Abstract

We propose a combined pump-probe optical method to investigate heat diffusion properties of solids. We demonstrate single-shot simultaneous laser-induced thermoelastic surface displacement of metals detected by concurrent measurements using photothermal mirror and interferometry. Both methods probe the surface displacement by analyzing the wavefront distortions of the probe beams reflected from the surface of the sample. Thermoelastic properties are retrieved by transient analysis in combination with numerical description of the thermoelastic displacement and temperature rise in the sample and in the surrounding air. This technique presents a capability for material characterization that can be extended to experiments for quantitative surface mapping.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Heat coupling effect on photothermal detection with a moving Gaussian excitation beam

Jingtao Dong and Rongsheng Lu
Appl. Opt. 58(31) 8695-8701 (2019)

Time-resolved laser scanning photothermal microscopy for characterization of thermal properties of semi-insulating GaAs

Jingtao Dong, Tengda Zhang, Lei Yang, Peizheng Yan, Yuzhong Zhang, Jingsong Li, Zhang Lei, and Sheng Zhou
Opt. Express 28(8) 11393-11405 (2020)

Photothermal mirror Z-scan spectrometry of opaque samples

Aristides Marcano Olaizola
J. Opt. Soc. Am. B 36(10) 2907-2912 (2019)

References

  • View by:
  • |
  • |
  • |

  1. S. E. Bialkowski, N. G. C. Astrath, and M. A. Proskurnin, Photothermal Spectroscopy Methods (John Wiley & Sons, 2019).
  2. L. C. Malacarne, F. Sato, P. R. B. Pedreira, A. C. Bento, R. S. Mendes, M. L. Baesso, N. G. C. Astrath, and J. Shen, “Nanoscale surface displacement detection in high absorbing solids by time-resolved thermal mirror,” Appl. Phys. Lett. 92(13), 131903 (2008).
    [Crossref]
  3. Y. Shen and P. Hess, “Real-time detection of laser-induced transient gratings and surface acoustic wave pulses with a Michelson interferometer,” J. Appl. Phys. 82(10), 4758–4762 (1997).
    [Crossref]
  4. V. Kurzmann. J. Stöhr, M. Tochtrop, and R. Kassing, “Interferometric measurement of thermal expansion,” Mater. Sci. Eng., A 122(1), 117–120 (1989).
    [Crossref]
  5. S. A. Carp and V. Venugopalan, “Optoacoustic imaging based on the interferometric measurement of surface displacement,” J. Biomed. Opt. 12(6), 064001 (2007).
    [Crossref]
  6. P. Beyersdorf and M. Cordier, “Measurement of thermo-elastic deformation of an optic using a polarization based shearing interferometer,” Appl. Opt. 51(31), 7426–7433 (2012).
    [Crossref]
  7. G. Goetz, T. Ling, T. Gupta, S. Kang, J. Wang, P. D. Gregory, H. Park, and D. Palanker, “Interferometric mapping of material properties using thermal perturbation,” Proc. Natl. Acad. Sci. 115(11), E2499–E2508 (2018).
    [Crossref]
  8. G. V. B. Lukasievicz, N. G. C. Astrath, L. C. Malacarne, L. S. Herculano, V. S. Zanuto, M. L. Baesso, and S. E. Bialkowski, “Pulsed-laser time-resolved thermal mirror technique in low absorbance homogeneous linear elastic materials,” Appl. Spectrosc. 67(10), 1111–1116 (2013).
    [Crossref]
  9. O. A. Capeloto, G. V. B. Lukasievicz, V. S. Zanuto, L. S. Herculano, N. E. Souza Filho, A. Novatski, L. C. Malacarne, S. E. Bialkowski, M. L. Baesso, and N. G. C. Astrath, “Pulsed photothermal mirror technique: characterization of opaque materials,” Appl. Opt. 53(33), 7985–7991 (2014).
    [Crossref]
  10. N. G. C. Astrath, G. V. B. Lukasievicz, L. C. Malacarne, and S. E. Bialkowski, “Surface deformation effects induced by radiation pressure and electrostriction forces in dielectric solids,” Appl. Phys. Lett. 102(23), 231903 (2013).
    [Crossref]
  11. N. G. C. Astrath, L. C. Malacarne, M. L. Baesso, G. V. B. Lukasievicz, and S. E. Bialkowski, “Unravelling the effects of radiation forces in water,” Nat. Commun. 5(1), 4363 (2014).
    [Crossref]
  12. O. A. Capeloto, V. S. Zanuto, L. C. Malacarne, M. L. Baesso, G. V. B. Lukasievicz, S. E. Bialkowski, and N. G. C. Astrath, “Quantitative assessment of radiation force effect at the dielectric air-liquid interface,” Sci. Rep. 6(1), 20515 (2016).
    [Crossref]
  13. O. A. Capeloto, V. S. Zanuto, G. V. B. Lukasievicz, L. C. Malacarne, S. E. Bialkowski, T. Požar, and N. G. C. Astrath, “Generation and detection of thermoelastic waves in metals by a photothermal mirror method,” Appl. Phys. Lett. 109(19), 191908 (2016).
    [Crossref]
  14. V. E. Gusev and A. A. Karabutov, Laser optoacoustics (American Institute of Physics, 1993).
  15. C. B. Scruby and L. E. Drain, Laser Ultrasonics, Techniques and Applications (Adam Hilger, 1990).
  16. R. Reibold and W. Molkenstruck, “Laser interferometer for ultrasonic applications,” Acustica 49, 205 (1981).
  17. V. Greco, G. Molesini, and F. Quercioli, “Accurate polarization interferometer,” Rev. Sci. Instrum. 66(7), 3729–3734 (1995).
    [Crossref]
  18. T. Požar, P. Gregorčič, and J. Možina, “A precise and wide-dynamic-range displacement-measuring homodyne quadrature laser interferometer,” Appl. Phys. B 105(3), 575–582 (2011).
    [Crossref]
  19. T. Požar, J. Možina, and K. D. Sattler, in Fundamentals of Picoscience (Taylor and Francis, 2014), pp. 553.
  20. T. Požar and J. Možina, “Mechanical wave motion due to the radiation pressure on gain or absorptive rods,” Opt. Lett. 38(10), 1754–1756 (2013).
    [Crossref]
  21. J. Lazar, M. Holá, O. Číp, J. Hrabina, and J. Oulehla, “Interferometric system with tracking refractometry capability in the measuring axis,” Meas. Sci. Technol. 24(6), 067001 (2013).
    [Crossref]
  22. G. V. B. Lukasievicz, L. C. Malacarne, N. G. C. Astrath, V. S. Zanuto, L. S. Herculano, and S. E. Bialkowski, “A theoretical and experimental study of time-resolved thermal mirror with non-absorbing heat-coupling fluids,” Appl. Spectrosc. 66(12), 1461–1467 (2012).
    [Crossref]
  23. J. B. Spicer and D. H. Hurley, “Epicentral and near epicenter surface displacements on pulsed laser irradiated metallic surfaces,” Appl. Phys. Lett. 68(25), 3561–3563 (1996).
    [Crossref]
  24. T. Požar and J. Možina, “Enhanced ellipse fitting in a two-detector homodyne quadrature laser interferometer,” Meas. Sci. Technol. 22(8), 085301 (2011).
    [Crossref]
  25. P. Gregorčič, T. Požar, and J. Možina, “Quadrature phase-shift error analysis using a homodyne laser interferometer,” Opt. Express 17(18), 16322–16331 (2009).
    [Crossref]
  26. L. Taylor and J. Talghader, “Monitoring and analysis of thermal deformation waves with a high-speed phase measurement system,” Appl. Opt. 54(30), 9010–9016 (2015).
    [Crossref]
  27. J. W. Bray, P. Robinson, D. E. Tyler, and W. T. Black, Metals Handbook: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, v.2 (ASM International, 1990).
  28. L. C. Malacarne, N. G. C. Astrath, G. V. B. Lukasievicz, E. K. Lenzi, M. L. Baesso, and S. E. Bialkowski, “Time-resolved thermal lens and thermal mirror spectroscopy with sample-fluid heat coupling: a complete model for material characterization,” Appl. Spectrosc. 65(1), 99–104 (2011).
    [Crossref]

2018 (1)

G. Goetz, T. Ling, T. Gupta, S. Kang, J. Wang, P. D. Gregory, H. Park, and D. Palanker, “Interferometric mapping of material properties using thermal perturbation,” Proc. Natl. Acad. Sci. 115(11), E2499–E2508 (2018).
[Crossref]

2016 (2)

O. A. Capeloto, V. S. Zanuto, L. C. Malacarne, M. L. Baesso, G. V. B. Lukasievicz, S. E. Bialkowski, and N. G. C. Astrath, “Quantitative assessment of radiation force effect at the dielectric air-liquid interface,” Sci. Rep. 6(1), 20515 (2016).
[Crossref]

O. A. Capeloto, V. S. Zanuto, G. V. B. Lukasievicz, L. C. Malacarne, S. E. Bialkowski, T. Požar, and N. G. C. Astrath, “Generation and detection of thermoelastic waves in metals by a photothermal mirror method,” Appl. Phys. Lett. 109(19), 191908 (2016).
[Crossref]

2015 (1)

2014 (2)

2013 (4)

N. G. C. Astrath, G. V. B. Lukasievicz, L. C. Malacarne, and S. E. Bialkowski, “Surface deformation effects induced by radiation pressure and electrostriction forces in dielectric solids,” Appl. Phys. Lett. 102(23), 231903 (2013).
[Crossref]

G. V. B. Lukasievicz, N. G. C. Astrath, L. C. Malacarne, L. S. Herculano, V. S. Zanuto, M. L. Baesso, and S. E. Bialkowski, “Pulsed-laser time-resolved thermal mirror technique in low absorbance homogeneous linear elastic materials,” Appl. Spectrosc. 67(10), 1111–1116 (2013).
[Crossref]

T. Požar and J. Možina, “Mechanical wave motion due to the radiation pressure on gain or absorptive rods,” Opt. Lett. 38(10), 1754–1756 (2013).
[Crossref]

J. Lazar, M. Holá, O. Číp, J. Hrabina, and J. Oulehla, “Interferometric system with tracking refractometry capability in the measuring axis,” Meas. Sci. Technol. 24(6), 067001 (2013).
[Crossref]

2012 (2)

2011 (3)

L. C. Malacarne, N. G. C. Astrath, G. V. B. Lukasievicz, E. K. Lenzi, M. L. Baesso, and S. E. Bialkowski, “Time-resolved thermal lens and thermal mirror spectroscopy with sample-fluid heat coupling: a complete model for material characterization,” Appl. Spectrosc. 65(1), 99–104 (2011).
[Crossref]

T. Požar and J. Možina, “Enhanced ellipse fitting in a two-detector homodyne quadrature laser interferometer,” Meas. Sci. Technol. 22(8), 085301 (2011).
[Crossref]

T. Požar, P. Gregorčič, and J. Možina, “A precise and wide-dynamic-range displacement-measuring homodyne quadrature laser interferometer,” Appl. Phys. B 105(3), 575–582 (2011).
[Crossref]

2009 (1)

2008 (1)

L. C. Malacarne, F. Sato, P. R. B. Pedreira, A. C. Bento, R. S. Mendes, M. L. Baesso, N. G. C. Astrath, and J. Shen, “Nanoscale surface displacement detection in high absorbing solids by time-resolved thermal mirror,” Appl. Phys. Lett. 92(13), 131903 (2008).
[Crossref]

2007 (1)

S. A. Carp and V. Venugopalan, “Optoacoustic imaging based on the interferometric measurement of surface displacement,” J. Biomed. Opt. 12(6), 064001 (2007).
[Crossref]

1997 (1)

Y. Shen and P. Hess, “Real-time detection of laser-induced transient gratings and surface acoustic wave pulses with a Michelson interferometer,” J. Appl. Phys. 82(10), 4758–4762 (1997).
[Crossref]

1996 (1)

J. B. Spicer and D. H. Hurley, “Epicentral and near epicenter surface displacements on pulsed laser irradiated metallic surfaces,” Appl. Phys. Lett. 68(25), 3561–3563 (1996).
[Crossref]

1995 (1)

V. Greco, G. Molesini, and F. Quercioli, “Accurate polarization interferometer,” Rev. Sci. Instrum. 66(7), 3729–3734 (1995).
[Crossref]

1989 (1)

V. Kurzmann. J. Stöhr, M. Tochtrop, and R. Kassing, “Interferometric measurement of thermal expansion,” Mater. Sci. Eng., A 122(1), 117–120 (1989).
[Crossref]

1981 (1)

R. Reibold and W. Molkenstruck, “Laser interferometer for ultrasonic applications,” Acustica 49, 205 (1981).

Astrath, N. G. C.

O. A. Capeloto, V. S. Zanuto, L. C. Malacarne, M. L. Baesso, G. V. B. Lukasievicz, S. E. Bialkowski, and N. G. C. Astrath, “Quantitative assessment of radiation force effect at the dielectric air-liquid interface,” Sci. Rep. 6(1), 20515 (2016).
[Crossref]

O. A. Capeloto, V. S. Zanuto, G. V. B. Lukasievicz, L. C. Malacarne, S. E. Bialkowski, T. Požar, and N. G. C. Astrath, “Generation and detection of thermoelastic waves in metals by a photothermal mirror method,” Appl. Phys. Lett. 109(19), 191908 (2016).
[Crossref]

N. G. C. Astrath, L. C. Malacarne, M. L. Baesso, G. V. B. Lukasievicz, and S. E. Bialkowski, “Unravelling the effects of radiation forces in water,” Nat. Commun. 5(1), 4363 (2014).
[Crossref]

O. A. Capeloto, G. V. B. Lukasievicz, V. S. Zanuto, L. S. Herculano, N. E. Souza Filho, A. Novatski, L. C. Malacarne, S. E. Bialkowski, M. L. Baesso, and N. G. C. Astrath, “Pulsed photothermal mirror technique: characterization of opaque materials,” Appl. Opt. 53(33), 7985–7991 (2014).
[Crossref]

G. V. B. Lukasievicz, N. G. C. Astrath, L. C. Malacarne, L. S. Herculano, V. S. Zanuto, M. L. Baesso, and S. E. Bialkowski, “Pulsed-laser time-resolved thermal mirror technique in low absorbance homogeneous linear elastic materials,” Appl. Spectrosc. 67(10), 1111–1116 (2013).
[Crossref]

N. G. C. Astrath, G. V. B. Lukasievicz, L. C. Malacarne, and S. E. Bialkowski, “Surface deformation effects induced by radiation pressure and electrostriction forces in dielectric solids,” Appl. Phys. Lett. 102(23), 231903 (2013).
[Crossref]

G. V. B. Lukasievicz, L. C. Malacarne, N. G. C. Astrath, V. S. Zanuto, L. S. Herculano, and S. E. Bialkowski, “A theoretical and experimental study of time-resolved thermal mirror with non-absorbing heat-coupling fluids,” Appl. Spectrosc. 66(12), 1461–1467 (2012).
[Crossref]

L. C. Malacarne, N. G. C. Astrath, G. V. B. Lukasievicz, E. K. Lenzi, M. L. Baesso, and S. E. Bialkowski, “Time-resolved thermal lens and thermal mirror spectroscopy with sample-fluid heat coupling: a complete model for material characterization,” Appl. Spectrosc. 65(1), 99–104 (2011).
[Crossref]

L. C. Malacarne, F. Sato, P. R. B. Pedreira, A. C. Bento, R. S. Mendes, M. L. Baesso, N. G. C. Astrath, and J. Shen, “Nanoscale surface displacement detection in high absorbing solids by time-resolved thermal mirror,” Appl. Phys. Lett. 92(13), 131903 (2008).
[Crossref]

S. E. Bialkowski, N. G. C. Astrath, and M. A. Proskurnin, Photothermal Spectroscopy Methods (John Wiley & Sons, 2019).

Baesso, M. L.

O. A. Capeloto, V. S. Zanuto, L. C. Malacarne, M. L. Baesso, G. V. B. Lukasievicz, S. E. Bialkowski, and N. G. C. Astrath, “Quantitative assessment of radiation force effect at the dielectric air-liquid interface,” Sci. Rep. 6(1), 20515 (2016).
[Crossref]

N. G. C. Astrath, L. C. Malacarne, M. L. Baesso, G. V. B. Lukasievicz, and S. E. Bialkowski, “Unravelling the effects of radiation forces in water,” Nat. Commun. 5(1), 4363 (2014).
[Crossref]

O. A. Capeloto, G. V. B. Lukasievicz, V. S. Zanuto, L. S. Herculano, N. E. Souza Filho, A. Novatski, L. C. Malacarne, S. E. Bialkowski, M. L. Baesso, and N. G. C. Astrath, “Pulsed photothermal mirror technique: characterization of opaque materials,” Appl. Opt. 53(33), 7985–7991 (2014).
[Crossref]

G. V. B. Lukasievicz, N. G. C. Astrath, L. C. Malacarne, L. S. Herculano, V. S. Zanuto, M. L. Baesso, and S. E. Bialkowski, “Pulsed-laser time-resolved thermal mirror technique in low absorbance homogeneous linear elastic materials,” Appl. Spectrosc. 67(10), 1111–1116 (2013).
[Crossref]

L. C. Malacarne, N. G. C. Astrath, G. V. B. Lukasievicz, E. K. Lenzi, M. L. Baesso, and S. E. Bialkowski, “Time-resolved thermal lens and thermal mirror spectroscopy with sample-fluid heat coupling: a complete model for material characterization,” Appl. Spectrosc. 65(1), 99–104 (2011).
[Crossref]

L. C. Malacarne, F. Sato, P. R. B. Pedreira, A. C. Bento, R. S. Mendes, M. L. Baesso, N. G. C. Astrath, and J. Shen, “Nanoscale surface displacement detection in high absorbing solids by time-resolved thermal mirror,” Appl. Phys. Lett. 92(13), 131903 (2008).
[Crossref]

Bento, A. C.

L. C. Malacarne, F. Sato, P. R. B. Pedreira, A. C. Bento, R. S. Mendes, M. L. Baesso, N. G. C. Astrath, and J. Shen, “Nanoscale surface displacement detection in high absorbing solids by time-resolved thermal mirror,” Appl. Phys. Lett. 92(13), 131903 (2008).
[Crossref]

Beyersdorf, P.

Bialkowski, S. E.

O. A. Capeloto, V. S. Zanuto, L. C. Malacarne, M. L. Baesso, G. V. B. Lukasievicz, S. E. Bialkowski, and N. G. C. Astrath, “Quantitative assessment of radiation force effect at the dielectric air-liquid interface,” Sci. Rep. 6(1), 20515 (2016).
[Crossref]

O. A. Capeloto, V. S. Zanuto, G. V. B. Lukasievicz, L. C. Malacarne, S. E. Bialkowski, T. Požar, and N. G. C. Astrath, “Generation and detection of thermoelastic waves in metals by a photothermal mirror method,” Appl. Phys. Lett. 109(19), 191908 (2016).
[Crossref]

N. G. C. Astrath, L. C. Malacarne, M. L. Baesso, G. V. B. Lukasievicz, and S. E. Bialkowski, “Unravelling the effects of radiation forces in water,” Nat. Commun. 5(1), 4363 (2014).
[Crossref]

O. A. Capeloto, G. V. B. Lukasievicz, V. S. Zanuto, L. S. Herculano, N. E. Souza Filho, A. Novatski, L. C. Malacarne, S. E. Bialkowski, M. L. Baesso, and N. G. C. Astrath, “Pulsed photothermal mirror technique: characterization of opaque materials,” Appl. Opt. 53(33), 7985–7991 (2014).
[Crossref]

G. V. B. Lukasievicz, N. G. C. Astrath, L. C. Malacarne, L. S. Herculano, V. S. Zanuto, M. L. Baesso, and S. E. Bialkowski, “Pulsed-laser time-resolved thermal mirror technique in low absorbance homogeneous linear elastic materials,” Appl. Spectrosc. 67(10), 1111–1116 (2013).
[Crossref]

N. G. C. Astrath, G. V. B. Lukasievicz, L. C. Malacarne, and S. E. Bialkowski, “Surface deformation effects induced by radiation pressure and electrostriction forces in dielectric solids,” Appl. Phys. Lett. 102(23), 231903 (2013).
[Crossref]

G. V. B. Lukasievicz, L. C. Malacarne, N. G. C. Astrath, V. S. Zanuto, L. S. Herculano, and S. E. Bialkowski, “A theoretical and experimental study of time-resolved thermal mirror with non-absorbing heat-coupling fluids,” Appl. Spectrosc. 66(12), 1461–1467 (2012).
[Crossref]

L. C. Malacarne, N. G. C. Astrath, G. V. B. Lukasievicz, E. K. Lenzi, M. L. Baesso, and S. E. Bialkowski, “Time-resolved thermal lens and thermal mirror spectroscopy with sample-fluid heat coupling: a complete model for material characterization,” Appl. Spectrosc. 65(1), 99–104 (2011).
[Crossref]

S. E. Bialkowski, N. G. C. Astrath, and M. A. Proskurnin, Photothermal Spectroscopy Methods (John Wiley & Sons, 2019).

Black, W. T.

J. W. Bray, P. Robinson, D. E. Tyler, and W. T. Black, Metals Handbook: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, v.2 (ASM International, 1990).

Bray, J. W.

J. W. Bray, P. Robinson, D. E. Tyler, and W. T. Black, Metals Handbook: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, v.2 (ASM International, 1990).

Capeloto, O. A.

O. A. Capeloto, V. S. Zanuto, L. C. Malacarne, M. L. Baesso, G. V. B. Lukasievicz, S. E. Bialkowski, and N. G. C. Astrath, “Quantitative assessment of radiation force effect at the dielectric air-liquid interface,” Sci. Rep. 6(1), 20515 (2016).
[Crossref]

O. A. Capeloto, V. S. Zanuto, G. V. B. Lukasievicz, L. C. Malacarne, S. E. Bialkowski, T. Požar, and N. G. C. Astrath, “Generation and detection of thermoelastic waves in metals by a photothermal mirror method,” Appl. Phys. Lett. 109(19), 191908 (2016).
[Crossref]

O. A. Capeloto, G. V. B. Lukasievicz, V. S. Zanuto, L. S. Herculano, N. E. Souza Filho, A. Novatski, L. C. Malacarne, S. E. Bialkowski, M. L. Baesso, and N. G. C. Astrath, “Pulsed photothermal mirror technique: characterization of opaque materials,” Appl. Opt. 53(33), 7985–7991 (2014).
[Crossref]

Carp, S. A.

S. A. Carp and V. Venugopalan, “Optoacoustic imaging based on the interferometric measurement of surface displacement,” J. Biomed. Opt. 12(6), 064001 (2007).
[Crossref]

Cíp, O.

J. Lazar, M. Holá, O. Číp, J. Hrabina, and J. Oulehla, “Interferometric system with tracking refractometry capability in the measuring axis,” Meas. Sci. Technol. 24(6), 067001 (2013).
[Crossref]

Cordier, M.

Drain, L. E.

C. B. Scruby and L. E. Drain, Laser Ultrasonics, Techniques and Applications (Adam Hilger, 1990).

Goetz, G.

G. Goetz, T. Ling, T. Gupta, S. Kang, J. Wang, P. D. Gregory, H. Park, and D. Palanker, “Interferometric mapping of material properties using thermal perturbation,” Proc. Natl. Acad. Sci. 115(11), E2499–E2508 (2018).
[Crossref]

Greco, V.

V. Greco, G. Molesini, and F. Quercioli, “Accurate polarization interferometer,” Rev. Sci. Instrum. 66(7), 3729–3734 (1995).
[Crossref]

Gregorcic, P.

T. Požar, P. Gregorčič, and J. Možina, “A precise and wide-dynamic-range displacement-measuring homodyne quadrature laser interferometer,” Appl. Phys. B 105(3), 575–582 (2011).
[Crossref]

P. Gregorčič, T. Požar, and J. Možina, “Quadrature phase-shift error analysis using a homodyne laser interferometer,” Opt. Express 17(18), 16322–16331 (2009).
[Crossref]

Gregory, P. D.

G. Goetz, T. Ling, T. Gupta, S. Kang, J. Wang, P. D. Gregory, H. Park, and D. Palanker, “Interferometric mapping of material properties using thermal perturbation,” Proc. Natl. Acad. Sci. 115(11), E2499–E2508 (2018).
[Crossref]

Gupta, T.

G. Goetz, T. Ling, T. Gupta, S. Kang, J. Wang, P. D. Gregory, H. Park, and D. Palanker, “Interferometric mapping of material properties using thermal perturbation,” Proc. Natl. Acad. Sci. 115(11), E2499–E2508 (2018).
[Crossref]

Gusev, V. E.

V. E. Gusev and A. A. Karabutov, Laser optoacoustics (American Institute of Physics, 1993).

Herculano, L. S.

Hess, P.

Y. Shen and P. Hess, “Real-time detection of laser-induced transient gratings and surface acoustic wave pulses with a Michelson interferometer,” J. Appl. Phys. 82(10), 4758–4762 (1997).
[Crossref]

Holá, M.

J. Lazar, M. Holá, O. Číp, J. Hrabina, and J. Oulehla, “Interferometric system with tracking refractometry capability in the measuring axis,” Meas. Sci. Technol. 24(6), 067001 (2013).
[Crossref]

Hrabina, J.

J. Lazar, M. Holá, O. Číp, J. Hrabina, and J. Oulehla, “Interferometric system with tracking refractometry capability in the measuring axis,” Meas. Sci. Technol. 24(6), 067001 (2013).
[Crossref]

Hurley, D. H.

J. B. Spicer and D. H. Hurley, “Epicentral and near epicenter surface displacements on pulsed laser irradiated metallic surfaces,” Appl. Phys. Lett. 68(25), 3561–3563 (1996).
[Crossref]

Kang, S.

G. Goetz, T. Ling, T. Gupta, S. Kang, J. Wang, P. D. Gregory, H. Park, and D. Palanker, “Interferometric mapping of material properties using thermal perturbation,” Proc. Natl. Acad. Sci. 115(11), E2499–E2508 (2018).
[Crossref]

Karabutov, A. A.

V. E. Gusev and A. A. Karabutov, Laser optoacoustics (American Institute of Physics, 1993).

Kassing, R.

V. Kurzmann. J. Stöhr, M. Tochtrop, and R. Kassing, “Interferometric measurement of thermal expansion,” Mater. Sci. Eng., A 122(1), 117–120 (1989).
[Crossref]

Kurzmann. J. Stöhr, V.

V. Kurzmann. J. Stöhr, M. Tochtrop, and R. Kassing, “Interferometric measurement of thermal expansion,” Mater. Sci. Eng., A 122(1), 117–120 (1989).
[Crossref]

Lazar, J.

J. Lazar, M. Holá, O. Číp, J. Hrabina, and J. Oulehla, “Interferometric system with tracking refractometry capability in the measuring axis,” Meas. Sci. Technol. 24(6), 067001 (2013).
[Crossref]

Lenzi, E. K.

Ling, T.

G. Goetz, T. Ling, T. Gupta, S. Kang, J. Wang, P. D. Gregory, H. Park, and D. Palanker, “Interferometric mapping of material properties using thermal perturbation,” Proc. Natl. Acad. Sci. 115(11), E2499–E2508 (2018).
[Crossref]

Lukasievicz, G. V. B.

O. A. Capeloto, V. S. Zanuto, G. V. B. Lukasievicz, L. C. Malacarne, S. E. Bialkowski, T. Požar, and N. G. C. Astrath, “Generation and detection of thermoelastic waves in metals by a photothermal mirror method,” Appl. Phys. Lett. 109(19), 191908 (2016).
[Crossref]

O. A. Capeloto, V. S. Zanuto, L. C. Malacarne, M. L. Baesso, G. V. B. Lukasievicz, S. E. Bialkowski, and N. G. C. Astrath, “Quantitative assessment of radiation force effect at the dielectric air-liquid interface,” Sci. Rep. 6(1), 20515 (2016).
[Crossref]

N. G. C. Astrath, L. C. Malacarne, M. L. Baesso, G. V. B. Lukasievicz, and S. E. Bialkowski, “Unravelling the effects of radiation forces in water,” Nat. Commun. 5(1), 4363 (2014).
[Crossref]

O. A. Capeloto, G. V. B. Lukasievicz, V. S. Zanuto, L. S. Herculano, N. E. Souza Filho, A. Novatski, L. C. Malacarne, S. E. Bialkowski, M. L. Baesso, and N. G. C. Astrath, “Pulsed photothermal mirror technique: characterization of opaque materials,” Appl. Opt. 53(33), 7985–7991 (2014).
[Crossref]

G. V. B. Lukasievicz, N. G. C. Astrath, L. C. Malacarne, L. S. Herculano, V. S. Zanuto, M. L. Baesso, and S. E. Bialkowski, “Pulsed-laser time-resolved thermal mirror technique in low absorbance homogeneous linear elastic materials,” Appl. Spectrosc. 67(10), 1111–1116 (2013).
[Crossref]

N. G. C. Astrath, G. V. B. Lukasievicz, L. C. Malacarne, and S. E. Bialkowski, “Surface deformation effects induced by radiation pressure and electrostriction forces in dielectric solids,” Appl. Phys. Lett. 102(23), 231903 (2013).
[Crossref]

G. V. B. Lukasievicz, L. C. Malacarne, N. G. C. Astrath, V. S. Zanuto, L. S. Herculano, and S. E. Bialkowski, “A theoretical and experimental study of time-resolved thermal mirror with non-absorbing heat-coupling fluids,” Appl. Spectrosc. 66(12), 1461–1467 (2012).
[Crossref]

L. C. Malacarne, N. G. C. Astrath, G. V. B. Lukasievicz, E. K. Lenzi, M. L. Baesso, and S. E. Bialkowski, “Time-resolved thermal lens and thermal mirror spectroscopy with sample-fluid heat coupling: a complete model for material characterization,” Appl. Spectrosc. 65(1), 99–104 (2011).
[Crossref]

Malacarne, L. C.

O. A. Capeloto, V. S. Zanuto, L. C. Malacarne, M. L. Baesso, G. V. B. Lukasievicz, S. E. Bialkowski, and N. G. C. Astrath, “Quantitative assessment of radiation force effect at the dielectric air-liquid interface,” Sci. Rep. 6(1), 20515 (2016).
[Crossref]

O. A. Capeloto, V. S. Zanuto, G. V. B. Lukasievicz, L. C. Malacarne, S. E. Bialkowski, T. Požar, and N. G. C. Astrath, “Generation and detection of thermoelastic waves in metals by a photothermal mirror method,” Appl. Phys. Lett. 109(19), 191908 (2016).
[Crossref]

N. G. C. Astrath, L. C. Malacarne, M. L. Baesso, G. V. B. Lukasievicz, and S. E. Bialkowski, “Unravelling the effects of radiation forces in water,” Nat. Commun. 5(1), 4363 (2014).
[Crossref]

O. A. Capeloto, G. V. B. Lukasievicz, V. S. Zanuto, L. S. Herculano, N. E. Souza Filho, A. Novatski, L. C. Malacarne, S. E. Bialkowski, M. L. Baesso, and N. G. C. Astrath, “Pulsed photothermal mirror technique: characterization of opaque materials,” Appl. Opt. 53(33), 7985–7991 (2014).
[Crossref]

G. V. B. Lukasievicz, N. G. C. Astrath, L. C. Malacarne, L. S. Herculano, V. S. Zanuto, M. L. Baesso, and S. E. Bialkowski, “Pulsed-laser time-resolved thermal mirror technique in low absorbance homogeneous linear elastic materials,” Appl. Spectrosc. 67(10), 1111–1116 (2013).
[Crossref]

N. G. C. Astrath, G. V. B. Lukasievicz, L. C. Malacarne, and S. E. Bialkowski, “Surface deformation effects induced by radiation pressure and electrostriction forces in dielectric solids,” Appl. Phys. Lett. 102(23), 231903 (2013).
[Crossref]

G. V. B. Lukasievicz, L. C. Malacarne, N. G. C. Astrath, V. S. Zanuto, L. S. Herculano, and S. E. Bialkowski, “A theoretical and experimental study of time-resolved thermal mirror with non-absorbing heat-coupling fluids,” Appl. Spectrosc. 66(12), 1461–1467 (2012).
[Crossref]

L. C. Malacarne, N. G. C. Astrath, G. V. B. Lukasievicz, E. K. Lenzi, M. L. Baesso, and S. E. Bialkowski, “Time-resolved thermal lens and thermal mirror spectroscopy with sample-fluid heat coupling: a complete model for material characterization,” Appl. Spectrosc. 65(1), 99–104 (2011).
[Crossref]

L. C. Malacarne, F. Sato, P. R. B. Pedreira, A. C. Bento, R. S. Mendes, M. L. Baesso, N. G. C. Astrath, and J. Shen, “Nanoscale surface displacement detection in high absorbing solids by time-resolved thermal mirror,” Appl. Phys. Lett. 92(13), 131903 (2008).
[Crossref]

Mendes, R. S.

L. C. Malacarne, F. Sato, P. R. B. Pedreira, A. C. Bento, R. S. Mendes, M. L. Baesso, N. G. C. Astrath, and J. Shen, “Nanoscale surface displacement detection in high absorbing solids by time-resolved thermal mirror,” Appl. Phys. Lett. 92(13), 131903 (2008).
[Crossref]

Molesini, G.

V. Greco, G. Molesini, and F. Quercioli, “Accurate polarization interferometer,” Rev. Sci. Instrum. 66(7), 3729–3734 (1995).
[Crossref]

Molkenstruck, W.

R. Reibold and W. Molkenstruck, “Laser interferometer for ultrasonic applications,” Acustica 49, 205 (1981).

Možina, J.

T. Požar and J. Možina, “Mechanical wave motion due to the radiation pressure on gain or absorptive rods,” Opt. Lett. 38(10), 1754–1756 (2013).
[Crossref]

T. Požar and J. Možina, “Enhanced ellipse fitting in a two-detector homodyne quadrature laser interferometer,” Meas. Sci. Technol. 22(8), 085301 (2011).
[Crossref]

T. Požar, P. Gregorčič, and J. Možina, “A precise and wide-dynamic-range displacement-measuring homodyne quadrature laser interferometer,” Appl. Phys. B 105(3), 575–582 (2011).
[Crossref]

P. Gregorčič, T. Požar, and J. Možina, “Quadrature phase-shift error analysis using a homodyne laser interferometer,” Opt. Express 17(18), 16322–16331 (2009).
[Crossref]

T. Požar, J. Možina, and K. D. Sattler, in Fundamentals of Picoscience (Taylor and Francis, 2014), pp. 553.

Novatski, A.

Oulehla, J.

J. Lazar, M. Holá, O. Číp, J. Hrabina, and J. Oulehla, “Interferometric system with tracking refractometry capability in the measuring axis,” Meas. Sci. Technol. 24(6), 067001 (2013).
[Crossref]

Palanker, D.

G. Goetz, T. Ling, T. Gupta, S. Kang, J. Wang, P. D. Gregory, H. Park, and D. Palanker, “Interferometric mapping of material properties using thermal perturbation,” Proc. Natl. Acad. Sci. 115(11), E2499–E2508 (2018).
[Crossref]

Park, H.

G. Goetz, T. Ling, T. Gupta, S. Kang, J. Wang, P. D. Gregory, H. Park, and D. Palanker, “Interferometric mapping of material properties using thermal perturbation,” Proc. Natl. Acad. Sci. 115(11), E2499–E2508 (2018).
[Crossref]

Pedreira, P. R. B.

L. C. Malacarne, F. Sato, P. R. B. Pedreira, A. C. Bento, R. S. Mendes, M. L. Baesso, N. G. C. Astrath, and J. Shen, “Nanoscale surface displacement detection in high absorbing solids by time-resolved thermal mirror,” Appl. Phys. Lett. 92(13), 131903 (2008).
[Crossref]

Požar, T.

O. A. Capeloto, V. S. Zanuto, G. V. B. Lukasievicz, L. C. Malacarne, S. E. Bialkowski, T. Požar, and N. G. C. Astrath, “Generation and detection of thermoelastic waves in metals by a photothermal mirror method,” Appl. Phys. Lett. 109(19), 191908 (2016).
[Crossref]

T. Požar and J. Možina, “Mechanical wave motion due to the radiation pressure on gain or absorptive rods,” Opt. Lett. 38(10), 1754–1756 (2013).
[Crossref]

T. Požar and J. Možina, “Enhanced ellipse fitting in a two-detector homodyne quadrature laser interferometer,” Meas. Sci. Technol. 22(8), 085301 (2011).
[Crossref]

T. Požar, P. Gregorčič, and J. Možina, “A precise and wide-dynamic-range displacement-measuring homodyne quadrature laser interferometer,” Appl. Phys. B 105(3), 575–582 (2011).
[Crossref]

P. Gregorčič, T. Požar, and J. Možina, “Quadrature phase-shift error analysis using a homodyne laser interferometer,” Opt. Express 17(18), 16322–16331 (2009).
[Crossref]

T. Požar, J. Možina, and K. D. Sattler, in Fundamentals of Picoscience (Taylor and Francis, 2014), pp. 553.

Proskurnin, M. A.

S. E. Bialkowski, N. G. C. Astrath, and M. A. Proskurnin, Photothermal Spectroscopy Methods (John Wiley & Sons, 2019).

Quercioli, F.

V. Greco, G. Molesini, and F. Quercioli, “Accurate polarization interferometer,” Rev. Sci. Instrum. 66(7), 3729–3734 (1995).
[Crossref]

Reibold, R.

R. Reibold and W. Molkenstruck, “Laser interferometer for ultrasonic applications,” Acustica 49, 205 (1981).

Robinson, P.

J. W. Bray, P. Robinson, D. E. Tyler, and W. T. Black, Metals Handbook: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, v.2 (ASM International, 1990).

Sato, F.

L. C. Malacarne, F. Sato, P. R. B. Pedreira, A. C. Bento, R. S. Mendes, M. L. Baesso, N. G. C. Astrath, and J. Shen, “Nanoscale surface displacement detection in high absorbing solids by time-resolved thermal mirror,” Appl. Phys. Lett. 92(13), 131903 (2008).
[Crossref]

Sattler, K. D.

T. Požar, J. Možina, and K. D. Sattler, in Fundamentals of Picoscience (Taylor and Francis, 2014), pp. 553.

Scruby, C. B.

C. B. Scruby and L. E. Drain, Laser Ultrasonics, Techniques and Applications (Adam Hilger, 1990).

Shen, J.

L. C. Malacarne, F. Sato, P. R. B. Pedreira, A. C. Bento, R. S. Mendes, M. L. Baesso, N. G. C. Astrath, and J. Shen, “Nanoscale surface displacement detection in high absorbing solids by time-resolved thermal mirror,” Appl. Phys. Lett. 92(13), 131903 (2008).
[Crossref]

Shen, Y.

Y. Shen and P. Hess, “Real-time detection of laser-induced transient gratings and surface acoustic wave pulses with a Michelson interferometer,” J. Appl. Phys. 82(10), 4758–4762 (1997).
[Crossref]

Souza Filho, N. E.

Spicer, J. B.

J. B. Spicer and D. H. Hurley, “Epicentral and near epicenter surface displacements on pulsed laser irradiated metallic surfaces,” Appl. Phys. Lett. 68(25), 3561–3563 (1996).
[Crossref]

Talghader, J.

Taylor, L.

Tochtrop, M.

V. Kurzmann. J. Stöhr, M. Tochtrop, and R. Kassing, “Interferometric measurement of thermal expansion,” Mater. Sci. Eng., A 122(1), 117–120 (1989).
[Crossref]

Tyler, D. E.

J. W. Bray, P. Robinson, D. E. Tyler, and W. T. Black, Metals Handbook: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, v.2 (ASM International, 1990).

Venugopalan, V.

S. A. Carp and V. Venugopalan, “Optoacoustic imaging based on the interferometric measurement of surface displacement,” J. Biomed. Opt. 12(6), 064001 (2007).
[Crossref]

Wang, J.

G. Goetz, T. Ling, T. Gupta, S. Kang, J. Wang, P. D. Gregory, H. Park, and D. Palanker, “Interferometric mapping of material properties using thermal perturbation,” Proc. Natl. Acad. Sci. 115(11), E2499–E2508 (2018).
[Crossref]

Zanuto, V. S.

Acustica (1)

R. Reibold and W. Molkenstruck, “Laser interferometer for ultrasonic applications,” Acustica 49, 205 (1981).

Appl. Opt. (3)

Appl. Phys. B (1)

T. Požar, P. Gregorčič, and J. Možina, “A precise and wide-dynamic-range displacement-measuring homodyne quadrature laser interferometer,” Appl. Phys. B 105(3), 575–582 (2011).
[Crossref]

Appl. Phys. Lett. (4)

J. B. Spicer and D. H. Hurley, “Epicentral and near epicenter surface displacements on pulsed laser irradiated metallic surfaces,” Appl. Phys. Lett. 68(25), 3561–3563 (1996).
[Crossref]

L. C. Malacarne, F. Sato, P. R. B. Pedreira, A. C. Bento, R. S. Mendes, M. L. Baesso, N. G. C. Astrath, and J. Shen, “Nanoscale surface displacement detection in high absorbing solids by time-resolved thermal mirror,” Appl. Phys. Lett. 92(13), 131903 (2008).
[Crossref]

N. G. C. Astrath, G. V. B. Lukasievicz, L. C. Malacarne, and S. E. Bialkowski, “Surface deformation effects induced by radiation pressure and electrostriction forces in dielectric solids,” Appl. Phys. Lett. 102(23), 231903 (2013).
[Crossref]

O. A. Capeloto, V. S. Zanuto, G. V. B. Lukasievicz, L. C. Malacarne, S. E. Bialkowski, T. Požar, and N. G. C. Astrath, “Generation and detection of thermoelastic waves in metals by a photothermal mirror method,” Appl. Phys. Lett. 109(19), 191908 (2016).
[Crossref]

Appl. Spectrosc. (3)

J. Appl. Phys. (1)

Y. Shen and P. Hess, “Real-time detection of laser-induced transient gratings and surface acoustic wave pulses with a Michelson interferometer,” J. Appl. Phys. 82(10), 4758–4762 (1997).
[Crossref]

J. Biomed. Opt. (1)

S. A. Carp and V. Venugopalan, “Optoacoustic imaging based on the interferometric measurement of surface displacement,” J. Biomed. Opt. 12(6), 064001 (2007).
[Crossref]

Mater. Sci. Eng., A (1)

V. Kurzmann. J. Stöhr, M. Tochtrop, and R. Kassing, “Interferometric measurement of thermal expansion,” Mater. Sci. Eng., A 122(1), 117–120 (1989).
[Crossref]

Meas. Sci. Technol. (2)

T. Požar and J. Možina, “Enhanced ellipse fitting in a two-detector homodyne quadrature laser interferometer,” Meas. Sci. Technol. 22(8), 085301 (2011).
[Crossref]

J. Lazar, M. Holá, O. Číp, J. Hrabina, and J. Oulehla, “Interferometric system with tracking refractometry capability in the measuring axis,” Meas. Sci. Technol. 24(6), 067001 (2013).
[Crossref]

Nat. Commun. (1)

N. G. C. Astrath, L. C. Malacarne, M. L. Baesso, G. V. B. Lukasievicz, and S. E. Bialkowski, “Unravelling the effects of radiation forces in water,” Nat. Commun. 5(1), 4363 (2014).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Proc. Natl. Acad. Sci. (1)

G. Goetz, T. Ling, T. Gupta, S. Kang, J. Wang, P. D. Gregory, H. Park, and D. Palanker, “Interferometric mapping of material properties using thermal perturbation,” Proc. Natl. Acad. Sci. 115(11), E2499–E2508 (2018).
[Crossref]

Rev. Sci. Instrum. (1)

V. Greco, G. Molesini, and F. Quercioli, “Accurate polarization interferometer,” Rev. Sci. Instrum. 66(7), 3729–3734 (1995).
[Crossref]

Sci. Rep. (1)

O. A. Capeloto, V. S. Zanuto, L. C. Malacarne, M. L. Baesso, G. V. B. Lukasievicz, S. E. Bialkowski, and N. G. C. Astrath, “Quantitative assessment of radiation force effect at the dielectric air-liquid interface,” Sci. Rep. 6(1), 20515 (2016).
[Crossref]

Other (5)

V. E. Gusev and A. A. Karabutov, Laser optoacoustics (American Institute of Physics, 1993).

C. B. Scruby and L. E. Drain, Laser Ultrasonics, Techniques and Applications (Adam Hilger, 1990).

T. Požar, J. Možina, and K. D. Sattler, in Fundamentals of Picoscience (Taylor and Francis, 2014), pp. 553.

S. E. Bialkowski, N. G. C. Astrath, and M. A. Proskurnin, Photothermal Spectroscopy Methods (John Wiley & Sons, 2019).

J. W. Bray, P. Robinson, D. E. Tyler, and W. T. Black, Metals Handbook: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, v.2 (ASM International, 1990).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1.
Fig. 1. Experimental diagram for the TM and the interferometer measurements. The pump and the probe beams are focused by the biconvex lenses L$_j$ of focal lengths f$_j$. M$_j$, BB, and PD$_j$ stand for mirrors, beam blocker, and photodiodes, respectively. NBS/PBS are the nonpolarizing/polarizing beam splitters, OFI is the optical Faraday isolator, $\lambda /8$ is the octadic wave plate and PDx,y detects the beam having x,y-polarization. The laser beams have radii: $w_e=646~\mathrm {\upmu } \textrm {m}$, $w_p=1584~\mathrm {\upmu } \textrm {m}$, $w_{\textrm {interf.}}=154~\mathrm {\upmu } \textrm {m}$, at the surface of the sample. The experimental parameters are $z_{c} = 0.50~\textrm {cm}$, and $z_1= 26.1~\textrm {cm}$. The temperature of the samples was $298~\textrm {K}$.
Fig. 2.
Fig. 2. Measured (open symbols) (a) interferometric and (b) TM signals for copper, bronze and inox as a function of the reduced time, $t/\xi$. Continuous lines represent the numerical fit of the experimental curves to $\Phi _{\textrm {TM}} \left (0,t\right )$ (interferometer) and Eq. (10) (TM). (c) shows the retrieved $\theta _{\textrm {TM}}$ from the interferometer (open squares) and the TM (open circles) as a function of the excitation power.

Tables (1)

Tables Icon

Table 1. Physical properties of the metals. The literature values are for metals with characteristics similar to the samples investigated here. Reflectivity R is 0.58 for copper, 0.69 for bronze, and 0.60 for inox, and ( d n / d T ) a i r = 1 × 10 6 K 1 [8].

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

T i ( r , z , t ) t D i 2 T i ( r , z , t ) = ζ Q 0 Q ( r ) Q ( z ) ,
T i ( r , z , t ) = 0 T i ( α , z , t ) J 0 ( α r ) α d α ,
T i ( α , z , t ) = k s Q 0 Q ( α ) D s / D f t 0 t G ( α , t τ ) H ( α , τ , D i ) d τ ,
G ( α , t ) = k s D f α κ ( k s 2 D f k f 2 D s ) [ D s erf ( α D s t ) e α 2 κ t D s κ erf ( α D s κ t ) ] k f D s α κ ( k s 2 D f k f 2 D s ) [ D f erf ( α D f t ) e α 2 κ t D f κ erf ( α D f κ t ) ] .
( λ + 2 μ ) 2 u + ( λ + μ ) ( u ) = γ T s ( r , z , t ) + ρ s 2 u t 2 ,
u z ( r , 0 , t ) = θ TM λ p k s D s D f π 0 t 0 t [ e D s α 2 τ α τ π D s erfc ( α τ D s ) ] G ( α , t τ ) α 2 e w e 2 α 2 / 8 J 0 ( α r ) d τ d α .
Φ TM s ( r , t ) = 4 π λ p u z ( r , 0 , t ) .
Φ TL f ( r , t ) = 4 π λ p ( d n d T ) f 0 [ T f ( r , z , t ) T f ( 0 , z , t ) ] d z .
Φ TM ( r , t ) = Φ TM s ( r , t ) + Φ TL f ( r , t ) .
S ( t ) = | 0 2 r w p 2 exp [ ( 1 + i z 1 z c ) r 2 w p 2 i Φ TM ( r , t ) ] d r | 2 ,
Φ TM int. ( r , t ) = arctan [ I y ( t ) I 0 / 4 I x ( t ) I 0 / 4 + m π ] , m = 0 , ± 1 ,

Metrics