Abstract

Detecting structures below a cover film at the nanoscale resolution is of essential importance. In this work, we explored factors affecting subsurface material contrast and structural visibility in scattering-type scanning near-field optical microscopy (s-SNOM). A kind of multilayered reference samples containing different buried structures was fabricated and applied for s-SNOM imaging. The dependence of near-field optical contrast on structure geometry, dimension and cover thickness was investigated. Results demonstrate that distinguishing the buried slit pattern is easier than the circular hole with the same critical dimension. The s-SNOM can sense material difference under a more than 100 nm thick polymethyl methacrylate layer and it has a subsurface spatial resolution better than 100 nm.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Nanoscale-resolved subsurface imaging by scattering-type near-field optical microscopy

T. Taubner, F. eilmann, and R. Hillenbrand
Opt. Express 13(22) 8893-8899 (2005)

Temperature sensitivity of scattering-type near-field nanoscopic imaging in the visible range

Amun Jarzembski, Cedric Shaskey, Ryan A. Murdick, and Keunhan Park
Appl. Opt. 58(8) 1978-1983 (2019)

A study on the image contrast of pseudo-heterodyned scattering scanning near-field optical microscopy

D. E. Tranca, C. Stoichita, R. Hristu, S. G. Stanciu, and G. A. Stanciu
Opt. Express 22(2) 1687-1696 (2014)

References

  • View by:
  • |
  • |
  • |

  1. A. Nag, S. C. Mukhopadhyay, and J. Kosel, “Wearable flexible sensors: A review,” IEEE Sens. J. 17(13), 3949–3960 (2017).
    [Crossref]
  2. R. Deshpande, V. A. Zenin, F. Ding, N. A. Mortensen, and S. I. Bozhevolnyi, “Direct characterization of near-field coupling in gap plasmon-based metasurfaces,” Nano Lett. 18(10), 6265–6270 (2018).
    [Crossref]
  3. S. J. Yoo, J. W. Lim, and Y.-E. Sung, “Improved electrochromic devices with an inorganic solid electrolyte protective layer,” Sol. Energy Mater. Sol. Cells 90(4), 477–484 (2006).
    [Crossref]
  4. F. Keilmann and R. Hillenbrand, “Near-field microscopy by elastic light scattering from a tip,” Philos. Trans. R. Soc., A 362(1817), 787–805 (2004).
    [Crossref]
  5. J. M. Stiegler, Y. Abate, A. Cvitkovic, Y. E. Romanyuk, A. J. Huber, S. R. Leone, and R. Hillenbrand, “Nanoscale infrared absorption spectroscopy of individual nanoparticles enabled by scattering-type near-field microscopy,” ACS Nano 5(8), 6494–6499 (2011).
    [Crossref]
  6. Y. Yan, Y. Wang, P. Zhou, N. Huang, and D. Guo, “Near-field microscopy inspection of nano scratch defects on the monocrystalline silicon surface,” Precis. Eng. 56, 506–512 (2019).
    [Crossref]
  7. Q. Weng, V. Panchal, K.-T. Lin, L. Sun, Y. Kajihara, A. Tzalenchuk, and S. Komiyama, “Comparison of active and passive methods for the infrared scanning near-field microscopy,” Appl. Phys. Lett. 114(15), 153101 (2019).
    [Crossref]
  8. D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: Image recording with resolution λ/20,” Appl. Phys. Lett. 44(7), 651–653 (1984).
    [Crossref]
  9. D. V. Kazantsev, E. V. Kuznetsov, S. V. Timofeev, A. V. Shelaev, and E. A. Kazantseva, “Apertureless near-field optical microscopy,” Phys.-Usp. 60(3), 259–275 (2017).
    [Crossref]
  10. S. Mastel, A. A. Govyadinov, C. Maissen, A. Chuvilin, A. Berger, and R. Hillenbrand, “Understanding the image contrast of material boundaries in IR nanoscopy reaching 5 nm spatial resolution,” ACS Photonics 5(8), 3372–3378 (2018).
    [Crossref]
  11. V. E. Babicheva, S. Gamage, M. I. Stockman, and Y. Abate, “Near-field edge fringes at sharp material boundaries,” Opt. Express 25(20), 23935–23944 (2017).
    [Crossref]
  12. A. M. Gigler, A. J. Huber, M. Bauer, A. Ziegler, R. Hillenbrand, and R. W. Stark, “Nanoscale residual stress-field mapping around nanoindents in SiC by IR s-SNOM and confocal Raman microscopy,” Opt. Express 17(25), 22351–22357 (2009).
    [Crossref]
  13. A. J. Huber, A. Ziegler, T. Kock, and R. Hillenbrand, “Infrared nanoscopy of strained semiconductors,” Nat. Nanotechnol. 4(3), 153–157 (2009).
    [Crossref]
  14. B. Lyu, H. Li, L. Jiang, W. Shan, C. Hu, A. Deng, Z. Ying, L. Wang, Y. Zhang, H. A. Bechtel, M. C. Martin, T. Taniguchi, K. Watanabe, W. Luo, F. Wang, and Z. Shi, “Phonon polariton-assisted infrared nanoimaging of local strain in hexagonal boron nitride,” Nano Lett. 19(3), 1982–1989 (2019).
    [Crossref]
  15. A. J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua, and R. Hillenbrand, “Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices,” Nano Lett. 8(11), 3766–3770 (2008).
    [Crossref]
  16. X. Chen, H. Wang, N.-S. Xu, H. Chen, and S. Deng, “Resonance coupling in hybrid gold nanohole–monolayer WS2 nanostructures,” Appl. Mater. Today 15, 145–152 (2019).
    [Crossref]
  17. K. Imaeda, W. Minoshima, K. Tawa, and K. Imura, “Direct visualization of near-field distributions on a two-dimensional plasmonic chip by scanning near-field optical microscopy,” J. Phys. Chem. C 123(16), 10529–10535 (2019).
    [Crossref]
  18. P. K. Venuthurumilli, X. Wen, V. Iyer, Y. P. Chen, and X. Xu, “Near-field imaging of surface plasmons from the bulk and surface state of topological insulator Bi2Te2Se,” ACS Photonics 6(10), 2492–2498 (2019).
    [Crossref]
  19. M. Lewin, B. Hauer, M. Bornhöfft, L. Jung, J. Benke, A. K. U. Michel, J. Mayer, M. Wuttig, and T. Taubner, “Imaging of phase change materials below a capping layer using correlative infrared near-field microscopy and electron microscopy,” Appl. Phys. Lett. 107(15), 151902 (2015).
    [Crossref]
  20. T. Taubner, F. Keilmann, and R. Hillenbrand, “Nanoscale-resolved subsurface imaging by scattering-type near-field optical microscopy,” Opt. Express 13(22), 8893–8899 (2005).
    [Crossref]
  21. R. Krutokhvostov, A. A. Govyadinov, J. M. Stiegler, F. Huth, A. Chuvilin, P. S. Carney, and R. Hillenbrand, “Enhanced resolution in subsurface near-field optical microscopy,” Opt. Express 20(1), 593–600 (2012).
    [Crossref]
  22. O. Fenwick, S. Mauthoor, and F. Cacialli, “Mapping sub-surface structure of thin films in three dimensions with an optical near-field,” Adv. Theory Simul. 2(6), 1900033 (2019).
    [Crossref]
  23. A. A. Govyadinov, S. Mastel, F. Golmar, A. Chuvilin, P. S. Carney, and R. Hillenbrand, “Recovery of permittivity and depth from near-field data as a step toward infrared nanotomography,” ACS Nano 8(7), 6911–6921 (2014).
    [Crossref]
  24. N. Ocelic, A. Huber, and R. Hillenbrand, “Pseudoheterodyne detection for background-free near-field spectroscopy,” Appl. Phys. Lett. 89(10), 101124 (2006).
    [Crossref]
  25. D. E. Tranca, C. Stoichita, R. Hristu, S. G. Stanciu, and G. A. Stanciu, “A study on the image contrast of pseudo-heterodyned scattering scanning near-field optical microscopy,” Opt. Express 22(2), 1687–1696 (2014).
    [Crossref]
  26. A. Cvitkovic, N. Ocelic, and R. Hillenbrand, “Analytical model for quantitative prediction of material contrasts in scattering-type near-field optical microscopy,” Opt. Express 15(14), 8550–8565 (2007).
    [Crossref]
  27. J. Abed, F. Alexander, I. Taha, N. Rajput, C. Aubry, and M. Jouiad, “Investigation of broadband surface plasmon resonance of dewetted Au structures on TiO2 by aperture-probe SNOM and FDTD Simulations,” Plasmonics 14(1), 205–218 (2019).
    [Crossref]
  28. S. Babar and J. H. Weaver, “Optical constants of Cu, Ag, and Au revisited,” Appl. Opt. 54(3), 477–481 (2015).
    [Crossref]
  29. D. Chandler-Horowitz and P. M. Amirtharaj, “High-accuracy, midinfrared (450 cm−1⩽ω⩽4000 cm−1) refractive index values of silicon,” J. Appl. Phys. 97(12), 123526 (2005).
    [Crossref]
  30. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998).
    [Crossref]

2019 (8)

Y. Yan, Y. Wang, P. Zhou, N. Huang, and D. Guo, “Near-field microscopy inspection of nano scratch defects on the monocrystalline silicon surface,” Precis. Eng. 56, 506–512 (2019).
[Crossref]

Q. Weng, V. Panchal, K.-T. Lin, L. Sun, Y. Kajihara, A. Tzalenchuk, and S. Komiyama, “Comparison of active and passive methods for the infrared scanning near-field microscopy,” Appl. Phys. Lett. 114(15), 153101 (2019).
[Crossref]

B. Lyu, H. Li, L. Jiang, W. Shan, C. Hu, A. Deng, Z. Ying, L. Wang, Y. Zhang, H. A. Bechtel, M. C. Martin, T. Taniguchi, K. Watanabe, W. Luo, F. Wang, and Z. Shi, “Phonon polariton-assisted infrared nanoimaging of local strain in hexagonal boron nitride,” Nano Lett. 19(3), 1982–1989 (2019).
[Crossref]

X. Chen, H. Wang, N.-S. Xu, H. Chen, and S. Deng, “Resonance coupling in hybrid gold nanohole–monolayer WS2 nanostructures,” Appl. Mater. Today 15, 145–152 (2019).
[Crossref]

K. Imaeda, W. Minoshima, K. Tawa, and K. Imura, “Direct visualization of near-field distributions on a two-dimensional plasmonic chip by scanning near-field optical microscopy,” J. Phys. Chem. C 123(16), 10529–10535 (2019).
[Crossref]

P. K. Venuthurumilli, X. Wen, V. Iyer, Y. P. Chen, and X. Xu, “Near-field imaging of surface plasmons from the bulk and surface state of topological insulator Bi2Te2Se,” ACS Photonics 6(10), 2492–2498 (2019).
[Crossref]

O. Fenwick, S. Mauthoor, and F. Cacialli, “Mapping sub-surface structure of thin films in three dimensions with an optical near-field,” Adv. Theory Simul. 2(6), 1900033 (2019).
[Crossref]

J. Abed, F. Alexander, I. Taha, N. Rajput, C. Aubry, and M. Jouiad, “Investigation of broadband surface plasmon resonance of dewetted Au structures on TiO2 by aperture-probe SNOM and FDTD Simulations,” Plasmonics 14(1), 205–218 (2019).
[Crossref]

2018 (2)

R. Deshpande, V. A. Zenin, F. Ding, N. A. Mortensen, and S. I. Bozhevolnyi, “Direct characterization of near-field coupling in gap plasmon-based metasurfaces,” Nano Lett. 18(10), 6265–6270 (2018).
[Crossref]

S. Mastel, A. A. Govyadinov, C. Maissen, A. Chuvilin, A. Berger, and R. Hillenbrand, “Understanding the image contrast of material boundaries in IR nanoscopy reaching 5 nm spatial resolution,” ACS Photonics 5(8), 3372–3378 (2018).
[Crossref]

2017 (3)

V. E. Babicheva, S. Gamage, M. I. Stockman, and Y. Abate, “Near-field edge fringes at sharp material boundaries,” Opt. Express 25(20), 23935–23944 (2017).
[Crossref]

A. Nag, S. C. Mukhopadhyay, and J. Kosel, “Wearable flexible sensors: A review,” IEEE Sens. J. 17(13), 3949–3960 (2017).
[Crossref]

D. V. Kazantsev, E. V. Kuznetsov, S. V. Timofeev, A. V. Shelaev, and E. A. Kazantseva, “Apertureless near-field optical microscopy,” Phys.-Usp. 60(3), 259–275 (2017).
[Crossref]

2015 (2)

S. Babar and J. H. Weaver, “Optical constants of Cu, Ag, and Au revisited,” Appl. Opt. 54(3), 477–481 (2015).
[Crossref]

M. Lewin, B. Hauer, M. Bornhöfft, L. Jung, J. Benke, A. K. U. Michel, J. Mayer, M. Wuttig, and T. Taubner, “Imaging of phase change materials below a capping layer using correlative infrared near-field microscopy and electron microscopy,” Appl. Phys. Lett. 107(15), 151902 (2015).
[Crossref]

2014 (2)

A. A. Govyadinov, S. Mastel, F. Golmar, A. Chuvilin, P. S. Carney, and R. Hillenbrand, “Recovery of permittivity and depth from near-field data as a step toward infrared nanotomography,” ACS Nano 8(7), 6911–6921 (2014).
[Crossref]

D. E. Tranca, C. Stoichita, R. Hristu, S. G. Stanciu, and G. A. Stanciu, “A study on the image contrast of pseudo-heterodyned scattering scanning near-field optical microscopy,” Opt. Express 22(2), 1687–1696 (2014).
[Crossref]

2012 (1)

2011 (1)

J. M. Stiegler, Y. Abate, A. Cvitkovic, Y. E. Romanyuk, A. J. Huber, S. R. Leone, and R. Hillenbrand, “Nanoscale infrared absorption spectroscopy of individual nanoparticles enabled by scattering-type near-field microscopy,” ACS Nano 5(8), 6494–6499 (2011).
[Crossref]

2009 (2)

2008 (1)

A. J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua, and R. Hillenbrand, “Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices,” Nano Lett. 8(11), 3766–3770 (2008).
[Crossref]

2007 (1)

2006 (2)

N. Ocelic, A. Huber, and R. Hillenbrand, “Pseudoheterodyne detection for background-free near-field spectroscopy,” Appl. Phys. Lett. 89(10), 101124 (2006).
[Crossref]

S. J. Yoo, J. W. Lim, and Y.-E. Sung, “Improved electrochromic devices with an inorganic solid electrolyte protective layer,” Sol. Energy Mater. Sol. Cells 90(4), 477–484 (2006).
[Crossref]

2005 (2)

T. Taubner, F. Keilmann, and R. Hillenbrand, “Nanoscale-resolved subsurface imaging by scattering-type near-field optical microscopy,” Opt. Express 13(22), 8893–8899 (2005).
[Crossref]

D. Chandler-Horowitz and P. M. Amirtharaj, “High-accuracy, midinfrared (450 cm−1⩽ω⩽4000 cm−1) refractive index values of silicon,” J. Appl. Phys. 97(12), 123526 (2005).
[Crossref]

2004 (1)

F. Keilmann and R. Hillenbrand, “Near-field microscopy by elastic light scattering from a tip,” Philos. Trans. R. Soc., A 362(1817), 787–805 (2004).
[Crossref]

1998 (1)

1984 (1)

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: Image recording with resolution λ/20,” Appl. Phys. Lett. 44(7), 651–653 (1984).
[Crossref]

Abate, Y.

V. E. Babicheva, S. Gamage, M. I. Stockman, and Y. Abate, “Near-field edge fringes at sharp material boundaries,” Opt. Express 25(20), 23935–23944 (2017).
[Crossref]

J. M. Stiegler, Y. Abate, A. Cvitkovic, Y. E. Romanyuk, A. J. Huber, S. R. Leone, and R. Hillenbrand, “Nanoscale infrared absorption spectroscopy of individual nanoparticles enabled by scattering-type near-field microscopy,” ACS Nano 5(8), 6494–6499 (2011).
[Crossref]

Abed, J.

J. Abed, F. Alexander, I. Taha, N. Rajput, C. Aubry, and M. Jouiad, “Investigation of broadband surface plasmon resonance of dewetted Au structures on TiO2 by aperture-probe SNOM and FDTD Simulations,” Plasmonics 14(1), 205–218 (2019).
[Crossref]

Aizpurua, J.

A. J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua, and R. Hillenbrand, “Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices,” Nano Lett. 8(11), 3766–3770 (2008).
[Crossref]

Alexander, F.

J. Abed, F. Alexander, I. Taha, N. Rajput, C. Aubry, and M. Jouiad, “Investigation of broadband surface plasmon resonance of dewetted Au structures on TiO2 by aperture-probe SNOM and FDTD Simulations,” Plasmonics 14(1), 205–218 (2019).
[Crossref]

Amirtharaj, P. M.

D. Chandler-Horowitz and P. M. Amirtharaj, “High-accuracy, midinfrared (450 cm−1⩽ω⩽4000 cm−1) refractive index values of silicon,” J. Appl. Phys. 97(12), 123526 (2005).
[Crossref]

Aubry, C.

J. Abed, F. Alexander, I. Taha, N. Rajput, C. Aubry, and M. Jouiad, “Investigation of broadband surface plasmon resonance of dewetted Au structures on TiO2 by aperture-probe SNOM and FDTD Simulations,” Plasmonics 14(1), 205–218 (2019).
[Crossref]

Babar, S.

Babicheva, V. E.

Bauer, M.

Bechtel, H. A.

B. Lyu, H. Li, L. Jiang, W. Shan, C. Hu, A. Deng, Z. Ying, L. Wang, Y. Zhang, H. A. Bechtel, M. C. Martin, T. Taniguchi, K. Watanabe, W. Luo, F. Wang, and Z. Shi, “Phonon polariton-assisted infrared nanoimaging of local strain in hexagonal boron nitride,” Nano Lett. 19(3), 1982–1989 (2019).
[Crossref]

Benke, J.

M. Lewin, B. Hauer, M. Bornhöfft, L. Jung, J. Benke, A. K. U. Michel, J. Mayer, M. Wuttig, and T. Taubner, “Imaging of phase change materials below a capping layer using correlative infrared near-field microscopy and electron microscopy,” Appl. Phys. Lett. 107(15), 151902 (2015).
[Crossref]

Berger, A.

S. Mastel, A. A. Govyadinov, C. Maissen, A. Chuvilin, A. Berger, and R. Hillenbrand, “Understanding the image contrast of material boundaries in IR nanoscopy reaching 5 nm spatial resolution,” ACS Photonics 5(8), 3372–3378 (2018).
[Crossref]

Bornhöfft, M.

M. Lewin, B. Hauer, M. Bornhöfft, L. Jung, J. Benke, A. K. U. Michel, J. Mayer, M. Wuttig, and T. Taubner, “Imaging of phase change materials below a capping layer using correlative infrared near-field microscopy and electron microscopy,” Appl. Phys. Lett. 107(15), 151902 (2015).
[Crossref]

Bozhevolnyi, S. I.

R. Deshpande, V. A. Zenin, F. Ding, N. A. Mortensen, and S. I. Bozhevolnyi, “Direct characterization of near-field coupling in gap plasmon-based metasurfaces,” Nano Lett. 18(10), 6265–6270 (2018).
[Crossref]

Cacialli, F.

O. Fenwick, S. Mauthoor, and F. Cacialli, “Mapping sub-surface structure of thin films in three dimensions with an optical near-field,” Adv. Theory Simul. 2(6), 1900033 (2019).
[Crossref]

Carney, P. S.

A. A. Govyadinov, S. Mastel, F. Golmar, A. Chuvilin, P. S. Carney, and R. Hillenbrand, “Recovery of permittivity and depth from near-field data as a step toward infrared nanotomography,” ACS Nano 8(7), 6911–6921 (2014).
[Crossref]

R. Krutokhvostov, A. A. Govyadinov, J. M. Stiegler, F. Huth, A. Chuvilin, P. S. Carney, and R. Hillenbrand, “Enhanced resolution in subsurface near-field optical microscopy,” Opt. Express 20(1), 593–600 (2012).
[Crossref]

Chandler-Horowitz, D.

D. Chandler-Horowitz and P. M. Amirtharaj, “High-accuracy, midinfrared (450 cm−1⩽ω⩽4000 cm−1) refractive index values of silicon,” J. Appl. Phys. 97(12), 123526 (2005).
[Crossref]

Chen, H.

X. Chen, H. Wang, N.-S. Xu, H. Chen, and S. Deng, “Resonance coupling in hybrid gold nanohole–monolayer WS2 nanostructures,” Appl. Mater. Today 15, 145–152 (2019).
[Crossref]

Chen, X.

X. Chen, H. Wang, N.-S. Xu, H. Chen, and S. Deng, “Resonance coupling in hybrid gold nanohole–monolayer WS2 nanostructures,” Appl. Mater. Today 15, 145–152 (2019).
[Crossref]

Chen, Y. P.

P. K. Venuthurumilli, X. Wen, V. Iyer, Y. P. Chen, and X. Xu, “Near-field imaging of surface plasmons from the bulk and surface state of topological insulator Bi2Te2Se,” ACS Photonics 6(10), 2492–2498 (2019).
[Crossref]

Chuvilin, A.

S. Mastel, A. A. Govyadinov, C. Maissen, A. Chuvilin, A. Berger, and R. Hillenbrand, “Understanding the image contrast of material boundaries in IR nanoscopy reaching 5 nm spatial resolution,” ACS Photonics 5(8), 3372–3378 (2018).
[Crossref]

A. A. Govyadinov, S. Mastel, F. Golmar, A. Chuvilin, P. S. Carney, and R. Hillenbrand, “Recovery of permittivity and depth from near-field data as a step toward infrared nanotomography,” ACS Nano 8(7), 6911–6921 (2014).
[Crossref]

R. Krutokhvostov, A. A. Govyadinov, J. M. Stiegler, F. Huth, A. Chuvilin, P. S. Carney, and R. Hillenbrand, “Enhanced resolution in subsurface near-field optical microscopy,” Opt. Express 20(1), 593–600 (2012).
[Crossref]

Cvitkovic, A.

J. M. Stiegler, Y. Abate, A. Cvitkovic, Y. E. Romanyuk, A. J. Huber, S. R. Leone, and R. Hillenbrand, “Nanoscale infrared absorption spectroscopy of individual nanoparticles enabled by scattering-type near-field microscopy,” ACS Nano 5(8), 6494–6499 (2011).
[Crossref]

A. Cvitkovic, N. Ocelic, and R. Hillenbrand, “Analytical model for quantitative prediction of material contrasts in scattering-type near-field optical microscopy,” Opt. Express 15(14), 8550–8565 (2007).
[Crossref]

Deng, A.

B. Lyu, H. Li, L. Jiang, W. Shan, C. Hu, A. Deng, Z. Ying, L. Wang, Y. Zhang, H. A. Bechtel, M. C. Martin, T. Taniguchi, K. Watanabe, W. Luo, F. Wang, and Z. Shi, “Phonon polariton-assisted infrared nanoimaging of local strain in hexagonal boron nitride,” Nano Lett. 19(3), 1982–1989 (2019).
[Crossref]

Deng, S.

X. Chen, H. Wang, N.-S. Xu, H. Chen, and S. Deng, “Resonance coupling in hybrid gold nanohole–monolayer WS2 nanostructures,” Appl. Mater. Today 15, 145–152 (2019).
[Crossref]

Denk, W.

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: Image recording with resolution λ/20,” Appl. Phys. Lett. 44(7), 651–653 (1984).
[Crossref]

Deshpande, R.

R. Deshpande, V. A. Zenin, F. Ding, N. A. Mortensen, and S. I. Bozhevolnyi, “Direct characterization of near-field coupling in gap plasmon-based metasurfaces,” Nano Lett. 18(10), 6265–6270 (2018).
[Crossref]

Ding, F.

R. Deshpande, V. A. Zenin, F. Ding, N. A. Mortensen, and S. I. Bozhevolnyi, “Direct characterization of near-field coupling in gap plasmon-based metasurfaces,” Nano Lett. 18(10), 6265–6270 (2018).
[Crossref]

Djurisic, A. B.

Elazar, J. M.

Fenwick, O.

O. Fenwick, S. Mauthoor, and F. Cacialli, “Mapping sub-surface structure of thin films in three dimensions with an optical near-field,” Adv. Theory Simul. 2(6), 1900033 (2019).
[Crossref]

Gamage, S.

Gigler, A. M.

Golmar, F.

A. A. Govyadinov, S. Mastel, F. Golmar, A. Chuvilin, P. S. Carney, and R. Hillenbrand, “Recovery of permittivity and depth from near-field data as a step toward infrared nanotomography,” ACS Nano 8(7), 6911–6921 (2014).
[Crossref]

Govyadinov, A. A.

S. Mastel, A. A. Govyadinov, C. Maissen, A. Chuvilin, A. Berger, and R. Hillenbrand, “Understanding the image contrast of material boundaries in IR nanoscopy reaching 5 nm spatial resolution,” ACS Photonics 5(8), 3372–3378 (2018).
[Crossref]

A. A. Govyadinov, S. Mastel, F. Golmar, A. Chuvilin, P. S. Carney, and R. Hillenbrand, “Recovery of permittivity and depth from near-field data as a step toward infrared nanotomography,” ACS Nano 8(7), 6911–6921 (2014).
[Crossref]

R. Krutokhvostov, A. A. Govyadinov, J. M. Stiegler, F. Huth, A. Chuvilin, P. S. Carney, and R. Hillenbrand, “Enhanced resolution in subsurface near-field optical microscopy,” Opt. Express 20(1), 593–600 (2012).
[Crossref]

Guo, D.

Y. Yan, Y. Wang, P. Zhou, N. Huang, and D. Guo, “Near-field microscopy inspection of nano scratch defects on the monocrystalline silicon surface,” Precis. Eng. 56, 506–512 (2019).
[Crossref]

Hauer, B.

M. Lewin, B. Hauer, M. Bornhöfft, L. Jung, J. Benke, A. K. U. Michel, J. Mayer, M. Wuttig, and T. Taubner, “Imaging of phase change materials below a capping layer using correlative infrared near-field microscopy and electron microscopy,” Appl. Phys. Lett. 107(15), 151902 (2015).
[Crossref]

Hillenbrand, R.

S. Mastel, A. A. Govyadinov, C. Maissen, A. Chuvilin, A. Berger, and R. Hillenbrand, “Understanding the image contrast of material boundaries in IR nanoscopy reaching 5 nm spatial resolution,” ACS Photonics 5(8), 3372–3378 (2018).
[Crossref]

A. A. Govyadinov, S. Mastel, F. Golmar, A. Chuvilin, P. S. Carney, and R. Hillenbrand, “Recovery of permittivity and depth from near-field data as a step toward infrared nanotomography,” ACS Nano 8(7), 6911–6921 (2014).
[Crossref]

R. Krutokhvostov, A. A. Govyadinov, J. M. Stiegler, F. Huth, A. Chuvilin, P. S. Carney, and R. Hillenbrand, “Enhanced resolution in subsurface near-field optical microscopy,” Opt. Express 20(1), 593–600 (2012).
[Crossref]

J. M. Stiegler, Y. Abate, A. Cvitkovic, Y. E. Romanyuk, A. J. Huber, S. R. Leone, and R. Hillenbrand, “Nanoscale infrared absorption spectroscopy of individual nanoparticles enabled by scattering-type near-field microscopy,” ACS Nano 5(8), 6494–6499 (2011).
[Crossref]

A. M. Gigler, A. J. Huber, M. Bauer, A. Ziegler, R. Hillenbrand, and R. W. Stark, “Nanoscale residual stress-field mapping around nanoindents in SiC by IR s-SNOM and confocal Raman microscopy,” Opt. Express 17(25), 22351–22357 (2009).
[Crossref]

A. J. Huber, A. Ziegler, T. Kock, and R. Hillenbrand, “Infrared nanoscopy of strained semiconductors,” Nat. Nanotechnol. 4(3), 153–157 (2009).
[Crossref]

A. J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua, and R. Hillenbrand, “Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices,” Nano Lett. 8(11), 3766–3770 (2008).
[Crossref]

A. Cvitkovic, N. Ocelic, and R. Hillenbrand, “Analytical model for quantitative prediction of material contrasts in scattering-type near-field optical microscopy,” Opt. Express 15(14), 8550–8565 (2007).
[Crossref]

N. Ocelic, A. Huber, and R. Hillenbrand, “Pseudoheterodyne detection for background-free near-field spectroscopy,” Appl. Phys. Lett. 89(10), 101124 (2006).
[Crossref]

T. Taubner, F. Keilmann, and R. Hillenbrand, “Nanoscale-resolved subsurface imaging by scattering-type near-field optical microscopy,” Opt. Express 13(22), 8893–8899 (2005).
[Crossref]

F. Keilmann and R. Hillenbrand, “Near-field microscopy by elastic light scattering from a tip,” Philos. Trans. R. Soc., A 362(1817), 787–805 (2004).
[Crossref]

Hristu, R.

Hu, C.

B. Lyu, H. Li, L. Jiang, W. Shan, C. Hu, A. Deng, Z. Ying, L. Wang, Y. Zhang, H. A. Bechtel, M. C. Martin, T. Taniguchi, K. Watanabe, W. Luo, F. Wang, and Z. Shi, “Phonon polariton-assisted infrared nanoimaging of local strain in hexagonal boron nitride,” Nano Lett. 19(3), 1982–1989 (2019).
[Crossref]

Huang, N.

Y. Yan, Y. Wang, P. Zhou, N. Huang, and D. Guo, “Near-field microscopy inspection of nano scratch defects on the monocrystalline silicon surface,” Precis. Eng. 56, 506–512 (2019).
[Crossref]

Huber, A.

N. Ocelic, A. Huber, and R. Hillenbrand, “Pseudoheterodyne detection for background-free near-field spectroscopy,” Appl. Phys. Lett. 89(10), 101124 (2006).
[Crossref]

Huber, A. J.

J. M. Stiegler, Y. Abate, A. Cvitkovic, Y. E. Romanyuk, A. J. Huber, S. R. Leone, and R. Hillenbrand, “Nanoscale infrared absorption spectroscopy of individual nanoparticles enabled by scattering-type near-field microscopy,” ACS Nano 5(8), 6494–6499 (2011).
[Crossref]

A. J. Huber, A. Ziegler, T. Kock, and R. Hillenbrand, “Infrared nanoscopy of strained semiconductors,” Nat. Nanotechnol. 4(3), 153–157 (2009).
[Crossref]

A. M. Gigler, A. J. Huber, M. Bauer, A. Ziegler, R. Hillenbrand, and R. W. Stark, “Nanoscale residual stress-field mapping around nanoindents in SiC by IR s-SNOM and confocal Raman microscopy,” Opt. Express 17(25), 22351–22357 (2009).
[Crossref]

A. J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua, and R. Hillenbrand, “Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices,” Nano Lett. 8(11), 3766–3770 (2008).
[Crossref]

Huth, F.

Imaeda, K.

K. Imaeda, W. Minoshima, K. Tawa, and K. Imura, “Direct visualization of near-field distributions on a two-dimensional plasmonic chip by scanning near-field optical microscopy,” J. Phys. Chem. C 123(16), 10529–10535 (2019).
[Crossref]

Imura, K.

K. Imaeda, W. Minoshima, K. Tawa, and K. Imura, “Direct visualization of near-field distributions on a two-dimensional plasmonic chip by scanning near-field optical microscopy,” J. Phys. Chem. C 123(16), 10529–10535 (2019).
[Crossref]

Iyer, V.

P. K. Venuthurumilli, X. Wen, V. Iyer, Y. P. Chen, and X. Xu, “Near-field imaging of surface plasmons from the bulk and surface state of topological insulator Bi2Te2Se,” ACS Photonics 6(10), 2492–2498 (2019).
[Crossref]

Jiang, L.

B. Lyu, H. Li, L. Jiang, W. Shan, C. Hu, A. Deng, Z. Ying, L. Wang, Y. Zhang, H. A. Bechtel, M. C. Martin, T. Taniguchi, K. Watanabe, W. Luo, F. Wang, and Z. Shi, “Phonon polariton-assisted infrared nanoimaging of local strain in hexagonal boron nitride,” Nano Lett. 19(3), 1982–1989 (2019).
[Crossref]

Jouiad, M.

J. Abed, F. Alexander, I. Taha, N. Rajput, C. Aubry, and M. Jouiad, “Investigation of broadband surface plasmon resonance of dewetted Au structures on TiO2 by aperture-probe SNOM and FDTD Simulations,” Plasmonics 14(1), 205–218 (2019).
[Crossref]

Jung, L.

M. Lewin, B. Hauer, M. Bornhöfft, L. Jung, J. Benke, A. K. U. Michel, J. Mayer, M. Wuttig, and T. Taubner, “Imaging of phase change materials below a capping layer using correlative infrared near-field microscopy and electron microscopy,” Appl. Phys. Lett. 107(15), 151902 (2015).
[Crossref]

Kajihara, Y.

Q. Weng, V. Panchal, K.-T. Lin, L. Sun, Y. Kajihara, A. Tzalenchuk, and S. Komiyama, “Comparison of active and passive methods for the infrared scanning near-field microscopy,” Appl. Phys. Lett. 114(15), 153101 (2019).
[Crossref]

Kazantsev, D. V.

D. V. Kazantsev, E. V. Kuznetsov, S. V. Timofeev, A. V. Shelaev, and E. A. Kazantseva, “Apertureless near-field optical microscopy,” Phys.-Usp. 60(3), 259–275 (2017).
[Crossref]

Kazantseva, E. A.

D. V. Kazantsev, E. V. Kuznetsov, S. V. Timofeev, A. V. Shelaev, and E. A. Kazantseva, “Apertureless near-field optical microscopy,” Phys.-Usp. 60(3), 259–275 (2017).
[Crossref]

Keilmann, F.

A. J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua, and R. Hillenbrand, “Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices,” Nano Lett. 8(11), 3766–3770 (2008).
[Crossref]

T. Taubner, F. Keilmann, and R. Hillenbrand, “Nanoscale-resolved subsurface imaging by scattering-type near-field optical microscopy,” Opt. Express 13(22), 8893–8899 (2005).
[Crossref]

F. Keilmann and R. Hillenbrand, “Near-field microscopy by elastic light scattering from a tip,” Philos. Trans. R. Soc., A 362(1817), 787–805 (2004).
[Crossref]

Kock, T.

A. J. Huber, A. Ziegler, T. Kock, and R. Hillenbrand, “Infrared nanoscopy of strained semiconductors,” Nat. Nanotechnol. 4(3), 153–157 (2009).
[Crossref]

Komiyama, S.

Q. Weng, V. Panchal, K.-T. Lin, L. Sun, Y. Kajihara, A. Tzalenchuk, and S. Komiyama, “Comparison of active and passive methods for the infrared scanning near-field microscopy,” Appl. Phys. Lett. 114(15), 153101 (2019).
[Crossref]

Kosel, J.

A. Nag, S. C. Mukhopadhyay, and J. Kosel, “Wearable flexible sensors: A review,” IEEE Sens. J. 17(13), 3949–3960 (2017).
[Crossref]

Krutokhvostov, R.

Kuznetsov, E. V.

D. V. Kazantsev, E. V. Kuznetsov, S. V. Timofeev, A. V. Shelaev, and E. A. Kazantseva, “Apertureless near-field optical microscopy,” Phys.-Usp. 60(3), 259–275 (2017).
[Crossref]

Lanz, M.

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: Image recording with resolution λ/20,” Appl. Phys. Lett. 44(7), 651–653 (1984).
[Crossref]

Leone, S. R.

J. M. Stiegler, Y. Abate, A. Cvitkovic, Y. E. Romanyuk, A. J. Huber, S. R. Leone, and R. Hillenbrand, “Nanoscale infrared absorption spectroscopy of individual nanoparticles enabled by scattering-type near-field microscopy,” ACS Nano 5(8), 6494–6499 (2011).
[Crossref]

Lewin, M.

M. Lewin, B. Hauer, M. Bornhöfft, L. Jung, J. Benke, A. K. U. Michel, J. Mayer, M. Wuttig, and T. Taubner, “Imaging of phase change materials below a capping layer using correlative infrared near-field microscopy and electron microscopy,” Appl. Phys. Lett. 107(15), 151902 (2015).
[Crossref]

Li, H.

B. Lyu, H. Li, L. Jiang, W. Shan, C. Hu, A. Deng, Z. Ying, L. Wang, Y. Zhang, H. A. Bechtel, M. C. Martin, T. Taniguchi, K. Watanabe, W. Luo, F. Wang, and Z. Shi, “Phonon polariton-assisted infrared nanoimaging of local strain in hexagonal boron nitride,” Nano Lett. 19(3), 1982–1989 (2019).
[Crossref]

Lim, J. W.

S. J. Yoo, J. W. Lim, and Y.-E. Sung, “Improved electrochromic devices with an inorganic solid electrolyte protective layer,” Sol. Energy Mater. Sol. Cells 90(4), 477–484 (2006).
[Crossref]

Lin, K.-T.

Q. Weng, V. Panchal, K.-T. Lin, L. Sun, Y. Kajihara, A. Tzalenchuk, and S. Komiyama, “Comparison of active and passive methods for the infrared scanning near-field microscopy,” Appl. Phys. Lett. 114(15), 153101 (2019).
[Crossref]

Luo, W.

B. Lyu, H. Li, L. Jiang, W. Shan, C. Hu, A. Deng, Z. Ying, L. Wang, Y. Zhang, H. A. Bechtel, M. C. Martin, T. Taniguchi, K. Watanabe, W. Luo, F. Wang, and Z. Shi, “Phonon polariton-assisted infrared nanoimaging of local strain in hexagonal boron nitride,” Nano Lett. 19(3), 1982–1989 (2019).
[Crossref]

Lyu, B.

B. Lyu, H. Li, L. Jiang, W. Shan, C. Hu, A. Deng, Z. Ying, L. Wang, Y. Zhang, H. A. Bechtel, M. C. Martin, T. Taniguchi, K. Watanabe, W. Luo, F. Wang, and Z. Shi, “Phonon polariton-assisted infrared nanoimaging of local strain in hexagonal boron nitride,” Nano Lett. 19(3), 1982–1989 (2019).
[Crossref]

Maissen, C.

S. Mastel, A. A. Govyadinov, C. Maissen, A. Chuvilin, A. Berger, and R. Hillenbrand, “Understanding the image contrast of material boundaries in IR nanoscopy reaching 5 nm spatial resolution,” ACS Photonics 5(8), 3372–3378 (2018).
[Crossref]

Majewski, M. L.

Martin, M. C.

B. Lyu, H. Li, L. Jiang, W. Shan, C. Hu, A. Deng, Z. Ying, L. Wang, Y. Zhang, H. A. Bechtel, M. C. Martin, T. Taniguchi, K. Watanabe, W. Luo, F. Wang, and Z. Shi, “Phonon polariton-assisted infrared nanoimaging of local strain in hexagonal boron nitride,” Nano Lett. 19(3), 1982–1989 (2019).
[Crossref]

Mastel, S.

S. Mastel, A. A. Govyadinov, C. Maissen, A. Chuvilin, A. Berger, and R. Hillenbrand, “Understanding the image contrast of material boundaries in IR nanoscopy reaching 5 nm spatial resolution,” ACS Photonics 5(8), 3372–3378 (2018).
[Crossref]

A. A. Govyadinov, S. Mastel, F. Golmar, A. Chuvilin, P. S. Carney, and R. Hillenbrand, “Recovery of permittivity and depth from near-field data as a step toward infrared nanotomography,” ACS Nano 8(7), 6911–6921 (2014).
[Crossref]

Mauthoor, S.

O. Fenwick, S. Mauthoor, and F. Cacialli, “Mapping sub-surface structure of thin films in three dimensions with an optical near-field,” Adv. Theory Simul. 2(6), 1900033 (2019).
[Crossref]

Mayer, J.

M. Lewin, B. Hauer, M. Bornhöfft, L. Jung, J. Benke, A. K. U. Michel, J. Mayer, M. Wuttig, and T. Taubner, “Imaging of phase change materials below a capping layer using correlative infrared near-field microscopy and electron microscopy,” Appl. Phys. Lett. 107(15), 151902 (2015).
[Crossref]

Michel, A. K. U.

M. Lewin, B. Hauer, M. Bornhöfft, L. Jung, J. Benke, A. K. U. Michel, J. Mayer, M. Wuttig, and T. Taubner, “Imaging of phase change materials below a capping layer using correlative infrared near-field microscopy and electron microscopy,” Appl. Phys. Lett. 107(15), 151902 (2015).
[Crossref]

Minoshima, W.

K. Imaeda, W. Minoshima, K. Tawa, and K. Imura, “Direct visualization of near-field distributions on a two-dimensional plasmonic chip by scanning near-field optical microscopy,” J. Phys. Chem. C 123(16), 10529–10535 (2019).
[Crossref]

Mortensen, N. A.

R. Deshpande, V. A. Zenin, F. Ding, N. A. Mortensen, and S. I. Bozhevolnyi, “Direct characterization of near-field coupling in gap plasmon-based metasurfaces,” Nano Lett. 18(10), 6265–6270 (2018).
[Crossref]

Mukhopadhyay, S. C.

A. Nag, S. C. Mukhopadhyay, and J. Kosel, “Wearable flexible sensors: A review,” IEEE Sens. J. 17(13), 3949–3960 (2017).
[Crossref]

Nag, A.

A. Nag, S. C. Mukhopadhyay, and J. Kosel, “Wearable flexible sensors: A review,” IEEE Sens. J. 17(13), 3949–3960 (2017).
[Crossref]

Ocelic, N.

A. Cvitkovic, N. Ocelic, and R. Hillenbrand, “Analytical model for quantitative prediction of material contrasts in scattering-type near-field optical microscopy,” Opt. Express 15(14), 8550–8565 (2007).
[Crossref]

N. Ocelic, A. Huber, and R. Hillenbrand, “Pseudoheterodyne detection for background-free near-field spectroscopy,” Appl. Phys. Lett. 89(10), 101124 (2006).
[Crossref]

Panchal, V.

Q. Weng, V. Panchal, K.-T. Lin, L. Sun, Y. Kajihara, A. Tzalenchuk, and S. Komiyama, “Comparison of active and passive methods for the infrared scanning near-field microscopy,” Appl. Phys. Lett. 114(15), 153101 (2019).
[Crossref]

Pohl, D. W.

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: Image recording with resolution λ/20,” Appl. Phys. Lett. 44(7), 651–653 (1984).
[Crossref]

Rajput, N.

J. Abed, F. Alexander, I. Taha, N. Rajput, C. Aubry, and M. Jouiad, “Investigation of broadband surface plasmon resonance of dewetted Au structures on TiO2 by aperture-probe SNOM and FDTD Simulations,” Plasmonics 14(1), 205–218 (2019).
[Crossref]

Rakic, A. D.

Romanyuk, Y. E.

J. M. Stiegler, Y. Abate, A. Cvitkovic, Y. E. Romanyuk, A. J. Huber, S. R. Leone, and R. Hillenbrand, “Nanoscale infrared absorption spectroscopy of individual nanoparticles enabled by scattering-type near-field microscopy,” ACS Nano 5(8), 6494–6499 (2011).
[Crossref]

Shan, W.

B. Lyu, H. Li, L. Jiang, W. Shan, C. Hu, A. Deng, Z. Ying, L. Wang, Y. Zhang, H. A. Bechtel, M. C. Martin, T. Taniguchi, K. Watanabe, W. Luo, F. Wang, and Z. Shi, “Phonon polariton-assisted infrared nanoimaging of local strain in hexagonal boron nitride,” Nano Lett. 19(3), 1982–1989 (2019).
[Crossref]

Shelaev, A. V.

D. V. Kazantsev, E. V. Kuznetsov, S. V. Timofeev, A. V. Shelaev, and E. A. Kazantseva, “Apertureless near-field optical microscopy,” Phys.-Usp. 60(3), 259–275 (2017).
[Crossref]

Shi, Z.

B. Lyu, H. Li, L. Jiang, W. Shan, C. Hu, A. Deng, Z. Ying, L. Wang, Y. Zhang, H. A. Bechtel, M. C. Martin, T. Taniguchi, K. Watanabe, W. Luo, F. Wang, and Z. Shi, “Phonon polariton-assisted infrared nanoimaging of local strain in hexagonal boron nitride,” Nano Lett. 19(3), 1982–1989 (2019).
[Crossref]

Stanciu, G. A.

Stanciu, S. G.

Stark, R. W.

Stiegler, J. M.

R. Krutokhvostov, A. A. Govyadinov, J. M. Stiegler, F. Huth, A. Chuvilin, P. S. Carney, and R. Hillenbrand, “Enhanced resolution in subsurface near-field optical microscopy,” Opt. Express 20(1), 593–600 (2012).
[Crossref]

J. M. Stiegler, Y. Abate, A. Cvitkovic, Y. E. Romanyuk, A. J. Huber, S. R. Leone, and R. Hillenbrand, “Nanoscale infrared absorption spectroscopy of individual nanoparticles enabled by scattering-type near-field microscopy,” ACS Nano 5(8), 6494–6499 (2011).
[Crossref]

Stockman, M. I.

Stoichita, C.

Sun, L.

Q. Weng, V. Panchal, K.-T. Lin, L. Sun, Y. Kajihara, A. Tzalenchuk, and S. Komiyama, “Comparison of active and passive methods for the infrared scanning near-field microscopy,” Appl. Phys. Lett. 114(15), 153101 (2019).
[Crossref]

Sung, Y.-E.

S. J. Yoo, J. W. Lim, and Y.-E. Sung, “Improved electrochromic devices with an inorganic solid electrolyte protective layer,” Sol. Energy Mater. Sol. Cells 90(4), 477–484 (2006).
[Crossref]

Taha, I.

J. Abed, F. Alexander, I. Taha, N. Rajput, C. Aubry, and M. Jouiad, “Investigation of broadband surface plasmon resonance of dewetted Au structures on TiO2 by aperture-probe SNOM and FDTD Simulations,” Plasmonics 14(1), 205–218 (2019).
[Crossref]

Taniguchi, T.

B. Lyu, H. Li, L. Jiang, W. Shan, C. Hu, A. Deng, Z. Ying, L. Wang, Y. Zhang, H. A. Bechtel, M. C. Martin, T. Taniguchi, K. Watanabe, W. Luo, F. Wang, and Z. Shi, “Phonon polariton-assisted infrared nanoimaging of local strain in hexagonal boron nitride,” Nano Lett. 19(3), 1982–1989 (2019).
[Crossref]

Taubner, T.

M. Lewin, B. Hauer, M. Bornhöfft, L. Jung, J. Benke, A. K. U. Michel, J. Mayer, M. Wuttig, and T. Taubner, “Imaging of phase change materials below a capping layer using correlative infrared near-field microscopy and electron microscopy,” Appl. Phys. Lett. 107(15), 151902 (2015).
[Crossref]

T. Taubner, F. Keilmann, and R. Hillenbrand, “Nanoscale-resolved subsurface imaging by scattering-type near-field optical microscopy,” Opt. Express 13(22), 8893–8899 (2005).
[Crossref]

Tawa, K.

K. Imaeda, W. Minoshima, K. Tawa, and K. Imura, “Direct visualization of near-field distributions on a two-dimensional plasmonic chip by scanning near-field optical microscopy,” J. Phys. Chem. C 123(16), 10529–10535 (2019).
[Crossref]

Timofeev, S. V.

D. V. Kazantsev, E. V. Kuznetsov, S. V. Timofeev, A. V. Shelaev, and E. A. Kazantseva, “Apertureless near-field optical microscopy,” Phys.-Usp. 60(3), 259–275 (2017).
[Crossref]

Tranca, D. E.

Tzalenchuk, A.

Q. Weng, V. Panchal, K.-T. Lin, L. Sun, Y. Kajihara, A. Tzalenchuk, and S. Komiyama, “Comparison of active and passive methods for the infrared scanning near-field microscopy,” Appl. Phys. Lett. 114(15), 153101 (2019).
[Crossref]

Venuthurumilli, P. K.

P. K. Venuthurumilli, X. Wen, V. Iyer, Y. P. Chen, and X. Xu, “Near-field imaging of surface plasmons from the bulk and surface state of topological insulator Bi2Te2Se,” ACS Photonics 6(10), 2492–2498 (2019).
[Crossref]

Wang, F.

B. Lyu, H. Li, L. Jiang, W. Shan, C. Hu, A. Deng, Z. Ying, L. Wang, Y. Zhang, H. A. Bechtel, M. C. Martin, T. Taniguchi, K. Watanabe, W. Luo, F. Wang, and Z. Shi, “Phonon polariton-assisted infrared nanoimaging of local strain in hexagonal boron nitride,” Nano Lett. 19(3), 1982–1989 (2019).
[Crossref]

Wang, H.

X. Chen, H. Wang, N.-S. Xu, H. Chen, and S. Deng, “Resonance coupling in hybrid gold nanohole–monolayer WS2 nanostructures,” Appl. Mater. Today 15, 145–152 (2019).
[Crossref]

Wang, L.

B. Lyu, H. Li, L. Jiang, W. Shan, C. Hu, A. Deng, Z. Ying, L. Wang, Y. Zhang, H. A. Bechtel, M. C. Martin, T. Taniguchi, K. Watanabe, W. Luo, F. Wang, and Z. Shi, “Phonon polariton-assisted infrared nanoimaging of local strain in hexagonal boron nitride,” Nano Lett. 19(3), 1982–1989 (2019).
[Crossref]

Wang, Y.

Y. Yan, Y. Wang, P. Zhou, N. Huang, and D. Guo, “Near-field microscopy inspection of nano scratch defects on the monocrystalline silicon surface,” Precis. Eng. 56, 506–512 (2019).
[Crossref]

Watanabe, K.

B. Lyu, H. Li, L. Jiang, W. Shan, C. Hu, A. Deng, Z. Ying, L. Wang, Y. Zhang, H. A. Bechtel, M. C. Martin, T. Taniguchi, K. Watanabe, W. Luo, F. Wang, and Z. Shi, “Phonon polariton-assisted infrared nanoimaging of local strain in hexagonal boron nitride,” Nano Lett. 19(3), 1982–1989 (2019).
[Crossref]

Weaver, J. H.

Wen, X.

P. K. Venuthurumilli, X. Wen, V. Iyer, Y. P. Chen, and X. Xu, “Near-field imaging of surface plasmons from the bulk and surface state of topological insulator Bi2Te2Se,” ACS Photonics 6(10), 2492–2498 (2019).
[Crossref]

Weng, Q.

Q. Weng, V. Panchal, K.-T. Lin, L. Sun, Y. Kajihara, A. Tzalenchuk, and S. Komiyama, “Comparison of active and passive methods for the infrared scanning near-field microscopy,” Appl. Phys. Lett. 114(15), 153101 (2019).
[Crossref]

Wittborn, J.

A. J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua, and R. Hillenbrand, “Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices,” Nano Lett. 8(11), 3766–3770 (2008).
[Crossref]

Wuttig, M.

M. Lewin, B. Hauer, M. Bornhöfft, L. Jung, J. Benke, A. K. U. Michel, J. Mayer, M. Wuttig, and T. Taubner, “Imaging of phase change materials below a capping layer using correlative infrared near-field microscopy and electron microscopy,” Appl. Phys. Lett. 107(15), 151902 (2015).
[Crossref]

Xu, N.-S.

X. Chen, H. Wang, N.-S. Xu, H. Chen, and S. Deng, “Resonance coupling in hybrid gold nanohole–monolayer WS2 nanostructures,” Appl. Mater. Today 15, 145–152 (2019).
[Crossref]

Xu, X.

P. K. Venuthurumilli, X. Wen, V. Iyer, Y. P. Chen, and X. Xu, “Near-field imaging of surface plasmons from the bulk and surface state of topological insulator Bi2Te2Se,” ACS Photonics 6(10), 2492–2498 (2019).
[Crossref]

Yan, Y.

Y. Yan, Y. Wang, P. Zhou, N. Huang, and D. Guo, “Near-field microscopy inspection of nano scratch defects on the monocrystalline silicon surface,” Precis. Eng. 56, 506–512 (2019).
[Crossref]

Ying, Z.

B. Lyu, H. Li, L. Jiang, W. Shan, C. Hu, A. Deng, Z. Ying, L. Wang, Y. Zhang, H. A. Bechtel, M. C. Martin, T. Taniguchi, K. Watanabe, W. Luo, F. Wang, and Z. Shi, “Phonon polariton-assisted infrared nanoimaging of local strain in hexagonal boron nitride,” Nano Lett. 19(3), 1982–1989 (2019).
[Crossref]

Yoo, S. J.

S. J. Yoo, J. W. Lim, and Y.-E. Sung, “Improved electrochromic devices with an inorganic solid electrolyte protective layer,” Sol. Energy Mater. Sol. Cells 90(4), 477–484 (2006).
[Crossref]

Zenin, V. A.

R. Deshpande, V. A. Zenin, F. Ding, N. A. Mortensen, and S. I. Bozhevolnyi, “Direct characterization of near-field coupling in gap plasmon-based metasurfaces,” Nano Lett. 18(10), 6265–6270 (2018).
[Crossref]

Zhang, Y.

B. Lyu, H. Li, L. Jiang, W. Shan, C. Hu, A. Deng, Z. Ying, L. Wang, Y. Zhang, H. A. Bechtel, M. C. Martin, T. Taniguchi, K. Watanabe, W. Luo, F. Wang, and Z. Shi, “Phonon polariton-assisted infrared nanoimaging of local strain in hexagonal boron nitride,” Nano Lett. 19(3), 1982–1989 (2019).
[Crossref]

Zhou, P.

Y. Yan, Y. Wang, P. Zhou, N. Huang, and D. Guo, “Near-field microscopy inspection of nano scratch defects on the monocrystalline silicon surface,” Precis. Eng. 56, 506–512 (2019).
[Crossref]

Ziegler, A.

ACS Nano (2)

J. M. Stiegler, Y. Abate, A. Cvitkovic, Y. E. Romanyuk, A. J. Huber, S. R. Leone, and R. Hillenbrand, “Nanoscale infrared absorption spectroscopy of individual nanoparticles enabled by scattering-type near-field microscopy,” ACS Nano 5(8), 6494–6499 (2011).
[Crossref]

A. A. Govyadinov, S. Mastel, F. Golmar, A. Chuvilin, P. S. Carney, and R. Hillenbrand, “Recovery of permittivity and depth from near-field data as a step toward infrared nanotomography,” ACS Nano 8(7), 6911–6921 (2014).
[Crossref]

ACS Photonics (2)

S. Mastel, A. A. Govyadinov, C. Maissen, A. Chuvilin, A. Berger, and R. Hillenbrand, “Understanding the image contrast of material boundaries in IR nanoscopy reaching 5 nm spatial resolution,” ACS Photonics 5(8), 3372–3378 (2018).
[Crossref]

P. K. Venuthurumilli, X. Wen, V. Iyer, Y. P. Chen, and X. Xu, “Near-field imaging of surface plasmons from the bulk and surface state of topological insulator Bi2Te2Se,” ACS Photonics 6(10), 2492–2498 (2019).
[Crossref]

Adv. Theory Simul. (1)

O. Fenwick, S. Mauthoor, and F. Cacialli, “Mapping sub-surface structure of thin films in three dimensions with an optical near-field,” Adv. Theory Simul. 2(6), 1900033 (2019).
[Crossref]

Appl. Mater. Today (1)

X. Chen, H. Wang, N.-S. Xu, H. Chen, and S. Deng, “Resonance coupling in hybrid gold nanohole–monolayer WS2 nanostructures,” Appl. Mater. Today 15, 145–152 (2019).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (4)

N. Ocelic, A. Huber, and R. Hillenbrand, “Pseudoheterodyne detection for background-free near-field spectroscopy,” Appl. Phys. Lett. 89(10), 101124 (2006).
[Crossref]

M. Lewin, B. Hauer, M. Bornhöfft, L. Jung, J. Benke, A. K. U. Michel, J. Mayer, M. Wuttig, and T. Taubner, “Imaging of phase change materials below a capping layer using correlative infrared near-field microscopy and electron microscopy,” Appl. Phys. Lett. 107(15), 151902 (2015).
[Crossref]

Q. Weng, V. Panchal, K.-T. Lin, L. Sun, Y. Kajihara, A. Tzalenchuk, and S. Komiyama, “Comparison of active and passive methods for the infrared scanning near-field microscopy,” Appl. Phys. Lett. 114(15), 153101 (2019).
[Crossref]

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: Image recording with resolution λ/20,” Appl. Phys. Lett. 44(7), 651–653 (1984).
[Crossref]

IEEE Sens. J. (1)

A. Nag, S. C. Mukhopadhyay, and J. Kosel, “Wearable flexible sensors: A review,” IEEE Sens. J. 17(13), 3949–3960 (2017).
[Crossref]

J. Appl. Phys. (1)

D. Chandler-Horowitz and P. M. Amirtharaj, “High-accuracy, midinfrared (450 cm−1⩽ω⩽4000 cm−1) refractive index values of silicon,” J. Appl. Phys. 97(12), 123526 (2005).
[Crossref]

J. Phys. Chem. C (1)

K. Imaeda, W. Minoshima, K. Tawa, and K. Imura, “Direct visualization of near-field distributions on a two-dimensional plasmonic chip by scanning near-field optical microscopy,” J. Phys. Chem. C 123(16), 10529–10535 (2019).
[Crossref]

Nano Lett. (3)

B. Lyu, H. Li, L. Jiang, W. Shan, C. Hu, A. Deng, Z. Ying, L. Wang, Y. Zhang, H. A. Bechtel, M. C. Martin, T. Taniguchi, K. Watanabe, W. Luo, F. Wang, and Z. Shi, “Phonon polariton-assisted infrared nanoimaging of local strain in hexagonal boron nitride,” Nano Lett. 19(3), 1982–1989 (2019).
[Crossref]

A. J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua, and R. Hillenbrand, “Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices,” Nano Lett. 8(11), 3766–3770 (2008).
[Crossref]

R. Deshpande, V. A. Zenin, F. Ding, N. A. Mortensen, and S. I. Bozhevolnyi, “Direct characterization of near-field coupling in gap plasmon-based metasurfaces,” Nano Lett. 18(10), 6265–6270 (2018).
[Crossref]

Nat. Nanotechnol. (1)

A. J. Huber, A. Ziegler, T. Kock, and R. Hillenbrand, “Infrared nanoscopy of strained semiconductors,” Nat. Nanotechnol. 4(3), 153–157 (2009).
[Crossref]

Opt. Express (6)

Philos. Trans. R. Soc., A (1)

F. Keilmann and R. Hillenbrand, “Near-field microscopy by elastic light scattering from a tip,” Philos. Trans. R. Soc., A 362(1817), 787–805 (2004).
[Crossref]

Phys.-Usp. (1)

D. V. Kazantsev, E. V. Kuznetsov, S. V. Timofeev, A. V. Shelaev, and E. A. Kazantseva, “Apertureless near-field optical microscopy,” Phys.-Usp. 60(3), 259–275 (2017).
[Crossref]

Plasmonics (1)

J. Abed, F. Alexander, I. Taha, N. Rajput, C. Aubry, and M. Jouiad, “Investigation of broadband surface plasmon resonance of dewetted Au structures on TiO2 by aperture-probe SNOM and FDTD Simulations,” Plasmonics 14(1), 205–218 (2019).
[Crossref]

Precis. Eng. (1)

Y. Yan, Y. Wang, P. Zhou, N. Huang, and D. Guo, “Near-field microscopy inspection of nano scratch defects on the monocrystalline silicon surface,” Precis. Eng. 56, 506–512 (2019).
[Crossref]

Sol. Energy Mater. Sol. Cells (1)

S. J. Yoo, J. W. Lim, and Y.-E. Sung, “Improved electrochromic devices with an inorganic solid electrolyte protective layer,” Sol. Energy Mater. Sol. Cells 90(4), 477–484 (2006).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. (a) Schematic illustration of the experimental s-SNOM setup for investigating the visibility of buried structures in a multilayered architecture. The underneath structures are patterned on a metal film and they are covered with a thin polymer layer. A pseudoheterodyne detection method is employed to obtain background-free near-field optical signal. (b) Schematic illustration of the dipole model for a simple theoretical analysis.
Fig. 2.
Fig. 2. The patterned structures with controlled geometry and dimension by FIB processing. The sample before PMMA coating is a thin Au layer deposited on a Si substrate and the patterns are fabricated on the Au film. (a)(b) AFM and SEM images of the drilled circular holes with different diameters. (c)(d) AFM and SEM images of the slits with different widths. The scale bars in (c) and (d) are 2 µm.
Fig. 3.
Fig. 3. The third harmonic s-SNOM amplitude signals on the substrate patterned with circular hole-structures under different cover thicknesses. (a) Without the cover layer. (b) With the cover layer thickness of 50 nm. (c) With the cover layer thickness of 100 nm. (d) Amplitude modulation contrast M as a function of pattern diameter D. When the contrast is smaller than a threshold of 0.05 as illustrated in the shaded region, the corresponding structure is difficult to be distinguished. (e) Measured diameters of the circular hole-patterns from the s-SNOM images when the cover layer thickness is varied.
Fig. 4.
Fig. 4. The third harmonic s-SNOM amplitude signals of the substrate drilled with slit patterns under different cover layer thicknesses. (a) Without the cover layer. (b) With the cover layer thickness of 50 nm. (c) With the cover layer thickness of 100 nm. (d) Amplitude modulation contrast M as a function of slit width W. When the contrast is smaller than a threshold of 0.05 as shown in the shaded region, the corresponding structure is difficult to be distinguished.
Fig. 5.
Fig. 5. s-SNOM imaging of a sample with FIB processed structures in form of Morse coding. (a)(b)(c) SEM image, s-SNOM topography and the third harmonic s-SNOM amplitude of the sample without a coating layer. (d) s-SNOM amplitude image of the same substrate coated with a 70 nm thick PMMA layer.
Fig. 6.
Fig. 6. Theoretical analysis of the third harmonic s-SNOM amplitude contrast. (a)(b) Dependence of the amplitude contrast M on the incident laser wavelength λ in the infrared region and the tip-sample gap z. The insets show the normalized amplitudes on the two different materials at the incident wavelength of 8 µm. (c)(d) Dependence of the amplitude contrast M on the incident wavelength λ in the visible light range and the tip-sample gap z. The wavelength is 10.663 µm in (b) and 633 nm in (d).
Fig. 7.
Fig. 7. Subsurface nano-imaging by s-SNOM. The sample is a patterned silicon substrate covered by the glue from a double-side tape. (a) Topography. (b) The third harmonic s-SNOM amplitude. The inset is a zoomed view of the area sketched by the dashed rectangle. (c) Sectional profiles of the topography and amplitude images. The two profiles are taken from the same position as guided by the dashed line in topography.

Tables (1)

Tables Icon

Table 1. Saturation contrast and the minimum detectable size.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

α = 4 π R 3 ε t 1 ε t + 2 ,
β = ε s 1 ε s + 1 .
α e f f = α ( 1 + β ) 1 α β / [ 16 π ( R + z ) 3 ] .
I s = | E s | 2 | α e f f E i n | 2 ,
S | α e f f | ,
φ = arg ( α e f f ) .
M = S s t r S s u b S s t r + S s u b ,

Metrics