. B 36(2), A154–A160 (2019).
[Crossref]

C. R. Petersen, P. M. Moselund, L. Huot, L. Hooper, and O. Bang, “Towards a table-top synchrotron based on supercontinuum generation,” Infrared Phys. Technol. 91, 182–186 (2018).
[Crossref]

C. R. Petersen, N. Prtljaga, M. Farries, J. Ward, B. Napier, G. R. Lloyd, J. Nallala, N. Stone, and O. Bang, “Mid-infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source,” Opt. Lett. 43(5), 999–1002 (2018).
[Crossref]

S. Dupont, C. Petersen, J. Thøgersen, C. Agger, O. Bang, and S. R. Keiding, “Ir microscopy utilizing intense supercontinuum light source,” Opt. Express 20(5), 4887–4892 (2012).
[Crossref]

C. Agger, C. Petersen, S. Dupont, H. Steffensen, J. K. Lyngsø, C. L. Thomsen, J. Thøgersen, S. R. Keiding, and O. Bang, “Supercontinuum generation in zblan fibers—detailed comparison between measurement and simulation,” J. Opt. Soc. Am. B 29(4), 635–645 (2012).
[Crossref]

P. M. Moselund, C. Petersen, S. Dupont, C. Agger, O. Bang, and S. R. Keiding, “Supercontinuum: broad as a lamp, bright as a laser, now in the mid-infrared,” in Laser Technology for Defense and Security VIII, vol. 8381M. Dubinskii and S. G. Post, eds., International Society for Optics and Photonics (SPIE, 2012), pp. 265–270.

Barh, A.

N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschläger, P. Tidemand-Lichtenberg, C. Pedersen, A. Podoleanu, and O. Bang, “Real-time high-resolution mid-infrared optical coherence tomography,” Light: Sci. Appl. 8(1), 11–7538 (2019).
[Crossref]

Baskiotis, C.

Bedford, R.

Berer, T.

Bondu, M.

M. K. Dasa, G. Nteroli, P. Bowen, G. Messa, Y. Feng, C. R. Petersen, S. Koutsikou, M. Bondu, P. M. Moselund, A. Podoleanu, A. Bradu, C. Markos, and O. Bang, “All-fibre supercontinuum laser for in vivo multispectral photoacoustic microscopy of lipids in the extended near-infrared region,” Photoacoustics 18, 100163 (2020).
[Crossref]

Boppart, S. A.

N. D. Shemonski, F. A. South, Y.-Z. Liu, S. G. Adie, S. P. Carney, and S. A. Boppart, “Computational high-resolution optical imaging of the living human retina,” Nat. Photonics 9(7), 440–443 (2015).
[Crossref]

A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt. 12(5), 051403 (2007).
[Crossref]

Bouma, B. E.

Bowen, P.

M. K. Dasa, G. Nteroli, P. Bowen, G. Messa, Y. Feng, C. R. Petersen, S. Koutsikou, M. Bondu, P. M. Moselund, A. Podoleanu, A. Bradu, C. Markos, and O. Bang, “All-fibre supercontinuum laser for in vivo multispectral photoacoustic microscopy of lipids in the extended near-infrared region,” Photoacoustics 18, 100163 (2020).
[Crossref]

Bradu, A.

M. K. Dasa, G. Nteroli, P. Bowen, G. Messa, Y. Feng, C. R. Petersen, S. Koutsikou, M. Bondu, P. M. Moselund, A. Podoleanu, A. Bradu, C. Markos, and O. Bang, “All-fibre supercontinuum laser for in vivo multispectral photoacoustic microscopy of lipids in the extended near-infrared region,” Photoacoustics 18, 100163 (2020).
[Crossref]

Brandstetter, M.

J. Kilgus, G. Langer, K. Duswald, R. Zimmerleiter, I. Zorin, T. Berer, and M. Brandstetter, “Diffraction limited mid-infrared reflectance microspectroscopy with a supercontinuum laser,” Opt. Express 26(23), 30644–30654 (2018).
[Crossref]

J. Kilgus, K. Duswald, G. Langer, and M. Brandstetter, “Mid-infrared standoff spectroscopy using a supercontinuum laser with compact fabry-pérot filter spectrometers,” Appl. Spectrosc. 72(4), 634–642 (2018).
[Crossref]

I. Zorin, R. Su, A. Prylepa, J. Kilgus, M. Brandstetter, and B. Heise, “Mid-infrared fourier-domain optical coherence tomography with a pyroelectric linear array,” Opt. Express 26(25), 33428–33439 (2018).
[Crossref]

I. Zorin, J. Kilgus, R. Su, B. Lendl, M. Brandstetter, and B. Heise, “Multimodal mid-infrared optical coherence tomography and spectroscopy for non-destructive testing and art diagnosis,” in Optics for Arts, Architecture, and Archaeology VII, vol. 11058H. Liang, R. Groves, and P. Targowski, eds., International Society for Optics and Photonics (SPIE, 2019), pp. 74–88.

I. Zorin, J. Kilgus, K. Duswald, B. Lendl, B. Heise, and M. Brandstetter, “Sensitivity-enhanced fourier transform mid-infrared spectroscopy using a supercontinuum laser source,” Appl. Spectrosc, doc. ID ASP-893364 (posted 17 November 2019, in press).

Brilland, L.

A. N. Ghosh, M. Meneghetti, C. R. Petersen, O. Bang, L. Brilland, S. Venck, J. Troles, J. M. Dudley, and T. Sylvestre, “Chalcogenide-glass polarization-maintaining photonic crystal fiber for mid-infrared supercontinuum generation,” JPhys Photonics 1(4), 044003 (2019).
[Crossref]

Carney, S. P.

N. D. Shemonski, F. A. South, Y.-Z. Liu, S. G. Adie, S. P. Carney, and S. A. Boppart, “Computational high-resolution optical imaging of the living human retina,” Nat. Photonics 9(7), 440–443 (2015).
[Crossref]

Chan, A.

Chang, E. W.

Chen, Z.

S. W. Lee, H. W. Jeong, B. M. Kim, Y. C. Ahn, W. Jung, and Z. Chen, “Optimization for axial resolution, depth range, and sensitivity of spectral domain optical coherence tomography at 1.3 um,” J. Korean Phys. Soc. 55(6), 2354–2360 (2009).
[Crossref]

Chenard, F.

Cheung, C. S.

Chrzanowski, H.

A. Vanselow, P. Kaufmann, I. Zorin, B. Heise, H. Chrzanowski, and S. Ramelow, “Mid-infrared frequency-domain optical coherence tomography with undetected photons,” in Quantum Information and Measurement (QIM) V: Quantum Technologies, (Optical Society of America, 2019), p. T5A.86.

Clarkson, W. A.

Coen, S.

Colombo, P.

A. Zocca, P. Colombo, C. M. Gomes, and J. Günster, “Additive manufacturing of ceramics: Issues, potentialities, and opportunities,” J. Am. Ceram. Soc. 98(7), 1983–2001 (2015).
[Crossref]

Cordeiro, C.

Cronin-Golomb, M.

Dai, S.

S. Dai, Y. Wang, X. Peng, P. Zhang, X. Wang, and Y. Xu, “A review of mid-infrared supercontinuum generation in chalcogenide glass fibers,” Appl. Sci. 8(5), 707 (2018).
[Crossref]

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0-16 µm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1700005 (2017).
[Crossref]

Dam, J. S.

P. M. Moselund, C. Petersen, L. Leick, J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Highly stable, all-fiber, high power zblan supercontinuum source reaching 4.75 µm used for nanosecond mid-ir spectroscopy,” in Advanced Solid-State Lasers Congress, (Optical Society of America, 2013), p. JTh5A.9.

Daniel, J. M. O.

Dasa, M. K.

M. K. Dasa, G. Nteroli, P. Bowen, G. Messa, Y. Feng, C. R. Petersen, S. Koutsikou, M. Bondu, P. M. Moselund, A. Podoleanu, A. Bradu, C. Markos, and O. Bang, “All-fibre supercontinuum laser for in vivo multispectral photoacoustic microscopy of lipids in the extended near-infrared region,” Photoacoustics 18, 100163 (2020).
[Crossref]

de Boer, J. F.

Domachuk, P.

Drexler, W.

W. Drexler and J. G. Fujimoto, Optical Coherence Tomography, Technology and Applications (Springer International Publishing, 2008).

Dudley, J. M.

A. N. Ghosh, M. Meneghetti, C. R. Petersen, O. Bang, L. Brilland, S. Venck, J. Troles, J. M. Dudley, and T. Sylvestre, “Chalcogenide-glass polarization-maintaining photonic crystal fiber for mid-infrared supercontinuum generation,” JPhys Photonics 1(4), 044003 (2019).
[Crossref]

G. Genty, S. Coen, and J. M. Dudley, “Fiber supercontinuum sources (invited),” J. Opt. Soc. Am. B 24(8), 1771–1785 (2007).
[Crossref]

Dupont, S.

C. Agger, C. Petersen, S. Dupont, H. Steffensen, J. K. Lyngsø, C. L. Thomsen, J. Thøgersen, S. R. Keiding, and O. Bang, “Supercontinuum generation in zblan fibers—detailed comparison between measurement and simulation,” J. Opt. Soc. Am. B 29(4), 635–645 (2012).
[Crossref]

S. Dupont, C. Petersen, J. Thøgersen, C. Agger, O. Bang, and S. R. Keiding, “Ir microscopy utilizing intense supercontinuum light source,” Opt. Express 20(5), 4887–4892 (2012).
[Crossref]

P. M. Moselund, C. Petersen, S. Dupont, C. Agger, O. Bang, and S. R. Keiding, “Supercontinuum: broad as a lamp, bright as a laser, now in the mid-infrared,” in Laser Technology for Defense and Security VIII, vol. 8381M. Dubinskii and S. G. Post, eds., International Society for Optics and Photonics (SPIE, 2012), pp. 265–270.

Duswald, K.

Engelsholm, R. D.

Farries, M.

Feehan, J. S.

Feng, Y.

M. K. Dasa, G. Nteroli, P. Bowen, G. Messa, Y. Feng, C. R. Petersen, S. Koutsikou, M. Bondu, P. M. Moselund, A. Podoleanu, A. Bradu, C. Markos, and O. Bang, “All-fibre supercontinuum laser for in vivo multispectral photoacoustic microscopy of lipids in the extended near-infrared region,” Photoacoustics 18, 100163 (2020).
[Crossref]

Fred L. Terry, J.

Freeman, M. J.

Fujimoto, J. G.

W. Drexler and J. G. Fujimoto, Optical Coherence Tomography, Technology and Applications (Springer International Publishing, 2008).

Genty, G.

George, A. K.

Ghosh, A. N.

A. N. Ghosh, M. Meneghetti, C. R. Petersen, O. Bang, L. Brilland, S. Venck, J. Troles, J. M. Dudley, and T. Sylvestre, “Chalcogenide-glass polarization-maintaining photonic crystal fiber for mid-infrared supercontinuum generation,” JPhys Photonics 1(4), 044003 (2019).
[Crossref]

Gibson, R.

Gomes, C. M.

A. Zocca, P. Colombo, C. M. Gomes, and J. Günster, “Additive manufacturing of ceramics: Issues, potentialities, and opportunities,” J. Am. Ceram. Soc. 98(7), 1983–2001 (2015).
[Crossref]

Gonzalo, I. B.

Günster, J.

A. Zocca, P. Colombo, C. M. Gomes, and J. Günster, “Additive manufacturing of ceramics: Issues, potentialities, and opportunities,” J. Am. Ceram. Soc. 98(7), 1983–2001 (2015).
[Crossref]

Guo, K.

Hannesschläger, G.

N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschläger, P. Tidemand-Lichtenberg, C. Pedersen, A. Podoleanu, and O. Bang, “Real-time high-resolution mid-infrared optical coherence tomography,” Light: Sci. Appl. 8(1), 11–7538 (2019).
[Crossref]

Heidt, A. M.

Heise, B.

I. Zorin, R. Su, A. Prylepa, J. Kilgus, M. Brandstetter, and B. Heise, “Mid-infrared fourier-domain optical coherence tomography with a pyroelectric linear array,” Opt. Express 26(25), 33428–33439 (2018).
[Crossref]

A. Vanselow, P. Kaufmann, I. Zorin, B. Heise, H. Chrzanowski, and S. Ramelow, “Mid-infrared frequency-domain optical coherence tomography with undetected photons,” in Quantum Information and Measurement (QIM) V: Quantum Technologies, (Optical Society of America, 2019), p. T5A.86.

I. Zorin, J. Kilgus, R. Su, B. Lendl, M. Brandstetter, and B. Heise, “Multimodal mid-infrared optical coherence tomography and spectroscopy for non-destructive testing and art diagnosis,” in Optics for Arts, Architecture, and Archaeology VII, vol. 11058H. Liang, R. Groves, and P. Targowski, eds., International Society for Optics and Photonics (SPIE, 2019), pp. 74–88.

I. Zorin, J. Kilgus, K. Duswald, B. Lendl, B. Heise, and M. Brandstetter, “Sensitivity-enhanced fourier transform mid-infrared spectroscopy using a supercontinuum laser source,” Appl. Spectrosc, doc. ID ASP-893364 (posted 17 November 2019, in press).

Hofmann, G.

R. Köhler, D. Wassilew, V. Norkus, M. Schossig, and G. Hofmann, “Enhanced pyroelectric linear arrays for infrared spectroscopy,” in Proceedings IRS2 2017, IR Sensors and Arrays, vol. I1 (2017).

Homa, J.

M. Schwentenwein and J. Homa, “Additive manufacturing of dense alumina ceramics,” Int. J. Appl. Ceram. Technol. 12(1), 1–7 (2015).
[Crossref]

Hooper, L.

C. R. Petersen, P. M. Moselund, L. Huot, L. Hooper, and O. Bang, “Towards a table-top synchrotron based on supercontinuum generation,” Infrared Phys. Technol. 91, 182–186 (2018).
[Crossref]

Hossain, A.

A. Hossain and M. H. Rashid, “Pyroelectric detectors and their applications,” IEEE Trans. Ind. Appl. 27(5), 824–829 (1991).
[Crossref]

Hou, J.

Huot, L.

C. R. Petersen, P. M. Moselund, L. Huot, L. Hooper, and O. Bang, “Towards a table-top synchrotron based on supercontinuum generation,” Infrared Phys. Technol. 91, 182–186 (2018).
[Crossref]

Ifarraguerri, A. I.

Islam, M. N.

Israelsen, N. M.

N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschläger, P. Tidemand-Lichtenberg, C. Pedersen, A. Podoleanu, and O. Bang, “Real-time high-resolution mid-infrared optical coherence tomography,” Light: Sci. Appl. 8(1), 11–7538 (2019).
[Crossref]

M. Jensen, I. B. Gonzalo, R. D. Engelsholm, M. Maria, N. M. Israelsen, A. Podoleanu, and O. Bang, “Noise of supercontinuum sources in spectral domain optical coherence tomography,” J. Opt. Soc. Am. B 36(2), A154–A160 (2019).
[Crossref]

Jain, D.

N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschläger, P. Tidemand-Lichtenberg, C. Pedersen, A. Podoleanu, and O. Bang, “Real-time high-resolution mid-infrared optical coherence tomography,” Light: Sci. Appl. 8(1), 11–7538 (2019).
[Crossref]

Janiszewski, B.

Jensen, M.

N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschläger, P. Tidemand-Lichtenberg, C. Pedersen, A. Podoleanu, and O. Bang, “Real-time high-resolution mid-infrared optical coherence tomography,” Light: Sci. Appl. 8(1), 11–7538 (2019).
[Crossref]

M. Jensen, I. B. Gonzalo, R. D. Engelsholm, M. Maria, N. M. Israelsen, A. Podoleanu, and O. Bang, “Noise of supercontinuum sources in spectral domain optical coherence tomography,” J. Opt. Soc. Am. B 36(2), A154–A160 (2019).
[Crossref]

Jeong, H. W.

S. W. Lee, H. W. Jeong, B. M. Kim, Y. C. Ahn, W. Jung, and Z. Chen, “Optimization for axial resolution, depth range, and sensitivity of spectral domain optical coherence tomography at 1.3 um,” J. Korean Phys. Soc. 55(6), 2354–2360 (2009).
[Crossref]

Jung, W.

S. W. Lee, H. W. Jeong, B. M. Kim, Y. C. Ahn, W. Jung, and Z. Chen, “Optimization for axial resolution, depth range, and sensitivity of spectral domain optical coherence tomography at 1.3 um,” J. Korean Phys. Soc. 55(6), 2354–2360 (2009).
[Crossref]

Kaufmann, P.

A. Vanselow, P. Kaufmann, I. Zorin, B. Heise, H. Chrzanowski, and S. Ramelow, “Mid-infrared frequency-domain optical coherence tomography with undetected photons,” in Quantum Information and Measurement (QIM) V: Quantum Technologies, (Optical Society of America, 2019), p. T5A.86.

Ke, K.

Keiding, S. R.

S. Dupont, C. Petersen, J. Thøgersen, C. Agger, O. Bang, and S. R. Keiding, “Ir microscopy utilizing intense supercontinuum light source,” Opt. Express 20(5), 4887–4892 (2012).
[Crossref]

C. Agger, C. Petersen, S. Dupont, H. Steffensen, J. K. Lyngsø, C. L. Thomsen, J. Thøgersen, S. R. Keiding, and O. Bang, “Supercontinuum generation in zblan fibers—detailed comparison between measurement and simulation,” J. Opt. Soc. Am. B 29(4), 635–645 (2012).
[Crossref]

P. M. Moselund, C. Petersen, S. Dupont, C. Agger, O. Bang, and S. R. Keiding, “Supercontinuum: broad as a lamp, bright as a laser, now in the mid-infrared,” in Laser Technology for Defense and Security VIII, vol. 8381M. Dubinskii and S. G. Post, eds., International Society for Optics and Photonics (SPIE, 2012), pp. 265–270.

Kilgus, J.

J. Kilgus, K. Duswald, G. Langer, and M. Brandstetter, “Mid-infrared standoff spectroscopy using a supercontinuum laser with compact fabry-pérot filter spectrometers,” Appl. Spectrosc. 72(4), 634–642 (2018).
[Crossref]

J. Kilgus, G. Langer, K. Duswald, R. Zimmerleiter, I. Zorin, T. Berer, and M. Brandstetter, “Diffraction limited mid-infrared reflectance microspectroscopy with a supercontinuum laser,” Opt. Express 26(23), 30644–30654 (2018).
[Crossref]

I. Zorin, R. Su, A. Prylepa, J. Kilgus, M. Brandstetter, and B. Heise, “Mid-infrared fourier-domain optical coherence tomography with a pyroelectric linear array,” Opt. Express 26(25), 33428–33439 (2018).
[Crossref]

I. Zorin, J. Kilgus, R. Su, B. Lendl, M. Brandstetter, and B. Heise, “Multimodal mid-infrared optical coherence tomography and spectroscopy for non-destructive testing and art diagnosis,” in Optics for Arts, Architecture, and Archaeology VII, vol. 11058H. Liang, R. Groves, and P. Targowski, eds., International Society for Optics and Photonics (SPIE, 2019), pp. 74–88.

I. Zorin, J. Kilgus, K. Duswald, B. Lendl, B. Heise, and M. Brandstetter, “Sensitivity-enhanced fourier transform mid-infrared spectroscopy using a supercontinuum laser source,” Appl. Spectrosc, doc. ID ASP-893364 (posted 17 November 2019, in press).

Kim, B. M.

S. W. Lee, H. W. Jeong, B. M. Kim, Y. C. Ahn, W. Jung, and Z. Chen, “Optimization for axial resolution, depth range, and sensitivity of spectral domain optical coherence tomography at 1.3 um,” J. Korean Phys. Soc. 55(6), 2354–2360 (2009).
[Crossref]

Kirillin, M.

Knight, J.

Köhler, R.

R. Köhler, D. Wassilew, V. Norkus, M. Schossig, and G. Hofmann, “Enhanced pyroelectric linear arrays for infrared spectroscopy,” in Proceedings IRS2 2017, IR Sensors and Arrays, vol. I1 (2017).

Koutsikou, S.

M. K. Dasa, G. Nteroli, P. Bowen, G. Messa, Y. Feng, C. R. Petersen, S. Koutsikou, M. Bondu, P. M. Moselund, A. Podoleanu, A. Bradu, C. Markos, and O. Bang, “All-fibre supercontinuum laser for in vivo multispectral photoacoustic microscopy of lipids in the extended near-infrared region,” Photoacoustics 18, 100163 (2020).
[Crossref]

Kulkarni, O. P.

Kumar, M.

Kung, F.

L. Shaw, V. Nguyen, J. Sanghera, I. Aggarwal, P. Thielen, and F. Kung, “Ir supercontinuum generation in as-se photonic crystal fiber,” in Advanced Solid-State Photonics (TOPS), (Optical Society of America, 2005), p. 864.

Lange, R.

H. Liang, R. Lange, B. Peric, and M. Spring, “Optimum spectral window for imaging of art with optical coherence tomography,” Appl. Phys. B 111(4), 589–602 (2013).
[Crossref]

Langer, G.

Lee, S. W.

S. W. Lee, H. W. Jeong, B. M. Kim, Y. C. Ahn, W. Jung, and Z. Chen, “Optimization for axial resolution, depth range, and sensitivity of spectral domain optical coherence tomography at 1.3 um,” J. Korean Phys. Soc. 55(6), 2354–2360 (2009).
[Crossref]

Leick, L.

P. M. Moselund, C. Petersen, L. Leick, J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Highly stable, all-fiber, high power zblan supercontinuum source reaching 4.75 µm used for nanosecond mid-ir spectroscopy,” in Advanced Solid-State Lasers Congress, (Optical Society of America, 2013), p. JTh5A.9.

Lendl, B.

I. Zorin, J. Kilgus, R. Su, B. Lendl, M. Brandstetter, and B. Heise, “Multimodal mid-infrared optical coherence tomography and spectroscopy for non-destructive testing and art diagnosis,” in Optics for Arts, Architecture, and Archaeology VII, vol. 11058H. Liang, R. Groves, and P. Targowski, eds., International Society for Optics and Photonics (SPIE, 2019), pp. 74–88.

I. Zorin, J. Kilgus, K. Duswald, B. Lendl, B. Heise, and M. Brandstetter, “Sensitivity-enhanced fourier transform mid-infrared spectroscopy using a supercontinuum laser source,” Appl. Spectrosc, doc. ID ASP-893364 (posted 17 November 2019, in press).

Li, H. H.

H. H. Li, “Refractive index of alkaline earth halides and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9(1), 161–290 (1980).
[Crossref]

Li, Z.

Liang, H.

Liu, J.

Liu, K.

Liu, Y.-Z.

N. D. Shemonski, F. A. South, Y.-Z. Liu, S. G. Adie, S. P. Carney, and S. A. Boppart, “Computational high-resolution optical imaging of the living human retina,” Nat. Photonics 9(7), 440–443 (2015).
[Crossref]

Liu, Z.

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0-16 µm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1700005 (2017).
[Crossref]

Lloyd, G. R.

Lyngsø, J. K.

Malitson, I. H.

Manzur, T.

Maria, M.

Markos, C.

M. K. Dasa, G. Nteroli, P. Bowen, G. Messa, Y. Feng, C. R. Petersen, S. Koutsikou, M. Bondu, P. M. Moselund, A. Podoleanu, A. Bradu, C. Markos, and O. Bang, “All-fibre supercontinuum laser for in vivo multispectral photoacoustic microscopy of lipids in the extended near-infrared region,” Photoacoustics 18, 100163 (2020).
[Crossref]

Marks, D. L.

A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt. 12(5), 051403 (2007).
[Crossref]

Marshall, D. E.

D. E. Marshall, “A review of pyroelectric detector technology,” in Utilization of Infrared Detectors, vol. 0132 (1978).

Martinez, R. A.

Mattsson, L.

Maynard, R. L.

Mazé, G.

Meneghetti, M.

A. N. Ghosh, M. Meneghetti, C. R. Petersen, O. Bang, L. Brilland, S. Venck, J. Troles, J. M. Dudley, and T. Sylvestre, “Chalcogenide-glass polarization-maintaining photonic crystal fiber for mid-infrared supercontinuum generation,” JPhys Photonics 1(4), 044003 (2019).
[Crossref]

Messa, G.

M. K. Dasa, G. Nteroli, P. Bowen, G. Messa, Y. Feng, C. R. Petersen, S. Koutsikou, M. Bondu, P. M. Moselund, A. Podoleanu, A. Bradu, C. Markos, and O. Bang, “All-fibre supercontinuum laser for in vivo multispectral photoacoustic microscopy of lipids in the extended near-infrared region,” Photoacoustics 18, 100163 (2020).
[Crossref]

Michaelis, A.

U. Scheithauer, E. Schwarzer, T. Moritz, and A. Michaelis, “Additive manufacturing of ceramic heat exchanger: Opportunities and limits of the lithography-based ceramic manufacturing (lcm),” J. Mater. Eng. Perform. 27(1), 14–20 (2018).
[Crossref]

Michalska, M.

Moritz, T.

U. Scheithauer, E. Schwarzer, T. Moritz, and A. Michaelis, “Additive manufacturing of ceramic heat exchanger: Opportunities and limits of the lithography-based ceramic manufacturing (lcm),” J. Mater. Eng. Perform. 27(1), 14–20 (2018).
[Crossref]

Moselund, P. M.

M. K. Dasa, G. Nteroli, P. Bowen, G. Messa, Y. Feng, C. R. Petersen, S. Koutsikou, M. Bondu, P. M. Moselund, A. Podoleanu, A. Bradu, C. Markos, and O. Bang, “All-fibre supercontinuum laser for in vivo multispectral photoacoustic microscopy of lipids in the extended near-infrared region,” Photoacoustics 18, 100163 (2020).
[Crossref]

C. R. Petersen, P. M. Moselund, L. Huot, L. Hooper, and O. Bang, “Towards a table-top synchrotron based on supercontinuum generation,” Infrared Phys. Technol. 91, 182–186 (2018).
[Crossref]

P. M. Moselund, C. Petersen, S. Dupont, C. Agger, O. Bang, and S. R. Keiding, “Supercontinuum: broad as a lamp, bright as a laser, now in the mid-infrared,” in Laser Technology for Defense and Security VIII, vol. 8381M. Dubinskii and S. G. Post, eds., International Society for Optics and Photonics (SPIE, 2012), pp. 265–270.

P. M. Moselund, C. Petersen, L. Leick, J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Highly stable, all-fiber, high power zblan supercontinuum source reaching 4.75 µm used for nanosecond mid-ir spectroscopy,” in Advanced Solid-State Lasers Congress, (Optical Society of America, 2013), p. JTh5A.9.

Nallala, J.

Napier, B.

Neelakandan, M.

Nehmetallah, G.

Nguyen, F. T.

A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt. 12(5), 051403 (2007).
[Crossref]

Nguyen, V.

L. Shaw, V. Nguyen, J. Sanghera, I. Aggarwal, P. Thielen, and F. Kung, “Ir supercontinuum generation in as-se photonic crystal fiber,” in Advanced Solid-State Photonics (TOPS), (Optical Society of America, 2005), p. 864.

Nie, Q.

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0-16 µm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1700005 (2017).
[Crossref]

Norkus, V.

R. Köhler, D. Wassilew, V. Norkus, M. Schossig, and G. Hofmann, “Enhanced pyroelectric linear arrays for infrared spectroscopy,” in Proceedings IRS2 2017, IR Sensors and Arrays, vol. I1 (2017).

Nteroli, G.

M. K. Dasa, G. Nteroli, P. Bowen, G. Messa, Y. Feng, C. R. Petersen, S. Koutsikou, M. Bondu, P. M. Moselund, A. Podoleanu, A. Bradu, C. Markos, and O. Bang, “All-fibre supercontinuum laser for in vivo multispectral photoacoustic microscopy of lipids in the extended near-infrared region,” Photoacoustics 18, 100163 (2020).
[Crossref]

Oldenburg, A. L.

A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt. 12(5), 051403 (2007).
[Crossref]

Omenetto, F. G.

Pan, Z.

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0-16 µm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1700005 (2017).
[Crossref]

Park, B. H.

Pedersen, C.

N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschläger, P. Tidemand-Lichtenberg, C. Pedersen, A. Podoleanu, and O. Bang, “Real-time high-resolution mid-infrared optical coherence tomography,” Light: Sci. Appl. 8(1), 11–7538 (2019).
[Crossref]

P. M. Moselund, C. Petersen, L. Leick, J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Highly stable, all-fiber, high power zblan supercontinuum source reaching 4.75 µm used for nanosecond mid-ir spectroscopy,” in Advanced Solid-State Lasers Congress, (Optical Society of America, 2013), p. JTh5A.9.

Peng, X.

S. Dai, Y. Wang, X. Peng, P. Zhang, X. Wang, and Y. Xu, “A review of mid-infrared supercontinuum generation in chalcogenide glass fibers,” Appl. Sci. 8(5), 707 (2018).
[Crossref]

Peric, B.

H. Liang, R. Lange, B. Peric, and M. Spring, “Optimum spectral window for imaging of art with optical coherence tomography,” Appl. Phys. B 111(4), 589–602 (2013).
[Crossref]

Petersen, C.

C. Agger, C. Petersen, S. Dupont, H. Steffensen, J. K. Lyngsø, C. L. Thomsen, J. Thøgersen, S. R. Keiding, and O. Bang, “Supercontinuum generation in zblan fibers—detailed comparison between measurement and simulation,” J. Opt. Soc. Am. B 29(4), 635–645 (2012).
[Crossref]

S. Dupont, C. Petersen, J. Thøgersen, C. Agger, O. Bang, and S. R. Keiding, “Ir microscopy utilizing intense supercontinuum light source,” Opt. Express 20(5), 4887–4892 (2012).
[Crossref]

P. M. Moselund, C. Petersen, L. Leick, J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Highly stable, all-fiber, high power zblan supercontinuum source reaching 4.75 µm used for nanosecond mid-ir spectroscopy,” in Advanced Solid-State Lasers Congress, (Optical Society of America, 2013), p. JTh5A.9.

P. M. Moselund, C. Petersen, S. Dupont, C. Agger, O. Bang, and S. R. Keiding, “Supercontinuum: broad as a lamp, bright as a laser, now in the mid-infrared,” in Laser Technology for Defense and Security VIII, vol. 8381M. Dubinskii and S. G. Post, eds., International Society for Optics and Photonics (SPIE, 2012), pp. 265–270.

Petersen, C. R.

M. K. Dasa, G. Nteroli, P. Bowen, G. Messa, Y. Feng, C. R. Petersen, S. Koutsikou, M. Bondu, P. M. Moselund, A. Podoleanu, A. Bradu, C. Markos, and O. Bang, “All-fibre supercontinuum laser for in vivo multispectral photoacoustic microscopy of lipids in the extended near-infrared region,” Photoacoustics 18, 100163 (2020).
[Crossref]

A. N. Ghosh, M. Meneghetti, C. R. Petersen, O. Bang, L. Brilland, S. Venck, J. Troles, J. M. Dudley, and T. Sylvestre, “Chalcogenide-glass polarization-maintaining photonic crystal fiber for mid-infrared supercontinuum generation,” JPhys Photonics 1(4), 044003 (2019).
[Crossref]

N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschläger, P. Tidemand-Lichtenberg, C. Pedersen, A. Podoleanu, and O. Bang, “Real-time high-resolution mid-infrared optical coherence tomography,” Light: Sci. Appl. 8(1), 11–7538 (2019).
[Crossref]

C. R. Petersen, P. M. Moselund, L. Huot, L. Hooper, and O. Bang, “Towards a table-top synchrotron based on supercontinuum generation,” Infrared Phys. Technol. 91, 182–186 (2018).
[Crossref]

C. R. Petersen, N. Prtljaga, M. Farries, J. Ward, B. Napier, G. R. Lloyd, J. Nallala, N. Stone, and O. Bang, “Mid-infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source,” Opt. Lett. 43(5), 999–1002 (2018).
[Crossref]

Pfefer, T. J.

Plant, G.

Podoleanu, A.

M. K. Dasa, G. Nteroli, P. Bowen, G. Messa, Y. Feng, C. R. Petersen, S. Koutsikou, M. Bondu, P. M. Moselund, A. Podoleanu, A. Bradu, C. Markos, and O. Bang, “All-fibre supercontinuum laser for in vivo multispectral photoacoustic microscopy of lipids in the extended near-infrared region,” Photoacoustics 18, 100163 (2020).
[Crossref]

M. Jensen, I. B. Gonzalo, R. D. Engelsholm, M. Maria, N. M. Israelsen, A. Podoleanu, and O. Bang, “Noise of supercontinuum sources in spectral domain optical coherence tomography,” J. Opt. Soc. Am. B 36(2), A154–A160 (2019).
[Crossref]

N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschläger, P. Tidemand-Lichtenberg, C. Pedersen, A. Podoleanu, and O. Bang, “Real-time high-resolution mid-infrared optical coherence tomography,” Light: Sci. Appl. 8(1), 11–7538 (2019).
[Crossref]

Poulain, M.

Price, J. H. V.

Prtljaga, N.

Prylepa, A.

Ramelow, S.

A. Vanselow, P. Kaufmann, I. Zorin, B. Heise, H. Chrzanowski, and S. Ramelow, “Mid-infrared frequency-domain optical coherence tomography with undetected photons,” in Quantum Information and Measurement (QIM) V: Quantum Technologies, (Optical Society of America, 2019), p. T5A.86.

Rashid, M. H.

A. Hossain and M. H. Rashid, “Pyroelectric detectors and their applications,” IEEE Trans. Ind. Appl. 27(5), 824–829 (1991).
[Crossref]

Richardson, D. J.

Rogalski, A.

A. Rogalski, Infrared Detectors 2nd Edition (CRC, 2011).

Ryczkowski, P.

Saleh, A.

Sanghera, J.

L. Shaw, V. Nguyen, J. Sanghera, I. Aggarwal, P. Thielen, and F. Kung, “Ir supercontinuum generation in as-se photonic crystal fiber,” in Advanced Solid-State Photonics (TOPS), (Optical Society of America, 2005), p. 864.

Scheithauer, U.

U. Scheithauer, E. Schwarzer, T. Moritz, and A. Michaelis, “Additive manufacturing of ceramic heat exchanger: Opportunities and limits of the lithography-based ceramic manufacturing (lcm),” J. Mater. Eng. Perform. 27(1), 14–20 (2018).
[Crossref]

Schossig, M.

R. Köhler, D. Wassilew, V. Norkus, M. Schossig, and G. Hofmann, “Enhanced pyroelectric linear arrays for infrared spectroscopy,” in Proceedings IRS2 2017, IR Sensors and Arrays, vol. I1 (2017).

Schwarzer, E.

U. Scheithauer, E. Schwarzer, T. Moritz, and A. Michaelis, “Additive manufacturing of ceramic heat exchanger: Opportunities and limits of the lithography-based ceramic manufacturing (lcm),” J. Mater. Eng. Perform. 27(1), 14–20 (2018).
[Crossref]

Schwentenwein, M.

M. Schwentenwein and J. Homa, “Additive manufacturing of dense alumina ceramics,” Int. J. Appl. Ceram. Technol. 12(1), 1–7 (2015).
[Crossref]

Sergeeva, E.

Shaw, L.

L. Shaw, V. Nguyen, J. Sanghera, I. Aggarwal, P. Thielen, and F. Kung, “Ir supercontinuum generation in as-se photonic crystal fiber,” in Advanced Solid-State Photonics (TOPS), (Optical Society of America, 2005), p. 864.

Shemonski, N. D.

N. D. Shemonski, F. A. South, Y.-Z. Liu, S. G. Adie, S. P. Carney, and S. A. Boppart, “Computational high-resolution optical imaging of the living human retina,” Nat. Photonics 9(7), 440–443 (2015).
[Crossref]

Shen, X.

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0-16 µm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1700005 (2017).
[Crossref]

Shi, H.

South, F. A.

N. D. Shemonski, F. A. South, Y.-Z. Liu, S. G. Adie, S. P. Carney, and S. A. Boppart, “Computational high-resolution optical imaging of the living human retina,” Nat. Photonics 9(7), 440–443 (2015).
[Crossref]

Spring, M.

H. Liang, R. Lange, B. Peric, and M. Spring, “Optimum spectral window for imaging of art with optical coherence tomography,” Appl. Phys. B 111(4), 589–602 (2013).
[Crossref]

Steffensen, H.

Stifter, D.

D. Stifter, “Beyond biomedicine: a review of alternative applications and developments for optical coherence tomography,” Appl. Phys. B 88(3), 337–357 (2007).
[Crossref]

Stone, N.

Su, R.

I. Zorin, R. Su, A. Prylepa, J. Kilgus, M. Brandstetter, and B. Heise, “Mid-infrared fourier-domain optical coherence tomography with a pyroelectric linear array,” Opt. Express 26(25), 33428–33439 (2018).
[Crossref]

R. Su, M. Kirillin, E. W. Chang, E. Sergeeva, S. H. Yun, and L. Mattsson, “Perspectives of mid-infrared optical coherence tomography for inspection and micrometrology of industrial ceramics,” Opt. Express 22(13), 15804–15819 (2014).
[Crossref]

I. Zorin, J. Kilgus, R. Su, B. Lendl, M. Brandstetter, and B. Heise, “Multimodal mid-infrared optical coherence tomography and spectroscopy for non-destructive testing and art diagnosis,” in Optics for Arts, Architecture, and Archaeology VII, vol. 11058H. Liang, R. Groves, and P. Targowski, eds., International Society for Optics and Photonics (SPIE, 2019), pp. 74–88.

Swiderski, J.

Sylvestre, T.

A. N. Ghosh, M. Meneghetti, C. R. Petersen, O. Bang, L. Brilland, S. Venck, J. Troles, J. M. Dudley, and T. Sylvestre, “Chalcogenide-glass polarization-maintaining photonic crystal fiber for mid-infrared supercontinuum generation,” JPhys Photonics 1(4), 044003 (2019).
[Crossref]

Tan, F.

Tearney, G. J.

Terry, F. L.

Thielen, P.

L. Shaw, V. Nguyen, J. Sanghera, I. Aggarwal, P. Thielen, and F. Kung, “Ir supercontinuum generation in as-se photonic crystal fiber,” in Advanced Solid-State Photonics (TOPS), (Optical Society of America, 2005), p. 864.

Thøgersen, J.

Thomsen, C. L.

Tidemand-Lichtenberg, P.

N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschläger, P. Tidemand-Lichtenberg, C. Pedersen, A. Podoleanu, and O. Bang, “Real-time high-resolution mid-infrared optical coherence tomography,” Light: Sci. Appl. 8(1), 11–7538 (2019).
[Crossref]

P. M. Moselund, C. Petersen, L. Leick, J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Highly stable, all-fiber, high power zblan supercontinuum source reaching 4.75 µm used for nanosecond mid-ir spectroscopy,” in Advanced Solid-State Lasers Congress, (Optical Society of America, 2013), p. JTh5A.9.

Toivonen, J.

Tokurakawa, M.

Tomlins, P. H.

Troles, J.

A. N. Ghosh, M. Meneghetti, C. R. Petersen, O. Bang, L. Brilland, S. Venck, J. Troles, J. M. Dudley, and T. Sylvestre, “Chalcogenide-glass polarization-maintaining photonic crystal fiber for mid-infrared supercontinuum generation,” JPhys Photonics 1(4), 044003 (2019).
[Crossref]

Vanselow, A.

A. Vanselow, P. Kaufmann, I. Zorin, B. Heise, H. Chrzanowski, and S. Ramelow, “Mid-infrared frequency-domain optical coherence tomography with undetected photons,” in Quantum Information and Measurement (QIM) V: Quantum Technologies, (Optical Society of America, 2019), p. T5A.86.

Venck, S.

A. N. Ghosh, M. Meneghetti, C. R. Petersen, O. Bang, L. Brilland, S. Venck, J. Troles, J. M. Dudley, and T. Sylvestre, “Chalcogenide-glass polarization-maintaining photonic crystal fiber for mid-infrared supercontinuum generation,” JPhys Photonics 1(4), 044003 (2019).
[Crossref]

Wang, A.

Wang, P.

Wang, R.

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0-16 µm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1700005 (2017).
[Crossref]

Wang, X.

S. Dai, Y. Wang, X. Peng, P. Zhang, X. Wang, and Y. Xu, “A review of mid-infrared supercontinuum generation in chalcogenide glass fibers,” Appl. Sci. 8(5), 707 (2018).
[Crossref]

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0-16 µm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1700005 (2017).
[Crossref]

Wang, Y.

S. Dai, Y. Wang, X. Peng, P. Zhang, X. Wang, and Y. Xu, “A review of mid-infrared supercontinuum generation in chalcogenide glass fibers,” Appl. Sci. 8(5), 707 (2018).
[Crossref]

Ward, J.

Wassilew, D.

R. Köhler, D. Wassilew, V. Norkus, M. Schossig, and G. Hofmann, “Enhanced pyroelectric linear arrays for infrared spectroscopy,” in Proceedings IRS2 2017, IR Sensors and Arrays, vol. I1 (2017).

Welsh, M. J.

Wolchover, N. A.

Woolliams, P. D.

Wu, B.

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0-16 µm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1700005 (2017).
[Crossref]

Xia, C.

Xu, Y.

S. Dai, Y. Wang, X. Peng, P. Zhang, X. Wang, and Y. Xu, “A review of mid-infrared supercontinuum generation in chalcogenide glass fibers,” Appl. Sci. 8(5), 707 (2018).
[Crossref]

Xue, G.

Yang, W.

Yin, K.

Yun, S. H.

Zhang, B.

Zhang, P.

S. Dai, Y. Wang, X. Peng, P. Zhang, X. Wang, and Y. Xu, “A review of mid-infrared supercontinuum generation in chalcogenide glass fibers,” Appl. Sci. 8(5), 707 (2018).
[Crossref]

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0-16 µm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1700005 (2017).
[Crossref]

Zhao, Z.

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0-16 µm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1700005 (2017).
[Crossref]

Zimmerleiter, R.

Zocca, A.

A. Zocca, P. Colombo, C. M. Gomes, and J. Günster, “Additive manufacturing of ceramics: Issues, potentialities, and opportunities,” J. Am. Ceram. Soc. 98(7), 1983–2001 (2015).
[Crossref]

Zorin, I.

I. Zorin, R. Su, A. Prylepa, J. Kilgus, M. Brandstetter, and B. Heise, “Mid-infrared fourier-domain optical coherence tomography with a pyroelectric linear array,” Opt. Express 26(25), 33428–33439 (2018).
[Crossref]

J. Kilgus, G. Langer, K. Duswald, R. Zimmerleiter, I. Zorin, T. Berer, and M. Brandstetter, “Diffraction limited mid-infrared reflectance microspectroscopy with a supercontinuum laser,” Opt. Express 26(23), 30644–30654 (2018).
[Crossref]

I. Zorin, J. Kilgus, R. Su, B. Lendl, M. Brandstetter, and B. Heise, “Multimodal mid-infrared optical coherence tomography and spectroscopy for non-destructive testing and art diagnosis,” in Optics for Arts, Architecture, and Archaeology VII, vol. 11058H. Liang, R. Groves, and P. Targowski, eds., International Society for Optics and Photonics (SPIE, 2019), pp. 74–88.

A. Vanselow, P. Kaufmann, I. Zorin, B. Heise, H. Chrzanowski, and S. Ramelow, “Mid-infrared frequency-domain optical coherence tomography with undetected photons,” in Quantum Information and Measurement (QIM) V: Quantum Technologies, (Optical Society of America, 2019), p. T5A.86.

I. Zorin, J. Kilgus, K. Duswald, B. Lendl, B. Heise, and M. Brandstetter, “Sensitivity-enhanced fourier transform mid-infrared spectroscopy using a supercontinuum laser source,” Appl. Spectrosc, doc. ID ASP-893364 (posted 17 November 2019, in press).

Zysk, A. M.

A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt. 12(5), 051403 (2007).
[Crossref]

Appl. Opt. (2)

Appl. Phys. B (2)

D. Stifter, “Beyond biomedicine: a review of alternative applications and developments for optical coherence tomography,” Appl. Phys. B 88(3), 337–357 (2007).
[Crossref]

H. Liang, R. Lange, B. Peric, and M. Spring, “Optimum spectral window for imaging of art with optical coherence tomography,” Appl. Phys. B 111(4), 589–602 (2013).
[Crossref]

Appl. Sci. (1)

S. Dai, Y. Wang, X. Peng, P. Zhang, X. Wang, and Y. Xu, “A review of mid-infrared supercontinuum generation in chalcogenide glass fibers,” Appl. Sci. 8(5), 707 (2018).
[Crossref]

Appl. Spectrosc. (1)

Biomed. Opt. Express (1)

IEEE Trans. Ind. Appl. (1)

A. Hossain and M. H. Rashid, “Pyroelectric detectors and their applications,” IEEE Trans. Ind. Appl. 27(5), 824–829 (1991).
[Crossref]

Infrared Phys. Technol. (1)

C. R. Petersen, P. M. Moselund, L. Huot, L. Hooper, and O. Bang, “Towards a table-top synchrotron based on supercontinuum generation,” Infrared Phys. Technol. 91, 182–186 (2018).
[Crossref]

Int. J. Appl. Ceram. Technol. (1)

M. Schwentenwein and J. Homa, “Additive manufacturing of dense alumina ceramics,” Int. J. Appl. Ceram. Technol. 12(1), 1–7 (2015).
[Crossref]

J. Am. Ceram. Soc. (1)

A. Zocca, P. Colombo, C. M. Gomes, and J. Günster, “Additive manufacturing of ceramics: Issues, potentialities, and opportunities,” J. Am. Ceram. Soc. 98(7), 1983–2001 (2015).
[Crossref]

J. Biomed. Opt. (1)

A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt. 12(5), 051403 (2007).
[Crossref]

J. Korean Phys. Soc. (1)

S. W. Lee, H. W. Jeong, B. M. Kim, Y. C. Ahn, W. Jung, and Z. Chen, “Optimization for axial resolution, depth range, and sensitivity of spectral domain optical coherence tomography at 1.3 um,” J. Korean Phys. Soc. 55(6), 2354–2360 (2009).
[Crossref]

J. Mater. Eng. Perform. (1)

U. Scheithauer, E. Schwarzer, T. Moritz, and A. Michaelis, “Additive manufacturing of ceramic heat exchanger: Opportunities and limits of the lithography-based ceramic manufacturing (lcm),” J. Mater. Eng. Perform. 27(1), 14–20 (2018).
[Crossref]

J. Opt. Soc. Am. B (3)

J. Phys. Chem. Ref. Data (1)

H. H. Li, “Refractive index of alkaline earth halides and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9(1), 161–290 (1980).
[Crossref]

JPhys Photonics (1)

A. N. Ghosh, M. Meneghetti, C. R. Petersen, O. Bang, L. Brilland, S. Venck, J. Troles, J. M. Dudley, and T. Sylvestre, “Chalcogenide-glass polarization-maintaining photonic crystal fiber for mid-infrared supercontinuum generation,” JPhys Photonics 1(4), 044003 (2019).
[Crossref]

Laser Photonics Rev. (1)

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0-16 µm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1700005 (2017).
[Crossref]

Light: Sci. Appl. (1)

N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschläger, P. Tidemand-Lichtenberg, C. Pedersen, A. Podoleanu, and O. Bang, “Real-time high-resolution mid-infrared optical coherence tomography,” Light: Sci. Appl. 8(1), 11–7538 (2019).
[Crossref]

Nat. Photonics (1)

N. D. Shemonski, F. A. South, Y.-Z. Liu, S. G. Adie, S. P. Carney, and S. A. Boppart, “Computational high-resolution optical imaging of the living human retina,” Nat. Photonics 9(7), 440–443 (2015).
[Crossref]

Opt. Express (10)

R. Su, M. Kirillin, E. W. Chang, E. Sergeeva, S. H. Yun, and L. Mattsson, “Perspectives of mid-infrared optical coherence tomography for inspection and micrometrology of industrial ceramics,” Opt. Express 22(13), 15804–15819 (2014).
[Crossref]

A. M. Heidt, J. H. V. Price, C. Baskiotis, J. S. Feehan, Z. Li, S. U. Alam, and D. J. Richardson, “Mid-infrared zblan fiber supercontinuum source using picosecond diode-pumping at 2 µm,” Opt. Express 21(20), 24281–24287 (2013).
[Crossref]

K. Liu, J. Liu, H. Shi, F. Tan, and P. Wang, “High power mid-infrared supercontinuum generation in a single-mode zblan fiber with up to 21.8 w average output power,” Opt. Express 22(20), 24384–24391 (2014).
[Crossref]

J. Kilgus, G. Langer, K. Duswald, R. Zimmerleiter, I. Zorin, T. Berer, and M. Brandstetter, “Diffraction limited mid-infrared reflectance microspectroscopy with a supercontinuum laser,” Opt. Express 26(23), 30644–30654 (2018).
[Crossref]

I. Zorin, R. Su, A. Prylepa, J. Kilgus, M. Brandstetter, and B. Heise, “Mid-infrared fourier-domain optical coherence tomography with a pyroelectric linear array,” Opt. Express 26(25), 33428–33439 (2018).
[Crossref]

C. S. Cheung, J. M. O. Daniel, M. Tokurakawa, W. A. Clarkson, and H. Liang, “High resolution fourier domain optical coherence tomography in the 2 µm wavelength range using a broadband supercontinuum source,” Opt. Express 23(3), 1992–2001 (2015).
[Crossref]

S. Dupont, C. Petersen, J. Thøgersen, C. Agger, O. Bang, and S. R. Keiding, “Ir microscopy utilizing intense supercontinuum light source,” Opt. Express 20(5), 4887–4892 (2012).
[Crossref]

S. H. Yun, G. J. Tearney, B. E. Bouma, B. H. Park, and J. F. de Boer, “High-speed spectral-domain optical coherence tomography at 1.3 µm wavelength,” Opt. Express 11(26), 3598–3604 (2003).
[Crossref]

P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. Cordeiro, J. Knight, and F. G. Omenetto, “Over 4000 nm bandwidth of mid-ir supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite pcfs,” Opt. Express 16(10), 7161–7168 (2008).
[Crossref]

K. Ke, C. Xia, M. N. Islam, M. J. Welsh, and M. J. Freeman, “Mid-infrared absorption spectroscopy and differential damage in vitro between lipids and proteins by an all-fiber-integrated supercontinuum laser,” Opt. Express 17(15), 12627–12640 (2009).
[Crossref]

Opt. Lett. (7)

W. Yang, B. Zhang, G. Xue, K. Yin, and J. Hou, “Thirteen watt all-fiber mid-infrared supercontinuum generation in a single mode zblan fiber pumped by a 2µm mopa system,” Opt. Lett. 39(7), 1849–1852 (2014).
[Crossref]

A. Saleh, A. Aalto, P. Ryczkowski, G. Genty, and J. Toivonen, “Short-range supercontinuum-based lidar for temperature profiling,” Opt. Lett. 44(17), 4223–4226 (2019).
[Crossref]

R. A. Martinez, G. Plant, K. Guo, B. Janiszewski, M. J. Freeman, R. L. Maynard, M. N. Islam, F. L. Terry, O. Alvarez, F. Chenard, R. Bedford, R. Gibson, and A. I. Ifarraguerri, “Mid-infrared supercontinuum generation from 1.6 to >11µm using concatenated step-index fluoride and chalcogenide fibers,” Opt. Lett. 43(2), 296–299 (2018).
[Crossref]

J. Swiderski and M. Michalska, “High-power supercontinuum generation in a zblan fiber with very efficient power distribution toward the mid-infrared,” Opt. Lett. 39(4), 910–913 (2014).
[Crossref]

C. R. Petersen, N. Prtljaga, M. Farries, J. Ward, B. Napier, G. R. Lloyd, J. Nallala, N. Stone, and O. Bang, “Mid-infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source,” Opt. Lett. 43(5), 999–1002 (2018).
[Crossref]

C. Xia, M. Kumar, O. P. Kulkarni, M. N. Islam, J. Fred L. Terry, M. J. Freeman, M. Poulain, and G. Mazé, “Mid-infrared supercontinuum generation to 4.5 µm in zblan fluoride fibers by nanosecond diode pumping,” Opt. Lett. 31(17), 2553–2555 (2006).
[Crossref]

C. S. Cheung, J. M. O. Daniel, M. Tokurakawa, W. A. Clarkson, and H. Liang, “Optical coherence tomography in the 2 µm wavelength regime for paint and other high opacity materials,” Opt. Lett. 39(22), 6509–6512 (2014).
[Crossref]

Photoacoustics (1)

M. K. Dasa, G. Nteroli, P. Bowen, G. Messa, Y. Feng, C. R. Petersen, S. Koutsikou, M. Bondu, P. M. Moselund, A. Podoleanu, A. Bradu, C. Markos, and O. Bang, “All-fibre supercontinuum laser for in vivo multispectral photoacoustic microscopy of lipids in the extended near-infrared region,” Photoacoustics 18, 100163 (2020).
[Crossref]

Other (10)

P. M. Moselund, C. Petersen, L. Leick, J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Highly stable, all-fiber, high power zblan supercontinuum source reaching 4.75 µm used for nanosecond mid-ir spectroscopy,” in Advanced Solid-State Lasers Congress, (Optical Society of America, 2013), p. JTh5A.9.

L. Shaw, V. Nguyen, J. Sanghera, I. Aggarwal, P. Thielen, and F. Kung, “Ir supercontinuum generation in as-se photonic crystal fiber,” in Advanced Solid-State Photonics (TOPS), (Optical Society of America, 2005), p. 864.

P. M. Moselund, C. Petersen, S. Dupont, C. Agger, O. Bang, and S. R. Keiding, “Supercontinuum: broad as a lamp, bright as a laser, now in the mid-infrared,” in Laser Technology for Defense and Security VIII, vol. 8381M. Dubinskii and S. G. Post, eds., International Society for Optics and Photonics (SPIE, 2012), pp. 265–270.

A. Vanselow, P. Kaufmann, I. Zorin, B. Heise, H. Chrzanowski, and S. Ramelow, “Mid-infrared frequency-domain optical coherence tomography with undetected photons,” in Quantum Information and Measurement (QIM) V: Quantum Technologies, (Optical Society of America, 2019), p. T5A.86.

I. Zorin, J. Kilgus, K. Duswald, B. Lendl, B. Heise, and M. Brandstetter, “Sensitivity-enhanced fourier transform mid-infrared spectroscopy using a supercontinuum laser source,” Appl. Spectrosc, doc. ID ASP-893364 (posted 17 November 2019, in press).

I. Zorin, J. Kilgus, R. Su, B. Lendl, M. Brandstetter, and B. Heise, “Multimodal mid-infrared optical coherence tomography and spectroscopy for non-destructive testing and art diagnosis,” in Optics for Arts, Architecture, and Archaeology VII, vol. 11058H. Liang, R. Groves, and P. Targowski, eds., International Society for Optics and Photonics (SPIE, 2019), pp. 74–88.

W. Drexler and J. G. Fujimoto, Optical Coherence Tomography, Technology and Applications (Springer International Publishing, 2008).

A. Rogalski, Infrared Detectors 2nd Edition (CRC, 2011).

R. Köhler, D. Wassilew, V. Norkus, M. Schossig, and G. Hofmann, “Enhanced pyroelectric linear arrays for infrared spectroscopy,” in Proceedings IRS2 2017, IR Sensors and Arrays, vol. I1 (2017).

D. E. Marshall, “A review of pyroelectric detector technology,” in Utilization of Infrared Detectors, vol. 0132 (1978).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. Emission spectrum of the supercontinuum source measured by an FTIR spectrometer; OCT spectral sub-bands (spectral interferograms recorded for the flat mirror using the OCT spectrometer) are indicated; emission power levels are denoted.
Fig. 2.
Fig. 2. Layout of the experimental setup, PBS - pellicle beamsplitter, SF1 and SF2 are the spectral filters utilized to suppress the 1.55 µm seed laser line (edge-pass filter, 1.65 µm cut-on wavelength), and to select the operational OCT spectral band; the inset displays en-face OCT images of an 1951 USAF resolution test target (resolved line widths are 39.37 µm and 12.4 µm for the NIR and MIR sub-systems respectively).
Fig. 3.
Fig. 3. (a-c) Details on the dual-band detection enabled by a single pyroelectric array, (d) Characterization of the axial resolution of the system (17.5 µm and 37 µm at full-width at half-maximum (FWHM) for NIR and MIR OCT sub-systems correspondingly)
Fig. 4.
Fig. 4. Comparative measurements: raw interferograms recorded for the multilayer ceramic sample depending on the chopper position (system input versus the sample arm) in OCT interferometer; in the case of total emission modulation, a neutral density filter (OD=0.3, 50% transmittance) was additionally inserted to avoid oversaturation; approximately 2-times higher visibility advantage is achieved (neutral density filter is taken into account).
Fig. 5.
Fig. 5. Sensitivity roll-off evolution on the axial range (a); and (b) interference pattern over the beam cross-section recorded with a band-pass filter (500 nm, 4 µm CWL).
Fig. 6.
Fig. 6. Roll-off steering: (a,b,c) MIR OCT b-scans of the multilayer ceramics (tilted by 45$^{\circ }$) recorded for different chopper trigger delay; modulation frequency 50 Hz.
Fig. 7.
Fig. 7. Industrial ceramic sample fabricated by means of lithography-based ceramic manufacturing.
Fig. 8.
Fig. 8. Comparative measurements of the highly scattering ceramics; obtained by the dual-band OCT system operating in the near- and mid-infrared spectral ranges (central wavelengths of 2 µm and 4 µm correspondingly) and presented as an RGB-compounded b-scan; the left part of the image demonstrates a weighted overlay of both OCT measurements.
Fig. 9.
Fig. 9. Near-infrared (spectral region around 2 µm) OCT b-scan of the painting mock-up; top-view photo roughly indicates the scanning position.
Fig. 10.
Fig. 10. C-scan of the complex varnished oil-paintings mock-up (with the varnish inclusions under the thin titanium white layer); the position of the cross-section is displayed in the inset.
Fig. 11.
Fig. 11. Performance and benefits of the dual-band IR OCT for investigation of the additively manufactured high-performance ceramics, positions in the images are linked by numbering, pixelated structure caused by the limited resolution of the 3D printer is detected; the refractive index of the ceramic sample is estimated by fitting a triangle to the b-scan (OPD effect is exploited), a ratio between the slopes results in the refractive index of 1.80; the insert in (a) displays a light microscopic image of the facet, the dimensions of the structures are measured and denoted (included for reference)

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Q = γ A T ¯ ,
I = ( I r + I s + I r I s cos Δ ϕ ) exp j ω t ,
Q I s + I r I s cos Δ ϕ .
Π = κ T x ,
γ = Δ T Δ x = arctan 2 Δ T w f = arctan ( 2 ( T m a x T e ) f f ) ,
d T d t = α 2 T x 2 ,