Abstract

Foveation and (de)focus are two important visual factors in designing near eye displays. Foveation can reduce computational load by lowering display details towards the visual periphery, while focal cues can reduce vergence-accommodation conflict thereby lessening visual discomfort in using near eye displays. We performed two psychophysical experiments to investigate the relationship between foveation and focus cues. The first study measured blur discrimination sensitivity as a function of visual eccentricity, where we found discrimination thresholds significantly lower than previously reported. The second study measured depth discrimination threshold where we found a clear dependency on visual eccentricity. We discuss the study results and suggest further investigation.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Dynamic lens and monovision 3D displays to improve viewer comfort

Paul V. Johnson, Jared AQ. Parnell, Joohwan Kim, Christopher D. Saunter, Gordon D. Love, and Martin S. Banks
Opt. Express 24(11) 11808-11827 (2016)

Effects of eccentricity on color contrast

John E. Vanston and Michael A. Crognale
J. Opt. Soc. Am. A 35(4) B122-B129 (2018)

Spatial loss factor for the analysis of accommodation depth cue on near-eye light field displays

Jian Zhao, Jun Xia, Qungang Ma, and Jun Wu
Opt. Express 27(24) 34582-34592 (2019)

References

  • View by:
  • |
  • |
  • |

  1. M. Kwon and R. Liu, “Linkage between retinal ganglion cell density and the nonuniform spatial integration across the visual field,” Proc. Natl. Acad. Sci. 116(9), 3827–3836 (2019).
    [Crossref]
  2. B. Guenter, M. Finch, S. Drucker, D. Tan, and J. Snyder, “Foveated 3d graphics,” ACM Trans. Graph. 31(6), 1–164 (2012).
    [Crossref]
  3. A. Patney, M. Salvi, J. Kim, A. Kaplanyan, C. Wyman, N. Benty, D. Luebke, and A. Lefohn, “Towards foveated rendering for gaze-tracked virtual reality,” ACM Trans. Graph. 35(6), 1–12 (2016).
    [Crossref]
  4. G. Tan, Y.-H. Lee, T. Zhan, J. Yang, S. Liu, D. Zhao, and S.-T. Wu, “Foveated imaging for near-eye displays,” Opt. Express 26(19), 25076–25085 (2018).
    [Crossref]
  5. S. A. Cholewiak, G. D. Love, and M. S. Banks, “Creating correct blur and its effect on accommodation,” J. Vis. 18(9), 1 (2018).
    [Crossref]
  6. G. Tan, T. Zhan, Y.-H. Lee, J. Xiong, and S.-T. Wu, “Polarization-multiplexed multiplane display,” Opt. Lett. 43(22), 5651–5654 (2018).
    [Crossref]
  7. T. Zhan, Y.-H. Lee, and S.-T. Wu, “High-resolution additive light field near-eye display by switchable pancharatnam–berry phase lenses,” Opt. Express 26(4), 4863–4872 (2018).
    [Crossref]
  8. Q. Sun, F.-C. Huang, J. Kim, L.-Y. Wei, D. Luebke, and A. Kaufman, “Perceptually-guided foveation for light field displays,” ACM Trans. Graph. 36(6), 1–13 (2017).
    [Crossref]
  9. N. Padmanaban, R. Konrad, T. Stramer, E. A. Cooper, and G. Wetzstein, “Optimizing virtual reality for all users through gaze-contingent and adaptive focus displays,” Proc. Natl. Acad. Sci. 114(9), 2183–2188 (2017).
    [Crossref]
  10. T. Zhan, J. Zou, M. Lu, E. Chen, and S.-T. Wu, “Wavelength-multiplexed multi-focal-plane seethrough near-eye displays,” Opt. Express 27(20), 27507–27513 (2019).
    [Crossref]
  11. J. Read, “Visual perception: Understanding visual cues to depth,” Curr. Biol. 22(5), R163–R165 (2012).
    [Crossref]
  12. B. Wang, K. J. Ciuffreda, and T. Irish, “Equiblur zones at the fovea and near retinal periphery,” Vision Res. 46(21), 3690–3698 (2006).
    [Crossref]
  13. L. Ronchi and G. Molesini, “Depth of focus in peripheral vision,” Ophthalmic Res. 7(3), 152–157 (1975).
    [Crossref]
  14. H. R. Taylor, “Applying new design principles to the construction of an illiterate e chart,” Optom. & Vis. Sci. 55(5), 348–351 (1978).
    [Crossref]
  15. H. Levitt, “Transformed up-down methods in psychoacoustics,” J. Acoust. Soc. Am. 49(2B), 467–477 (1971).
    [Crossref]
  16. K. Akeley, S. J. Watt, A. R. Girshick, and M. S. Banks, “A stereo display prototype with multiple focal distances,” ACM Trans. Graph. 23(3), 804–813 (2004).
    [Crossref]
  17. F. Campbell and G. Westheimer, “Dynamics of accommodation responses of the human eye,” The J. physiology 151(2), 285–295 (1960).
    [Crossref]
  18. H. H. Schütt, S. Harmeling, J. H. Macke, and F. A. Wichmann, “Painfree and accurate bayesian estimation of psychometric functions for (potentially) overdispersed data,” Vision Res. 122, 105–123 (2016).
    [Crossref]
  19. A. B. Watson, “A formula for human retinal ganglion cell receptive field density as a function of visual field location,” J. Vis. 14(7), 15 (2014).
    [Crossref]
  20. A. Seidemann, F. Schaeffel, A. Guirao, N. Lopez-Gil, and P. Artal, “Peripheral refractive errors in myopic, emmetropic, and hyperopic young subjects,” J. Opt. Soc. Am. A 19(12), 2363–2373 (2002).
    [Crossref]
  21. F. E. Ives, “A novel stereogram,” J. Franklin Inst. 153(1), 51–52 (1902).
    [Crossref]
  22. D. Lanman and D. Luebke, “Near-eye light field displays,” ACM Trans. Graph. 32(6), 1–10 (2013).
    [Crossref]
  23. Y. Takaki, “High-density directional display for generating natural three-dimensional images,” Proc. IEEE 94(3), 654–663 (2006).
    [Crossref]
  24. F.-C. Huang, K. Chen, and G. Wetzstein, “The light field stereoscope: Immersive computer graphics via factored near-eye light field displays with focus cues,” ACM Trans. Graph. 34(4), 60 (2015).
    [Crossref]

2019 (2)

T. Zhan, J. Zou, M. Lu, E. Chen, and S.-T. Wu, “Wavelength-multiplexed multi-focal-plane seethrough near-eye displays,” Opt. Express 27(20), 27507–27513 (2019).
[Crossref]

M. Kwon and R. Liu, “Linkage between retinal ganglion cell density and the nonuniform spatial integration across the visual field,” Proc. Natl. Acad. Sci. 116(9), 3827–3836 (2019).
[Crossref]

2018 (4)

2017 (2)

Q. Sun, F.-C. Huang, J. Kim, L.-Y. Wei, D. Luebke, and A. Kaufman, “Perceptually-guided foveation for light field displays,” ACM Trans. Graph. 36(6), 1–13 (2017).
[Crossref]

N. Padmanaban, R. Konrad, T. Stramer, E. A. Cooper, and G. Wetzstein, “Optimizing virtual reality for all users through gaze-contingent and adaptive focus displays,” Proc. Natl. Acad. Sci. 114(9), 2183–2188 (2017).
[Crossref]

2016 (2)

H. H. Schütt, S. Harmeling, J. H. Macke, and F. A. Wichmann, “Painfree and accurate bayesian estimation of psychometric functions for (potentially) overdispersed data,” Vision Res. 122, 105–123 (2016).
[Crossref]

A. Patney, M. Salvi, J. Kim, A. Kaplanyan, C. Wyman, N. Benty, D. Luebke, and A. Lefohn, “Towards foveated rendering for gaze-tracked virtual reality,” ACM Trans. Graph. 35(6), 1–12 (2016).
[Crossref]

2015 (1)

F.-C. Huang, K. Chen, and G. Wetzstein, “The light field stereoscope: Immersive computer graphics via factored near-eye light field displays with focus cues,” ACM Trans. Graph. 34(4), 60 (2015).
[Crossref]

2014 (1)

A. B. Watson, “A formula for human retinal ganglion cell receptive field density as a function of visual field location,” J. Vis. 14(7), 15 (2014).
[Crossref]

2013 (1)

D. Lanman and D. Luebke, “Near-eye light field displays,” ACM Trans. Graph. 32(6), 1–10 (2013).
[Crossref]

2012 (2)

B. Guenter, M. Finch, S. Drucker, D. Tan, and J. Snyder, “Foveated 3d graphics,” ACM Trans. Graph. 31(6), 1–164 (2012).
[Crossref]

J. Read, “Visual perception: Understanding visual cues to depth,” Curr. Biol. 22(5), R163–R165 (2012).
[Crossref]

2006 (2)

B. Wang, K. J. Ciuffreda, and T. Irish, “Equiblur zones at the fovea and near retinal periphery,” Vision Res. 46(21), 3690–3698 (2006).
[Crossref]

Y. Takaki, “High-density directional display for generating natural three-dimensional images,” Proc. IEEE 94(3), 654–663 (2006).
[Crossref]

2004 (1)

K. Akeley, S. J. Watt, A. R. Girshick, and M. S. Banks, “A stereo display prototype with multiple focal distances,” ACM Trans. Graph. 23(3), 804–813 (2004).
[Crossref]

2002 (1)

1978 (1)

H. R. Taylor, “Applying new design principles to the construction of an illiterate e chart,” Optom. & Vis. Sci. 55(5), 348–351 (1978).
[Crossref]

1975 (1)

L. Ronchi and G. Molesini, “Depth of focus in peripheral vision,” Ophthalmic Res. 7(3), 152–157 (1975).
[Crossref]

1971 (1)

H. Levitt, “Transformed up-down methods in psychoacoustics,” J. Acoust. Soc. Am. 49(2B), 467–477 (1971).
[Crossref]

1960 (1)

F. Campbell and G. Westheimer, “Dynamics of accommodation responses of the human eye,” The J. physiology 151(2), 285–295 (1960).
[Crossref]

1902 (1)

F. E. Ives, “A novel stereogram,” J. Franklin Inst. 153(1), 51–52 (1902).
[Crossref]

Akeley, K.

K. Akeley, S. J. Watt, A. R. Girshick, and M. S. Banks, “A stereo display prototype with multiple focal distances,” ACM Trans. Graph. 23(3), 804–813 (2004).
[Crossref]

Artal, P.

Banks, M. S.

S. A. Cholewiak, G. D. Love, and M. S. Banks, “Creating correct blur and its effect on accommodation,” J. Vis. 18(9), 1 (2018).
[Crossref]

K. Akeley, S. J. Watt, A. R. Girshick, and M. S. Banks, “A stereo display prototype with multiple focal distances,” ACM Trans. Graph. 23(3), 804–813 (2004).
[Crossref]

Benty, N.

A. Patney, M. Salvi, J. Kim, A. Kaplanyan, C. Wyman, N. Benty, D. Luebke, and A. Lefohn, “Towards foveated rendering for gaze-tracked virtual reality,” ACM Trans. Graph. 35(6), 1–12 (2016).
[Crossref]

Campbell, F.

F. Campbell and G. Westheimer, “Dynamics of accommodation responses of the human eye,” The J. physiology 151(2), 285–295 (1960).
[Crossref]

Chen, E.

Chen, K.

F.-C. Huang, K. Chen, and G. Wetzstein, “The light field stereoscope: Immersive computer graphics via factored near-eye light field displays with focus cues,” ACM Trans. Graph. 34(4), 60 (2015).
[Crossref]

Cholewiak, S. A.

S. A. Cholewiak, G. D. Love, and M. S. Banks, “Creating correct blur and its effect on accommodation,” J. Vis. 18(9), 1 (2018).
[Crossref]

Ciuffreda, K. J.

B. Wang, K. J. Ciuffreda, and T. Irish, “Equiblur zones at the fovea and near retinal periphery,” Vision Res. 46(21), 3690–3698 (2006).
[Crossref]

Cooper, E. A.

N. Padmanaban, R. Konrad, T. Stramer, E. A. Cooper, and G. Wetzstein, “Optimizing virtual reality for all users through gaze-contingent and adaptive focus displays,” Proc. Natl. Acad. Sci. 114(9), 2183–2188 (2017).
[Crossref]

Drucker, S.

B. Guenter, M. Finch, S. Drucker, D. Tan, and J. Snyder, “Foveated 3d graphics,” ACM Trans. Graph. 31(6), 1–164 (2012).
[Crossref]

Finch, M.

B. Guenter, M. Finch, S. Drucker, D. Tan, and J. Snyder, “Foveated 3d graphics,” ACM Trans. Graph. 31(6), 1–164 (2012).
[Crossref]

Girshick, A. R.

K. Akeley, S. J. Watt, A. R. Girshick, and M. S. Banks, “A stereo display prototype with multiple focal distances,” ACM Trans. Graph. 23(3), 804–813 (2004).
[Crossref]

Guenter, B.

B. Guenter, M. Finch, S. Drucker, D. Tan, and J. Snyder, “Foveated 3d graphics,” ACM Trans. Graph. 31(6), 1–164 (2012).
[Crossref]

Guirao, A.

Harmeling, S.

H. H. Schütt, S. Harmeling, J. H. Macke, and F. A. Wichmann, “Painfree and accurate bayesian estimation of psychometric functions for (potentially) overdispersed data,” Vision Res. 122, 105–123 (2016).
[Crossref]

Huang, F.-C.

Q. Sun, F.-C. Huang, J. Kim, L.-Y. Wei, D. Luebke, and A. Kaufman, “Perceptually-guided foveation for light field displays,” ACM Trans. Graph. 36(6), 1–13 (2017).
[Crossref]

F.-C. Huang, K. Chen, and G. Wetzstein, “The light field stereoscope: Immersive computer graphics via factored near-eye light field displays with focus cues,” ACM Trans. Graph. 34(4), 60 (2015).
[Crossref]

Irish, T.

B. Wang, K. J. Ciuffreda, and T. Irish, “Equiblur zones at the fovea and near retinal periphery,” Vision Res. 46(21), 3690–3698 (2006).
[Crossref]

Ives, F. E.

F. E. Ives, “A novel stereogram,” J. Franklin Inst. 153(1), 51–52 (1902).
[Crossref]

Kaplanyan, A.

A. Patney, M. Salvi, J. Kim, A. Kaplanyan, C. Wyman, N. Benty, D. Luebke, and A. Lefohn, “Towards foveated rendering for gaze-tracked virtual reality,” ACM Trans. Graph. 35(6), 1–12 (2016).
[Crossref]

Kaufman, A.

Q. Sun, F.-C. Huang, J. Kim, L.-Y. Wei, D. Luebke, and A. Kaufman, “Perceptually-guided foveation for light field displays,” ACM Trans. Graph. 36(6), 1–13 (2017).
[Crossref]

Kim, J.

Q. Sun, F.-C. Huang, J. Kim, L.-Y. Wei, D. Luebke, and A. Kaufman, “Perceptually-guided foveation for light field displays,” ACM Trans. Graph. 36(6), 1–13 (2017).
[Crossref]

A. Patney, M. Salvi, J. Kim, A. Kaplanyan, C. Wyman, N. Benty, D. Luebke, and A. Lefohn, “Towards foveated rendering for gaze-tracked virtual reality,” ACM Trans. Graph. 35(6), 1–12 (2016).
[Crossref]

Konrad, R.

N. Padmanaban, R. Konrad, T. Stramer, E. A. Cooper, and G. Wetzstein, “Optimizing virtual reality for all users through gaze-contingent and adaptive focus displays,” Proc. Natl. Acad. Sci. 114(9), 2183–2188 (2017).
[Crossref]

Kwon, M.

M. Kwon and R. Liu, “Linkage between retinal ganglion cell density and the nonuniform spatial integration across the visual field,” Proc. Natl. Acad. Sci. 116(9), 3827–3836 (2019).
[Crossref]

Lanman, D.

D. Lanman and D. Luebke, “Near-eye light field displays,” ACM Trans. Graph. 32(6), 1–10 (2013).
[Crossref]

Lee, Y.-H.

Lefohn, A.

A. Patney, M. Salvi, J. Kim, A. Kaplanyan, C. Wyman, N. Benty, D. Luebke, and A. Lefohn, “Towards foveated rendering for gaze-tracked virtual reality,” ACM Trans. Graph. 35(6), 1–12 (2016).
[Crossref]

Levitt, H.

H. Levitt, “Transformed up-down methods in psychoacoustics,” J. Acoust. Soc. Am. 49(2B), 467–477 (1971).
[Crossref]

Liu, R.

M. Kwon and R. Liu, “Linkage between retinal ganglion cell density and the nonuniform spatial integration across the visual field,” Proc. Natl. Acad. Sci. 116(9), 3827–3836 (2019).
[Crossref]

Liu, S.

Lopez-Gil, N.

Love, G. D.

S. A. Cholewiak, G. D. Love, and M. S. Banks, “Creating correct blur and its effect on accommodation,” J. Vis. 18(9), 1 (2018).
[Crossref]

Lu, M.

Luebke, D.

Q. Sun, F.-C. Huang, J. Kim, L.-Y. Wei, D. Luebke, and A. Kaufman, “Perceptually-guided foveation for light field displays,” ACM Trans. Graph. 36(6), 1–13 (2017).
[Crossref]

A. Patney, M. Salvi, J. Kim, A. Kaplanyan, C. Wyman, N. Benty, D. Luebke, and A. Lefohn, “Towards foveated rendering for gaze-tracked virtual reality,” ACM Trans. Graph. 35(6), 1–12 (2016).
[Crossref]

D. Lanman and D. Luebke, “Near-eye light field displays,” ACM Trans. Graph. 32(6), 1–10 (2013).
[Crossref]

Macke, J. H.

H. H. Schütt, S. Harmeling, J. H. Macke, and F. A. Wichmann, “Painfree and accurate bayesian estimation of psychometric functions for (potentially) overdispersed data,” Vision Res. 122, 105–123 (2016).
[Crossref]

Molesini, G.

L. Ronchi and G. Molesini, “Depth of focus in peripheral vision,” Ophthalmic Res. 7(3), 152–157 (1975).
[Crossref]

Padmanaban, N.

N. Padmanaban, R. Konrad, T. Stramer, E. A. Cooper, and G. Wetzstein, “Optimizing virtual reality for all users through gaze-contingent and adaptive focus displays,” Proc. Natl. Acad. Sci. 114(9), 2183–2188 (2017).
[Crossref]

Patney, A.

A. Patney, M. Salvi, J. Kim, A. Kaplanyan, C. Wyman, N. Benty, D. Luebke, and A. Lefohn, “Towards foveated rendering for gaze-tracked virtual reality,” ACM Trans. Graph. 35(6), 1–12 (2016).
[Crossref]

Read, J.

J. Read, “Visual perception: Understanding visual cues to depth,” Curr. Biol. 22(5), R163–R165 (2012).
[Crossref]

Ronchi, L.

L. Ronchi and G. Molesini, “Depth of focus in peripheral vision,” Ophthalmic Res. 7(3), 152–157 (1975).
[Crossref]

Salvi, M.

A. Patney, M. Salvi, J. Kim, A. Kaplanyan, C. Wyman, N. Benty, D. Luebke, and A. Lefohn, “Towards foveated rendering for gaze-tracked virtual reality,” ACM Trans. Graph. 35(6), 1–12 (2016).
[Crossref]

Schaeffel, F.

Schütt, H. H.

H. H. Schütt, S. Harmeling, J. H. Macke, and F. A. Wichmann, “Painfree and accurate bayesian estimation of psychometric functions for (potentially) overdispersed data,” Vision Res. 122, 105–123 (2016).
[Crossref]

Seidemann, A.

Snyder, J.

B. Guenter, M. Finch, S. Drucker, D. Tan, and J. Snyder, “Foveated 3d graphics,” ACM Trans. Graph. 31(6), 1–164 (2012).
[Crossref]

Stramer, T.

N. Padmanaban, R. Konrad, T. Stramer, E. A. Cooper, and G. Wetzstein, “Optimizing virtual reality for all users through gaze-contingent and adaptive focus displays,” Proc. Natl. Acad. Sci. 114(9), 2183–2188 (2017).
[Crossref]

Sun, Q.

Q. Sun, F.-C. Huang, J. Kim, L.-Y. Wei, D. Luebke, and A. Kaufman, “Perceptually-guided foveation for light field displays,” ACM Trans. Graph. 36(6), 1–13 (2017).
[Crossref]

Takaki, Y.

Y. Takaki, “High-density directional display for generating natural three-dimensional images,” Proc. IEEE 94(3), 654–663 (2006).
[Crossref]

Tan, D.

B. Guenter, M. Finch, S. Drucker, D. Tan, and J. Snyder, “Foveated 3d graphics,” ACM Trans. Graph. 31(6), 1–164 (2012).
[Crossref]

Tan, G.

Taylor, H. R.

H. R. Taylor, “Applying new design principles to the construction of an illiterate e chart,” Optom. & Vis. Sci. 55(5), 348–351 (1978).
[Crossref]

Wang, B.

B. Wang, K. J. Ciuffreda, and T. Irish, “Equiblur zones at the fovea and near retinal periphery,” Vision Res. 46(21), 3690–3698 (2006).
[Crossref]

Watson, A. B.

A. B. Watson, “A formula for human retinal ganglion cell receptive field density as a function of visual field location,” J. Vis. 14(7), 15 (2014).
[Crossref]

Watt, S. J.

K. Akeley, S. J. Watt, A. R. Girshick, and M. S. Banks, “A stereo display prototype with multiple focal distances,” ACM Trans. Graph. 23(3), 804–813 (2004).
[Crossref]

Wei, L.-Y.

Q. Sun, F.-C. Huang, J. Kim, L.-Y. Wei, D. Luebke, and A. Kaufman, “Perceptually-guided foveation for light field displays,” ACM Trans. Graph. 36(6), 1–13 (2017).
[Crossref]

Westheimer, G.

F. Campbell and G. Westheimer, “Dynamics of accommodation responses of the human eye,” The J. physiology 151(2), 285–295 (1960).
[Crossref]

Wetzstein, G.

N. Padmanaban, R. Konrad, T. Stramer, E. A. Cooper, and G. Wetzstein, “Optimizing virtual reality for all users through gaze-contingent and adaptive focus displays,” Proc. Natl. Acad. Sci. 114(9), 2183–2188 (2017).
[Crossref]

F.-C. Huang, K. Chen, and G. Wetzstein, “The light field stereoscope: Immersive computer graphics via factored near-eye light field displays with focus cues,” ACM Trans. Graph. 34(4), 60 (2015).
[Crossref]

Wichmann, F. A.

H. H. Schütt, S. Harmeling, J. H. Macke, and F. A. Wichmann, “Painfree and accurate bayesian estimation of psychometric functions for (potentially) overdispersed data,” Vision Res. 122, 105–123 (2016).
[Crossref]

Wu, S.-T.

Wyman, C.

A. Patney, M. Salvi, J. Kim, A. Kaplanyan, C. Wyman, N. Benty, D. Luebke, and A. Lefohn, “Towards foveated rendering for gaze-tracked virtual reality,” ACM Trans. Graph. 35(6), 1–12 (2016).
[Crossref]

Xiong, J.

Yang, J.

Zhan, T.

Zhao, D.

Zou, J.

ACM Trans. Graph. (6)

B. Guenter, M. Finch, S. Drucker, D. Tan, and J. Snyder, “Foveated 3d graphics,” ACM Trans. Graph. 31(6), 1–164 (2012).
[Crossref]

A. Patney, M. Salvi, J. Kim, A. Kaplanyan, C. Wyman, N. Benty, D. Luebke, and A. Lefohn, “Towards foveated rendering for gaze-tracked virtual reality,” ACM Trans. Graph. 35(6), 1–12 (2016).
[Crossref]

Q. Sun, F.-C. Huang, J. Kim, L.-Y. Wei, D. Luebke, and A. Kaufman, “Perceptually-guided foveation for light field displays,” ACM Trans. Graph. 36(6), 1–13 (2017).
[Crossref]

K. Akeley, S. J. Watt, A. R. Girshick, and M. S. Banks, “A stereo display prototype with multiple focal distances,” ACM Trans. Graph. 23(3), 804–813 (2004).
[Crossref]

D. Lanman and D. Luebke, “Near-eye light field displays,” ACM Trans. Graph. 32(6), 1–10 (2013).
[Crossref]

F.-C. Huang, K. Chen, and G. Wetzstein, “The light field stereoscope: Immersive computer graphics via factored near-eye light field displays with focus cues,” ACM Trans. Graph. 34(4), 60 (2015).
[Crossref]

Curr. Biol. (1)

J. Read, “Visual perception: Understanding visual cues to depth,” Curr. Biol. 22(5), R163–R165 (2012).
[Crossref]

J. Acoust. Soc. Am. (1)

H. Levitt, “Transformed up-down methods in psychoacoustics,” J. Acoust. Soc. Am. 49(2B), 467–477 (1971).
[Crossref]

J. Franklin Inst. (1)

F. E. Ives, “A novel stereogram,” J. Franklin Inst. 153(1), 51–52 (1902).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Vis. (2)

A. B. Watson, “A formula for human retinal ganglion cell receptive field density as a function of visual field location,” J. Vis. 14(7), 15 (2014).
[Crossref]

S. A. Cholewiak, G. D. Love, and M. S. Banks, “Creating correct blur and its effect on accommodation,” J. Vis. 18(9), 1 (2018).
[Crossref]

Ophthalmic Res. (1)

L. Ronchi and G. Molesini, “Depth of focus in peripheral vision,” Ophthalmic Res. 7(3), 152–157 (1975).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Optom. & Vis. Sci. (1)

H. R. Taylor, “Applying new design principles to the construction of an illiterate e chart,” Optom. & Vis. Sci. 55(5), 348–351 (1978).
[Crossref]

Proc. IEEE (1)

Y. Takaki, “High-density directional display for generating natural three-dimensional images,” Proc. IEEE 94(3), 654–663 (2006).
[Crossref]

Proc. Natl. Acad. Sci. (2)

M. Kwon and R. Liu, “Linkage between retinal ganglion cell density and the nonuniform spatial integration across the visual field,” Proc. Natl. Acad. Sci. 116(9), 3827–3836 (2019).
[Crossref]

N. Padmanaban, R. Konrad, T. Stramer, E. A. Cooper, and G. Wetzstein, “Optimizing virtual reality for all users through gaze-contingent and adaptive focus displays,” Proc. Natl. Acad. Sci. 114(9), 2183–2188 (2017).
[Crossref]

The J. physiology (1)

F. Campbell and G. Westheimer, “Dynamics of accommodation responses of the human eye,” The J. physiology 151(2), 285–295 (1960).
[Crossref]

Vision Res. (2)

H. H. Schütt, S. Harmeling, J. H. Macke, and F. A. Wichmann, “Painfree and accurate bayesian estimation of psychometric functions for (potentially) overdispersed data,” Vision Res. 122, 105–123 (2016).
[Crossref]

B. Wang, K. J. Ciuffreda, and T. Irish, “Equiblur zones at the fovea and near retinal periphery,” Vision Res. 46(21), 3690–3698 (2006).
[Crossref]

Supplementary Material (4)

NameDescription
» Data File 1       Raw data of blur discrimination experiment
» Data File 2       Raw data of depth discrimination experiment
» Visualization 1       Procedure and stimulus used in experiment 1
» Visualization 2       Procedure and stimulus used in experiment 2

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Blur perception study setup and a sampled stimulus (see Visualization 1).
Fig. 2.
Fig. 2. Blur study results. We plot the blur detection/discrimination thresholds as a function of eccentricity and pedestal/baseline blur ($-2, -1, 0, 1, 2{D}$) for four subjects. All thresholds are computed as differences in diopters, i.e., $|D_a - D_b|$ for test case a and control (pedestal/baseline) case b. For example, a 0.1D of threshold at 2.0D baseline means the subject can perceive the blur caused by 2.1D target with the eye focusing at 2.0D. X-axis represents retinal eccentricity in degree. Y-axis represents measured thresholds in diopter. Each vertical bar indicates the $75\%$ performance level centered at a $95\%$ confidence interval. See Data File 1 for underlying values.
Fig. 3.
Fig. 3. Depth perception study design. (a) shows simulated retinal images via DLSR camera photography [8]. The focus depth changed from far (left) to near (right). (b) shows the study setup. The bottom inset is a simulated retinal image of the stimuli. The green object is the fixation; the other two are the test targets (see Visualization 2).
Fig. 4.
Fig. 4. The result of depth detection thresholds (Y) against eccentricity (X). See Data File 2 for underlying values.

Metrics