Abstract

High power femtosecond semiconductor laser based on saw-toothed taper mode-locked laser and amplifier was demonstrated with compressed amplified spontaneous emission (ASE). The external-cavity mode-locked taper laser generated the clean optical pulses without any sub-pulse components. A semiconductor optical amplifier (SOA) with tilted taper waveguide and saw-toothed edge reduced evidently the ASE background. The saw-tooth microstructures were optimized and it was found that the saw-tooth of right-right angled triangle showed the best effect. The ratio of the maximum intensity to background radiation was increased by 21.9% and the power was increased by 30.5% due to the saw-tooth microstructure in the SOA. The pulse duration of 495 fs and a peak power over 1.5 kW with repetition rate of 579 MHz were realized after a double-pass grating compressor.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Generation of sub-100 ps pulses with a peak power of 65 W by gain switching, pulse shortening, and pulse amplification using a semiconductor-based master oscillator–power amplifier system

Sven Schwertfeger, Andreas Klehr, Thomas Hoffmann, Armin Liero, Hans Wenzel, and Götz Erbert
Appl. Opt. 52(14) 3364-3367 (2013)

9-kW peak power and 150-fs duration blue-violet optical pulses generated by GaInN master oscillator power amplifier

Shunsuke Kono, Rintaro Koda, Hidekazu Kawanishi, and Hironobu Narui
Opt. Express 25(13) 14926-14934 (2017)

References

  • View by:
  • |
  • |
  • |

  1. S. H. Park, D. Y. Yang, and K. S. Lee, “Two-photon stereolithography for realizing ultraprecise three-dimensional nano/microdevices,” Laser Photonics Rev. 3(1-2), 1–11 (2009).
    [Crossref]
  2. K. Sugioka and Y. Cheng, “Ultrafast lasers-reliable tools for advanced materials processing,” Light: Sci. Appl. 3(4), e149 (2014).
    [Crossref]
  3. M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light: Sci. Appl. 5(8), e16133 (2016).
    [Crossref]
  4. S. Toriyama, V. Mizeikis, and A. Ono, “Fabrication of silver nano-rings using photo-reduction induced by femtosecond pulses,” Appl. Phys. Express 12(1), 015004 (2019).
    [Crossref]
  5. Y. Nomura, H. Kawagoe, Y. Hattori, M. Yamanaka, E. Omoda, H. Kataure, Y. Sakakibara, and N. Nishizawa, “Supercontinuum generation for ultrahigh-resolution optical coherence tomography at wavelength of 0.8 µm using carbon nanotube fiber laser and similariton amplifier,” Appl. Phys. Express 7(12), 122703 (2014).
    [Crossref]
  6. M. Yamanaka, H. Kawagoe, and N. Nishizawa, “High-power supercontinuum generation using high-repetition-rate ultrashort-pulse fiber laser for ultrahigh-resolution optical coherence tomography in 1600 nm spectral band,” Appl. Phys. Express 9(2), 022701 (2016).
    [Crossref]
  7. J. Luo, B. Sun, J. Liu, Z. Yan, N. Li, E. L. Tan, Q. Wang, and X. Yu, “Mid-IR supercontinuum pumped by femtosecond pulses from thulium doped all-fiber amplifier,” Opt. Express 24(13), 13939–13945 (2016).
    [Crossref]
  8. S. A. Rezvani, Y. Nomura, K. Ogawa, and T. Fuji, “Generation and characterization of mid-infrared supercontinuum in polarization maintained ZBLAN fibers,” Opt. Express 27(17), 24499–24511 (2019).
    [Crossref]
  9. A. Robertson, M. E. Klein, M. A. Tremont, K. J. Boller, and R. Wallenstein, “2.5-GHz repetition-rate singly resonant optical parametric oscillator synchronously pumped by a mode-locked diode oscillator amplifier system,” Opt. Lett. 25(9), 657–659 (2000).
    [Crossref]
  10. W. Tian, Z. Wang, J. Zhu, and Z. Wei, “Harmonically pumped femtosecond optical parametric oscillator with multi-gigahertz repetition rate,” Opt. Express 24(26), 29814–29821 (2016).
    [Crossref]
  11. E. P. Perillo, J. W. Jarrett, Y. L. Liu, A. Hassan, D. C. Fernée, J. R. Goldak, A. Bonteanu, D. J. Spence, H. C. Yeh, and A. K. Dunn, “Two-color multiphoton in vivo imaging with a femtosecond diamond Raman laser,” Light: Sci. Appl. 6(11), e17095 (2017).
    [Crossref]
  12. C. Lefort, “A review of biomedical multiphoton microscopy and its laser sources,” J. Phys. D: Appl. Phys. 50(42), 423001 (2017).
    [Crossref]
  13. K. Guesmi, L. Abdeladim, S. Tozer, P. Mahou, T. Kumamoto, K. Jurkus, P. Rigaud, K. Loulier, N. Dray, P. Georges, M. Hanna, J. Livet, W. Supatto, E. Beaurepaire, and F. Druon, “Dual-color deep-tissue three-photon microscopy with a multiband infrared laser,” Light: Sci. Appl. 7(1), 12–19 (2018).
    [Crossref]
  14. T. Ulm, F. Harth, H. Fuchs, J. A. Lhuillier, and R. Wallenstein, “InGaAs diode laser system generating pulses of 580 fs duration and 366W peak power,” Appl. Phys. B 92(4), 481–485 (2008).
    [Crossref]
  15. R. Koda, T. Oki, T. Miyajima, H. Watanabe, M. Kuramoto, M. Ikeda, and H. Yokoyama, “100 W peak-power 1 GHz repetition picoseconds optical pulse generation using blue-violet GaInN diode laser mode-locked oscillator and optical amplifier,” Appl. Phys. Lett. 97(2), 021101 (2010).
    [Crossref]
  16. R. Koda, T. Oki, T. Miyajima, H. Watanabe, S. Konoa, M. Kuramotoa, M. Ikeda, and H. Yokoyama, “High peak power picoseconds optical pulse generation from GaInN semiconductor diode lasers,” Proc. SPIE 7953, 79530J (2011).
    [Crossref]
  17. Y. Ding, R. Aviles-Espinosa, M. A. Cataluna, D. Nikitichev, M. Ruiz, M. Tran, Y. Robert, A. Kapsalis, H. Simos, C. Mesaritakis, T. Xu, P. Bardella, M. Rossetti, I. Krestnikov, D. Livshits, I. Montrosset, D. Syvridis, M. Krakowski, P. Loza-Alvarez, and E. Rafailov, “High peak-power picosecond pulse generation at 1.26 µm using a quantum-dot-based external-cavity mode-locked laser and tapered optical amplifier,” Opt. Express 20(13), 14308–14320 (2012).
    [Crossref]
  18. R. Koda, T. Oki, S. Kono, T. Miyajima, H. Watanabe, M. Kuramoto, M. Ikeda, and H. Yokoyama, “300W peak power picosecond optical pulse generation by blue-violet GaInN mode-locked laser diode and semiconductor optical amplifier,” Appl. Phys. Express 5(2), 022702 (2012).
    [Crossref]
  19. S. Schwertfeger, A. Klehr, T. Hoffmann, A. Liero, H. Wenzel, and G. Erbert, “Picosecond pulses with 50 W peak power and reduced ASE background from an all-semiconductor MOPA system,” Appl. Phys. B 103(3), 603–607 (2011).
    [Crossref]
  20. S. Schwertfeger, A. Klehr, T. Hoffmann, A. Liero, H. Wenzel, and G. Erbert, “Generation of sub-100 ps pulses with a peak power of 65 W by gain switching, pulse shortening, and pulse amplification using a semiconductor-based master oscillator-power amplifier system,” Appl. Opt. 52(14), 3364–3367 (2013).
    [Crossref]
  21. Y. Wang, X. Zhang, C. Tong, L. Wang, S. Shu, and L. Wang, “Harmonic mode-locking in an external cavity tapered diode laser with saw-toothed microstructure,” Appl. Phys. Express 12(10), 102011 (2019).
    [Crossref]
  22. T. Wang, C. Tong, L. Wang, Y. Zeng, S. Tian, S. Shu, J. Zhang, and L. Wang, “Injection-insensitive lateral divergence in broad-area diode lasers achieved by spatial current modulation,” Appl. Phys. Express 9(11), 112102 (2016).
    [Crossref]
  23. T. Ulma, F. Hartha, A. Klehrb, G. Erbertb, and J. Lhuillier, “Passively mode-locked 1 GHz MOPA system generating sub-500-fs pulses after external compression,” Proc. SPIE 8432, 84320Y (2012).
    [Crossref]
  24. J.-C. Diels and W. Rudolph, “Ultrashort Laser Pulse Phenomena,” (Academic, Amsterdam, 2006).

2019 (3)

S. Toriyama, V. Mizeikis, and A. Ono, “Fabrication of silver nano-rings using photo-reduction induced by femtosecond pulses,” Appl. Phys. Express 12(1), 015004 (2019).
[Crossref]

S. A. Rezvani, Y. Nomura, K. Ogawa, and T. Fuji, “Generation and characterization of mid-infrared supercontinuum in polarization maintained ZBLAN fibers,” Opt. Express 27(17), 24499–24511 (2019).
[Crossref]

Y. Wang, X. Zhang, C. Tong, L. Wang, S. Shu, and L. Wang, “Harmonic mode-locking in an external cavity tapered diode laser with saw-toothed microstructure,” Appl. Phys. Express 12(10), 102011 (2019).
[Crossref]

2018 (1)

K. Guesmi, L. Abdeladim, S. Tozer, P. Mahou, T. Kumamoto, K. Jurkus, P. Rigaud, K. Loulier, N. Dray, P. Georges, M. Hanna, J. Livet, W. Supatto, E. Beaurepaire, and F. Druon, “Dual-color deep-tissue three-photon microscopy with a multiband infrared laser,” Light: Sci. Appl. 7(1), 12–19 (2018).
[Crossref]

2017 (2)

E. P. Perillo, J. W. Jarrett, Y. L. Liu, A. Hassan, D. C. Fernée, J. R. Goldak, A. Bonteanu, D. J. Spence, H. C. Yeh, and A. K. Dunn, “Two-color multiphoton in vivo imaging with a femtosecond diamond Raman laser,” Light: Sci. Appl. 6(11), e17095 (2017).
[Crossref]

C. Lefort, “A review of biomedical multiphoton microscopy and its laser sources,” J. Phys. D: Appl. Phys. 50(42), 423001 (2017).
[Crossref]

2016 (5)

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light: Sci. Appl. 5(8), e16133 (2016).
[Crossref]

W. Tian, Z. Wang, J. Zhu, and Z. Wei, “Harmonically pumped femtosecond optical parametric oscillator with multi-gigahertz repetition rate,” Opt. Express 24(26), 29814–29821 (2016).
[Crossref]

M. Yamanaka, H. Kawagoe, and N. Nishizawa, “High-power supercontinuum generation using high-repetition-rate ultrashort-pulse fiber laser for ultrahigh-resolution optical coherence tomography in 1600 nm spectral band,” Appl. Phys. Express 9(2), 022701 (2016).
[Crossref]

J. Luo, B. Sun, J. Liu, Z. Yan, N. Li, E. L. Tan, Q. Wang, and X. Yu, “Mid-IR supercontinuum pumped by femtosecond pulses from thulium doped all-fiber amplifier,” Opt. Express 24(13), 13939–13945 (2016).
[Crossref]

T. Wang, C. Tong, L. Wang, Y. Zeng, S. Tian, S. Shu, J. Zhang, and L. Wang, “Injection-insensitive lateral divergence in broad-area diode lasers achieved by spatial current modulation,” Appl. Phys. Express 9(11), 112102 (2016).
[Crossref]

2014 (2)

Y. Nomura, H. Kawagoe, Y. Hattori, M. Yamanaka, E. Omoda, H. Kataure, Y. Sakakibara, and N. Nishizawa, “Supercontinuum generation for ultrahigh-resolution optical coherence tomography at wavelength of 0.8 µm using carbon nanotube fiber laser and similariton amplifier,” Appl. Phys. Express 7(12), 122703 (2014).
[Crossref]

K. Sugioka and Y. Cheng, “Ultrafast lasers-reliable tools for advanced materials processing,” Light: Sci. Appl. 3(4), e149 (2014).
[Crossref]

2013 (1)

2012 (3)

T. Ulma, F. Hartha, A. Klehrb, G. Erbertb, and J. Lhuillier, “Passively mode-locked 1 GHz MOPA system generating sub-500-fs pulses after external compression,” Proc. SPIE 8432, 84320Y (2012).
[Crossref]

Y. Ding, R. Aviles-Espinosa, M. A. Cataluna, D. Nikitichev, M. Ruiz, M. Tran, Y. Robert, A. Kapsalis, H. Simos, C. Mesaritakis, T. Xu, P. Bardella, M. Rossetti, I. Krestnikov, D. Livshits, I. Montrosset, D. Syvridis, M. Krakowski, P. Loza-Alvarez, and E. Rafailov, “High peak-power picosecond pulse generation at 1.26 µm using a quantum-dot-based external-cavity mode-locked laser and tapered optical amplifier,” Opt. Express 20(13), 14308–14320 (2012).
[Crossref]

R. Koda, T. Oki, S. Kono, T. Miyajima, H. Watanabe, M. Kuramoto, M. Ikeda, and H. Yokoyama, “300W peak power picosecond optical pulse generation by blue-violet GaInN mode-locked laser diode and semiconductor optical amplifier,” Appl. Phys. Express 5(2), 022702 (2012).
[Crossref]

2011 (2)

S. Schwertfeger, A. Klehr, T. Hoffmann, A. Liero, H. Wenzel, and G. Erbert, “Picosecond pulses with 50 W peak power and reduced ASE background from an all-semiconductor MOPA system,” Appl. Phys. B 103(3), 603–607 (2011).
[Crossref]

R. Koda, T. Oki, T. Miyajima, H. Watanabe, S. Konoa, M. Kuramotoa, M. Ikeda, and H. Yokoyama, “High peak power picoseconds optical pulse generation from GaInN semiconductor diode lasers,” Proc. SPIE 7953, 79530J (2011).
[Crossref]

2010 (1)

R. Koda, T. Oki, T. Miyajima, H. Watanabe, M. Kuramoto, M. Ikeda, and H. Yokoyama, “100 W peak-power 1 GHz repetition picoseconds optical pulse generation using blue-violet GaInN diode laser mode-locked oscillator and optical amplifier,” Appl. Phys. Lett. 97(2), 021101 (2010).
[Crossref]

2009 (1)

S. H. Park, D. Y. Yang, and K. S. Lee, “Two-photon stereolithography for realizing ultraprecise three-dimensional nano/microdevices,” Laser Photonics Rev. 3(1-2), 1–11 (2009).
[Crossref]

2008 (1)

T. Ulm, F. Harth, H. Fuchs, J. A. Lhuillier, and R. Wallenstein, “InGaAs diode laser system generating pulses of 580 fs duration and 366W peak power,” Appl. Phys. B 92(4), 481–485 (2008).
[Crossref]

2000 (1)

Abdeladim, L.

K. Guesmi, L. Abdeladim, S. Tozer, P. Mahou, T. Kumamoto, K. Jurkus, P. Rigaud, K. Loulier, N. Dray, P. Georges, M. Hanna, J. Livet, W. Supatto, E. Beaurepaire, and F. Druon, “Dual-color deep-tissue three-photon microscopy with a multiband infrared laser,” Light: Sci. Appl. 7(1), 12–19 (2018).
[Crossref]

Aviles-Espinosa, R.

Bardella, P.

Beaurepaire, E.

K. Guesmi, L. Abdeladim, S. Tozer, P. Mahou, T. Kumamoto, K. Jurkus, P. Rigaud, K. Loulier, N. Dray, P. Georges, M. Hanna, J. Livet, W. Supatto, E. Beaurepaire, and F. Druon, “Dual-color deep-tissue three-photon microscopy with a multiband infrared laser,” Light: Sci. Appl. 7(1), 12–19 (2018).
[Crossref]

Boller, K. J.

Bonteanu, A.

E. P. Perillo, J. W. Jarrett, Y. L. Liu, A. Hassan, D. C. Fernée, J. R. Goldak, A. Bonteanu, D. J. Spence, H. C. Yeh, and A. K. Dunn, “Two-color multiphoton in vivo imaging with a femtosecond diamond Raman laser,” Light: Sci. Appl. 6(11), e17095 (2017).
[Crossref]

Buividas, R.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light: Sci. Appl. 5(8), e16133 (2016).
[Crossref]

Cataluna, M. A.

Cheng, Y.

K. Sugioka and Y. Cheng, “Ultrafast lasers-reliable tools for advanced materials processing,” Light: Sci. Appl. 3(4), e149 (2014).
[Crossref]

Diels, J.-C.

J.-C. Diels and W. Rudolph, “Ultrashort Laser Pulse Phenomena,” (Academic, Amsterdam, 2006).

Ding, Y.

Dray, N.

K. Guesmi, L. Abdeladim, S. Tozer, P. Mahou, T. Kumamoto, K. Jurkus, P. Rigaud, K. Loulier, N. Dray, P. Georges, M. Hanna, J. Livet, W. Supatto, E. Beaurepaire, and F. Druon, “Dual-color deep-tissue three-photon microscopy with a multiband infrared laser,” Light: Sci. Appl. 7(1), 12–19 (2018).
[Crossref]

Druon, F.

K. Guesmi, L. Abdeladim, S. Tozer, P. Mahou, T. Kumamoto, K. Jurkus, P. Rigaud, K. Loulier, N. Dray, P. Georges, M. Hanna, J. Livet, W. Supatto, E. Beaurepaire, and F. Druon, “Dual-color deep-tissue three-photon microscopy with a multiband infrared laser,” Light: Sci. Appl. 7(1), 12–19 (2018).
[Crossref]

Dunn, A. K.

E. P. Perillo, J. W. Jarrett, Y. L. Liu, A. Hassan, D. C. Fernée, J. R. Goldak, A. Bonteanu, D. J. Spence, H. C. Yeh, and A. K. Dunn, “Two-color multiphoton in vivo imaging with a femtosecond diamond Raman laser,” Light: Sci. Appl. 6(11), e17095 (2017).
[Crossref]

Erbert, G.

S. Schwertfeger, A. Klehr, T. Hoffmann, A. Liero, H. Wenzel, and G. Erbert, “Generation of sub-100 ps pulses with a peak power of 65 W by gain switching, pulse shortening, and pulse amplification using a semiconductor-based master oscillator-power amplifier system,” Appl. Opt. 52(14), 3364–3367 (2013).
[Crossref]

S. Schwertfeger, A. Klehr, T. Hoffmann, A. Liero, H. Wenzel, and G. Erbert, “Picosecond pulses with 50 W peak power and reduced ASE background from an all-semiconductor MOPA system,” Appl. Phys. B 103(3), 603–607 (2011).
[Crossref]

Erbertb, G.

T. Ulma, F. Hartha, A. Klehrb, G. Erbertb, and J. Lhuillier, “Passively mode-locked 1 GHz MOPA system generating sub-500-fs pulses after external compression,” Proc. SPIE 8432, 84320Y (2012).
[Crossref]

Fernée, D. C.

E. P. Perillo, J. W. Jarrett, Y. L. Liu, A. Hassan, D. C. Fernée, J. R. Goldak, A. Bonteanu, D. J. Spence, H. C. Yeh, and A. K. Dunn, “Two-color multiphoton in vivo imaging with a femtosecond diamond Raman laser,” Light: Sci. Appl. 6(11), e17095 (2017).
[Crossref]

Fuchs, H.

T. Ulm, F. Harth, H. Fuchs, J. A. Lhuillier, and R. Wallenstein, “InGaAs diode laser system generating pulses of 580 fs duration and 366W peak power,” Appl. Phys. B 92(4), 481–485 (2008).
[Crossref]

Fuji, T.

Georges, P.

K. Guesmi, L. Abdeladim, S. Tozer, P. Mahou, T. Kumamoto, K. Jurkus, P. Rigaud, K. Loulier, N. Dray, P. Georges, M. Hanna, J. Livet, W. Supatto, E. Beaurepaire, and F. Druon, “Dual-color deep-tissue three-photon microscopy with a multiband infrared laser,” Light: Sci. Appl. 7(1), 12–19 (2018).
[Crossref]

Goldak, J. R.

E. P. Perillo, J. W. Jarrett, Y. L. Liu, A. Hassan, D. C. Fernée, J. R. Goldak, A. Bonteanu, D. J. Spence, H. C. Yeh, and A. K. Dunn, “Two-color multiphoton in vivo imaging with a femtosecond diamond Raman laser,” Light: Sci. Appl. 6(11), e17095 (2017).
[Crossref]

Guesmi, K.

K. Guesmi, L. Abdeladim, S. Tozer, P. Mahou, T. Kumamoto, K. Jurkus, P. Rigaud, K. Loulier, N. Dray, P. Georges, M. Hanna, J. Livet, W. Supatto, E. Beaurepaire, and F. Druon, “Dual-color deep-tissue three-photon microscopy with a multiband infrared laser,” Light: Sci. Appl. 7(1), 12–19 (2018).
[Crossref]

Hanna, M.

K. Guesmi, L. Abdeladim, S. Tozer, P. Mahou, T. Kumamoto, K. Jurkus, P. Rigaud, K. Loulier, N. Dray, P. Georges, M. Hanna, J. Livet, W. Supatto, E. Beaurepaire, and F. Druon, “Dual-color deep-tissue three-photon microscopy with a multiband infrared laser,” Light: Sci. Appl. 7(1), 12–19 (2018).
[Crossref]

Harth, F.

T. Ulm, F. Harth, H. Fuchs, J. A. Lhuillier, and R. Wallenstein, “InGaAs diode laser system generating pulses of 580 fs duration and 366W peak power,” Appl. Phys. B 92(4), 481–485 (2008).
[Crossref]

Hartha, F.

T. Ulma, F. Hartha, A. Klehrb, G. Erbertb, and J. Lhuillier, “Passively mode-locked 1 GHz MOPA system generating sub-500-fs pulses after external compression,” Proc. SPIE 8432, 84320Y (2012).
[Crossref]

Hasegawa, S.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light: Sci. Appl. 5(8), e16133 (2016).
[Crossref]

Hassan, A.

E. P. Perillo, J. W. Jarrett, Y. L. Liu, A. Hassan, D. C. Fernée, J. R. Goldak, A. Bonteanu, D. J. Spence, H. C. Yeh, and A. K. Dunn, “Two-color multiphoton in vivo imaging with a femtosecond diamond Raman laser,” Light: Sci. Appl. 6(11), e17095 (2017).
[Crossref]

Hattori, Y.

Y. Nomura, H. Kawagoe, Y. Hattori, M. Yamanaka, E. Omoda, H. Kataure, Y. Sakakibara, and N. Nishizawa, “Supercontinuum generation for ultrahigh-resolution optical coherence tomography at wavelength of 0.8 µm using carbon nanotube fiber laser and similariton amplifier,” Appl. Phys. Express 7(12), 122703 (2014).
[Crossref]

Hayasaki, Y.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light: Sci. Appl. 5(8), e16133 (2016).
[Crossref]

Hoffmann, T.

S. Schwertfeger, A. Klehr, T. Hoffmann, A. Liero, H. Wenzel, and G. Erbert, “Generation of sub-100 ps pulses with a peak power of 65 W by gain switching, pulse shortening, and pulse amplification using a semiconductor-based master oscillator-power amplifier system,” Appl. Opt. 52(14), 3364–3367 (2013).
[Crossref]

S. Schwertfeger, A. Klehr, T. Hoffmann, A. Liero, H. Wenzel, and G. Erbert, “Picosecond pulses with 50 W peak power and reduced ASE background from an all-semiconductor MOPA system,” Appl. Phys. B 103(3), 603–607 (2011).
[Crossref]

Ikeda, M.

R. Koda, T. Oki, S. Kono, T. Miyajima, H. Watanabe, M. Kuramoto, M. Ikeda, and H. Yokoyama, “300W peak power picosecond optical pulse generation by blue-violet GaInN mode-locked laser diode and semiconductor optical amplifier,” Appl. Phys. Express 5(2), 022702 (2012).
[Crossref]

R. Koda, T. Oki, T. Miyajima, H. Watanabe, S. Konoa, M. Kuramotoa, M. Ikeda, and H. Yokoyama, “High peak power picoseconds optical pulse generation from GaInN semiconductor diode lasers,” Proc. SPIE 7953, 79530J (2011).
[Crossref]

R. Koda, T. Oki, T. Miyajima, H. Watanabe, M. Kuramoto, M. Ikeda, and H. Yokoyama, “100 W peak-power 1 GHz repetition picoseconds optical pulse generation using blue-violet GaInN diode laser mode-locked oscillator and optical amplifier,” Appl. Phys. Lett. 97(2), 021101 (2010).
[Crossref]

Jarrett, J. W.

E. P. Perillo, J. W. Jarrett, Y. L. Liu, A. Hassan, D. C. Fernée, J. R. Goldak, A. Bonteanu, D. J. Spence, H. C. Yeh, and A. K. Dunn, “Two-color multiphoton in vivo imaging with a femtosecond diamond Raman laser,” Light: Sci. Appl. 6(11), e17095 (2017).
[Crossref]

Juodkazis, S.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light: Sci. Appl. 5(8), e16133 (2016).
[Crossref]

Jurkus, K.

K. Guesmi, L. Abdeladim, S. Tozer, P. Mahou, T. Kumamoto, K. Jurkus, P. Rigaud, K. Loulier, N. Dray, P. Georges, M. Hanna, J. Livet, W. Supatto, E. Beaurepaire, and F. Druon, “Dual-color deep-tissue three-photon microscopy with a multiband infrared laser,” Light: Sci. Appl. 7(1), 12–19 (2018).
[Crossref]

Kapsalis, A.

Kataure, H.

Y. Nomura, H. Kawagoe, Y. Hattori, M. Yamanaka, E. Omoda, H. Kataure, Y. Sakakibara, and N. Nishizawa, “Supercontinuum generation for ultrahigh-resolution optical coherence tomography at wavelength of 0.8 µm using carbon nanotube fiber laser and similariton amplifier,” Appl. Phys. Express 7(12), 122703 (2014).
[Crossref]

Kawagoe, H.

M. Yamanaka, H. Kawagoe, and N. Nishizawa, “High-power supercontinuum generation using high-repetition-rate ultrashort-pulse fiber laser for ultrahigh-resolution optical coherence tomography in 1600 nm spectral band,” Appl. Phys. Express 9(2), 022701 (2016).
[Crossref]

Y. Nomura, H. Kawagoe, Y. Hattori, M. Yamanaka, E. Omoda, H. Kataure, Y. Sakakibara, and N. Nishizawa, “Supercontinuum generation for ultrahigh-resolution optical coherence tomography at wavelength of 0.8 µm using carbon nanotube fiber laser and similariton amplifier,” Appl. Phys. Express 7(12), 122703 (2014).
[Crossref]

Klehr, A.

S. Schwertfeger, A. Klehr, T. Hoffmann, A. Liero, H. Wenzel, and G. Erbert, “Generation of sub-100 ps pulses with a peak power of 65 W by gain switching, pulse shortening, and pulse amplification using a semiconductor-based master oscillator-power amplifier system,” Appl. Opt. 52(14), 3364–3367 (2013).
[Crossref]

S. Schwertfeger, A. Klehr, T. Hoffmann, A. Liero, H. Wenzel, and G. Erbert, “Picosecond pulses with 50 W peak power and reduced ASE background from an all-semiconductor MOPA system,” Appl. Phys. B 103(3), 603–607 (2011).
[Crossref]

Klehrb, A.

T. Ulma, F. Hartha, A. Klehrb, G. Erbertb, and J. Lhuillier, “Passively mode-locked 1 GHz MOPA system generating sub-500-fs pulses after external compression,” Proc. SPIE 8432, 84320Y (2012).
[Crossref]

Klein, M. E.

Koda, R.

R. Koda, T. Oki, S. Kono, T. Miyajima, H. Watanabe, M. Kuramoto, M. Ikeda, and H. Yokoyama, “300W peak power picosecond optical pulse generation by blue-violet GaInN mode-locked laser diode and semiconductor optical amplifier,” Appl. Phys. Express 5(2), 022702 (2012).
[Crossref]

R. Koda, T. Oki, T. Miyajima, H. Watanabe, S. Konoa, M. Kuramotoa, M. Ikeda, and H. Yokoyama, “High peak power picoseconds optical pulse generation from GaInN semiconductor diode lasers,” Proc. SPIE 7953, 79530J (2011).
[Crossref]

R. Koda, T. Oki, T. Miyajima, H. Watanabe, M. Kuramoto, M. Ikeda, and H. Yokoyama, “100 W peak-power 1 GHz repetition picoseconds optical pulse generation using blue-violet GaInN diode laser mode-locked oscillator and optical amplifier,” Appl. Phys. Lett. 97(2), 021101 (2010).
[Crossref]

Kono, S.

R. Koda, T. Oki, S. Kono, T. Miyajima, H. Watanabe, M. Kuramoto, M. Ikeda, and H. Yokoyama, “300W peak power picosecond optical pulse generation by blue-violet GaInN mode-locked laser diode and semiconductor optical amplifier,” Appl. Phys. Express 5(2), 022702 (2012).
[Crossref]

Konoa, S.

R. Koda, T. Oki, T. Miyajima, H. Watanabe, S. Konoa, M. Kuramotoa, M. Ikeda, and H. Yokoyama, “High peak power picoseconds optical pulse generation from GaInN semiconductor diode lasers,” Proc. SPIE 7953, 79530J (2011).
[Crossref]

Krakowski, M.

Krestnikov, I.

Kumamoto, T.

K. Guesmi, L. Abdeladim, S. Tozer, P. Mahou, T. Kumamoto, K. Jurkus, P. Rigaud, K. Loulier, N. Dray, P. Georges, M. Hanna, J. Livet, W. Supatto, E. Beaurepaire, and F. Druon, “Dual-color deep-tissue three-photon microscopy with a multiband infrared laser,” Light: Sci. Appl. 7(1), 12–19 (2018).
[Crossref]

Kuramoto, M.

R. Koda, T. Oki, S. Kono, T. Miyajima, H. Watanabe, M. Kuramoto, M. Ikeda, and H. Yokoyama, “300W peak power picosecond optical pulse generation by blue-violet GaInN mode-locked laser diode and semiconductor optical amplifier,” Appl. Phys. Express 5(2), 022702 (2012).
[Crossref]

R. Koda, T. Oki, T. Miyajima, H. Watanabe, M. Kuramoto, M. Ikeda, and H. Yokoyama, “100 W peak-power 1 GHz repetition picoseconds optical pulse generation using blue-violet GaInN diode laser mode-locked oscillator and optical amplifier,” Appl. Phys. Lett. 97(2), 021101 (2010).
[Crossref]

Kuramotoa, M.

R. Koda, T. Oki, T. Miyajima, H. Watanabe, S. Konoa, M. Kuramotoa, M. Ikeda, and H. Yokoyama, “High peak power picoseconds optical pulse generation from GaInN semiconductor diode lasers,” Proc. SPIE 7953, 79530J (2011).
[Crossref]

Lee, K. S.

S. H. Park, D. Y. Yang, and K. S. Lee, “Two-photon stereolithography for realizing ultraprecise three-dimensional nano/microdevices,” Laser Photonics Rev. 3(1-2), 1–11 (2009).
[Crossref]

Lefort, C.

C. Lefort, “A review of biomedical multiphoton microscopy and its laser sources,” J. Phys. D: Appl. Phys. 50(42), 423001 (2017).
[Crossref]

Lhuillier, J.

T. Ulma, F. Hartha, A. Klehrb, G. Erbertb, and J. Lhuillier, “Passively mode-locked 1 GHz MOPA system generating sub-500-fs pulses after external compression,” Proc. SPIE 8432, 84320Y (2012).
[Crossref]

Lhuillier, J. A.

T. Ulm, F. Harth, H. Fuchs, J. A. Lhuillier, and R. Wallenstein, “InGaAs diode laser system generating pulses of 580 fs duration and 366W peak power,” Appl. Phys. B 92(4), 481–485 (2008).
[Crossref]

Li, N.

Liero, A.

S. Schwertfeger, A. Klehr, T. Hoffmann, A. Liero, H. Wenzel, and G. Erbert, “Generation of sub-100 ps pulses with a peak power of 65 W by gain switching, pulse shortening, and pulse amplification using a semiconductor-based master oscillator-power amplifier system,” Appl. Opt. 52(14), 3364–3367 (2013).
[Crossref]

S. Schwertfeger, A. Klehr, T. Hoffmann, A. Liero, H. Wenzel, and G. Erbert, “Picosecond pulses with 50 W peak power and reduced ASE background from an all-semiconductor MOPA system,” Appl. Phys. B 103(3), 603–607 (2011).
[Crossref]

Liu, J.

Liu, Y. L.

E. P. Perillo, J. W. Jarrett, Y. L. Liu, A. Hassan, D. C. Fernée, J. R. Goldak, A. Bonteanu, D. J. Spence, H. C. Yeh, and A. K. Dunn, “Two-color multiphoton in vivo imaging with a femtosecond diamond Raman laser,” Light: Sci. Appl. 6(11), e17095 (2017).
[Crossref]

Livet, J.

K. Guesmi, L. Abdeladim, S. Tozer, P. Mahou, T. Kumamoto, K. Jurkus, P. Rigaud, K. Loulier, N. Dray, P. Georges, M. Hanna, J. Livet, W. Supatto, E. Beaurepaire, and F. Druon, “Dual-color deep-tissue three-photon microscopy with a multiband infrared laser,” Light: Sci. Appl. 7(1), 12–19 (2018).
[Crossref]

Livshits, D.

Loulier, K.

K. Guesmi, L. Abdeladim, S. Tozer, P. Mahou, T. Kumamoto, K. Jurkus, P. Rigaud, K. Loulier, N. Dray, P. Georges, M. Hanna, J. Livet, W. Supatto, E. Beaurepaire, and F. Druon, “Dual-color deep-tissue three-photon microscopy with a multiband infrared laser,” Light: Sci. Appl. 7(1), 12–19 (2018).
[Crossref]

Loza-Alvarez, P.

Luo, J.

Mahou, P.

K. Guesmi, L. Abdeladim, S. Tozer, P. Mahou, T. Kumamoto, K. Jurkus, P. Rigaud, K. Loulier, N. Dray, P. Georges, M. Hanna, J. Livet, W. Supatto, E. Beaurepaire, and F. Druon, “Dual-color deep-tissue three-photon microscopy with a multiband infrared laser,” Light: Sci. Appl. 7(1), 12–19 (2018).
[Crossref]

Malinauskas, M.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light: Sci. Appl. 5(8), e16133 (2016).
[Crossref]

Mesaritakis, C.

Miyajima, T.

R. Koda, T. Oki, S. Kono, T. Miyajima, H. Watanabe, M. Kuramoto, M. Ikeda, and H. Yokoyama, “300W peak power picosecond optical pulse generation by blue-violet GaInN mode-locked laser diode and semiconductor optical amplifier,” Appl. Phys. Express 5(2), 022702 (2012).
[Crossref]

R. Koda, T. Oki, T. Miyajima, H. Watanabe, S. Konoa, M. Kuramotoa, M. Ikeda, and H. Yokoyama, “High peak power picoseconds optical pulse generation from GaInN semiconductor diode lasers,” Proc. SPIE 7953, 79530J (2011).
[Crossref]

R. Koda, T. Oki, T. Miyajima, H. Watanabe, M. Kuramoto, M. Ikeda, and H. Yokoyama, “100 W peak-power 1 GHz repetition picoseconds optical pulse generation using blue-violet GaInN diode laser mode-locked oscillator and optical amplifier,” Appl. Phys. Lett. 97(2), 021101 (2010).
[Crossref]

Mizeikis, V.

S. Toriyama, V. Mizeikis, and A. Ono, “Fabrication of silver nano-rings using photo-reduction induced by femtosecond pulses,” Appl. Phys. Express 12(1), 015004 (2019).
[Crossref]

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light: Sci. Appl. 5(8), e16133 (2016).
[Crossref]

Montrosset, I.

Nikitichev, D.

Nishizawa, N.

M. Yamanaka, H. Kawagoe, and N. Nishizawa, “High-power supercontinuum generation using high-repetition-rate ultrashort-pulse fiber laser for ultrahigh-resolution optical coherence tomography in 1600 nm spectral band,” Appl. Phys. Express 9(2), 022701 (2016).
[Crossref]

Y. Nomura, H. Kawagoe, Y. Hattori, M. Yamanaka, E. Omoda, H. Kataure, Y. Sakakibara, and N. Nishizawa, “Supercontinuum generation for ultrahigh-resolution optical coherence tomography at wavelength of 0.8 µm using carbon nanotube fiber laser and similariton amplifier,” Appl. Phys. Express 7(12), 122703 (2014).
[Crossref]

Nomura, Y.

S. A. Rezvani, Y. Nomura, K. Ogawa, and T. Fuji, “Generation and characterization of mid-infrared supercontinuum in polarization maintained ZBLAN fibers,” Opt. Express 27(17), 24499–24511 (2019).
[Crossref]

Y. Nomura, H. Kawagoe, Y. Hattori, M. Yamanaka, E. Omoda, H. Kataure, Y. Sakakibara, and N. Nishizawa, “Supercontinuum generation for ultrahigh-resolution optical coherence tomography at wavelength of 0.8 µm using carbon nanotube fiber laser and similariton amplifier,” Appl. Phys. Express 7(12), 122703 (2014).
[Crossref]

Ogawa, K.

Oki, T.

R. Koda, T. Oki, S. Kono, T. Miyajima, H. Watanabe, M. Kuramoto, M. Ikeda, and H. Yokoyama, “300W peak power picosecond optical pulse generation by blue-violet GaInN mode-locked laser diode and semiconductor optical amplifier,” Appl. Phys. Express 5(2), 022702 (2012).
[Crossref]

R. Koda, T. Oki, T. Miyajima, H. Watanabe, S. Konoa, M. Kuramotoa, M. Ikeda, and H. Yokoyama, “High peak power picoseconds optical pulse generation from GaInN semiconductor diode lasers,” Proc. SPIE 7953, 79530J (2011).
[Crossref]

R. Koda, T. Oki, T. Miyajima, H. Watanabe, M. Kuramoto, M. Ikeda, and H. Yokoyama, “100 W peak-power 1 GHz repetition picoseconds optical pulse generation using blue-violet GaInN diode laser mode-locked oscillator and optical amplifier,” Appl. Phys. Lett. 97(2), 021101 (2010).
[Crossref]

Omoda, E.

Y. Nomura, H. Kawagoe, Y. Hattori, M. Yamanaka, E. Omoda, H. Kataure, Y. Sakakibara, and N. Nishizawa, “Supercontinuum generation for ultrahigh-resolution optical coherence tomography at wavelength of 0.8 µm using carbon nanotube fiber laser and similariton amplifier,” Appl. Phys. Express 7(12), 122703 (2014).
[Crossref]

Ono, A.

S. Toriyama, V. Mizeikis, and A. Ono, “Fabrication of silver nano-rings using photo-reduction induced by femtosecond pulses,” Appl. Phys. Express 12(1), 015004 (2019).
[Crossref]

Park, S. H.

S. H. Park, D. Y. Yang, and K. S. Lee, “Two-photon stereolithography for realizing ultraprecise three-dimensional nano/microdevices,” Laser Photonics Rev. 3(1-2), 1–11 (2009).
[Crossref]

Perillo, E. P.

E. P. Perillo, J. W. Jarrett, Y. L. Liu, A. Hassan, D. C. Fernée, J. R. Goldak, A. Bonteanu, D. J. Spence, H. C. Yeh, and A. K. Dunn, “Two-color multiphoton in vivo imaging with a femtosecond diamond Raman laser,” Light: Sci. Appl. 6(11), e17095 (2017).
[Crossref]

Rafailov, E.

Rezvani, S. A.

Rigaud, P.

K. Guesmi, L. Abdeladim, S. Tozer, P. Mahou, T. Kumamoto, K. Jurkus, P. Rigaud, K. Loulier, N. Dray, P. Georges, M. Hanna, J. Livet, W. Supatto, E. Beaurepaire, and F. Druon, “Dual-color deep-tissue three-photon microscopy with a multiband infrared laser,” Light: Sci. Appl. 7(1), 12–19 (2018).
[Crossref]

Robert, Y.

Robertson, A.

Rossetti, M.

Rudolph, W.

J.-C. Diels and W. Rudolph, “Ultrashort Laser Pulse Phenomena,” (Academic, Amsterdam, 2006).

Ruiz, M.

Sakakibara, Y.

Y. Nomura, H. Kawagoe, Y. Hattori, M. Yamanaka, E. Omoda, H. Kataure, Y. Sakakibara, and N. Nishizawa, “Supercontinuum generation for ultrahigh-resolution optical coherence tomography at wavelength of 0.8 µm using carbon nanotube fiber laser and similariton amplifier,” Appl. Phys. Express 7(12), 122703 (2014).
[Crossref]

Schwertfeger, S.

S. Schwertfeger, A. Klehr, T. Hoffmann, A. Liero, H. Wenzel, and G. Erbert, “Generation of sub-100 ps pulses with a peak power of 65 W by gain switching, pulse shortening, and pulse amplification using a semiconductor-based master oscillator-power amplifier system,” Appl. Opt. 52(14), 3364–3367 (2013).
[Crossref]

S. Schwertfeger, A. Klehr, T. Hoffmann, A. Liero, H. Wenzel, and G. Erbert, “Picosecond pulses with 50 W peak power and reduced ASE background from an all-semiconductor MOPA system,” Appl. Phys. B 103(3), 603–607 (2011).
[Crossref]

Shu, S.

Y. Wang, X. Zhang, C. Tong, L. Wang, S. Shu, and L. Wang, “Harmonic mode-locking in an external cavity tapered diode laser with saw-toothed microstructure,” Appl. Phys. Express 12(10), 102011 (2019).
[Crossref]

T. Wang, C. Tong, L. Wang, Y. Zeng, S. Tian, S. Shu, J. Zhang, and L. Wang, “Injection-insensitive lateral divergence in broad-area diode lasers achieved by spatial current modulation,” Appl. Phys. Express 9(11), 112102 (2016).
[Crossref]

Simos, H.

Spence, D. J.

E. P. Perillo, J. W. Jarrett, Y. L. Liu, A. Hassan, D. C. Fernée, J. R. Goldak, A. Bonteanu, D. J. Spence, H. C. Yeh, and A. K. Dunn, “Two-color multiphoton in vivo imaging with a femtosecond diamond Raman laser,” Light: Sci. Appl. 6(11), e17095 (2017).
[Crossref]

Sugioka, K.

K. Sugioka and Y. Cheng, “Ultrafast lasers-reliable tools for advanced materials processing,” Light: Sci. Appl. 3(4), e149 (2014).
[Crossref]

Sun, B.

Supatto, W.

K. Guesmi, L. Abdeladim, S. Tozer, P. Mahou, T. Kumamoto, K. Jurkus, P. Rigaud, K. Loulier, N. Dray, P. Georges, M. Hanna, J. Livet, W. Supatto, E. Beaurepaire, and F. Druon, “Dual-color deep-tissue three-photon microscopy with a multiband infrared laser,” Light: Sci. Appl. 7(1), 12–19 (2018).
[Crossref]

Syvridis, D.

Tan, E. L.

Tian, S.

T. Wang, C. Tong, L. Wang, Y. Zeng, S. Tian, S. Shu, J. Zhang, and L. Wang, “Injection-insensitive lateral divergence in broad-area diode lasers achieved by spatial current modulation,” Appl. Phys. Express 9(11), 112102 (2016).
[Crossref]

Tian, W.

Tong, C.

Y. Wang, X. Zhang, C. Tong, L. Wang, S. Shu, and L. Wang, “Harmonic mode-locking in an external cavity tapered diode laser with saw-toothed microstructure,” Appl. Phys. Express 12(10), 102011 (2019).
[Crossref]

T. Wang, C. Tong, L. Wang, Y. Zeng, S. Tian, S. Shu, J. Zhang, and L. Wang, “Injection-insensitive lateral divergence in broad-area diode lasers achieved by spatial current modulation,” Appl. Phys. Express 9(11), 112102 (2016).
[Crossref]

Toriyama, S.

S. Toriyama, V. Mizeikis, and A. Ono, “Fabrication of silver nano-rings using photo-reduction induced by femtosecond pulses,” Appl. Phys. Express 12(1), 015004 (2019).
[Crossref]

Tozer, S.

K. Guesmi, L. Abdeladim, S. Tozer, P. Mahou, T. Kumamoto, K. Jurkus, P. Rigaud, K. Loulier, N. Dray, P. Georges, M. Hanna, J. Livet, W. Supatto, E. Beaurepaire, and F. Druon, “Dual-color deep-tissue three-photon microscopy with a multiband infrared laser,” Light: Sci. Appl. 7(1), 12–19 (2018).
[Crossref]

Tran, M.

Tremont, M. A.

Ulm, T.

T. Ulm, F. Harth, H. Fuchs, J. A. Lhuillier, and R. Wallenstein, “InGaAs diode laser system generating pulses of 580 fs duration and 366W peak power,” Appl. Phys. B 92(4), 481–485 (2008).
[Crossref]

Ulma, T.

T. Ulma, F. Hartha, A. Klehrb, G. Erbertb, and J. Lhuillier, “Passively mode-locked 1 GHz MOPA system generating sub-500-fs pulses after external compression,” Proc. SPIE 8432, 84320Y (2012).
[Crossref]

Wallenstein, R.

T. Ulm, F. Harth, H. Fuchs, J. A. Lhuillier, and R. Wallenstein, “InGaAs diode laser system generating pulses of 580 fs duration and 366W peak power,” Appl. Phys. B 92(4), 481–485 (2008).
[Crossref]

A. Robertson, M. E. Klein, M. A. Tremont, K. J. Boller, and R. Wallenstein, “2.5-GHz repetition-rate singly resonant optical parametric oscillator synchronously pumped by a mode-locked diode oscillator amplifier system,” Opt. Lett. 25(9), 657–659 (2000).
[Crossref]

Wang, L.

Y. Wang, X. Zhang, C. Tong, L. Wang, S. Shu, and L. Wang, “Harmonic mode-locking in an external cavity tapered diode laser with saw-toothed microstructure,” Appl. Phys. Express 12(10), 102011 (2019).
[Crossref]

Y. Wang, X. Zhang, C. Tong, L. Wang, S. Shu, and L. Wang, “Harmonic mode-locking in an external cavity tapered diode laser with saw-toothed microstructure,” Appl. Phys. Express 12(10), 102011 (2019).
[Crossref]

T. Wang, C. Tong, L. Wang, Y. Zeng, S. Tian, S. Shu, J. Zhang, and L. Wang, “Injection-insensitive lateral divergence in broad-area diode lasers achieved by spatial current modulation,” Appl. Phys. Express 9(11), 112102 (2016).
[Crossref]

T. Wang, C. Tong, L. Wang, Y. Zeng, S. Tian, S. Shu, J. Zhang, and L. Wang, “Injection-insensitive lateral divergence in broad-area diode lasers achieved by spatial current modulation,” Appl. Phys. Express 9(11), 112102 (2016).
[Crossref]

Wang, Q.

Wang, T.

T. Wang, C. Tong, L. Wang, Y. Zeng, S. Tian, S. Shu, J. Zhang, and L. Wang, “Injection-insensitive lateral divergence in broad-area diode lasers achieved by spatial current modulation,” Appl. Phys. Express 9(11), 112102 (2016).
[Crossref]

Wang, Y.

Y. Wang, X. Zhang, C. Tong, L. Wang, S. Shu, and L. Wang, “Harmonic mode-locking in an external cavity tapered diode laser with saw-toothed microstructure,” Appl. Phys. Express 12(10), 102011 (2019).
[Crossref]

Wang, Z.

Watanabe, H.

R. Koda, T. Oki, S. Kono, T. Miyajima, H. Watanabe, M. Kuramoto, M. Ikeda, and H. Yokoyama, “300W peak power picosecond optical pulse generation by blue-violet GaInN mode-locked laser diode and semiconductor optical amplifier,” Appl. Phys. Express 5(2), 022702 (2012).
[Crossref]

R. Koda, T. Oki, T. Miyajima, H. Watanabe, S. Konoa, M. Kuramotoa, M. Ikeda, and H. Yokoyama, “High peak power picoseconds optical pulse generation from GaInN semiconductor diode lasers,” Proc. SPIE 7953, 79530J (2011).
[Crossref]

R. Koda, T. Oki, T. Miyajima, H. Watanabe, M. Kuramoto, M. Ikeda, and H. Yokoyama, “100 W peak-power 1 GHz repetition picoseconds optical pulse generation using blue-violet GaInN diode laser mode-locked oscillator and optical amplifier,” Appl. Phys. Lett. 97(2), 021101 (2010).
[Crossref]

Wei, Z.

Wenzel, H.

S. Schwertfeger, A. Klehr, T. Hoffmann, A. Liero, H. Wenzel, and G. Erbert, “Generation of sub-100 ps pulses with a peak power of 65 W by gain switching, pulse shortening, and pulse amplification using a semiconductor-based master oscillator-power amplifier system,” Appl. Opt. 52(14), 3364–3367 (2013).
[Crossref]

S. Schwertfeger, A. Klehr, T. Hoffmann, A. Liero, H. Wenzel, and G. Erbert, “Picosecond pulses with 50 W peak power and reduced ASE background from an all-semiconductor MOPA system,” Appl. Phys. B 103(3), 603–607 (2011).
[Crossref]

Xu, T.

Yamanaka, M.

M. Yamanaka, H. Kawagoe, and N. Nishizawa, “High-power supercontinuum generation using high-repetition-rate ultrashort-pulse fiber laser for ultrahigh-resolution optical coherence tomography in 1600 nm spectral band,” Appl. Phys. Express 9(2), 022701 (2016).
[Crossref]

Y. Nomura, H. Kawagoe, Y. Hattori, M. Yamanaka, E. Omoda, H. Kataure, Y. Sakakibara, and N. Nishizawa, “Supercontinuum generation for ultrahigh-resolution optical coherence tomography at wavelength of 0.8 µm using carbon nanotube fiber laser and similariton amplifier,” Appl. Phys. Express 7(12), 122703 (2014).
[Crossref]

Yan, Z.

Yang, D. Y.

S. H. Park, D. Y. Yang, and K. S. Lee, “Two-photon stereolithography for realizing ultraprecise three-dimensional nano/microdevices,” Laser Photonics Rev. 3(1-2), 1–11 (2009).
[Crossref]

Yeh, H. C.

E. P. Perillo, J. W. Jarrett, Y. L. Liu, A. Hassan, D. C. Fernée, J. R. Goldak, A. Bonteanu, D. J. Spence, H. C. Yeh, and A. K. Dunn, “Two-color multiphoton in vivo imaging with a femtosecond diamond Raman laser,” Light: Sci. Appl. 6(11), e17095 (2017).
[Crossref]

Yokoyama, H.

R. Koda, T. Oki, S. Kono, T. Miyajima, H. Watanabe, M. Kuramoto, M. Ikeda, and H. Yokoyama, “300W peak power picosecond optical pulse generation by blue-violet GaInN mode-locked laser diode and semiconductor optical amplifier,” Appl. Phys. Express 5(2), 022702 (2012).
[Crossref]

R. Koda, T. Oki, T. Miyajima, H. Watanabe, S. Konoa, M. Kuramotoa, M. Ikeda, and H. Yokoyama, “High peak power picoseconds optical pulse generation from GaInN semiconductor diode lasers,” Proc. SPIE 7953, 79530J (2011).
[Crossref]

R. Koda, T. Oki, T. Miyajima, H. Watanabe, M. Kuramoto, M. Ikeda, and H. Yokoyama, “100 W peak-power 1 GHz repetition picoseconds optical pulse generation using blue-violet GaInN diode laser mode-locked oscillator and optical amplifier,” Appl. Phys. Lett. 97(2), 021101 (2010).
[Crossref]

Yu, X.

Zeng, Y.

T. Wang, C. Tong, L. Wang, Y. Zeng, S. Tian, S. Shu, J. Zhang, and L. Wang, “Injection-insensitive lateral divergence in broad-area diode lasers achieved by spatial current modulation,” Appl. Phys. Express 9(11), 112102 (2016).
[Crossref]

Zhang, J.

T. Wang, C. Tong, L. Wang, Y. Zeng, S. Tian, S. Shu, J. Zhang, and L. Wang, “Injection-insensitive lateral divergence in broad-area diode lasers achieved by spatial current modulation,” Appl. Phys. Express 9(11), 112102 (2016).
[Crossref]

Zhang, X.

Y. Wang, X. Zhang, C. Tong, L. Wang, S. Shu, and L. Wang, “Harmonic mode-locking in an external cavity tapered diode laser with saw-toothed microstructure,” Appl. Phys. Express 12(10), 102011 (2019).
[Crossref]

Zhu, J.

Žukauskas, A.

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light: Sci. Appl. 5(8), e16133 (2016).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (2)

T. Ulm, F. Harth, H. Fuchs, J. A. Lhuillier, and R. Wallenstein, “InGaAs diode laser system generating pulses of 580 fs duration and 366W peak power,” Appl. Phys. B 92(4), 481–485 (2008).
[Crossref]

S. Schwertfeger, A. Klehr, T. Hoffmann, A. Liero, H. Wenzel, and G. Erbert, “Picosecond pulses with 50 W peak power and reduced ASE background from an all-semiconductor MOPA system,” Appl. Phys. B 103(3), 603–607 (2011).
[Crossref]

Appl. Phys. Express (6)

R. Koda, T. Oki, S. Kono, T. Miyajima, H. Watanabe, M. Kuramoto, M. Ikeda, and H. Yokoyama, “300W peak power picosecond optical pulse generation by blue-violet GaInN mode-locked laser diode and semiconductor optical amplifier,” Appl. Phys. Express 5(2), 022702 (2012).
[Crossref]

Y. Wang, X. Zhang, C. Tong, L. Wang, S. Shu, and L. Wang, “Harmonic mode-locking in an external cavity tapered diode laser with saw-toothed microstructure,” Appl. Phys. Express 12(10), 102011 (2019).
[Crossref]

T. Wang, C. Tong, L. Wang, Y. Zeng, S. Tian, S. Shu, J. Zhang, and L. Wang, “Injection-insensitive lateral divergence in broad-area diode lasers achieved by spatial current modulation,” Appl. Phys. Express 9(11), 112102 (2016).
[Crossref]

S. Toriyama, V. Mizeikis, and A. Ono, “Fabrication of silver nano-rings using photo-reduction induced by femtosecond pulses,” Appl. Phys. Express 12(1), 015004 (2019).
[Crossref]

Y. Nomura, H. Kawagoe, Y. Hattori, M. Yamanaka, E. Omoda, H. Kataure, Y. Sakakibara, and N. Nishizawa, “Supercontinuum generation for ultrahigh-resolution optical coherence tomography at wavelength of 0.8 µm using carbon nanotube fiber laser and similariton amplifier,” Appl. Phys. Express 7(12), 122703 (2014).
[Crossref]

M. Yamanaka, H. Kawagoe, and N. Nishizawa, “High-power supercontinuum generation using high-repetition-rate ultrashort-pulse fiber laser for ultrahigh-resolution optical coherence tomography in 1600 nm spectral band,” Appl. Phys. Express 9(2), 022701 (2016).
[Crossref]

Appl. Phys. Lett. (1)

R. Koda, T. Oki, T. Miyajima, H. Watanabe, M. Kuramoto, M. Ikeda, and H. Yokoyama, “100 W peak-power 1 GHz repetition picoseconds optical pulse generation using blue-violet GaInN diode laser mode-locked oscillator and optical amplifier,” Appl. Phys. Lett. 97(2), 021101 (2010).
[Crossref]

J. Phys. D: Appl. Phys. (1)

C. Lefort, “A review of biomedical multiphoton microscopy and its laser sources,” J. Phys. D: Appl. Phys. 50(42), 423001 (2017).
[Crossref]

Laser Photonics Rev. (1)

S. H. Park, D. Y. Yang, and K. S. Lee, “Two-photon stereolithography for realizing ultraprecise three-dimensional nano/microdevices,” Laser Photonics Rev. 3(1-2), 1–11 (2009).
[Crossref]

Light: Sci. Appl. (4)

K. Sugioka and Y. Cheng, “Ultrafast lasers-reliable tools for advanced materials processing,” Light: Sci. Appl. 3(4), e149 (2014).
[Crossref]

M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light: Sci. Appl. 5(8), e16133 (2016).
[Crossref]

E. P. Perillo, J. W. Jarrett, Y. L. Liu, A. Hassan, D. C. Fernée, J. R. Goldak, A. Bonteanu, D. J. Spence, H. C. Yeh, and A. K. Dunn, “Two-color multiphoton in vivo imaging with a femtosecond diamond Raman laser,” Light: Sci. Appl. 6(11), e17095 (2017).
[Crossref]

K. Guesmi, L. Abdeladim, S. Tozer, P. Mahou, T. Kumamoto, K. Jurkus, P. Rigaud, K. Loulier, N. Dray, P. Georges, M. Hanna, J. Livet, W. Supatto, E. Beaurepaire, and F. Druon, “Dual-color deep-tissue three-photon microscopy with a multiband infrared laser,” Light: Sci. Appl. 7(1), 12–19 (2018).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Proc. SPIE (2)

R. Koda, T. Oki, T. Miyajima, H. Watanabe, S. Konoa, M. Kuramotoa, M. Ikeda, and H. Yokoyama, “High peak power picoseconds optical pulse generation from GaInN semiconductor diode lasers,” Proc. SPIE 7953, 79530J (2011).
[Crossref]

T. Ulma, F. Hartha, A. Klehrb, G. Erbertb, and J. Lhuillier, “Passively mode-locked 1 GHz MOPA system generating sub-500-fs pulses after external compression,” Proc. SPIE 8432, 84320Y (2012).
[Crossref]

Other (1)

J.-C. Diels and W. Rudolph, “Ultrashort Laser Pulse Phenomena,” (Academic, Amsterdam, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Schematic diagram of the femtosecond MOPA semiconductor laser system. ECMLL: external cavity mode-locked laser, SA: saturable absorber, HR: high-reflection coating, AR: anti-reflection coating, L: collimating lenses, OC: output coupler (63%), OI: optical isolator, HWP: half-wave plate, M: mirror, TG: transmission grating.
Fig. 2.
Fig. 2. Autocorrelation trace (a) and optical spectrum (b) of a pulse emitted from the ECMLL at 750 mA gain current and 3.4 V bias voltage of reverse absorber.
Fig. 3.
Fig. 3. (a) Schematic diagram of SOA structure, (b) mechanism of ASE in a conventional SOA and (c) compressing ASE in a SOA with saw-toothed edge.
Fig. 4.
Fig. 4. The saw-toothed microstructure in the tapered SOA.
Fig. 5.
Fig. 5. Optical spectra of amplified pulse with ASE background at SOA current of 4.6 A.
Fig. 6.
Fig. 6. Average power (a) and pulse duration (b) of the amplified pulses as a function of SOA current.
Fig. 7.
Fig. 7. Autocorrelation trace of the pulse measured after the SOA and pulse compressor for device A (a) and D (b). The corresponding driven current of SOA is 4.6 A.
Fig. 8.
Fig. 8. Average power of the compressed pulses for femtosecond laser A and D as a function of SOA current.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

GDD = λ 3 π c 2 d 2 Z 1 ( λ d sin θ ) 2 ,

Metrics