Abstract

Laser beam profilometry is an important scientific task with well-established solutions for beams propagating in air. It has, however, remained an open challenge to measure beam profiles of high-power lasers in ultra-high vacuum and in tightly confined spaces. Here we present a novel scheme that uses a single multi-mode fiber to scatter light and guide it to a detector. The method competes well with commercial systems in position resolution, can reach through apertures smaller than 500×500 µm2 and is compatible with ultra-high vacuum conditions. The scheme is simple, compact, reliable and can withstand laser intensities beyond 2 MW/cm2.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
All-fiber high-power 1700 nm femtosecond laser based on optical parametric chirped-pulse amplification

Yukun Qin, Orkhongua Batjargal, Benjamin Cromey, and Khanh Kieu
Opt. Express 28(2) 2317-2325 (2020)

Thermal modeling of high-power Yb-doped fiber lasers with irradiated active fibers

Mengmeng Tao, Hongwei Chen, Guobin Feng, Kunpeng Luan, Fei Wang, Ke Huang, and Xisheng Ye
Opt. Express 28(7) 10104-10123 (2020)

2 kW high-efficiency Raman fiber amplifier based on passive fiber with dynamic analysis on beam cleanup and fluctuation

Yizhu Chen, Tianfu Yao, Liangjin Huang, Hu Xiao, Jinyong Leng, and Pu Zhou
Opt. Express 28(3) 3495-3504 (2020)

References

  • View by:
  • |
  • |
  • |

  1. T. H. Maiman, “Stimulated Optical Radiation in Ruby,” Nature 187(4736), 493–494 (1960).
    [Crossref]
  2. A. Yariv, Optical electronics (Saunders College Publ., 1991).
  3. H. J. Eichler, J. Eichler, and O. Lux, Lasers (Springer, 2018).
  4. D. Milam, “Fluence in 1064-nm laser beams: its determination by photography with Polaroid film,” Appl. Opt. 20(2), 169–171 (1981).
    [Crossref]
  5. I. M. Winer, “A Self-Calibrating Technique Measuring Laser Beam Intensity Distributions,” Appl. Opt. 5(9), 1437–1439 (1966).
    [Crossref]
  6. A. Rose, Y. X. Nie, and R. Gupta, “Laser beam profile measurement by photothermal deflection technique,” Appl. Opt. 25(11), 1738–1741 (1986).
    [Crossref]
  7. T. Baba, T. Arai, and A. Ono, “Laser beam profile measurement by a thermographic technique,” Rev. Sci. Instrum. 57(11), 2739–2742 (1986).
    [Crossref]
  8. S. Sumriddetchkajorn and N. A. Riza, “Micro-electro-mechanical system-based digitally controlled optical beam profiler,” Appl. Opt. 41(18), 3506–3510 (2002).
    [Crossref]
  9. H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Surface plasmon polariton–based optical beam profiler,” Opt. Lett. 29(12), 1408–1410 (2004).
    [Crossref]
  10. J. M. Liu, “Simple technique for measurements of pulsed Gaussian-beam spot sizes,” Opt. Lett. 7(5), 196–198 (1982).
    [Crossref]
  11. M. A. Hossain, J. Canning, K. Cook, and A. Jamalipour, “Smartphone laser beam spatial profiler,” Opt. Lett. 40(22), 5156–5159 (2015).
    [Crossref]
  12. B. Schwarz, G. Ritt, M. Koerber, and B. Eberle, “Laser-induced damage threshold of camera sensors and micro-optoelectromechanical systems,” Opt. Eng. 56(3), 034108 (2017).
    [Crossref]
  13. Y. Suzaki and A. Tachibana, “Measurement of the µm sized radius of Gaussian laser beam using the scanning knife-edge,” Appl. Opt. 14(12), 2809–2810 (1975).
    [Crossref]
  14. G. Veshapidze, M. L. Trachy, M. H. Shah, and B. D. DePaola, “Reducing the uncertainty in laser beam size measurement with a scanning edge method,” Appl. Opt. 45(32), 8197–8199 (2006).
    [Crossref]
  15. J. Soto, M. Rendón, and M. Martín, “Experimental demonstration of tomographic slit technique for measurement of arbitrary intensity profiles of light beams,” Appl. Opt. 36(29), 7450–7454 (1997).
    [Crossref]
  16. M. Sheikh and N. A. Riza, “Demonstration of Pinhole Laser Beam Profiling Using a Digital Micromirror Device,” IEEE Photonics Technol. Lett. 21(10), 666–668 (2009).
    [Crossref]
  17. M. Arndt and K. Hornberger, “Insight review: Testing the limits of quantum mechanical superpositions,” Nat. Phys. 10(4), 271–277 (2014).
    [Crossref]
  18. O. Nairz, B. Brezger, M. Arndt, and A. Zeilinger, “Diffraction of Complex Molecules by Structures Made of Light,” Phys. Rev. Lett. 87(16), 160401 (2001).
    [Crossref]
  19. S. Gerlich, L. Hackermüller, K. Hornberger, A. Stibor, H. Ulbricht, M. Gring, F. Goldfarb, T. Savas, M. Müri, M. Mayor, and M. Arndt, “A Kapitza-Dirac-Talbot-Lau interferometer for highly polarizable molecules,” Nat. Phys. 3(10), 711–715 (2007).
    [Crossref]
  20. P. Haslinger, N. Dörre, P. Geyer, J. Rodewald, S. Nimmrichter, and M. Arndt, “A universal matter-wave interferometer with optical ionization gratings in the time domain,” Nat. Phys. 9(3), 144–148 (2013).
    [Crossref]
  21. C. Brand, M. Sclafani, C. Knobloch, Y. Lilach, T. Juffmann, J. Kotakoski, C. Mangler, A. Winter, A. Turchanin, J. Meyer, O. Cheshnovsky, and M. Arndt, “An atomically thin matter-wave beamsplitter,” Nat. Nanotechnol. 10(10), 845–848 (2015).
    [Crossref]
  22. S. Garcia, F. Ferri, K. Ott, J. Reichel, and R. Long, “Dual-wavelength fiber Fabry-Perot cavities with engineered birefringence,” Opt. Express 26(17), 22249–22263 (2018).
    [Crossref]
  23. G. Wachter, S. Kuhn, S. Minniberger, C. Salter, P. Asenbaum, J. Millen, M. Schneider, J. Schalko, U. Schmid, A. Felgner, D. Hüser, M. Arndt, and M. Trupke, “Silicon microcavity arrays with open access and a finesse of half a million,” Light: Sci. Appl. 8(1), 37 (2019).
    [Crossref]

2019 (1)

G. Wachter, S. Kuhn, S. Minniberger, C. Salter, P. Asenbaum, J. Millen, M. Schneider, J. Schalko, U. Schmid, A. Felgner, D. Hüser, M. Arndt, and M. Trupke, “Silicon microcavity arrays with open access and a finesse of half a million,” Light: Sci. Appl. 8(1), 37 (2019).
[Crossref]

2018 (1)

2017 (1)

B. Schwarz, G. Ritt, M. Koerber, and B. Eberle, “Laser-induced damage threshold of camera sensors and micro-optoelectromechanical systems,” Opt. Eng. 56(3), 034108 (2017).
[Crossref]

2015 (2)

M. A. Hossain, J. Canning, K. Cook, and A. Jamalipour, “Smartphone laser beam spatial profiler,” Opt. Lett. 40(22), 5156–5159 (2015).
[Crossref]

C. Brand, M. Sclafani, C. Knobloch, Y. Lilach, T. Juffmann, J. Kotakoski, C. Mangler, A. Winter, A. Turchanin, J. Meyer, O. Cheshnovsky, and M. Arndt, “An atomically thin matter-wave beamsplitter,” Nat. Nanotechnol. 10(10), 845–848 (2015).
[Crossref]

2014 (1)

M. Arndt and K. Hornberger, “Insight review: Testing the limits of quantum mechanical superpositions,” Nat. Phys. 10(4), 271–277 (2014).
[Crossref]

2013 (1)

P. Haslinger, N. Dörre, P. Geyer, J. Rodewald, S. Nimmrichter, and M. Arndt, “A universal matter-wave interferometer with optical ionization gratings in the time domain,” Nat. Phys. 9(3), 144–148 (2013).
[Crossref]

2009 (1)

M. Sheikh and N. A. Riza, “Demonstration of Pinhole Laser Beam Profiling Using a Digital Micromirror Device,” IEEE Photonics Technol. Lett. 21(10), 666–668 (2009).
[Crossref]

2007 (1)

S. Gerlich, L. Hackermüller, K. Hornberger, A. Stibor, H. Ulbricht, M. Gring, F. Goldfarb, T. Savas, M. Müri, M. Mayor, and M. Arndt, “A Kapitza-Dirac-Talbot-Lau interferometer for highly polarizable molecules,” Nat. Phys. 3(10), 711–715 (2007).
[Crossref]

2006 (1)

2004 (1)

2002 (1)

2001 (1)

O. Nairz, B. Brezger, M. Arndt, and A. Zeilinger, “Diffraction of Complex Molecules by Structures Made of Light,” Phys. Rev. Lett. 87(16), 160401 (2001).
[Crossref]

1997 (1)

1986 (2)

A. Rose, Y. X. Nie, and R. Gupta, “Laser beam profile measurement by photothermal deflection technique,” Appl. Opt. 25(11), 1738–1741 (1986).
[Crossref]

T. Baba, T. Arai, and A. Ono, “Laser beam profile measurement by a thermographic technique,” Rev. Sci. Instrum. 57(11), 2739–2742 (1986).
[Crossref]

1982 (1)

1981 (1)

1975 (1)

1966 (1)

1960 (1)

T. H. Maiman, “Stimulated Optical Radiation in Ruby,” Nature 187(4736), 493–494 (1960).
[Crossref]

Arai, T.

T. Baba, T. Arai, and A. Ono, “Laser beam profile measurement by a thermographic technique,” Rev. Sci. Instrum. 57(11), 2739–2742 (1986).
[Crossref]

Arndt, M.

G. Wachter, S. Kuhn, S. Minniberger, C. Salter, P. Asenbaum, J. Millen, M. Schneider, J. Schalko, U. Schmid, A. Felgner, D. Hüser, M. Arndt, and M. Trupke, “Silicon microcavity arrays with open access and a finesse of half a million,” Light: Sci. Appl. 8(1), 37 (2019).
[Crossref]

C. Brand, M. Sclafani, C. Knobloch, Y. Lilach, T. Juffmann, J. Kotakoski, C. Mangler, A. Winter, A. Turchanin, J. Meyer, O. Cheshnovsky, and M. Arndt, “An atomically thin matter-wave beamsplitter,” Nat. Nanotechnol. 10(10), 845–848 (2015).
[Crossref]

M. Arndt and K. Hornberger, “Insight review: Testing the limits of quantum mechanical superpositions,” Nat. Phys. 10(4), 271–277 (2014).
[Crossref]

P. Haslinger, N. Dörre, P. Geyer, J. Rodewald, S. Nimmrichter, and M. Arndt, “A universal matter-wave interferometer with optical ionization gratings in the time domain,” Nat. Phys. 9(3), 144–148 (2013).
[Crossref]

S. Gerlich, L. Hackermüller, K. Hornberger, A. Stibor, H. Ulbricht, M. Gring, F. Goldfarb, T. Savas, M. Müri, M. Mayor, and M. Arndt, “A Kapitza-Dirac-Talbot-Lau interferometer for highly polarizable molecules,” Nat. Phys. 3(10), 711–715 (2007).
[Crossref]

O. Nairz, B. Brezger, M. Arndt, and A. Zeilinger, “Diffraction of Complex Molecules by Structures Made of Light,” Phys. Rev. Lett. 87(16), 160401 (2001).
[Crossref]

Asenbaum, P.

G. Wachter, S. Kuhn, S. Minniberger, C. Salter, P. Asenbaum, J. Millen, M. Schneider, J. Schalko, U. Schmid, A. Felgner, D. Hüser, M. Arndt, and M. Trupke, “Silicon microcavity arrays with open access and a finesse of half a million,” Light: Sci. Appl. 8(1), 37 (2019).
[Crossref]

Aussenegg, F. R.

Baba, T.

T. Baba, T. Arai, and A. Ono, “Laser beam profile measurement by a thermographic technique,” Rev. Sci. Instrum. 57(11), 2739–2742 (1986).
[Crossref]

Brand, C.

C. Brand, M. Sclafani, C. Knobloch, Y. Lilach, T. Juffmann, J. Kotakoski, C. Mangler, A. Winter, A. Turchanin, J. Meyer, O. Cheshnovsky, and M. Arndt, “An atomically thin matter-wave beamsplitter,” Nat. Nanotechnol. 10(10), 845–848 (2015).
[Crossref]

Brezger, B.

O. Nairz, B. Brezger, M. Arndt, and A. Zeilinger, “Diffraction of Complex Molecules by Structures Made of Light,” Phys. Rev. Lett. 87(16), 160401 (2001).
[Crossref]

Canning, J.

Cheshnovsky, O.

C. Brand, M. Sclafani, C. Knobloch, Y. Lilach, T. Juffmann, J. Kotakoski, C. Mangler, A. Winter, A. Turchanin, J. Meyer, O. Cheshnovsky, and M. Arndt, “An atomically thin matter-wave beamsplitter,” Nat. Nanotechnol. 10(10), 845–848 (2015).
[Crossref]

Cook, K.

DePaola, B. D.

Ditlbacher, H.

Dörre, N.

P. Haslinger, N. Dörre, P. Geyer, J. Rodewald, S. Nimmrichter, and M. Arndt, “A universal matter-wave interferometer with optical ionization gratings in the time domain,” Nat. Phys. 9(3), 144–148 (2013).
[Crossref]

Eberle, B.

B. Schwarz, G. Ritt, M. Koerber, and B. Eberle, “Laser-induced damage threshold of camera sensors and micro-optoelectromechanical systems,” Opt. Eng. 56(3), 034108 (2017).
[Crossref]

Eichler, H. J.

H. J. Eichler, J. Eichler, and O. Lux, Lasers (Springer, 2018).

Eichler, J.

H. J. Eichler, J. Eichler, and O. Lux, Lasers (Springer, 2018).

Felgner, A.

G. Wachter, S. Kuhn, S. Minniberger, C. Salter, P. Asenbaum, J. Millen, M. Schneider, J. Schalko, U. Schmid, A. Felgner, D. Hüser, M. Arndt, and M. Trupke, “Silicon microcavity arrays with open access and a finesse of half a million,” Light: Sci. Appl. 8(1), 37 (2019).
[Crossref]

Ferri, F.

Garcia, S.

Gerlich, S.

S. Gerlich, L. Hackermüller, K. Hornberger, A. Stibor, H. Ulbricht, M. Gring, F. Goldfarb, T. Savas, M. Müri, M. Mayor, and M. Arndt, “A Kapitza-Dirac-Talbot-Lau interferometer for highly polarizable molecules,” Nat. Phys. 3(10), 711–715 (2007).
[Crossref]

Geyer, P.

P. Haslinger, N. Dörre, P. Geyer, J. Rodewald, S. Nimmrichter, and M. Arndt, “A universal matter-wave interferometer with optical ionization gratings in the time domain,” Nat. Phys. 9(3), 144–148 (2013).
[Crossref]

Goldfarb, F.

S. Gerlich, L. Hackermüller, K. Hornberger, A. Stibor, H. Ulbricht, M. Gring, F. Goldfarb, T. Savas, M. Müri, M. Mayor, and M. Arndt, “A Kapitza-Dirac-Talbot-Lau interferometer for highly polarizable molecules,” Nat. Phys. 3(10), 711–715 (2007).
[Crossref]

Gring, M.

S. Gerlich, L. Hackermüller, K. Hornberger, A. Stibor, H. Ulbricht, M. Gring, F. Goldfarb, T. Savas, M. Müri, M. Mayor, and M. Arndt, “A Kapitza-Dirac-Talbot-Lau interferometer for highly polarizable molecules,” Nat. Phys. 3(10), 711–715 (2007).
[Crossref]

Gupta, R.

Hackermüller, L.

S. Gerlich, L. Hackermüller, K. Hornberger, A. Stibor, H. Ulbricht, M. Gring, F. Goldfarb, T. Savas, M. Müri, M. Mayor, and M. Arndt, “A Kapitza-Dirac-Talbot-Lau interferometer for highly polarizable molecules,” Nat. Phys. 3(10), 711–715 (2007).
[Crossref]

Haslinger, P.

P. Haslinger, N. Dörre, P. Geyer, J. Rodewald, S. Nimmrichter, and M. Arndt, “A universal matter-wave interferometer with optical ionization gratings in the time domain,” Nat. Phys. 9(3), 144–148 (2013).
[Crossref]

Hornberger, K.

M. Arndt and K. Hornberger, “Insight review: Testing the limits of quantum mechanical superpositions,” Nat. Phys. 10(4), 271–277 (2014).
[Crossref]

S. Gerlich, L. Hackermüller, K. Hornberger, A. Stibor, H. Ulbricht, M. Gring, F. Goldfarb, T. Savas, M. Müri, M. Mayor, and M. Arndt, “A Kapitza-Dirac-Talbot-Lau interferometer for highly polarizable molecules,” Nat. Phys. 3(10), 711–715 (2007).
[Crossref]

Hossain, M. A.

Hüser, D.

G. Wachter, S. Kuhn, S. Minniberger, C. Salter, P. Asenbaum, J. Millen, M. Schneider, J. Schalko, U. Schmid, A. Felgner, D. Hüser, M. Arndt, and M. Trupke, “Silicon microcavity arrays with open access and a finesse of half a million,” Light: Sci. Appl. 8(1), 37 (2019).
[Crossref]

Jamalipour, A.

Juffmann, T.

C. Brand, M. Sclafani, C. Knobloch, Y. Lilach, T. Juffmann, J. Kotakoski, C. Mangler, A. Winter, A. Turchanin, J. Meyer, O. Cheshnovsky, and M. Arndt, “An atomically thin matter-wave beamsplitter,” Nat. Nanotechnol. 10(10), 845–848 (2015).
[Crossref]

Knobloch, C.

C. Brand, M. Sclafani, C. Knobloch, Y. Lilach, T. Juffmann, J. Kotakoski, C. Mangler, A. Winter, A. Turchanin, J. Meyer, O. Cheshnovsky, and M. Arndt, “An atomically thin matter-wave beamsplitter,” Nat. Nanotechnol. 10(10), 845–848 (2015).
[Crossref]

Koerber, M.

B. Schwarz, G. Ritt, M. Koerber, and B. Eberle, “Laser-induced damage threshold of camera sensors and micro-optoelectromechanical systems,” Opt. Eng. 56(3), 034108 (2017).
[Crossref]

Kotakoski, J.

C. Brand, M. Sclafani, C. Knobloch, Y. Lilach, T. Juffmann, J. Kotakoski, C. Mangler, A. Winter, A. Turchanin, J. Meyer, O. Cheshnovsky, and M. Arndt, “An atomically thin matter-wave beamsplitter,” Nat. Nanotechnol. 10(10), 845–848 (2015).
[Crossref]

Krenn, J. R.

Kuhn, S.

G. Wachter, S. Kuhn, S. Minniberger, C. Salter, P. Asenbaum, J. Millen, M. Schneider, J. Schalko, U. Schmid, A. Felgner, D. Hüser, M. Arndt, and M. Trupke, “Silicon microcavity arrays with open access and a finesse of half a million,” Light: Sci. Appl. 8(1), 37 (2019).
[Crossref]

Leitner, A.

Lilach, Y.

C. Brand, M. Sclafani, C. Knobloch, Y. Lilach, T. Juffmann, J. Kotakoski, C. Mangler, A. Winter, A. Turchanin, J. Meyer, O. Cheshnovsky, and M. Arndt, “An atomically thin matter-wave beamsplitter,” Nat. Nanotechnol. 10(10), 845–848 (2015).
[Crossref]

Liu, J. M.

Long, R.

Lux, O.

H. J. Eichler, J. Eichler, and O. Lux, Lasers (Springer, 2018).

Maiman, T. H.

T. H. Maiman, “Stimulated Optical Radiation in Ruby,” Nature 187(4736), 493–494 (1960).
[Crossref]

Mangler, C.

C. Brand, M. Sclafani, C. Knobloch, Y. Lilach, T. Juffmann, J. Kotakoski, C. Mangler, A. Winter, A. Turchanin, J. Meyer, O. Cheshnovsky, and M. Arndt, “An atomically thin matter-wave beamsplitter,” Nat. Nanotechnol. 10(10), 845–848 (2015).
[Crossref]

Martín, M.

Mayor, M.

S. Gerlich, L. Hackermüller, K. Hornberger, A. Stibor, H. Ulbricht, M. Gring, F. Goldfarb, T. Savas, M. Müri, M. Mayor, and M. Arndt, “A Kapitza-Dirac-Talbot-Lau interferometer for highly polarizable molecules,” Nat. Phys. 3(10), 711–715 (2007).
[Crossref]

Meyer, J.

C. Brand, M. Sclafani, C. Knobloch, Y. Lilach, T. Juffmann, J. Kotakoski, C. Mangler, A. Winter, A. Turchanin, J. Meyer, O. Cheshnovsky, and M. Arndt, “An atomically thin matter-wave beamsplitter,” Nat. Nanotechnol. 10(10), 845–848 (2015).
[Crossref]

Milam, D.

Millen, J.

G. Wachter, S. Kuhn, S. Minniberger, C. Salter, P. Asenbaum, J. Millen, M. Schneider, J. Schalko, U. Schmid, A. Felgner, D. Hüser, M. Arndt, and M. Trupke, “Silicon microcavity arrays with open access and a finesse of half a million,” Light: Sci. Appl. 8(1), 37 (2019).
[Crossref]

Minniberger, S.

G. Wachter, S. Kuhn, S. Minniberger, C. Salter, P. Asenbaum, J. Millen, M. Schneider, J. Schalko, U. Schmid, A. Felgner, D. Hüser, M. Arndt, and M. Trupke, “Silicon microcavity arrays with open access and a finesse of half a million,” Light: Sci. Appl. 8(1), 37 (2019).
[Crossref]

Müri, M.

S. Gerlich, L. Hackermüller, K. Hornberger, A. Stibor, H. Ulbricht, M. Gring, F. Goldfarb, T. Savas, M. Müri, M. Mayor, and M. Arndt, “A Kapitza-Dirac-Talbot-Lau interferometer for highly polarizable molecules,” Nat. Phys. 3(10), 711–715 (2007).
[Crossref]

Nairz, O.

O. Nairz, B. Brezger, M. Arndt, and A. Zeilinger, “Diffraction of Complex Molecules by Structures Made of Light,” Phys. Rev. Lett. 87(16), 160401 (2001).
[Crossref]

Nie, Y. X.

Nimmrichter, S.

P. Haslinger, N. Dörre, P. Geyer, J. Rodewald, S. Nimmrichter, and M. Arndt, “A universal matter-wave interferometer with optical ionization gratings in the time domain,” Nat. Phys. 9(3), 144–148 (2013).
[Crossref]

Ono, A.

T. Baba, T. Arai, and A. Ono, “Laser beam profile measurement by a thermographic technique,” Rev. Sci. Instrum. 57(11), 2739–2742 (1986).
[Crossref]

Ott, K.

Reichel, J.

Rendón, M.

Ritt, G.

B. Schwarz, G. Ritt, M. Koerber, and B. Eberle, “Laser-induced damage threshold of camera sensors and micro-optoelectromechanical systems,” Opt. Eng. 56(3), 034108 (2017).
[Crossref]

Riza, N. A.

M. Sheikh and N. A. Riza, “Demonstration of Pinhole Laser Beam Profiling Using a Digital Micromirror Device,” IEEE Photonics Technol. Lett. 21(10), 666–668 (2009).
[Crossref]

S. Sumriddetchkajorn and N. A. Riza, “Micro-electro-mechanical system-based digitally controlled optical beam profiler,” Appl. Opt. 41(18), 3506–3510 (2002).
[Crossref]

Rodewald, J.

P. Haslinger, N. Dörre, P. Geyer, J. Rodewald, S. Nimmrichter, and M. Arndt, “A universal matter-wave interferometer with optical ionization gratings in the time domain,” Nat. Phys. 9(3), 144–148 (2013).
[Crossref]

Rose, A.

Salter, C.

G. Wachter, S. Kuhn, S. Minniberger, C. Salter, P. Asenbaum, J. Millen, M. Schneider, J. Schalko, U. Schmid, A. Felgner, D. Hüser, M. Arndt, and M. Trupke, “Silicon microcavity arrays with open access and a finesse of half a million,” Light: Sci. Appl. 8(1), 37 (2019).
[Crossref]

Savas, T.

S. Gerlich, L. Hackermüller, K. Hornberger, A. Stibor, H. Ulbricht, M. Gring, F. Goldfarb, T. Savas, M. Müri, M. Mayor, and M. Arndt, “A Kapitza-Dirac-Talbot-Lau interferometer for highly polarizable molecules,” Nat. Phys. 3(10), 711–715 (2007).
[Crossref]

Schalko, J.

G. Wachter, S. Kuhn, S. Minniberger, C. Salter, P. Asenbaum, J. Millen, M. Schneider, J. Schalko, U. Schmid, A. Felgner, D. Hüser, M. Arndt, and M. Trupke, “Silicon microcavity arrays with open access and a finesse of half a million,” Light: Sci. Appl. 8(1), 37 (2019).
[Crossref]

Schmid, U.

G. Wachter, S. Kuhn, S. Minniberger, C. Salter, P. Asenbaum, J. Millen, M. Schneider, J. Schalko, U. Schmid, A. Felgner, D. Hüser, M. Arndt, and M. Trupke, “Silicon microcavity arrays with open access and a finesse of half a million,” Light: Sci. Appl. 8(1), 37 (2019).
[Crossref]

Schneider, M.

G. Wachter, S. Kuhn, S. Minniberger, C. Salter, P. Asenbaum, J. Millen, M. Schneider, J. Schalko, U. Schmid, A. Felgner, D. Hüser, M. Arndt, and M. Trupke, “Silicon microcavity arrays with open access and a finesse of half a million,” Light: Sci. Appl. 8(1), 37 (2019).
[Crossref]

Schwarz, B.

B. Schwarz, G. Ritt, M. Koerber, and B. Eberle, “Laser-induced damage threshold of camera sensors and micro-optoelectromechanical systems,” Opt. Eng. 56(3), 034108 (2017).
[Crossref]

Sclafani, M.

C. Brand, M. Sclafani, C. Knobloch, Y. Lilach, T. Juffmann, J. Kotakoski, C. Mangler, A. Winter, A. Turchanin, J. Meyer, O. Cheshnovsky, and M. Arndt, “An atomically thin matter-wave beamsplitter,” Nat. Nanotechnol. 10(10), 845–848 (2015).
[Crossref]

Shah, M. H.

Sheikh, M.

M. Sheikh and N. A. Riza, “Demonstration of Pinhole Laser Beam Profiling Using a Digital Micromirror Device,” IEEE Photonics Technol. Lett. 21(10), 666–668 (2009).
[Crossref]

Soto, J.

Stibor, A.

S. Gerlich, L. Hackermüller, K. Hornberger, A. Stibor, H. Ulbricht, M. Gring, F. Goldfarb, T. Savas, M. Müri, M. Mayor, and M. Arndt, “A Kapitza-Dirac-Talbot-Lau interferometer for highly polarizable molecules,” Nat. Phys. 3(10), 711–715 (2007).
[Crossref]

Sumriddetchkajorn, S.

Suzaki, Y.

Tachibana, A.

Trachy, M. L.

Trupke, M.

G. Wachter, S. Kuhn, S. Minniberger, C. Salter, P. Asenbaum, J. Millen, M. Schneider, J. Schalko, U. Schmid, A. Felgner, D. Hüser, M. Arndt, and M. Trupke, “Silicon microcavity arrays with open access and a finesse of half a million,” Light: Sci. Appl. 8(1), 37 (2019).
[Crossref]

Turchanin, A.

C. Brand, M. Sclafani, C. Knobloch, Y. Lilach, T. Juffmann, J. Kotakoski, C. Mangler, A. Winter, A. Turchanin, J. Meyer, O. Cheshnovsky, and M. Arndt, “An atomically thin matter-wave beamsplitter,” Nat. Nanotechnol. 10(10), 845–848 (2015).
[Crossref]

Ulbricht, H.

S. Gerlich, L. Hackermüller, K. Hornberger, A. Stibor, H. Ulbricht, M. Gring, F. Goldfarb, T. Savas, M. Müri, M. Mayor, and M. Arndt, “A Kapitza-Dirac-Talbot-Lau interferometer for highly polarizable molecules,” Nat. Phys. 3(10), 711–715 (2007).
[Crossref]

Veshapidze, G.

Wachter, G.

G. Wachter, S. Kuhn, S. Minniberger, C. Salter, P. Asenbaum, J. Millen, M. Schneider, J. Schalko, U. Schmid, A. Felgner, D. Hüser, M. Arndt, and M. Trupke, “Silicon microcavity arrays with open access and a finesse of half a million,” Light: Sci. Appl. 8(1), 37 (2019).
[Crossref]

Winer, I. M.

Winter, A.

C. Brand, M. Sclafani, C. Knobloch, Y. Lilach, T. Juffmann, J. Kotakoski, C. Mangler, A. Winter, A. Turchanin, J. Meyer, O. Cheshnovsky, and M. Arndt, “An atomically thin matter-wave beamsplitter,” Nat. Nanotechnol. 10(10), 845–848 (2015).
[Crossref]

Yariv, A.

A. Yariv, Optical electronics (Saunders College Publ., 1991).

Zeilinger, A.

O. Nairz, B. Brezger, M. Arndt, and A. Zeilinger, “Diffraction of Complex Molecules by Structures Made of Light,” Phys. Rev. Lett. 87(16), 160401 (2001).
[Crossref]

Appl. Opt. (7)

IEEE Photonics Technol. Lett. (1)

M. Sheikh and N. A. Riza, “Demonstration of Pinhole Laser Beam Profiling Using a Digital Micromirror Device,” IEEE Photonics Technol. Lett. 21(10), 666–668 (2009).
[Crossref]

Light: Sci. Appl. (1)

G. Wachter, S. Kuhn, S. Minniberger, C. Salter, P. Asenbaum, J. Millen, M. Schneider, J. Schalko, U. Schmid, A. Felgner, D. Hüser, M. Arndt, and M. Trupke, “Silicon microcavity arrays with open access and a finesse of half a million,” Light: Sci. Appl. 8(1), 37 (2019).
[Crossref]

Nat. Nanotechnol. (1)

C. Brand, M. Sclafani, C. Knobloch, Y. Lilach, T. Juffmann, J. Kotakoski, C. Mangler, A. Winter, A. Turchanin, J. Meyer, O. Cheshnovsky, and M. Arndt, “An atomically thin matter-wave beamsplitter,” Nat. Nanotechnol. 10(10), 845–848 (2015).
[Crossref]

Nat. Phys. (3)

M. Arndt and K. Hornberger, “Insight review: Testing the limits of quantum mechanical superpositions,” Nat. Phys. 10(4), 271–277 (2014).
[Crossref]

S. Gerlich, L. Hackermüller, K. Hornberger, A. Stibor, H. Ulbricht, M. Gring, F. Goldfarb, T. Savas, M. Müri, M. Mayor, and M. Arndt, “A Kapitza-Dirac-Talbot-Lau interferometer for highly polarizable molecules,” Nat. Phys. 3(10), 711–715 (2007).
[Crossref]

P. Haslinger, N. Dörre, P. Geyer, J. Rodewald, S. Nimmrichter, and M. Arndt, “A universal matter-wave interferometer with optical ionization gratings in the time domain,” Nat. Phys. 9(3), 144–148 (2013).
[Crossref]

Nature (1)

T. H. Maiman, “Stimulated Optical Radiation in Ruby,” Nature 187(4736), 493–494 (1960).
[Crossref]

Opt. Eng. (1)

B. Schwarz, G. Ritt, M. Koerber, and B. Eberle, “Laser-induced damage threshold of camera sensors and micro-optoelectromechanical systems,” Opt. Eng. 56(3), 034108 (2017).
[Crossref]

Opt. Express (1)

Opt. Lett. (3)

Phys. Rev. Lett. (1)

O. Nairz, B. Brezger, M. Arndt, and A. Zeilinger, “Diffraction of Complex Molecules by Structures Made of Light,” Phys. Rev. Lett. 87(16), 160401 (2001).
[Crossref]

Rev. Sci. Instrum. (1)

T. Baba, T. Arai, and A. Ono, “Laser beam profile measurement by a thermographic technique,” Rev. Sci. Instrum. 57(11), 2739–2742 (1986).
[Crossref]

Other (2)

A. Yariv, Optical electronics (Saunders College Publ., 1991).

H. J. Eichler, J. Eichler, and O. Lux, Lasers (Springer, 2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. A fiber tip is moved with µm-precision into a focused laser beam and the amount of light scattered into the fiber is registered with a power meter.
Fig. 2.
Fig. 2. For a flat-top fiber tip held at an angle θ the convolution kernel can be approximated as the projection of the core size D along the beam axis z.
Fig. 3.
Fig. 3. Microscope images of typical fiber tips used. The core size amounts to 10 µm (a) and 50 µm (b). While the 10 µm core fiber was cut with pincers, the 50 µm core fiber was prepared using a scribe and abrasive paper. The bright areas show that light is scattered out of the fiber tip at right angles. The bar corresponds to 200 µm.
Fig. 4.
Fig. 4. Transverse beam profile of a 532 nm laser as obtained with the moving edge beam profiler (reference) and both fibers.
Fig. 5.
Fig. 5. Comparison of the beam widths extracted from the measurements using fibers with a core size of 10 µm (green triangles) and 50 µm (red circles), as well as the moving edge beam profiler (black squares). In these measurements the fiber tip is in the yz-plane and moved along the x-axis. All measurements are aligned with respect to the focal point z0. The continuous curve is a hyperbolic fit to the reference data. For distances below -1.5 mm the beam profile deviated from a Gaussian profile, leading to larger error bars in this region.
Fig. 6.
Fig. 6. Comparison of the beam widths extracted from the measurements using fibers with a core size of 10 µm (green triangles), 50 µm (red dots and blue rhombuses), and the moving edge beam profiler (black squares). In these measurements the fiber tip is in the xz-plane and moved along the x-axis. The continuous curve is a hyperbolic fit to the reference data. All measurements are aligned with respect to the focal point z0.
Fig. 7.
Fig. 7. Beam widths for different laser intensities measured with a 50 µm core fiber in high vacuum. The width can be measured reliably while increasing the laser power from 1.5 to 10 W. The sudden increase in the beam width at 12 W is most likely caused by degradation of the fiber tip.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

K = Re ( d 2 ) 2 x 2 ,
w x = w 0 1 + ( z z 0 z R ) 2

Metrics