Abstract

An optical switch based on an electrowetting prism coupled to a multimode fiber has demonstrated a large extinction ratio with speeds up to 300 Hz. Electrowetting prisms provide a transmissive, low power, and compact alternative to conventional free-space optical switches, with no moving parts. The electrowetting prism performs beam steering of ±3° with an extinction ratio of 47 dB between the ON and OFF states and has been experimentally demonstrated at scanning frequencies of 100–300 Hz. The optical design is modeled in Zemax to account for secondary rays created at each surface interface (without scattering). Simulations predict 50 dB of extinction, in good agreement with experiment.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Lidar system with nonmechanical electrowetting-based wide-angle beam steering

Mo Zohrabi, Wei Yang Lim, Robert H. Cormack, Omkar D. Supekar, Victor M. Bright, and Juliet T. Gopinath
Opt. Express 27(4) 4404-4415 (2019)

Large extinction ratio optical electrowetting shutter

Ryan D. Montoya, Kenneth Underwood, Soraya Terrab, Alexander M. Watson, Victor M. Bright, and Juliet T. Gopinath
Opt. Express 24(9) 9660-9666 (2016)

Two-photon laser scanning microscopy with electrowetting-based prism scanning

Omkar D. Supekar, Baris N. Ozbay, Mo Zohrabi, Philip D. Nystrom, Gregory L. Futia, Diego Restrepo, Emily A. Gibson, Juliet T. Gopinath, and Victor M. Bright
Biomed. Opt. Express 8(12) 5412-5426 (2017)

References

  • View by:
  • |
  • |
  • |

  1. D. R. Scherer, R. Lutwak, M. Mescher, R. Stoner, B. Timmons, F. Rogomentich, G. Tepolt, S. Mahnkopf, J. Noble, S. Chang, and D. Taylor, “Progress on a miniature cold-atom frequency standard,” arXiv 1411.5006 (2014).
  2. T. Guo, K. Deng, X. Chen, and Z. Wang, “Atomic clock based on transient coherent population trapping,” Appl. Phys. Lett. 94(15), 151108 (2009).
    [Crossref]
  3. G. Vallone, D. Bacco, D. Dequal, S. Gaiarin, V. Luceri, G. Bianco, and P. Villoresi, “Experimental satellite quantum communications,” Phys. Rev. Lett. 115(4), 040502 (2015).
    [Crossref]
  4. Lee Shi-Sheng, Huang Long-Sun, Chang-Jin Kim, and M. C. Wu, “Free-space fiber-optic switches based on mems vertical torsion mirrors,” J. Lightwave Technol. 17(1), 7–13 (1999).
    [Crossref]
  5. Meng-Hsiung Kiang, O. Solgaard, K. Y. Lau, and R. S. Muller, “Electrostatic combdrive-actuated micromirrors for laser-beam scanning and positioning,” J. Microelectromech. Syst. 7(1), 27–37 (1998).
    [Crossref]
  6. C. S. Adams, “A mechanical shutter for light using piezoelectric actuators,” Rev. Sci. Instrum. 71(1), 59–60 (2000).
    [Crossref]
  7. W. Bowden, I. R. Hill, P. E. G. Baird, and P. Gill, “Note: A high-performance, low-cost laser shutter using a piezoelectric cantilever actuator,” Rev. Sci. Instrum. 88(1), 016102 (2017).
    [Crossref]
  8. A. Acharya, S. De, P. Arora, and A. S. Gupta, “A universal driver for vibration free operation of mechanical shutters,” Measurement 61, 16–20 (2015).
    [Crossref]
  9. W. J. Schwenger and J. M. Higbie, “High-speed acousto-optic shutter with no optical frequency shift,” Rev. Sci. Instrum. 83(8), 083110 (2012).
    [Crossref]
  10. Ma Xiaohua and Kuo Geng-Sheng, “Optical switching technology comparison: optical mems vs. other technologies,” IEEE Commun. Mag. 41(11), 50–57 (2003).
    [Crossref]
  11. Y. Peter, F. Gonte, H. P. Herzig, and R. Dandliker, “Micro-optical fiber switch for a large number of interconnects using a deformable mirror,” IEEE Photonics Technol. Lett. 14(3), 301–303 (2002).
    [Crossref]
  12. S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
    [Crossref]
  13. C. U. Murade, D. van der Ende, and F. Mugele, “High speed adaptive liquid microlens array,” Opt. Express 20(16), 18180–18187 (2012).
    [Crossref]
  14. R. D. Niederriter, A. M. Watson, R. N. Zahreddine, C. J. Cogswell, R. H. Cormack, V. M. Bright, and J. T. Gopinath, “Electrowetting lenses for compensating phase and curvature distortion in arrayed laser systems,” Appl. Opt. 52(14), 3172–3177 (2013).
    [Crossref]
  15. S. A. Reza and N. A. Riza, “A liquid lens-based broadband variable fiber optical attenuator,” Opt. Commun. 282(7), 1298–1303 (2009).
    [Crossref]
  16. N. R. Smith, D. C. Abeysinghe, J. W. Haus, and J. Heikenfeld, “Agile wide-angle beam steering with electrowetting microprisms,” Opt. Express 14(14), 6557–6563 (2006).
    [Crossref]
  17. S. Terrab, A. M. Watson, C. Roath, J. T. Gopinath, and V. M. Bright, “Adaptive electrowetting lens-prism element,” Opt. Express 23(20), 25838–25845 (2015).
    [Crossref]
  18. D. Kopp, L. Lehmann, and H. Zappe, “Optofluidic laser scanner based on a rotating liquid prism,” Appl. Phys. 55(9), 2136–2142 (2016).
    [Crossref]
  19. L. Hou, J. Zhang, N. Smith, J. Yang, and J. Heikenfeld, “A full description of a scalable microfabrication process for arrayed electrowetting microprisms,” J. Micromech. Microeng. 20(1), 015044 (2010).
    [Crossref]
  20. E. P. Raynes and I. A. Shanks, “Fast-switching twisted nematic electro-optical shutter and colour filter,” Electron. Lett. 10(7), 114–115 (1974).
    [Crossref]
  21. M. Ide, A. Suguro, Y. Hosaka, A. Katsunuma, K. Takahashi, and A. Shiraishi, “A pixelized variable optical attenuator using liquid crystal on silicon technology for tunable filters,” Opt. Rev. 11(2), 132–139 (2004).
    [Crossref]
  22. D.-Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y.-H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82(19), 3171–3172 (2003).
    [Crossref]
  23. L. Zhu, Y. Huang, and A. Yariv, “Integrated microfluidic variable optical attenuator,” Opt. Express 13(24), 9916–9921 (2005).
    [Crossref]
  24. U. Levy and R. Shamai, “Tunable optofluidic devices,” Microfluid. Nanofluid. 4(1-2), 97–105 (2008).
    [Crossref]
  25. L. Pang, H. M. Chen, L. M. Freeman, and Y. Fainman, “Optofluidic devices and applications in photonics, sensing and imaging,” Lab Chip 12(19), 3543–3551 (2012).
    [Crossref]
  26. S. Xu, H. Ren, and S.-T. Wu, “Dielectrophoretically tunable optofluidic devices,” J. Phys. D: Appl. Phys. 46(48), 483001 (2013).
    [Crossref]
  27. S. Schuhladen, K. Banerjee, M. Stürmer, P. Müller, U. Wallrabe, and H. Zappe, “Variable optofluidic slit aperture,” Light: Sci. Appl. 5(1), e16005 (2016).
    [Crossref]
  28. M. Vallet, B. Berge, and L. Vovelle, “Electrowetting of water and aqueous solutions on poly(ethylene terephthalate) insulating films,” Polymer 37(12), 2465–2470 (1996).
    [Crossref]
  29. B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J. E: Soft Matter Biol. Phys. 3(2), 159–163 (2000).
    [Crossref]
  30. F. Mugele and J. Baret, “Electrowetting: from basics to applications,” J. Phys.: Condens. Matter 17(28), R705–R774 (2005).
    [Crossref]
  31. W. C. Nelson and C. J. Kim, “Droplet actuation by electrowetting-on-dielectric (ewod): A review,” J. Adhes. Sci. Technol. 26(12-17), 1747–1771 (2012).
    [Crossref]
  32. K. Mishra, D. van den Ende, and F. Mugele, “Recent developments in optofluidic lens technology,” Micromachines 7(6), 102 (2016).
    [Crossref]
  33. F. Mugele and J. Heikenfeld, Electrowetting: Fundamental Principles and Practical Applications (John Wiley & Sons, 2018).
  34. H. J. J. Verheijen and M. W. J. Prins, “Reversible electrowetting and trapping of charge: Model and experiments,” Langmuir 15(20), 6616–6620 (1999).
    [Crossref]
  35. T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82(3), 316–318 (2003).
    [Crossref]
  36. M. Kim, D. Kang, T. Wu, N. Tabatabaei, R. W. Carruth, R. V. Martinez, G. M. Whitesides, Y. Nakajima, and G. J. Tearney, “Miniature objective lens with variable focus for confocal endomicroscopy,” Biomed. Opt. Express 5(12), 4350–4361 (2014).
    [Crossref]
  37. N. Binh-Khiem, K. Matsumoto, and I. Shimoyama, “Polymer thin film deposited on liquid for varifocal encapsulated liquid lenses,” Appl. Phys. Lett. 93(12), 124101 (2008).
    [Crossref]
  38. C. Li and H. Jiang, “Electrowetting-driven variable-focus microlens on flexible surfaces,” Appl. Phys. Lett. 100(23), 231105 (2012).
    [Crossref]
  39. A. Shahini, J. Xia, Z. Zhou, Y. Zhao, and M. M.-C. Cheng, “Versatile miniature tunable liquid lenses using transparent graphene electrodes,” Langmuir 32(6), 1658–1665 (2016).
    [Crossref]
  40. F. Krogmann, W. Monch, and H. Zappe, “Electrowetting for tunable microoptics,” J. Microelectromech. Syst. 17(6), 1501–1512 (2008).
    [Crossref]
  41. W. Y. Lim, O. Supekar, M. Zohrabi, J. Gopinath, and V. Bright, “A liquid combination with high refractive index contrast and fast scanning speeds for electrowetting adaptive optics,” Langmuir 34(48), 14511–14518 (2018).
    [Crossref]
  42. M. S. Ober, D. Dermody, M. Daniel, M. Maillard, F. Amiot, G. Malet, B. Burger, C. Woelfle-Gupta, and B. Berge, “Development of biphasic formulations for use in electrowetting-based liquid lenses with a high refractive index difference,” ACS Comb. Sci. 20(9), 554–566 (2018).
    [Crossref]
  43. J. Zhang, D. Van Meter, L. Hou, N. Smith, J. Yang, A. Stalcup, R. Laughlin, and J. Heikenfeld, “Preparation and analysis of 1-chloronaphthalene for highly refractive electrowetting optics,” Langmuir 25(17), 10413–10416 (2009).
    [Crossref]
  44. D. Chatterjee, B. Hetayothin, A. R. Wheeler, D. J. M. King, and R. L. Garrell, “Droplet-based microfluidics with nonaqueous solvents and solutions,” Lab Chip 6(2), 199–206 (2006).
    [Crossref]
  45. S. Chevalliot, J. Heikenfeld, L. Clapp, A. Milarcik, and S. Vilner, “Analysis of nonaqueous electrowetting fluids for displays,” J. Disp. Technol. 7(12), 649–656 (2011).
    [Crossref]
  46. D. Kopp and H. Zappe, “Tubular astigmatism-tunable fluidic lens,” Opt. Lett. 41(12), 2735–2738 (2016).
    [Crossref]
  47. R. A. Hayes and B. J. Feenstra, “Video-speed electronic paper based on electrowetting,” Nature 425(6956), 383–385 (2003).
    [Crossref]
  48. K. Zhou, J. Heikenfeld, K. A. Dean, E. M. Howard, and M. R. Johnson, “A full description of a simple and scalable fabrication process for electrowetting displays,” J. Micromech. Microeng. 19(6), 065029 (2009).
    [Crossref]
  49. H. You and A. J. Steckl, “Three-color electrowetting display device for electronic paper,” Appl. Phys. Lett. 97(2), 023514 (2010).
    [Crossref]
  50. G. Yang, B. Tang, D. Yuan, A. Henzen, and G. Zhou, “Scalable fabrication and testing processes for three-layer multi-color segmented electrowetting display,” Micromachines 10(5), 341 (2019).
    [Crossref]
  51. P. Müller, A. Kloss, P. Liebetraut, W. Mönch, and H. Zappe, “A fully integrated optofluidic attenuator,” J. Micromech. Microeng. 21(12), 125027 (2011).
    [Crossref]
  52. P. Müller, R. Feuerstein, and H. Zappe, “Integrated optofluidic iris,” J. Microelectromech. Syst. 21(5), 1156–1164 (2012).
    [Crossref]
  53. L. Li, C. Liu, H. Ren, and Q.-H. Wang, “Adaptive liquid iris based on electrowetting,” Opt. Lett. 38(13), 2336–2338 (2013).
    [Crossref]
  54. C.-C. Yu, J.-R. Ho, and J. W. J. Cheng, “Tunable liquid iris actuated using electrowetting effect,” Opt. Eng. 53(5), 057106 (2014).
    [Crossref]
  55. H. W. Seo, J. B. Chae, S. J. Hong, K. Rhee, J. hyeon Chang, and S. K. Chung, “Electromagnetically driven liquid iris,” Sens. Actuators, A 231, 52–58 (2015).
    [Crossref]
  56. J. Heikenfeld and A. J. Steckl, “High-transmission electrowetting light valves,” Appl. Phys. Lett. 86(15), 151121 (2005).
    [Crossref]
  57. C. Liu, L. Li, and Q.-H. Wang, “Bidirectional optical switch based on electrowetting,” J. Appl. Phys. 113(19), 193106 (2013).
    [Crossref]
  58. P. Müller, D. Kopp, A. Llobera, and H. Zappe, “Optofluidic router based on tunable liquid–liquid mirrors,” Lab Chip 14(4), 737–743 (2014).
    [Crossref]
  59. C. Liu, D. Wang, L.-X. Yao, L. Li, and Q.-H. Wang, “Electrowetting-actuated optical switch based on total internal reflection,” Appl. Opt. 54(10), 2672–2676 (2015).
    [Crossref]
  60. R. D. Montoya, K. Underwood, S. Terrab, A. M. Watson, V. M. Bright, and J. T. Gopinath, “Large extinction ratio optical electrowetting shutter,” Opt. Express 24(9), 9660–9666 (2016).
    [Crossref]
  61. F. Ribet, E. De Luca, F. Ottonello-Briano, M. Swillo, N. Roxhed, and G. Stemme, “Zero-insertion-loss optical shutter based on electrowetting-on-dielectric actuation of opaque ionic liquid microdroplets,” Appl. Phys. Lett. 115(7), 073502 (2019).
    [Crossref]
  62. J. Lee, Y. Park, and S. K. Chung, “Switchable liquid shutter for security and design of mobile electronic devices,” in 2018 IEEE Micro Electro Mechanical Systems (MEMS), (2018), pp. 14–16.
  63. C. Liu, D. Wang, and Q.-H. Wang, “Variable aperture with graded attenuation combined with adjustable focal length lens,” Opt. Express 27(10), 14075–14084 (2019).
    [Crossref]
  64. X. Wang and H. Ren, “Dielectrically actuated attenuator at 1.55 µm,” J. Phys. Commun. 2(8), 085026 (2018).
    [Crossref]
  65. M. L. Schlossman, “Liquid-liquid interfaces: studied by x-ray and neutron scattering,” Curr. Opin. Colloid Interface Sci. 7(3-4), 235–243 (2002).
    [Crossref]
  66. M. K. Sanyal, S. K. Sinha, K. G. Huang, and B. M. Ocko, “X-ray-scattering study of capillary-wave fluctuations at a liquid surface,” Phys. Rev. Lett. 66(5), 628–631 (1991).
    [Crossref]
  67. G. Luo, S. Malkova, S. V. Pingali, D. G. Schultz, B. Lin, M. Meron, T. J. Graber, J. Gebhardt, P. Vanysek, and M. L. Schlossman, “X-ray studies of the interface between two polar liquids: neat and with electrolytes,” Faraday Discuss. 129, 23–34 (2005).
    [Crossref]
  68. J. B. Chae, J. O. Kwon, J. S. Yang, D. Kim, K. Rhee, and S. K. Chung, “Optimum thickness of hydrophobic layer for operating voltage reduction in ewod systems,” Sens. Actuators, A 215, 8–16 (2014).
    [Crossref]
  69. K. L. Mittal, Advances in Contact Angle, Wettability and Adhesion, Volume 1 (ohn Wiley & Sons, 2013).
  70. K. L. Mittal, Advances in Contact Angle, Wettability and Adhesion, Volume 2 (ohn Wiley & Sons, 2015).
  71. K. L. Mittal, Advances in Contact Angle, Wettability and Adhesion, Volume 3 (John Wiley & Sons, 2018).
  72. L. Li, D. Wang, C. Liu, and Q.-H. Wang, “Zoom microscope objective using electrowetting lenses,” Opt. Express 24(3), 2931–2940 (2016).
    [Crossref]
  73. B. N. Ozbay, J. T. Losacco, R. Cormack, R. Weir, V. M. Bright, J. T. Gopinath, D. Restrepo, and E. A. Gibson, “Miniaturized fiber-coupled confocal fluorescence microscope with an electrowetting variable focus lens using no moving parts,” Opt. Lett. 40(11), 2553–2556 (2015).
    [Crossref]
  74. B. N. Ozbay, G. L. Futia, M. Ma, V. M. Bright, J. T. Gopinath, E. G. Hughes, D. Restrepo, and E. A. Gibson, “Three dimensional two-photon brain imaging in freely moving mice using a miniature fiber coupled microscope with active axial-scanning,” Sci. Rep. 8(1), 8108 (2018).
    [Crossref]
  75. K. F. Tehrani, C. V. Latchoumane, W. M. Southern, E. G. Pendleton, A. Maslesa, L. Karumbaiah, J. A. Call, and L. J. Mortensen, “Five-dimensional two-photon volumetric microscopy of in-vivo dynamic activities using liquid lens remote focusing,” Biomed. Opt. Express 10(7), 3591–3604 (2019).
    [Crossref]
  76. O. D. Supekar, B. N. Ozbay, M. Zohrabi, P. D. Nystrom, G. L. Futia, D. Restrepo, E. A. Gibson, J. T. Gopinath, and V. M. Bright, “Two-photon laser scanning microscopy with electrowetting-based prism scanning,” Biomed. Opt. Express 8(12), 5412–5426 (2017).
    [Crossref]
  77. M. Zohrabi, W. Y. Lim, R. H. Cormack, O. D. Supekar, V. M. Bright, and J. T. Gopinath, “Lidar system with nonmechanical electrowetting-based wide-angle beam steering,” Opt. Express 27(4), 4404–4415 (2019).
    [Crossref]
  78. M. Zohrabi, R. H. Cormack, C. Mccullough, O. D. Supekar, E. A. Gibson, V. M. Bright, and J. T. Gopinath, “Numerical analysis of wavefront aberration correction using multielectrode electrowetting-based devices,” Opt. Express 25(25), 31451–31461 (2017).
    [Crossref]
  79. N. C. Lima, A. Cavalli, K. Mishra, and F. Mugele, “Numerical simulation of astigmatic liquid lenses tuned by a stripe electrode,” Opt. Express 24(4), 4210–4220 (2016).
    [Crossref]
  80. Y.-Y. Lin, R. D. Evans, E. Welch, B.-N. Hsu, A. C. Madison, and R. B. Fair, “Low voltage electrowetting-on-dielectric platform using multi-layer insulators,” Sens. Actuators, B 150(1), 465–470 (2010).
    [Crossref]
  81. M. Mibus and G. Zangari, “Performance and reliability of electrowetting-on-dielectric (ewod) systems based on tantalum oxide,” ACS Appl. Mater. Interfaces 9(48), 42278–42286 (2017).
    [Crossref]
  82. A. Schultz, S. Chevalliot, S. Kuiper, and J. Heikenfeld, “Detailed analysis of defect reduction in electrowetting dielectrics through a two-layer ’barrier’ approach,” Thin Solid Films 534, 348–355 (2013).
    [Crossref]
  83. L. Huang, B. Koo, and C. Kim, “Sputtered-anodized Ta2O5 as the dielectric layer for electrowetting-on-dielectric,” J. Microelectromech. Syst. 22(2), 253–255 (2013).
    [Crossref]
  84. OpticStudio Zemax, User’s Manual, v. 19, https://www.zemax.com/products/opticstudio/ (2019).
  85. R. Finn, Equilibrium capillary surfaces (Springer-Verlag, 1986).
  86. C. F. Scott, G. C. Sander, and J. Norbury, “Computation of capillary surfaces for the laplace-young equation,” Q. J. Mech. Appl. Math. 58(2), 201–212 (2005).
    [Crossref]
  87. S.-L. Lee and H.-D. Lee, “Evolution of liquid meniscus shape in a capillary tube,” ASME J. Fluids Eng. 129(8), 957–965 (2007).
    [Crossref]
  88. S.-L. Lee and C.-F. Yang, “Numerical simulation for meniscus shape and optical performance of a mems-based liquid micro-lens,” Opt. Express 16(24), 19995–20007 (2008).
    [Crossref]
  89. J. C. Berg, An Introduction to Interfaces and Colloids (World Scientific, 2009).
  90. M. A. Rodríguez-Valverde, M. A. Cabrerizo-Vílchez, and R. Hidalgo-Álvarez, “The young laplace equation links capillarity with geometrical optics,” Eur. J. Phys. 24(2), 159–168 (2003).
    [Crossref]
  91. COMSOL Multiphysics Reference Manual, v. 5.1, http://www.comsol.com/ (2018).
  92. T. Satyanarayana, G. A. K. Reddy, and V. S. P. Rajesh, “Design and simulation of micro electro wetting liquid lens for miniature cameras,” in “International Journal of Science and Research (IJSR),” vol. 2 (2013), vol. 2.
  93. W. M. Salman, H. A. Ali, M. S. Abdelsalam, M. F. F. El-Dosoky, and M. Abdelgawad, “Interfacial electrical shear stresses induce electrohydrodynamic flows inside droplets actuated by electrowetting,” in “ASME International Mechanical Engineering Congress and Exposition,” vol. 7B (2015).
  94. O. D. Supekar, M. Zohrabi, J. T. Gopinath, and V. M. Bright, “Enhanced response time of electrowetting lenses with shaped input voltage functions,” Langmuir 33(19), 4863–4869 (2017).
    [Crossref]
  95. S. Wang, J. Shi, H.-H. Chen, T. Xu, and C.-L. C. L. Chen, “Numerical and experimental investigation of bubble dynamics via electrowetting-on-dielectric (ewod),” in “International Conference on Micro/Nanoscale Heat Transfer,” vol. 1 (2016).

2019 (5)

2018 (4)

B. N. Ozbay, G. L. Futia, M. Ma, V. M. Bright, J. T. Gopinath, E. G. Hughes, D. Restrepo, and E. A. Gibson, “Three dimensional two-photon brain imaging in freely moving mice using a miniature fiber coupled microscope with active axial-scanning,” Sci. Rep. 8(1), 8108 (2018).
[Crossref]

X. Wang and H. Ren, “Dielectrically actuated attenuator at 1.55 µm,” J. Phys. Commun. 2(8), 085026 (2018).
[Crossref]

W. Y. Lim, O. Supekar, M. Zohrabi, J. Gopinath, and V. Bright, “A liquid combination with high refractive index contrast and fast scanning speeds for electrowetting adaptive optics,” Langmuir 34(48), 14511–14518 (2018).
[Crossref]

M. S. Ober, D. Dermody, M. Daniel, M. Maillard, F. Amiot, G. Malet, B. Burger, C. Woelfle-Gupta, and B. Berge, “Development of biphasic formulations for use in electrowetting-based liquid lenses with a high refractive index difference,” ACS Comb. Sci. 20(9), 554–566 (2018).
[Crossref]

2017 (5)

O. D. Supekar, B. N. Ozbay, M. Zohrabi, P. D. Nystrom, G. L. Futia, D. Restrepo, E. A. Gibson, J. T. Gopinath, and V. M. Bright, “Two-photon laser scanning microscopy with electrowetting-based prism scanning,” Biomed. Opt. Express 8(12), 5412–5426 (2017).
[Crossref]

W. Bowden, I. R. Hill, P. E. G. Baird, and P. Gill, “Note: A high-performance, low-cost laser shutter using a piezoelectric cantilever actuator,” Rev. Sci. Instrum. 88(1), 016102 (2017).
[Crossref]

O. D. Supekar, M. Zohrabi, J. T. Gopinath, and V. M. Bright, “Enhanced response time of electrowetting lenses with shaped input voltage functions,” Langmuir 33(19), 4863–4869 (2017).
[Crossref]

M. Zohrabi, R. H. Cormack, C. Mccullough, O. D. Supekar, E. A. Gibson, V. M. Bright, and J. T. Gopinath, “Numerical analysis of wavefront aberration correction using multielectrode electrowetting-based devices,” Opt. Express 25(25), 31451–31461 (2017).
[Crossref]

M. Mibus and G. Zangari, “Performance and reliability of electrowetting-on-dielectric (ewod) systems based on tantalum oxide,” ACS Appl. Mater. Interfaces 9(48), 42278–42286 (2017).
[Crossref]

2016 (8)

N. C. Lima, A. Cavalli, K. Mishra, and F. Mugele, “Numerical simulation of astigmatic liquid lenses tuned by a stripe electrode,” Opt. Express 24(4), 4210–4220 (2016).
[Crossref]

D. Kopp, L. Lehmann, and H. Zappe, “Optofluidic laser scanner based on a rotating liquid prism,” Appl. Phys. 55(9), 2136–2142 (2016).
[Crossref]

S. Schuhladen, K. Banerjee, M. Stürmer, P. Müller, U. Wallrabe, and H. Zappe, “Variable optofluidic slit aperture,” Light: Sci. Appl. 5(1), e16005 (2016).
[Crossref]

K. Mishra, D. van den Ende, and F. Mugele, “Recent developments in optofluidic lens technology,” Micromachines 7(6), 102 (2016).
[Crossref]

L. Li, D. Wang, C. Liu, and Q.-H. Wang, “Zoom microscope objective using electrowetting lenses,” Opt. Express 24(3), 2931–2940 (2016).
[Crossref]

R. D. Montoya, K. Underwood, S. Terrab, A. M. Watson, V. M. Bright, and J. T. Gopinath, “Large extinction ratio optical electrowetting shutter,” Opt. Express 24(9), 9660–9666 (2016).
[Crossref]

A. Shahini, J. Xia, Z. Zhou, Y. Zhao, and M. M.-C. Cheng, “Versatile miniature tunable liquid lenses using transparent graphene electrodes,” Langmuir 32(6), 1658–1665 (2016).
[Crossref]

D. Kopp and H. Zappe, “Tubular astigmatism-tunable fluidic lens,” Opt. Lett. 41(12), 2735–2738 (2016).
[Crossref]

2015 (6)

C. Liu, D. Wang, L.-X. Yao, L. Li, and Q.-H. Wang, “Electrowetting-actuated optical switch based on total internal reflection,” Appl. Opt. 54(10), 2672–2676 (2015).
[Crossref]

B. N. Ozbay, J. T. Losacco, R. Cormack, R. Weir, V. M. Bright, J. T. Gopinath, D. Restrepo, and E. A. Gibson, “Miniaturized fiber-coupled confocal fluorescence microscope with an electrowetting variable focus lens using no moving parts,” Opt. Lett. 40(11), 2553–2556 (2015).
[Crossref]

H. W. Seo, J. B. Chae, S. J. Hong, K. Rhee, J. hyeon Chang, and S. K. Chung, “Electromagnetically driven liquid iris,” Sens. Actuators, A 231, 52–58 (2015).
[Crossref]

S. Terrab, A. M. Watson, C. Roath, J. T. Gopinath, and V. M. Bright, “Adaptive electrowetting lens-prism element,” Opt. Express 23(20), 25838–25845 (2015).
[Crossref]

A. Acharya, S. De, P. Arora, and A. S. Gupta, “A universal driver for vibration free operation of mechanical shutters,” Measurement 61, 16–20 (2015).
[Crossref]

G. Vallone, D. Bacco, D. Dequal, S. Gaiarin, V. Luceri, G. Bianco, and P. Villoresi, “Experimental satellite quantum communications,” Phys. Rev. Lett. 115(4), 040502 (2015).
[Crossref]

2014 (4)

M. Kim, D. Kang, T. Wu, N. Tabatabaei, R. W. Carruth, R. V. Martinez, G. M. Whitesides, Y. Nakajima, and G. J. Tearney, “Miniature objective lens with variable focus for confocal endomicroscopy,” Biomed. Opt. Express 5(12), 4350–4361 (2014).
[Crossref]

P. Müller, D. Kopp, A. Llobera, and H. Zappe, “Optofluidic router based on tunable liquid–liquid mirrors,” Lab Chip 14(4), 737–743 (2014).
[Crossref]

J. B. Chae, J. O. Kwon, J. S. Yang, D. Kim, K. Rhee, and S. K. Chung, “Optimum thickness of hydrophobic layer for operating voltage reduction in ewod systems,” Sens. Actuators, A 215, 8–16 (2014).
[Crossref]

C.-C. Yu, J.-R. Ho, and J. W. J. Cheng, “Tunable liquid iris actuated using electrowetting effect,” Opt. Eng. 53(5), 057106 (2014).
[Crossref]

2013 (6)

L. Li, C. Liu, H. Ren, and Q.-H. Wang, “Adaptive liquid iris based on electrowetting,” Opt. Lett. 38(13), 2336–2338 (2013).
[Crossref]

C. Liu, L. Li, and Q.-H. Wang, “Bidirectional optical switch based on electrowetting,” J. Appl. Phys. 113(19), 193106 (2013).
[Crossref]

S. Xu, H. Ren, and S.-T. Wu, “Dielectrophoretically tunable optofluidic devices,” J. Phys. D: Appl. Phys. 46(48), 483001 (2013).
[Crossref]

R. D. Niederriter, A. M. Watson, R. N. Zahreddine, C. J. Cogswell, R. H. Cormack, V. M. Bright, and J. T. Gopinath, “Electrowetting lenses for compensating phase and curvature distortion in arrayed laser systems,” Appl. Opt. 52(14), 3172–3177 (2013).
[Crossref]

A. Schultz, S. Chevalliot, S. Kuiper, and J. Heikenfeld, “Detailed analysis of defect reduction in electrowetting dielectrics through a two-layer ’barrier’ approach,” Thin Solid Films 534, 348–355 (2013).
[Crossref]

L. Huang, B. Koo, and C. Kim, “Sputtered-anodized Ta2O5 as the dielectric layer for electrowetting-on-dielectric,” J. Microelectromech. Syst. 22(2), 253–255 (2013).
[Crossref]

2012 (6)

C. U. Murade, D. van der Ende, and F. Mugele, “High speed adaptive liquid microlens array,” Opt. Express 20(16), 18180–18187 (2012).
[Crossref]

W. J. Schwenger and J. M. Higbie, “High-speed acousto-optic shutter with no optical frequency shift,” Rev. Sci. Instrum. 83(8), 083110 (2012).
[Crossref]

L. Pang, H. M. Chen, L. M. Freeman, and Y. Fainman, “Optofluidic devices and applications in photonics, sensing and imaging,” Lab Chip 12(19), 3543–3551 (2012).
[Crossref]

C. Li and H. Jiang, “Electrowetting-driven variable-focus microlens on flexible surfaces,” Appl. Phys. Lett. 100(23), 231105 (2012).
[Crossref]

W. C. Nelson and C. J. Kim, “Droplet actuation by electrowetting-on-dielectric (ewod): A review,” J. Adhes. Sci. Technol. 26(12-17), 1747–1771 (2012).
[Crossref]

P. Müller, R. Feuerstein, and H. Zappe, “Integrated optofluidic iris,” J. Microelectromech. Syst. 21(5), 1156–1164 (2012).
[Crossref]

2011 (2)

P. Müller, A. Kloss, P. Liebetraut, W. Mönch, and H. Zappe, “A fully integrated optofluidic attenuator,” J. Micromech. Microeng. 21(12), 125027 (2011).
[Crossref]

S. Chevalliot, J. Heikenfeld, L. Clapp, A. Milarcik, and S. Vilner, “Analysis of nonaqueous electrowetting fluids for displays,” J. Disp. Technol. 7(12), 649–656 (2011).
[Crossref]

2010 (3)

H. You and A. J. Steckl, “Three-color electrowetting display device for electronic paper,” Appl. Phys. Lett. 97(2), 023514 (2010).
[Crossref]

L. Hou, J. Zhang, N. Smith, J. Yang, and J. Heikenfeld, “A full description of a scalable microfabrication process for arrayed electrowetting microprisms,” J. Micromech. Microeng. 20(1), 015044 (2010).
[Crossref]

Y.-Y. Lin, R. D. Evans, E. Welch, B.-N. Hsu, A. C. Madison, and R. B. Fair, “Low voltage electrowetting-on-dielectric platform using multi-layer insulators,” Sens. Actuators, B 150(1), 465–470 (2010).
[Crossref]

2009 (4)

S. A. Reza and N. A. Riza, “A liquid lens-based broadband variable fiber optical attenuator,” Opt. Commun. 282(7), 1298–1303 (2009).
[Crossref]

T. Guo, K. Deng, X. Chen, and Z. Wang, “Atomic clock based on transient coherent population trapping,” Appl. Phys. Lett. 94(15), 151108 (2009).
[Crossref]

K. Zhou, J. Heikenfeld, K. A. Dean, E. M. Howard, and M. R. Johnson, “A full description of a simple and scalable fabrication process for electrowetting displays,” J. Micromech. Microeng. 19(6), 065029 (2009).
[Crossref]

J. Zhang, D. Van Meter, L. Hou, N. Smith, J. Yang, A. Stalcup, R. Laughlin, and J. Heikenfeld, “Preparation and analysis of 1-chloronaphthalene for highly refractive electrowetting optics,” Langmuir 25(17), 10413–10416 (2009).
[Crossref]

2008 (4)

F. Krogmann, W. Monch, and H. Zappe, “Electrowetting for tunable microoptics,” J. Microelectromech. Syst. 17(6), 1501–1512 (2008).
[Crossref]

N. Binh-Khiem, K. Matsumoto, and I. Shimoyama, “Polymer thin film deposited on liquid for varifocal encapsulated liquid lenses,” Appl. Phys. Lett. 93(12), 124101 (2008).
[Crossref]

U. Levy and R. Shamai, “Tunable optofluidic devices,” Microfluid. Nanofluid. 4(1-2), 97–105 (2008).
[Crossref]

S.-L. Lee and C.-F. Yang, “Numerical simulation for meniscus shape and optical performance of a mems-based liquid micro-lens,” Opt. Express 16(24), 19995–20007 (2008).
[Crossref]

2007 (1)

S.-L. Lee and H.-D. Lee, “Evolution of liquid meniscus shape in a capillary tube,” ASME J. Fluids Eng. 129(8), 957–965 (2007).
[Crossref]

2006 (2)

N. R. Smith, D. C. Abeysinghe, J. W. Haus, and J. Heikenfeld, “Agile wide-angle beam steering with electrowetting microprisms,” Opt. Express 14(14), 6557–6563 (2006).
[Crossref]

D. Chatterjee, B. Hetayothin, A. R. Wheeler, D. J. M. King, and R. L. Garrell, “Droplet-based microfluidics with nonaqueous solvents and solutions,” Lab Chip 6(2), 199–206 (2006).
[Crossref]

2005 (5)

J. Heikenfeld and A. J. Steckl, “High-transmission electrowetting light valves,” Appl. Phys. Lett. 86(15), 151121 (2005).
[Crossref]

G. Luo, S. Malkova, S. V. Pingali, D. G. Schultz, B. Lin, M. Meron, T. J. Graber, J. Gebhardt, P. Vanysek, and M. L. Schlossman, “X-ray studies of the interface between two polar liquids: neat and with electrolytes,” Faraday Discuss. 129, 23–34 (2005).
[Crossref]

L. Zhu, Y. Huang, and A. Yariv, “Integrated microfluidic variable optical attenuator,” Opt. Express 13(24), 9916–9921 (2005).
[Crossref]

F. Mugele and J. Baret, “Electrowetting: from basics to applications,” J. Phys.: Condens. Matter 17(28), R705–R774 (2005).
[Crossref]

C. F. Scott, G. C. Sander, and J. Norbury, “Computation of capillary surfaces for the laplace-young equation,” Q. J. Mech. Appl. Math. 58(2), 201–212 (2005).
[Crossref]

2004 (2)

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[Crossref]

M. Ide, A. Suguro, Y. Hosaka, A. Katsunuma, K. Takahashi, and A. Shiraishi, “A pixelized variable optical attenuator using liquid crystal on silicon technology for tunable filters,” Opt. Rev. 11(2), 132–139 (2004).
[Crossref]

2003 (5)

D.-Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y.-H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82(19), 3171–3172 (2003).
[Crossref]

Ma Xiaohua and Kuo Geng-Sheng, “Optical switching technology comparison: optical mems vs. other technologies,” IEEE Commun. Mag. 41(11), 50–57 (2003).
[Crossref]

T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82(3), 316–318 (2003).
[Crossref]

R. A. Hayes and B. J. Feenstra, “Video-speed electronic paper based on electrowetting,” Nature 425(6956), 383–385 (2003).
[Crossref]

M. A. Rodríguez-Valverde, M. A. Cabrerizo-Vílchez, and R. Hidalgo-Álvarez, “The young laplace equation links capillarity with geometrical optics,” Eur. J. Phys. 24(2), 159–168 (2003).
[Crossref]

2002 (2)

M. L. Schlossman, “Liquid-liquid interfaces: studied by x-ray and neutron scattering,” Curr. Opin. Colloid Interface Sci. 7(3-4), 235–243 (2002).
[Crossref]

Y. Peter, F. Gonte, H. P. Herzig, and R. Dandliker, “Micro-optical fiber switch for a large number of interconnects using a deformable mirror,” IEEE Photonics Technol. Lett. 14(3), 301–303 (2002).
[Crossref]

2000 (2)

C. S. Adams, “A mechanical shutter for light using piezoelectric actuators,” Rev. Sci. Instrum. 71(1), 59–60 (2000).
[Crossref]

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J. E: Soft Matter Biol. Phys. 3(2), 159–163 (2000).
[Crossref]

1999 (2)

H. J. J. Verheijen and M. W. J. Prins, “Reversible electrowetting and trapping of charge: Model and experiments,” Langmuir 15(20), 6616–6620 (1999).
[Crossref]

Lee Shi-Sheng, Huang Long-Sun, Chang-Jin Kim, and M. C. Wu, “Free-space fiber-optic switches based on mems vertical torsion mirrors,” J. Lightwave Technol. 17(1), 7–13 (1999).
[Crossref]

1998 (1)

Meng-Hsiung Kiang, O. Solgaard, K. Y. Lau, and R. S. Muller, “Electrostatic combdrive-actuated micromirrors for laser-beam scanning and positioning,” J. Microelectromech. Syst. 7(1), 27–37 (1998).
[Crossref]

1996 (1)

M. Vallet, B. Berge, and L. Vovelle, “Electrowetting of water and aqueous solutions on poly(ethylene terephthalate) insulating films,” Polymer 37(12), 2465–2470 (1996).
[Crossref]

1991 (1)

M. K. Sanyal, S. K. Sinha, K. G. Huang, and B. M. Ocko, “X-ray-scattering study of capillary-wave fluctuations at a liquid surface,” Phys. Rev. Lett. 66(5), 628–631 (1991).
[Crossref]

1974 (1)

E. P. Raynes and I. A. Shanks, “Fast-switching twisted nematic electro-optical shutter and colour filter,” Electron. Lett. 10(7), 114–115 (1974).
[Crossref]

Abdelgawad, M.

W. M. Salman, H. A. Ali, M. S. Abdelsalam, M. F. F. El-Dosoky, and M. Abdelgawad, “Interfacial electrical shear stresses induce electrohydrodynamic flows inside droplets actuated by electrowetting,” in “ASME International Mechanical Engineering Congress and Exposition,” vol. 7B (2015).

Abdelsalam, M. S.

W. M. Salman, H. A. Ali, M. S. Abdelsalam, M. F. F. El-Dosoky, and M. Abdelgawad, “Interfacial electrical shear stresses induce electrohydrodynamic flows inside droplets actuated by electrowetting,” in “ASME International Mechanical Engineering Congress and Exposition,” vol. 7B (2015).

Abeysinghe, D. C.

Acharya, A.

A. Acharya, S. De, P. Arora, and A. S. Gupta, “A universal driver for vibration free operation of mechanical shutters,” Measurement 61, 16–20 (2015).
[Crossref]

Adams, C. S.

C. S. Adams, “A mechanical shutter for light using piezoelectric actuators,” Rev. Sci. Instrum. 71(1), 59–60 (2000).
[Crossref]

Ali, H. A.

W. M. Salman, H. A. Ali, M. S. Abdelsalam, M. F. F. El-Dosoky, and M. Abdelgawad, “Interfacial electrical shear stresses induce electrohydrodynamic flows inside droplets actuated by electrowetting,” in “ASME International Mechanical Engineering Congress and Exposition,” vol. 7B (2015).

Amiot, F.

M. S. Ober, D. Dermody, M. Daniel, M. Maillard, F. Amiot, G. Malet, B. Burger, C. Woelfle-Gupta, and B. Berge, “Development of biphasic formulations for use in electrowetting-based liquid lenses with a high refractive index difference,” ACS Comb. Sci. 20(9), 554–566 (2018).
[Crossref]

Arora, P.

A. Acharya, S. De, P. Arora, and A. S. Gupta, “A universal driver for vibration free operation of mechanical shutters,” Measurement 61, 16–20 (2015).
[Crossref]

Bacco, D.

G. Vallone, D. Bacco, D. Dequal, S. Gaiarin, V. Luceri, G. Bianco, and P. Villoresi, “Experimental satellite quantum communications,” Phys. Rev. Lett. 115(4), 040502 (2015).
[Crossref]

Baird, P. E. G.

W. Bowden, I. R. Hill, P. E. G. Baird, and P. Gill, “Note: A high-performance, low-cost laser shutter using a piezoelectric cantilever actuator,” Rev. Sci. Instrum. 88(1), 016102 (2017).
[Crossref]

Banerjee, K.

S. Schuhladen, K. Banerjee, M. Stürmer, P. Müller, U. Wallrabe, and H. Zappe, “Variable optofluidic slit aperture,” Light: Sci. Appl. 5(1), e16005 (2016).
[Crossref]

Baret, J.

F. Mugele and J. Baret, “Electrowetting: from basics to applications,” J. Phys.: Condens. Matter 17(28), R705–R774 (2005).
[Crossref]

Berdichevsky, Y.

D.-Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y.-H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82(19), 3171–3172 (2003).
[Crossref]

Berg, J. C.

J. C. Berg, An Introduction to Interfaces and Colloids (World Scientific, 2009).

Berge, B.

M. S. Ober, D. Dermody, M. Daniel, M. Maillard, F. Amiot, G. Malet, B. Burger, C. Woelfle-Gupta, and B. Berge, “Development of biphasic formulations for use in electrowetting-based liquid lenses with a high refractive index difference,” ACS Comb. Sci. 20(9), 554–566 (2018).
[Crossref]

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J. E: Soft Matter Biol. Phys. 3(2), 159–163 (2000).
[Crossref]

M. Vallet, B. Berge, and L. Vovelle, “Electrowetting of water and aqueous solutions on poly(ethylene terephthalate) insulating films,” Polymer 37(12), 2465–2470 (1996).
[Crossref]

Bianco, G.

G. Vallone, D. Bacco, D. Dequal, S. Gaiarin, V. Luceri, G. Bianco, and P. Villoresi, “Experimental satellite quantum communications,” Phys. Rev. Lett. 115(4), 040502 (2015).
[Crossref]

Binh-Khiem, N.

N. Binh-Khiem, K. Matsumoto, and I. Shimoyama, “Polymer thin film deposited on liquid for varifocal encapsulated liquid lenses,” Appl. Phys. Lett. 93(12), 124101 (2008).
[Crossref]

Bowden, W.

W. Bowden, I. R. Hill, P. E. G. Baird, and P. Gill, “Note: A high-performance, low-cost laser shutter using a piezoelectric cantilever actuator,” Rev. Sci. Instrum. 88(1), 016102 (2017).
[Crossref]

Bright, V.

W. Y. Lim, O. Supekar, M. Zohrabi, J. Gopinath, and V. Bright, “A liquid combination with high refractive index contrast and fast scanning speeds for electrowetting adaptive optics,” Langmuir 34(48), 14511–14518 (2018).
[Crossref]

Bright, V. M.

M. Zohrabi, W. Y. Lim, R. H. Cormack, O. D. Supekar, V. M. Bright, and J. T. Gopinath, “Lidar system with nonmechanical electrowetting-based wide-angle beam steering,” Opt. Express 27(4), 4404–4415 (2019).
[Crossref]

B. N. Ozbay, G. L. Futia, M. Ma, V. M. Bright, J. T. Gopinath, E. G. Hughes, D. Restrepo, and E. A. Gibson, “Three dimensional two-photon brain imaging in freely moving mice using a miniature fiber coupled microscope with active axial-scanning,” Sci. Rep. 8(1), 8108 (2018).
[Crossref]

O. D. Supekar, B. N. Ozbay, M. Zohrabi, P. D. Nystrom, G. L. Futia, D. Restrepo, E. A. Gibson, J. T. Gopinath, and V. M. Bright, “Two-photon laser scanning microscopy with electrowetting-based prism scanning,” Biomed. Opt. Express 8(12), 5412–5426 (2017).
[Crossref]

M. Zohrabi, R. H. Cormack, C. Mccullough, O. D. Supekar, E. A. Gibson, V. M. Bright, and J. T. Gopinath, “Numerical analysis of wavefront aberration correction using multielectrode electrowetting-based devices,” Opt. Express 25(25), 31451–31461 (2017).
[Crossref]

O. D. Supekar, M. Zohrabi, J. T. Gopinath, and V. M. Bright, “Enhanced response time of electrowetting lenses with shaped input voltage functions,” Langmuir 33(19), 4863–4869 (2017).
[Crossref]

R. D. Montoya, K. Underwood, S. Terrab, A. M. Watson, V. M. Bright, and J. T. Gopinath, “Large extinction ratio optical electrowetting shutter,” Opt. Express 24(9), 9660–9666 (2016).
[Crossref]

S. Terrab, A. M. Watson, C. Roath, J. T. Gopinath, and V. M. Bright, “Adaptive electrowetting lens-prism element,” Opt. Express 23(20), 25838–25845 (2015).
[Crossref]

B. N. Ozbay, J. T. Losacco, R. Cormack, R. Weir, V. M. Bright, J. T. Gopinath, D. Restrepo, and E. A. Gibson, “Miniaturized fiber-coupled confocal fluorescence microscope with an electrowetting variable focus lens using no moving parts,” Opt. Lett. 40(11), 2553–2556 (2015).
[Crossref]

R. D. Niederriter, A. M. Watson, R. N. Zahreddine, C. J. Cogswell, R. H. Cormack, V. M. Bright, and J. T. Gopinath, “Electrowetting lenses for compensating phase and curvature distortion in arrayed laser systems,” Appl. Opt. 52(14), 3172–3177 (2013).
[Crossref]

Burger, B.

M. S. Ober, D. Dermody, M. Daniel, M. Maillard, F. Amiot, G. Malet, B. Burger, C. Woelfle-Gupta, and B. Berge, “Development of biphasic formulations for use in electrowetting-based liquid lenses with a high refractive index difference,” ACS Comb. Sci. 20(9), 554–566 (2018).
[Crossref]

Cabrerizo-Vílchez, M. A.

M. A. Rodríguez-Valverde, M. A. Cabrerizo-Vílchez, and R. Hidalgo-Álvarez, “The young laplace equation links capillarity with geometrical optics,” Eur. J. Phys. 24(2), 159–168 (2003).
[Crossref]

Call, J. A.

Carruth, R. W.

Cavalli, A.

Chae, J. B.

H. W. Seo, J. B. Chae, S. J. Hong, K. Rhee, J. hyeon Chang, and S. K. Chung, “Electromagnetically driven liquid iris,” Sens. Actuators, A 231, 52–58 (2015).
[Crossref]

J. B. Chae, J. O. Kwon, J. S. Yang, D. Kim, K. Rhee, and S. K. Chung, “Optimum thickness of hydrophobic layer for operating voltage reduction in ewod systems,” Sens. Actuators, A 215, 8–16 (2014).
[Crossref]

Chang, S.

D. R. Scherer, R. Lutwak, M. Mescher, R. Stoner, B. Timmons, F. Rogomentich, G. Tepolt, S. Mahnkopf, J. Noble, S. Chang, and D. Taylor, “Progress on a miniature cold-atom frequency standard,” arXiv 1411.5006 (2014).

Chatterjee, D.

D. Chatterjee, B. Hetayothin, A. R. Wheeler, D. J. M. King, and R. L. Garrell, “Droplet-based microfluidics with nonaqueous solvents and solutions,” Lab Chip 6(2), 199–206 (2006).
[Crossref]

Chen, H. M.

L. Pang, H. M. Chen, L. M. Freeman, and Y. Fainman, “Optofluidic devices and applications in photonics, sensing and imaging,” Lab Chip 12(19), 3543–3551 (2012).
[Crossref]

Chen, H.-H.

S. Wang, J. Shi, H.-H. Chen, T. Xu, and C.-L. C. L. Chen, “Numerical and experimental investigation of bubble dynamics via electrowetting-on-dielectric (ewod),” in “International Conference on Micro/Nanoscale Heat Transfer,” vol. 1 (2016).

Chen, X.

T. Guo, K. Deng, X. Chen, and Z. Wang, “Atomic clock based on transient coherent population trapping,” Appl. Phys. Lett. 94(15), 151108 (2009).
[Crossref]

Cheng, J. W. J.

C.-C. Yu, J.-R. Ho, and J. W. J. Cheng, “Tunable liquid iris actuated using electrowetting effect,” Opt. Eng. 53(5), 057106 (2014).
[Crossref]

Cheng, M. M.-C.

A. Shahini, J. Xia, Z. Zhou, Y. Zhao, and M. M.-C. Cheng, “Versatile miniature tunable liquid lenses using transparent graphene electrodes,” Langmuir 32(6), 1658–1665 (2016).
[Crossref]

Chevalliot, S.

A. Schultz, S. Chevalliot, S. Kuiper, and J. Heikenfeld, “Detailed analysis of defect reduction in electrowetting dielectrics through a two-layer ’barrier’ approach,” Thin Solid Films 534, 348–355 (2013).
[Crossref]

S. Chevalliot, J. Heikenfeld, L. Clapp, A. Milarcik, and S. Vilner, “Analysis of nonaqueous electrowetting fluids for displays,” J. Disp. Technol. 7(12), 649–656 (2011).
[Crossref]

Choi, J.

D.-Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y.-H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82(19), 3171–3172 (2003).
[Crossref]

Chung, S. K.

H. W. Seo, J. B. Chae, S. J. Hong, K. Rhee, J. hyeon Chang, and S. K. Chung, “Electromagnetically driven liquid iris,” Sens. Actuators, A 231, 52–58 (2015).
[Crossref]

J. B. Chae, J. O. Kwon, J. S. Yang, D. Kim, K. Rhee, and S. K. Chung, “Optimum thickness of hydrophobic layer for operating voltage reduction in ewod systems,” Sens. Actuators, A 215, 8–16 (2014).
[Crossref]

J. Lee, Y. Park, and S. K. Chung, “Switchable liquid shutter for security and design of mobile electronic devices,” in 2018 IEEE Micro Electro Mechanical Systems (MEMS), (2018), pp. 14–16.

Clapp, L.

S. Chevalliot, J. Heikenfeld, L. Clapp, A. Milarcik, and S. Vilner, “Analysis of nonaqueous electrowetting fluids for displays,” J. Disp. Technol. 7(12), 649–656 (2011).
[Crossref]

Cogswell, C. J.

Cormack, R.

Cormack, R. H.

Dandliker, R.

Y. Peter, F. Gonte, H. P. Herzig, and R. Dandliker, “Micro-optical fiber switch for a large number of interconnects using a deformable mirror,” IEEE Photonics Technol. Lett. 14(3), 301–303 (2002).
[Crossref]

Daniel, M.

M. S. Ober, D. Dermody, M. Daniel, M. Maillard, F. Amiot, G. Malet, B. Burger, C. Woelfle-Gupta, and B. Berge, “Development of biphasic formulations for use in electrowetting-based liquid lenses with a high refractive index difference,” ACS Comb. Sci. 20(9), 554–566 (2018).
[Crossref]

De, S.

A. Acharya, S. De, P. Arora, and A. S. Gupta, “A universal driver for vibration free operation of mechanical shutters,” Measurement 61, 16–20 (2015).
[Crossref]

De Luca, E.

F. Ribet, E. De Luca, F. Ottonello-Briano, M. Swillo, N. Roxhed, and G. Stemme, “Zero-insertion-loss optical shutter based on electrowetting-on-dielectric actuation of opaque ionic liquid microdroplets,” Appl. Phys. Lett. 115(7), 073502 (2019).
[Crossref]

Dean, K. A.

K. Zhou, J. Heikenfeld, K. A. Dean, E. M. Howard, and M. R. Johnson, “A full description of a simple and scalable fabrication process for electrowetting displays,” J. Micromech. Microeng. 19(6), 065029 (2009).
[Crossref]

Deng, K.

T. Guo, K. Deng, X. Chen, and Z. Wang, “Atomic clock based on transient coherent population trapping,” Appl. Phys. Lett. 94(15), 151108 (2009).
[Crossref]

Dequal, D.

G. Vallone, D. Bacco, D. Dequal, S. Gaiarin, V. Luceri, G. Bianco, and P. Villoresi, “Experimental satellite quantum communications,” Phys. Rev. Lett. 115(4), 040502 (2015).
[Crossref]

Dermody, D.

M. S. Ober, D. Dermody, M. Daniel, M. Maillard, F. Amiot, G. Malet, B. Burger, C. Woelfle-Gupta, and B. Berge, “Development of biphasic formulations for use in electrowetting-based liquid lenses with a high refractive index difference,” ACS Comb. Sci. 20(9), 554–566 (2018).
[Crossref]

El-Dosoky, M. F. F.

W. M. Salman, H. A. Ali, M. S. Abdelsalam, M. F. F. El-Dosoky, and M. Abdelgawad, “Interfacial electrical shear stresses induce electrohydrodynamic flows inside droplets actuated by electrowetting,” in “ASME International Mechanical Engineering Congress and Exposition,” vol. 7B (2015).

Evans, R. D.

Y.-Y. Lin, R. D. Evans, E. Welch, B.-N. Hsu, A. C. Madison, and R. B. Fair, “Low voltage electrowetting-on-dielectric platform using multi-layer insulators,” Sens. Actuators, B 150(1), 465–470 (2010).
[Crossref]

Fainman, Y.

L. Pang, H. M. Chen, L. M. Freeman, and Y. Fainman, “Optofluidic devices and applications in photonics, sensing and imaging,” Lab Chip 12(19), 3543–3551 (2012).
[Crossref]

Fair, R. B.

Y.-Y. Lin, R. D. Evans, E. Welch, B.-N. Hsu, A. C. Madison, and R. B. Fair, “Low voltage electrowetting-on-dielectric platform using multi-layer insulators,” Sens. Actuators, B 150(1), 465–470 (2010).
[Crossref]

Feenstra, B. J.

R. A. Hayes and B. J. Feenstra, “Video-speed electronic paper based on electrowetting,” Nature 425(6956), 383–385 (2003).
[Crossref]

Feuerstein, R.

P. Müller, R. Feuerstein, and H. Zappe, “Integrated optofluidic iris,” J. Microelectromech. Syst. 21(5), 1156–1164 (2012).
[Crossref]

Finn, R.

R. Finn, Equilibrium capillary surfaces (Springer-Verlag, 1986).

Freeman, L. M.

L. Pang, H. M. Chen, L. M. Freeman, and Y. Fainman, “Optofluidic devices and applications in photonics, sensing and imaging,” Lab Chip 12(19), 3543–3551 (2012).
[Crossref]

Futia, G. L.

B. N. Ozbay, G. L. Futia, M. Ma, V. M. Bright, J. T. Gopinath, E. G. Hughes, D. Restrepo, and E. A. Gibson, “Three dimensional two-photon brain imaging in freely moving mice using a miniature fiber coupled microscope with active axial-scanning,” Sci. Rep. 8(1), 8108 (2018).
[Crossref]

O. D. Supekar, B. N. Ozbay, M. Zohrabi, P. D. Nystrom, G. L. Futia, D. Restrepo, E. A. Gibson, J. T. Gopinath, and V. M. Bright, “Two-photon laser scanning microscopy with electrowetting-based prism scanning,” Biomed. Opt. Express 8(12), 5412–5426 (2017).
[Crossref]

Gaiarin, S.

G. Vallone, D. Bacco, D. Dequal, S. Gaiarin, V. Luceri, G. Bianco, and P. Villoresi, “Experimental satellite quantum communications,” Phys. Rev. Lett. 115(4), 040502 (2015).
[Crossref]

Garrell, R. L.

D. Chatterjee, B. Hetayothin, A. R. Wheeler, D. J. M. King, and R. L. Garrell, “Droplet-based microfluidics with nonaqueous solvents and solutions,” Lab Chip 6(2), 199–206 (2006).
[Crossref]

Gebhardt, J.

G. Luo, S. Malkova, S. V. Pingali, D. G. Schultz, B. Lin, M. Meron, T. J. Graber, J. Gebhardt, P. Vanysek, and M. L. Schlossman, “X-ray studies of the interface between two polar liquids: neat and with electrolytes,” Faraday Discuss. 129, 23–34 (2005).
[Crossref]

Geng-Sheng, Kuo

Ma Xiaohua and Kuo Geng-Sheng, “Optical switching technology comparison: optical mems vs. other technologies,” IEEE Commun. Mag. 41(11), 50–57 (2003).
[Crossref]

Gibson, E. A.

Gill, P.

W. Bowden, I. R. Hill, P. E. G. Baird, and P. Gill, “Note: A high-performance, low-cost laser shutter using a piezoelectric cantilever actuator,” Rev. Sci. Instrum. 88(1), 016102 (2017).
[Crossref]

Gonte, F.

Y. Peter, F. Gonte, H. P. Herzig, and R. Dandliker, “Micro-optical fiber switch for a large number of interconnects using a deformable mirror,” IEEE Photonics Technol. Lett. 14(3), 301–303 (2002).
[Crossref]

Gopinath, J.

W. Y. Lim, O. Supekar, M. Zohrabi, J. Gopinath, and V. Bright, “A liquid combination with high refractive index contrast and fast scanning speeds for electrowetting adaptive optics,” Langmuir 34(48), 14511–14518 (2018).
[Crossref]

Gopinath, J. T.

M. Zohrabi, W. Y. Lim, R. H. Cormack, O. D. Supekar, V. M. Bright, and J. T. Gopinath, “Lidar system with nonmechanical electrowetting-based wide-angle beam steering,” Opt. Express 27(4), 4404–4415 (2019).
[Crossref]

B. N. Ozbay, G. L. Futia, M. Ma, V. M. Bright, J. T. Gopinath, E. G. Hughes, D. Restrepo, and E. A. Gibson, “Three dimensional two-photon brain imaging in freely moving mice using a miniature fiber coupled microscope with active axial-scanning,” Sci. Rep. 8(1), 8108 (2018).
[Crossref]

O. D. Supekar, B. N. Ozbay, M. Zohrabi, P. D. Nystrom, G. L. Futia, D. Restrepo, E. A. Gibson, J. T. Gopinath, and V. M. Bright, “Two-photon laser scanning microscopy with electrowetting-based prism scanning,” Biomed. Opt. Express 8(12), 5412–5426 (2017).
[Crossref]

M. Zohrabi, R. H. Cormack, C. Mccullough, O. D. Supekar, E. A. Gibson, V. M. Bright, and J. T. Gopinath, “Numerical analysis of wavefront aberration correction using multielectrode electrowetting-based devices,” Opt. Express 25(25), 31451–31461 (2017).
[Crossref]

O. D. Supekar, M. Zohrabi, J. T. Gopinath, and V. M. Bright, “Enhanced response time of electrowetting lenses with shaped input voltage functions,” Langmuir 33(19), 4863–4869 (2017).
[Crossref]

R. D. Montoya, K. Underwood, S. Terrab, A. M. Watson, V. M. Bright, and J. T. Gopinath, “Large extinction ratio optical electrowetting shutter,” Opt. Express 24(9), 9660–9666 (2016).
[Crossref]

S. Terrab, A. M. Watson, C. Roath, J. T. Gopinath, and V. M. Bright, “Adaptive electrowetting lens-prism element,” Opt. Express 23(20), 25838–25845 (2015).
[Crossref]

B. N. Ozbay, J. T. Losacco, R. Cormack, R. Weir, V. M. Bright, J. T. Gopinath, D. Restrepo, and E. A. Gibson, “Miniaturized fiber-coupled confocal fluorescence microscope with an electrowetting variable focus lens using no moving parts,” Opt. Lett. 40(11), 2553–2556 (2015).
[Crossref]

R. D. Niederriter, A. M. Watson, R. N. Zahreddine, C. J. Cogswell, R. H. Cormack, V. M. Bright, and J. T. Gopinath, “Electrowetting lenses for compensating phase and curvature distortion in arrayed laser systems,” Appl. Opt. 52(14), 3172–3177 (2013).
[Crossref]

Graber, T. J.

G. Luo, S. Malkova, S. V. Pingali, D. G. Schultz, B. Lin, M. Meron, T. J. Graber, J. Gebhardt, P. Vanysek, and M. L. Schlossman, “X-ray studies of the interface between two polar liquids: neat and with electrolytes,” Faraday Discuss. 129, 23–34 (2005).
[Crossref]

Guo, T.

T. Guo, K. Deng, X. Chen, and Z. Wang, “Atomic clock based on transient coherent population trapping,” Appl. Phys. Lett. 94(15), 151108 (2009).
[Crossref]

Gupta, A. S.

A. Acharya, S. De, P. Arora, and A. S. Gupta, “A universal driver for vibration free operation of mechanical shutters,” Measurement 61, 16–20 (2015).
[Crossref]

Haus, J. W.

Hayes, R. A.

R. A. Hayes and B. J. Feenstra, “Video-speed electronic paper based on electrowetting,” Nature 425(6956), 383–385 (2003).
[Crossref]

Heikenfeld, J.

A. Schultz, S. Chevalliot, S. Kuiper, and J. Heikenfeld, “Detailed analysis of defect reduction in electrowetting dielectrics through a two-layer ’barrier’ approach,” Thin Solid Films 534, 348–355 (2013).
[Crossref]

S. Chevalliot, J. Heikenfeld, L. Clapp, A. Milarcik, and S. Vilner, “Analysis of nonaqueous electrowetting fluids for displays,” J. Disp. Technol. 7(12), 649–656 (2011).
[Crossref]

L. Hou, J. Zhang, N. Smith, J. Yang, and J. Heikenfeld, “A full description of a scalable microfabrication process for arrayed electrowetting microprisms,” J. Micromech. Microeng. 20(1), 015044 (2010).
[Crossref]

J. Zhang, D. Van Meter, L. Hou, N. Smith, J. Yang, A. Stalcup, R. Laughlin, and J. Heikenfeld, “Preparation and analysis of 1-chloronaphthalene for highly refractive electrowetting optics,” Langmuir 25(17), 10413–10416 (2009).
[Crossref]

K. Zhou, J. Heikenfeld, K. A. Dean, E. M. Howard, and M. R. Johnson, “A full description of a simple and scalable fabrication process for electrowetting displays,” J. Micromech. Microeng. 19(6), 065029 (2009).
[Crossref]

N. R. Smith, D. C. Abeysinghe, J. W. Haus, and J. Heikenfeld, “Agile wide-angle beam steering with electrowetting microprisms,” Opt. Express 14(14), 6557–6563 (2006).
[Crossref]

J. Heikenfeld and A. J. Steckl, “High-transmission electrowetting light valves,” Appl. Phys. Lett. 86(15), 151121 (2005).
[Crossref]

F. Mugele and J. Heikenfeld, Electrowetting: Fundamental Principles and Practical Applications (John Wiley & Sons, 2018).

Hendriks, B. H. W.

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[Crossref]

Henzen, A.

G. Yang, B. Tang, D. Yuan, A. Henzen, and G. Zhou, “Scalable fabrication and testing processes for three-layer multi-color segmented electrowetting display,” Micromachines 10(5), 341 (2019).
[Crossref]

Herzig, H. P.

Y. Peter, F. Gonte, H. P. Herzig, and R. Dandliker, “Micro-optical fiber switch for a large number of interconnects using a deformable mirror,” IEEE Photonics Technol. Lett. 14(3), 301–303 (2002).
[Crossref]

Hetayothin, B.

D. Chatterjee, B. Hetayothin, A. R. Wheeler, D. J. M. King, and R. L. Garrell, “Droplet-based microfluidics with nonaqueous solvents and solutions,” Lab Chip 6(2), 199–206 (2006).
[Crossref]

Hidalgo-Álvarez, R.

M. A. Rodríguez-Valverde, M. A. Cabrerizo-Vílchez, and R. Hidalgo-Álvarez, “The young laplace equation links capillarity with geometrical optics,” Eur. J. Phys. 24(2), 159–168 (2003).
[Crossref]

Higbie, J. M.

W. J. Schwenger and J. M. Higbie, “High-speed acousto-optic shutter with no optical frequency shift,” Rev. Sci. Instrum. 83(8), 083110 (2012).
[Crossref]

Hill, I. R.

W. Bowden, I. R. Hill, P. E. G. Baird, and P. Gill, “Note: A high-performance, low-cost laser shutter using a piezoelectric cantilever actuator,” Rev. Sci. Instrum. 88(1), 016102 (2017).
[Crossref]

Ho, J.-R.

C.-C. Yu, J.-R. Ho, and J. W. J. Cheng, “Tunable liquid iris actuated using electrowetting effect,” Opt. Eng. 53(5), 057106 (2014).
[Crossref]

Hong, S. J.

H. W. Seo, J. B. Chae, S. J. Hong, K. Rhee, J. hyeon Chang, and S. K. Chung, “Electromagnetically driven liquid iris,” Sens. Actuators, A 231, 52–58 (2015).
[Crossref]

Hosaka, Y.

M. Ide, A. Suguro, Y. Hosaka, A. Katsunuma, K. Takahashi, and A. Shiraishi, “A pixelized variable optical attenuator using liquid crystal on silicon technology for tunable filters,” Opt. Rev. 11(2), 132–139 (2004).
[Crossref]

Hou, L.

L. Hou, J. Zhang, N. Smith, J. Yang, and J. Heikenfeld, “A full description of a scalable microfabrication process for arrayed electrowetting microprisms,” J. Micromech. Microeng. 20(1), 015044 (2010).
[Crossref]

J. Zhang, D. Van Meter, L. Hou, N. Smith, J. Yang, A. Stalcup, R. Laughlin, and J. Heikenfeld, “Preparation and analysis of 1-chloronaphthalene for highly refractive electrowetting optics,” Langmuir 25(17), 10413–10416 (2009).
[Crossref]

Howard, E. M.

K. Zhou, J. Heikenfeld, K. A. Dean, E. M. Howard, and M. R. Johnson, “A full description of a simple and scalable fabrication process for electrowetting displays,” J. Micromech. Microeng. 19(6), 065029 (2009).
[Crossref]

Hsu, B.-N.

Y.-Y. Lin, R. D. Evans, E. Welch, B.-N. Hsu, A. C. Madison, and R. B. Fair, “Low voltage electrowetting-on-dielectric platform using multi-layer insulators,” Sens. Actuators, B 150(1), 465–470 (2010).
[Crossref]

Huang, K. G.

M. K. Sanyal, S. K. Sinha, K. G. Huang, and B. M. Ocko, “X-ray-scattering study of capillary-wave fluctuations at a liquid surface,” Phys. Rev. Lett. 66(5), 628–631 (1991).
[Crossref]

Huang, L.

L. Huang, B. Koo, and C. Kim, “Sputtered-anodized Ta2O5 as the dielectric layer for electrowetting-on-dielectric,” J. Microelectromech. Syst. 22(2), 253–255 (2013).
[Crossref]

Huang, Y.

Hughes, E. G.

B. N. Ozbay, G. L. Futia, M. Ma, V. M. Bright, J. T. Gopinath, E. G. Hughes, D. Restrepo, and E. A. Gibson, “Three dimensional two-photon brain imaging in freely moving mice using a miniature fiber coupled microscope with active axial-scanning,” Sci. Rep. 8(1), 8108 (2018).
[Crossref]

hyeon Chang, J.

H. W. Seo, J. B. Chae, S. J. Hong, K. Rhee, J. hyeon Chang, and S. K. Chung, “Electromagnetically driven liquid iris,” Sens. Actuators, A 231, 52–58 (2015).
[Crossref]

Ide, M.

M. Ide, A. Suguro, Y. Hosaka, A. Katsunuma, K. Takahashi, and A. Shiraishi, “A pixelized variable optical attenuator using liquid crystal on silicon technology for tunable filters,” Opt. Rev. 11(2), 132–139 (2004).
[Crossref]

Jiang, H.

C. Li and H. Jiang, “Electrowetting-driven variable-focus microlens on flexible surfaces,” Appl. Phys. Lett. 100(23), 231105 (2012).
[Crossref]

Johnson, M. R.

K. Zhou, J. Heikenfeld, K. A. Dean, E. M. Howard, and M. R. Johnson, “A full description of a simple and scalable fabrication process for electrowetting displays,” J. Micromech. Microeng. 19(6), 065029 (2009).
[Crossref]

Kang, D.

Karumbaiah, L.

Katsunuma, A.

M. Ide, A. Suguro, Y. Hosaka, A. Katsunuma, K. Takahashi, and A. Shiraishi, “A pixelized variable optical attenuator using liquid crystal on silicon technology for tunable filters,” Opt. Rev. 11(2), 132–139 (2004).
[Crossref]

Kiang, Meng-Hsiung

Meng-Hsiung Kiang, O. Solgaard, K. Y. Lau, and R. S. Muller, “Electrostatic combdrive-actuated micromirrors for laser-beam scanning and positioning,” J. Microelectromech. Syst. 7(1), 27–37 (1998).
[Crossref]

Kim, C.

L. Huang, B. Koo, and C. Kim, “Sputtered-anodized Ta2O5 as the dielectric layer for electrowetting-on-dielectric,” J. Microelectromech. Syst. 22(2), 253–255 (2013).
[Crossref]

Kim, C. J.

W. C. Nelson and C. J. Kim, “Droplet actuation by electrowetting-on-dielectric (ewod): A review,” J. Adhes. Sci. Technol. 26(12-17), 1747–1771 (2012).
[Crossref]

Kim, Chang-Jin

Kim, D.

J. B. Chae, J. O. Kwon, J. S. Yang, D. Kim, K. Rhee, and S. K. Chung, “Optimum thickness of hydrophobic layer for operating voltage reduction in ewod systems,” Sens. Actuators, A 215, 8–16 (2014).
[Crossref]

Kim, M.

King, D. J. M.

D. Chatterjee, B. Hetayothin, A. R. Wheeler, D. J. M. King, and R. L. Garrell, “Droplet-based microfluidics with nonaqueous solvents and solutions,” Lab Chip 6(2), 199–206 (2006).
[Crossref]

Kloss, A.

P. Müller, A. Kloss, P. Liebetraut, W. Mönch, and H. Zappe, “A fully integrated optofluidic attenuator,” J. Micromech. Microeng. 21(12), 125027 (2011).
[Crossref]

Koo, B.

L. Huang, B. Koo, and C. Kim, “Sputtered-anodized Ta2O5 as the dielectric layer for electrowetting-on-dielectric,” J. Microelectromech. Syst. 22(2), 253–255 (2013).
[Crossref]

Kopp, D.

D. Kopp and H. Zappe, “Tubular astigmatism-tunable fluidic lens,” Opt. Lett. 41(12), 2735–2738 (2016).
[Crossref]

D. Kopp, L. Lehmann, and H. Zappe, “Optofluidic laser scanner based on a rotating liquid prism,” Appl. Phys. 55(9), 2136–2142 (2016).
[Crossref]

P. Müller, D. Kopp, A. Llobera, and H. Zappe, “Optofluidic router based on tunable liquid–liquid mirrors,” Lab Chip 14(4), 737–743 (2014).
[Crossref]

Krogmann, F.

F. Krogmann, W. Monch, and H. Zappe, “Electrowetting for tunable microoptics,” J. Microelectromech. Syst. 17(6), 1501–1512 (2008).
[Crossref]

Krupenkin, T.

T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82(3), 316–318 (2003).
[Crossref]

Kuiper, S.

A. Schultz, S. Chevalliot, S. Kuiper, and J. Heikenfeld, “Detailed analysis of defect reduction in electrowetting dielectrics through a two-layer ’barrier’ approach,” Thin Solid Films 534, 348–355 (2013).
[Crossref]

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[Crossref]

Kwon, J. O.

J. B. Chae, J. O. Kwon, J. S. Yang, D. Kim, K. Rhee, and S. K. Chung, “Optimum thickness of hydrophobic layer for operating voltage reduction in ewod systems,” Sens. Actuators, A 215, 8–16 (2014).
[Crossref]

L. Chen, C.-L. C.

S. Wang, J. Shi, H.-H. Chen, T. Xu, and C.-L. C. L. Chen, “Numerical and experimental investigation of bubble dynamics via electrowetting-on-dielectric (ewod),” in “International Conference on Micro/Nanoscale Heat Transfer,” vol. 1 (2016).

Latchoumane, C. V.

Lau, K. Y.

Meng-Hsiung Kiang, O. Solgaard, K. Y. Lau, and R. S. Muller, “Electrostatic combdrive-actuated micromirrors for laser-beam scanning and positioning,” J. Microelectromech. Syst. 7(1), 27–37 (1998).
[Crossref]

Laughlin, R.

J. Zhang, D. Van Meter, L. Hou, N. Smith, J. Yang, A. Stalcup, R. Laughlin, and J. Heikenfeld, “Preparation and analysis of 1-chloronaphthalene for highly refractive electrowetting optics,” Langmuir 25(17), 10413–10416 (2009).
[Crossref]

Lee, H.-D.

S.-L. Lee and H.-D. Lee, “Evolution of liquid meniscus shape in a capillary tube,” ASME J. Fluids Eng. 129(8), 957–965 (2007).
[Crossref]

Lee, J.

J. Lee, Y. Park, and S. K. Chung, “Switchable liquid shutter for security and design of mobile electronic devices,” in 2018 IEEE Micro Electro Mechanical Systems (MEMS), (2018), pp. 14–16.

Lee, S.-L.

S.-L. Lee and C.-F. Yang, “Numerical simulation for meniscus shape and optical performance of a mems-based liquid micro-lens,” Opt. Express 16(24), 19995–20007 (2008).
[Crossref]

S.-L. Lee and H.-D. Lee, “Evolution of liquid meniscus shape in a capillary tube,” ASME J. Fluids Eng. 129(8), 957–965 (2007).
[Crossref]

Lehmann, L.

D. Kopp, L. Lehmann, and H. Zappe, “Optofluidic laser scanner based on a rotating liquid prism,” Appl. Phys. 55(9), 2136–2142 (2016).
[Crossref]

Levy, U.

U. Levy and R. Shamai, “Tunable optofluidic devices,” Microfluid. Nanofluid. 4(1-2), 97–105 (2008).
[Crossref]

Li, C.

C. Li and H. Jiang, “Electrowetting-driven variable-focus microlens on flexible surfaces,” Appl. Phys. Lett. 100(23), 231105 (2012).
[Crossref]

Li, L.

Liebetraut, P.

P. Müller, A. Kloss, P. Liebetraut, W. Mönch, and H. Zappe, “A fully integrated optofluidic attenuator,” J. Micromech. Microeng. 21(12), 125027 (2011).
[Crossref]

Lien, V.

D.-Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y.-H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82(19), 3171–3172 (2003).
[Crossref]

Lim, W. Y.

M. Zohrabi, W. Y. Lim, R. H. Cormack, O. D. Supekar, V. M. Bright, and J. T. Gopinath, “Lidar system with nonmechanical electrowetting-based wide-angle beam steering,” Opt. Express 27(4), 4404–4415 (2019).
[Crossref]

W. Y. Lim, O. Supekar, M. Zohrabi, J. Gopinath, and V. Bright, “A liquid combination with high refractive index contrast and fast scanning speeds for electrowetting adaptive optics,” Langmuir 34(48), 14511–14518 (2018).
[Crossref]

Lima, N. C.

Lin, B.

G. Luo, S. Malkova, S. V. Pingali, D. G. Schultz, B. Lin, M. Meron, T. J. Graber, J. Gebhardt, P. Vanysek, and M. L. Schlossman, “X-ray studies of the interface between two polar liquids: neat and with electrolytes,” Faraday Discuss. 129, 23–34 (2005).
[Crossref]

Lin, Y.-Y.

Y.-Y. Lin, R. D. Evans, E. Welch, B.-N. Hsu, A. C. Madison, and R. B. Fair, “Low voltage electrowetting-on-dielectric platform using multi-layer insulators,” Sens. Actuators, B 150(1), 465–470 (2010).
[Crossref]

Liu, C.

Llobera, A.

P. Müller, D. Kopp, A. Llobera, and H. Zappe, “Optofluidic router based on tunable liquid–liquid mirrors,” Lab Chip 14(4), 737–743 (2014).
[Crossref]

Lo, Y.-H.

D.-Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y.-H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82(19), 3171–3172 (2003).
[Crossref]

Long-Sun, Huang

Losacco, J. T.

Luceri, V.

G. Vallone, D. Bacco, D. Dequal, S. Gaiarin, V. Luceri, G. Bianco, and P. Villoresi, “Experimental satellite quantum communications,” Phys. Rev. Lett. 115(4), 040502 (2015).
[Crossref]

Luo, G.

G. Luo, S. Malkova, S. V. Pingali, D. G. Schultz, B. Lin, M. Meron, T. J. Graber, J. Gebhardt, P. Vanysek, and M. L. Schlossman, “X-ray studies of the interface between two polar liquids: neat and with electrolytes,” Faraday Discuss. 129, 23–34 (2005).
[Crossref]

Lutwak, R.

D. R. Scherer, R. Lutwak, M. Mescher, R. Stoner, B. Timmons, F. Rogomentich, G. Tepolt, S. Mahnkopf, J. Noble, S. Chang, and D. Taylor, “Progress on a miniature cold-atom frequency standard,” arXiv 1411.5006 (2014).

Ma, M.

B. N. Ozbay, G. L. Futia, M. Ma, V. M. Bright, J. T. Gopinath, E. G. Hughes, D. Restrepo, and E. A. Gibson, “Three dimensional two-photon brain imaging in freely moving mice using a miniature fiber coupled microscope with active axial-scanning,” Sci. Rep. 8(1), 8108 (2018).
[Crossref]

Mach, P.

T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82(3), 316–318 (2003).
[Crossref]

Madison, A. C.

Y.-Y. Lin, R. D. Evans, E. Welch, B.-N. Hsu, A. C. Madison, and R. B. Fair, “Low voltage electrowetting-on-dielectric platform using multi-layer insulators,” Sens. Actuators, B 150(1), 465–470 (2010).
[Crossref]

Mahnkopf, S.

D. R. Scherer, R. Lutwak, M. Mescher, R. Stoner, B. Timmons, F. Rogomentich, G. Tepolt, S. Mahnkopf, J. Noble, S. Chang, and D. Taylor, “Progress on a miniature cold-atom frequency standard,” arXiv 1411.5006 (2014).

Maillard, M.

M. S. Ober, D. Dermody, M. Daniel, M. Maillard, F. Amiot, G. Malet, B. Burger, C. Woelfle-Gupta, and B. Berge, “Development of biphasic formulations for use in electrowetting-based liquid lenses with a high refractive index difference,” ACS Comb. Sci. 20(9), 554–566 (2018).
[Crossref]

Malet, G.

M. S. Ober, D. Dermody, M. Daniel, M. Maillard, F. Amiot, G. Malet, B. Burger, C. Woelfle-Gupta, and B. Berge, “Development of biphasic formulations for use in electrowetting-based liquid lenses with a high refractive index difference,” ACS Comb. Sci. 20(9), 554–566 (2018).
[Crossref]

Malkova, S.

G. Luo, S. Malkova, S. V. Pingali, D. G. Schultz, B. Lin, M. Meron, T. J. Graber, J. Gebhardt, P. Vanysek, and M. L. Schlossman, “X-ray studies of the interface between two polar liquids: neat and with electrolytes,” Faraday Discuss. 129, 23–34 (2005).
[Crossref]

Martinez, R. V.

Maslesa, A.

Matsumoto, K.

N. Binh-Khiem, K. Matsumoto, and I. Shimoyama, “Polymer thin film deposited on liquid for varifocal encapsulated liquid lenses,” Appl. Phys. Lett. 93(12), 124101 (2008).
[Crossref]

Mccullough, C.

Meron, M.

G. Luo, S. Malkova, S. V. Pingali, D. G. Schultz, B. Lin, M. Meron, T. J. Graber, J. Gebhardt, P. Vanysek, and M. L. Schlossman, “X-ray studies of the interface between two polar liquids: neat and with electrolytes,” Faraday Discuss. 129, 23–34 (2005).
[Crossref]

Mescher, M.

D. R. Scherer, R. Lutwak, M. Mescher, R. Stoner, B. Timmons, F. Rogomentich, G. Tepolt, S. Mahnkopf, J. Noble, S. Chang, and D. Taylor, “Progress on a miniature cold-atom frequency standard,” arXiv 1411.5006 (2014).

Mibus, M.

M. Mibus and G. Zangari, “Performance and reliability of electrowetting-on-dielectric (ewod) systems based on tantalum oxide,” ACS Appl. Mater. Interfaces 9(48), 42278–42286 (2017).
[Crossref]

Milarcik, A.

S. Chevalliot, J. Heikenfeld, L. Clapp, A. Milarcik, and S. Vilner, “Analysis of nonaqueous electrowetting fluids for displays,” J. Disp. Technol. 7(12), 649–656 (2011).
[Crossref]

Mishra, K.

K. Mishra, D. van den Ende, and F. Mugele, “Recent developments in optofluidic lens technology,” Micromachines 7(6), 102 (2016).
[Crossref]

N. C. Lima, A. Cavalli, K. Mishra, and F. Mugele, “Numerical simulation of astigmatic liquid lenses tuned by a stripe electrode,” Opt. Express 24(4), 4210–4220 (2016).
[Crossref]

Mittal, K. L.

K. L. Mittal, Advances in Contact Angle, Wettability and Adhesion, Volume 1 (ohn Wiley & Sons, 2013).

K. L. Mittal, Advances in Contact Angle, Wettability and Adhesion, Volume 2 (ohn Wiley & Sons, 2015).

K. L. Mittal, Advances in Contact Angle, Wettability and Adhesion, Volume 3 (John Wiley & Sons, 2018).

Monch, W.

F. Krogmann, W. Monch, and H. Zappe, “Electrowetting for tunable microoptics,” J. Microelectromech. Syst. 17(6), 1501–1512 (2008).
[Crossref]

Mönch, W.

P. Müller, A. Kloss, P. Liebetraut, W. Mönch, and H. Zappe, “A fully integrated optofluidic attenuator,” J. Micromech. Microeng. 21(12), 125027 (2011).
[Crossref]

Montoya, R. D.

Mortensen, L. J.

Mugele, F.

N. C. Lima, A. Cavalli, K. Mishra, and F. Mugele, “Numerical simulation of astigmatic liquid lenses tuned by a stripe electrode,” Opt. Express 24(4), 4210–4220 (2016).
[Crossref]

K. Mishra, D. van den Ende, and F. Mugele, “Recent developments in optofluidic lens technology,” Micromachines 7(6), 102 (2016).
[Crossref]

C. U. Murade, D. van der Ende, and F. Mugele, “High speed adaptive liquid microlens array,” Opt. Express 20(16), 18180–18187 (2012).
[Crossref]

F. Mugele and J. Baret, “Electrowetting: from basics to applications,” J. Phys.: Condens. Matter 17(28), R705–R774 (2005).
[Crossref]

F. Mugele and J. Heikenfeld, Electrowetting: Fundamental Principles and Practical Applications (John Wiley & Sons, 2018).

Muller, R. S.

Meng-Hsiung Kiang, O. Solgaard, K. Y. Lau, and R. S. Muller, “Electrostatic combdrive-actuated micromirrors for laser-beam scanning and positioning,” J. Microelectromech. Syst. 7(1), 27–37 (1998).
[Crossref]

Müller, P.

S. Schuhladen, K. Banerjee, M. Stürmer, P. Müller, U. Wallrabe, and H. Zappe, “Variable optofluidic slit aperture,” Light: Sci. Appl. 5(1), e16005 (2016).
[Crossref]

P. Müller, D. Kopp, A. Llobera, and H. Zappe, “Optofluidic router based on tunable liquid–liquid mirrors,” Lab Chip 14(4), 737–743 (2014).
[Crossref]

P. Müller, R. Feuerstein, and H. Zappe, “Integrated optofluidic iris,” J. Microelectromech. Syst. 21(5), 1156–1164 (2012).
[Crossref]

P. Müller, A. Kloss, P. Liebetraut, W. Mönch, and H. Zappe, “A fully integrated optofluidic attenuator,” J. Micromech. Microeng. 21(12), 125027 (2011).
[Crossref]

Murade, C. U.

Nakajima, Y.

Nelson, W. C.

W. C. Nelson and C. J. Kim, “Droplet actuation by electrowetting-on-dielectric (ewod): A review,” J. Adhes. Sci. Technol. 26(12-17), 1747–1771 (2012).
[Crossref]

Niederriter, R. D.

Noble, J.

D. R. Scherer, R. Lutwak, M. Mescher, R. Stoner, B. Timmons, F. Rogomentich, G. Tepolt, S. Mahnkopf, J. Noble, S. Chang, and D. Taylor, “Progress on a miniature cold-atom frequency standard,” arXiv 1411.5006 (2014).

Norbury, J.

C. F. Scott, G. C. Sander, and J. Norbury, “Computation of capillary surfaces for the laplace-young equation,” Q. J. Mech. Appl. Math. 58(2), 201–212 (2005).
[Crossref]

Nystrom, P. D.

Ober, M. S.

M. S. Ober, D. Dermody, M. Daniel, M. Maillard, F. Amiot, G. Malet, B. Burger, C. Woelfle-Gupta, and B. Berge, “Development of biphasic formulations for use in electrowetting-based liquid lenses with a high refractive index difference,” ACS Comb. Sci. 20(9), 554–566 (2018).
[Crossref]

Ocko, B. M.

M. K. Sanyal, S. K. Sinha, K. G. Huang, and B. M. Ocko, “X-ray-scattering study of capillary-wave fluctuations at a liquid surface,” Phys. Rev. Lett. 66(5), 628–631 (1991).
[Crossref]

Ottonello-Briano, F.

F. Ribet, E. De Luca, F. Ottonello-Briano, M. Swillo, N. Roxhed, and G. Stemme, “Zero-insertion-loss optical shutter based on electrowetting-on-dielectric actuation of opaque ionic liquid microdroplets,” Appl. Phys. Lett. 115(7), 073502 (2019).
[Crossref]

Ozbay, B. N.

Pang, L.

L. Pang, H. M. Chen, L. M. Freeman, and Y. Fainman, “Optofluidic devices and applications in photonics, sensing and imaging,” Lab Chip 12(19), 3543–3551 (2012).
[Crossref]

Park, Y.

J. Lee, Y. Park, and S. K. Chung, “Switchable liquid shutter for security and design of mobile electronic devices,” in 2018 IEEE Micro Electro Mechanical Systems (MEMS), (2018), pp. 14–16.

Pendleton, E. G.

Peseux, J.

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J. E: Soft Matter Biol. Phys. 3(2), 159–163 (2000).
[Crossref]

Peter, Y.

Y. Peter, F. Gonte, H. P. Herzig, and R. Dandliker, “Micro-optical fiber switch for a large number of interconnects using a deformable mirror,” IEEE Photonics Technol. Lett. 14(3), 301–303 (2002).
[Crossref]

Pingali, S. V.

G. Luo, S. Malkova, S. V. Pingali, D. G. Schultz, B. Lin, M. Meron, T. J. Graber, J. Gebhardt, P. Vanysek, and M. L. Schlossman, “X-ray studies of the interface between two polar liquids: neat and with electrolytes,” Faraday Discuss. 129, 23–34 (2005).
[Crossref]

Prins, M. W. J.

H. J. J. Verheijen and M. W. J. Prins, “Reversible electrowetting and trapping of charge: Model and experiments,” Langmuir 15(20), 6616–6620 (1999).
[Crossref]

Rajesh, V. S. P.

T. Satyanarayana, G. A. K. Reddy, and V. S. P. Rajesh, “Design and simulation of micro electro wetting liquid lens for miniature cameras,” in “International Journal of Science and Research (IJSR),” vol. 2 (2013), vol. 2.

Raynes, E. P.

E. P. Raynes and I. A. Shanks, “Fast-switching twisted nematic electro-optical shutter and colour filter,” Electron. Lett. 10(7), 114–115 (1974).
[Crossref]

Reddy, G. A. K.

T. Satyanarayana, G. A. K. Reddy, and V. S. P. Rajesh, “Design and simulation of micro electro wetting liquid lens for miniature cameras,” in “International Journal of Science and Research (IJSR),” vol. 2 (2013), vol. 2.

Ren, H.

X. Wang and H. Ren, “Dielectrically actuated attenuator at 1.55 µm,” J. Phys. Commun. 2(8), 085026 (2018).
[Crossref]

L. Li, C. Liu, H. Ren, and Q.-H. Wang, “Adaptive liquid iris based on electrowetting,” Opt. Lett. 38(13), 2336–2338 (2013).
[Crossref]

S. Xu, H. Ren, and S.-T. Wu, “Dielectrophoretically tunable optofluidic devices,” J. Phys. D: Appl. Phys. 46(48), 483001 (2013).
[Crossref]

Restrepo, D.

Reza, S. A.

S. A. Reza and N. A. Riza, “A liquid lens-based broadband variable fiber optical attenuator,” Opt. Commun. 282(7), 1298–1303 (2009).
[Crossref]

Rhee, K.

H. W. Seo, J. B. Chae, S. J. Hong, K. Rhee, J. hyeon Chang, and S. K. Chung, “Electromagnetically driven liquid iris,” Sens. Actuators, A 231, 52–58 (2015).
[Crossref]

J. B. Chae, J. O. Kwon, J. S. Yang, D. Kim, K. Rhee, and S. K. Chung, “Optimum thickness of hydrophobic layer for operating voltage reduction in ewod systems,” Sens. Actuators, A 215, 8–16 (2014).
[Crossref]

Ribet, F.

F. Ribet, E. De Luca, F. Ottonello-Briano, M. Swillo, N. Roxhed, and G. Stemme, “Zero-insertion-loss optical shutter based on electrowetting-on-dielectric actuation of opaque ionic liquid microdroplets,” Appl. Phys. Lett. 115(7), 073502 (2019).
[Crossref]

Riza, N. A.

S. A. Reza and N. A. Riza, “A liquid lens-based broadband variable fiber optical attenuator,” Opt. Commun. 282(7), 1298–1303 (2009).
[Crossref]

Roath, C.

Rodríguez-Valverde, M. A.

M. A. Rodríguez-Valverde, M. A. Cabrerizo-Vílchez, and R. Hidalgo-Álvarez, “The young laplace equation links capillarity with geometrical optics,” Eur. J. Phys. 24(2), 159–168 (2003).
[Crossref]

Rogomentich, F.

D. R. Scherer, R. Lutwak, M. Mescher, R. Stoner, B. Timmons, F. Rogomentich, G. Tepolt, S. Mahnkopf, J. Noble, S. Chang, and D. Taylor, “Progress on a miniature cold-atom frequency standard,” arXiv 1411.5006 (2014).

Roxhed, N.

F. Ribet, E. De Luca, F. Ottonello-Briano, M. Swillo, N. Roxhed, and G. Stemme, “Zero-insertion-loss optical shutter based on electrowetting-on-dielectric actuation of opaque ionic liquid microdroplets,” Appl. Phys. Lett. 115(7), 073502 (2019).
[Crossref]

Salman, W. M.

W. M. Salman, H. A. Ali, M. S. Abdelsalam, M. F. F. El-Dosoky, and M. Abdelgawad, “Interfacial electrical shear stresses induce electrohydrodynamic flows inside droplets actuated by electrowetting,” in “ASME International Mechanical Engineering Congress and Exposition,” vol. 7B (2015).

Sander, G. C.

C. F. Scott, G. C. Sander, and J. Norbury, “Computation of capillary surfaces for the laplace-young equation,” Q. J. Mech. Appl. Math. 58(2), 201–212 (2005).
[Crossref]

Sanyal, M. K.

M. K. Sanyal, S. K. Sinha, K. G. Huang, and B. M. Ocko, “X-ray-scattering study of capillary-wave fluctuations at a liquid surface,” Phys. Rev. Lett. 66(5), 628–631 (1991).
[Crossref]

Satyanarayana, T.

T. Satyanarayana, G. A. K. Reddy, and V. S. P. Rajesh, “Design and simulation of micro electro wetting liquid lens for miniature cameras,” in “International Journal of Science and Research (IJSR),” vol. 2 (2013), vol. 2.

Scherer, D. R.

D. R. Scherer, R. Lutwak, M. Mescher, R. Stoner, B. Timmons, F. Rogomentich, G. Tepolt, S. Mahnkopf, J. Noble, S. Chang, and D. Taylor, “Progress on a miniature cold-atom frequency standard,” arXiv 1411.5006 (2014).

Schlossman, M. L.

G. Luo, S. Malkova, S. V. Pingali, D. G. Schultz, B. Lin, M. Meron, T. J. Graber, J. Gebhardt, P. Vanysek, and M. L. Schlossman, “X-ray studies of the interface between two polar liquids: neat and with electrolytes,” Faraday Discuss. 129, 23–34 (2005).
[Crossref]

M. L. Schlossman, “Liquid-liquid interfaces: studied by x-ray and neutron scattering,” Curr. Opin. Colloid Interface Sci. 7(3-4), 235–243 (2002).
[Crossref]

Schuhladen, S.

S. Schuhladen, K. Banerjee, M. Stürmer, P. Müller, U. Wallrabe, and H. Zappe, “Variable optofluidic slit aperture,” Light: Sci. Appl. 5(1), e16005 (2016).
[Crossref]

Schultz, A.

A. Schultz, S. Chevalliot, S. Kuiper, and J. Heikenfeld, “Detailed analysis of defect reduction in electrowetting dielectrics through a two-layer ’barrier’ approach,” Thin Solid Films 534, 348–355 (2013).
[Crossref]

Schultz, D. G.

G. Luo, S. Malkova, S. V. Pingali, D. G. Schultz, B. Lin, M. Meron, T. J. Graber, J. Gebhardt, P. Vanysek, and M. L. Schlossman, “X-ray studies of the interface between two polar liquids: neat and with electrolytes,” Faraday Discuss. 129, 23–34 (2005).
[Crossref]

Schwenger, W. J.

W. J. Schwenger and J. M. Higbie, “High-speed acousto-optic shutter with no optical frequency shift,” Rev. Sci. Instrum. 83(8), 083110 (2012).
[Crossref]

Scott, C. F.

C. F. Scott, G. C. Sander, and J. Norbury, “Computation of capillary surfaces for the laplace-young equation,” Q. J. Mech. Appl. Math. 58(2), 201–212 (2005).
[Crossref]

Seo, H. W.

H. W. Seo, J. B. Chae, S. J. Hong, K. Rhee, J. hyeon Chang, and S. K. Chung, “Electromagnetically driven liquid iris,” Sens. Actuators, A 231, 52–58 (2015).
[Crossref]

Shahini, A.

A. Shahini, J. Xia, Z. Zhou, Y. Zhao, and M. M.-C. Cheng, “Versatile miniature tunable liquid lenses using transparent graphene electrodes,” Langmuir 32(6), 1658–1665 (2016).
[Crossref]

Shamai, R.

U. Levy and R. Shamai, “Tunable optofluidic devices,” Microfluid. Nanofluid. 4(1-2), 97–105 (2008).
[Crossref]

Shanks, I. A.

E. P. Raynes and I. A. Shanks, “Fast-switching twisted nematic electro-optical shutter and colour filter,” Electron. Lett. 10(7), 114–115 (1974).
[Crossref]

Shi, J.

S. Wang, J. Shi, H.-H. Chen, T. Xu, and C.-L. C. L. Chen, “Numerical and experimental investigation of bubble dynamics via electrowetting-on-dielectric (ewod),” in “International Conference on Micro/Nanoscale Heat Transfer,” vol. 1 (2016).

Shimoyama, I.

N. Binh-Khiem, K. Matsumoto, and I. Shimoyama, “Polymer thin film deposited on liquid for varifocal encapsulated liquid lenses,” Appl. Phys. Lett. 93(12), 124101 (2008).
[Crossref]

Shiraishi, A.

M. Ide, A. Suguro, Y. Hosaka, A. Katsunuma, K. Takahashi, and A. Shiraishi, “A pixelized variable optical attenuator using liquid crystal on silicon technology for tunable filters,” Opt. Rev. 11(2), 132–139 (2004).
[Crossref]

Shi-Sheng, Lee

Sinha, S. K.

M. K. Sanyal, S. K. Sinha, K. G. Huang, and B. M. Ocko, “X-ray-scattering study of capillary-wave fluctuations at a liquid surface,” Phys. Rev. Lett. 66(5), 628–631 (1991).
[Crossref]

Smith, N.

L. Hou, J. Zhang, N. Smith, J. Yang, and J. Heikenfeld, “A full description of a scalable microfabrication process for arrayed electrowetting microprisms,” J. Micromech. Microeng. 20(1), 015044 (2010).
[Crossref]

J. Zhang, D. Van Meter, L. Hou, N. Smith, J. Yang, A. Stalcup, R. Laughlin, and J. Heikenfeld, “Preparation and analysis of 1-chloronaphthalene for highly refractive electrowetting optics,” Langmuir 25(17), 10413–10416 (2009).
[Crossref]

Smith, N. R.

Solgaard, O.

Meng-Hsiung Kiang, O. Solgaard, K. Y. Lau, and R. S. Muller, “Electrostatic combdrive-actuated micromirrors for laser-beam scanning and positioning,” J. Microelectromech. Syst. 7(1), 27–37 (1998).
[Crossref]

Southern, W. M.

Stalcup, A.

J. Zhang, D. Van Meter, L. Hou, N. Smith, J. Yang, A. Stalcup, R. Laughlin, and J. Heikenfeld, “Preparation and analysis of 1-chloronaphthalene for highly refractive electrowetting optics,” Langmuir 25(17), 10413–10416 (2009).
[Crossref]

Steckl, A. J.

H. You and A. J. Steckl, “Three-color electrowetting display device for electronic paper,” Appl. Phys. Lett. 97(2), 023514 (2010).
[Crossref]

J. Heikenfeld and A. J. Steckl, “High-transmission electrowetting light valves,” Appl. Phys. Lett. 86(15), 151121 (2005).
[Crossref]

Stemme, G.

F. Ribet, E. De Luca, F. Ottonello-Briano, M. Swillo, N. Roxhed, and G. Stemme, “Zero-insertion-loss optical shutter based on electrowetting-on-dielectric actuation of opaque ionic liquid microdroplets,” Appl. Phys. Lett. 115(7), 073502 (2019).
[Crossref]

Stoner, R.

D. R. Scherer, R. Lutwak, M. Mescher, R. Stoner, B. Timmons, F. Rogomentich, G. Tepolt, S. Mahnkopf, J. Noble, S. Chang, and D. Taylor, “Progress on a miniature cold-atom frequency standard,” arXiv 1411.5006 (2014).

Stürmer, M.

S. Schuhladen, K. Banerjee, M. Stürmer, P. Müller, U. Wallrabe, and H. Zappe, “Variable optofluidic slit aperture,” Light: Sci. Appl. 5(1), e16005 (2016).
[Crossref]

Suguro, A.

M. Ide, A. Suguro, Y. Hosaka, A. Katsunuma, K. Takahashi, and A. Shiraishi, “A pixelized variable optical attenuator using liquid crystal on silicon technology for tunable filters,” Opt. Rev. 11(2), 132–139 (2004).
[Crossref]

Supekar, O.

W. Y. Lim, O. Supekar, M. Zohrabi, J. Gopinath, and V. Bright, “A liquid combination with high refractive index contrast and fast scanning speeds for electrowetting adaptive optics,” Langmuir 34(48), 14511–14518 (2018).
[Crossref]

Supekar, O. D.

Swillo, M.

F. Ribet, E. De Luca, F. Ottonello-Briano, M. Swillo, N. Roxhed, and G. Stemme, “Zero-insertion-loss optical shutter based on electrowetting-on-dielectric actuation of opaque ionic liquid microdroplets,” Appl. Phys. Lett. 115(7), 073502 (2019).
[Crossref]

Tabatabaei, N.

Takahashi, K.

M. Ide, A. Suguro, Y. Hosaka, A. Katsunuma, K. Takahashi, and A. Shiraishi, “A pixelized variable optical attenuator using liquid crystal on silicon technology for tunable filters,” Opt. Rev. 11(2), 132–139 (2004).
[Crossref]

Tang, B.

G. Yang, B. Tang, D. Yuan, A. Henzen, and G. Zhou, “Scalable fabrication and testing processes for three-layer multi-color segmented electrowetting display,” Micromachines 10(5), 341 (2019).
[Crossref]

Taylor, D.

D. R. Scherer, R. Lutwak, M. Mescher, R. Stoner, B. Timmons, F. Rogomentich, G. Tepolt, S. Mahnkopf, J. Noble, S. Chang, and D. Taylor, “Progress on a miniature cold-atom frequency standard,” arXiv 1411.5006 (2014).

Tearney, G. J.

Tehrani, K. F.

Tepolt, G.

D. R. Scherer, R. Lutwak, M. Mescher, R. Stoner, B. Timmons, F. Rogomentich, G. Tepolt, S. Mahnkopf, J. Noble, S. Chang, and D. Taylor, “Progress on a miniature cold-atom frequency standard,” arXiv 1411.5006 (2014).

Terrab, S.

Timmons, B.

D. R. Scherer, R. Lutwak, M. Mescher, R. Stoner, B. Timmons, F. Rogomentich, G. Tepolt, S. Mahnkopf, J. Noble, S. Chang, and D. Taylor, “Progress on a miniature cold-atom frequency standard,” arXiv 1411.5006 (2014).

Underwood, K.

Vallet, M.

M. Vallet, B. Berge, and L. Vovelle, “Electrowetting of water and aqueous solutions on poly(ethylene terephthalate) insulating films,” Polymer 37(12), 2465–2470 (1996).
[Crossref]

Vallone, G.

G. Vallone, D. Bacco, D. Dequal, S. Gaiarin, V. Luceri, G. Bianco, and P. Villoresi, “Experimental satellite quantum communications,” Phys. Rev. Lett. 115(4), 040502 (2015).
[Crossref]

van den Ende, D.

K. Mishra, D. van den Ende, and F. Mugele, “Recent developments in optofluidic lens technology,” Micromachines 7(6), 102 (2016).
[Crossref]

van der Ende, D.

Van Meter, D.

J. Zhang, D. Van Meter, L. Hou, N. Smith, J. Yang, A. Stalcup, R. Laughlin, and J. Heikenfeld, “Preparation and analysis of 1-chloronaphthalene for highly refractive electrowetting optics,” Langmuir 25(17), 10413–10416 (2009).
[Crossref]

Vanysek, P.

G. Luo, S. Malkova, S. V. Pingali, D. G. Schultz, B. Lin, M. Meron, T. J. Graber, J. Gebhardt, P. Vanysek, and M. L. Schlossman, “X-ray studies of the interface between two polar liquids: neat and with electrolytes,” Faraday Discuss. 129, 23–34 (2005).
[Crossref]

Verheijen, H. J. J.

H. J. J. Verheijen and M. W. J. Prins, “Reversible electrowetting and trapping of charge: Model and experiments,” Langmuir 15(20), 6616–6620 (1999).
[Crossref]

Villoresi, P.

G. Vallone, D. Bacco, D. Dequal, S. Gaiarin, V. Luceri, G. Bianco, and P. Villoresi, “Experimental satellite quantum communications,” Phys. Rev. Lett. 115(4), 040502 (2015).
[Crossref]

Vilner, S.

S. Chevalliot, J. Heikenfeld, L. Clapp, A. Milarcik, and S. Vilner, “Analysis of nonaqueous electrowetting fluids for displays,” J. Disp. Technol. 7(12), 649–656 (2011).
[Crossref]

Vovelle, L.

M. Vallet, B. Berge, and L. Vovelle, “Electrowetting of water and aqueous solutions on poly(ethylene terephthalate) insulating films,” Polymer 37(12), 2465–2470 (1996).
[Crossref]

Wallrabe, U.

S. Schuhladen, K. Banerjee, M. Stürmer, P. Müller, U. Wallrabe, and H. Zappe, “Variable optofluidic slit aperture,” Light: Sci. Appl. 5(1), e16005 (2016).
[Crossref]

Wang, D.

Wang, Q.-H.

Wang, S.

S. Wang, J. Shi, H.-H. Chen, T. Xu, and C.-L. C. L. Chen, “Numerical and experimental investigation of bubble dynamics via electrowetting-on-dielectric (ewod),” in “International Conference on Micro/Nanoscale Heat Transfer,” vol. 1 (2016).

Wang, X.

X. Wang and H. Ren, “Dielectrically actuated attenuator at 1.55 µm,” J. Phys. Commun. 2(8), 085026 (2018).
[Crossref]

Wang, Z.

T. Guo, K. Deng, X. Chen, and Z. Wang, “Atomic clock based on transient coherent population trapping,” Appl. Phys. Lett. 94(15), 151108 (2009).
[Crossref]

Watson, A. M.

Weir, R.

Welch, E.

Y.-Y. Lin, R. D. Evans, E. Welch, B.-N. Hsu, A. C. Madison, and R. B. Fair, “Low voltage electrowetting-on-dielectric platform using multi-layer insulators,” Sens. Actuators, B 150(1), 465–470 (2010).
[Crossref]

Wheeler, A. R.

D. Chatterjee, B. Hetayothin, A. R. Wheeler, D. J. M. King, and R. L. Garrell, “Droplet-based microfluidics with nonaqueous solvents and solutions,” Lab Chip 6(2), 199–206 (2006).
[Crossref]

Whitesides, G. M.

Woelfle-Gupta, C.

M. S. Ober, D. Dermody, M. Daniel, M. Maillard, F. Amiot, G. Malet, B. Burger, C. Woelfle-Gupta, and B. Berge, “Development of biphasic formulations for use in electrowetting-based liquid lenses with a high refractive index difference,” ACS Comb. Sci. 20(9), 554–566 (2018).
[Crossref]

Wu, M. C.

Wu, S.-T.

S. Xu, H. Ren, and S.-T. Wu, “Dielectrophoretically tunable optofluidic devices,” J. Phys. D: Appl. Phys. 46(48), 483001 (2013).
[Crossref]

Wu, T.

Xia, J.

A. Shahini, J. Xia, Z. Zhou, Y. Zhao, and M. M.-C. Cheng, “Versatile miniature tunable liquid lenses using transparent graphene electrodes,” Langmuir 32(6), 1658–1665 (2016).
[Crossref]

Xiaohua, Ma

Ma Xiaohua and Kuo Geng-Sheng, “Optical switching technology comparison: optical mems vs. other technologies,” IEEE Commun. Mag. 41(11), 50–57 (2003).
[Crossref]

Xu, S.

S. Xu, H. Ren, and S.-T. Wu, “Dielectrophoretically tunable optofluidic devices,” J. Phys. D: Appl. Phys. 46(48), 483001 (2013).
[Crossref]

Xu, T.

S. Wang, J. Shi, H.-H. Chen, T. Xu, and C.-L. C. L. Chen, “Numerical and experimental investigation of bubble dynamics via electrowetting-on-dielectric (ewod),” in “International Conference on Micro/Nanoscale Heat Transfer,” vol. 1 (2016).

Yang, C.-F.

Yang, G.

G. Yang, B. Tang, D. Yuan, A. Henzen, and G. Zhou, “Scalable fabrication and testing processes for three-layer multi-color segmented electrowetting display,” Micromachines 10(5), 341 (2019).
[Crossref]

Yang, J.

L. Hou, J. Zhang, N. Smith, J. Yang, and J. Heikenfeld, “A full description of a scalable microfabrication process for arrayed electrowetting microprisms,” J. Micromech. Microeng. 20(1), 015044 (2010).
[Crossref]

J. Zhang, D. Van Meter, L. Hou, N. Smith, J. Yang, A. Stalcup, R. Laughlin, and J. Heikenfeld, “Preparation and analysis of 1-chloronaphthalene for highly refractive electrowetting optics,” Langmuir 25(17), 10413–10416 (2009).
[Crossref]

Yang, J. S.

J. B. Chae, J. O. Kwon, J. S. Yang, D. Kim, K. Rhee, and S. K. Chung, “Optimum thickness of hydrophobic layer for operating voltage reduction in ewod systems,” Sens. Actuators, A 215, 8–16 (2014).
[Crossref]

Yang, S.

T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82(3), 316–318 (2003).
[Crossref]

Yao, L.-X.

Yariv, A.

You, H.

H. You and A. J. Steckl, “Three-color electrowetting display device for electronic paper,” Appl. Phys. Lett. 97(2), 023514 (2010).
[Crossref]

Yu, C.-C.

C.-C. Yu, J.-R. Ho, and J. W. J. Cheng, “Tunable liquid iris actuated using electrowetting effect,” Opt. Eng. 53(5), 057106 (2014).
[Crossref]

Yuan, D.

G. Yang, B. Tang, D. Yuan, A. Henzen, and G. Zhou, “Scalable fabrication and testing processes for three-layer multi-color segmented electrowetting display,” Micromachines 10(5), 341 (2019).
[Crossref]

Zahreddine, R. N.

Zangari, G.

M. Mibus and G. Zangari, “Performance and reliability of electrowetting-on-dielectric (ewod) systems based on tantalum oxide,” ACS Appl. Mater. Interfaces 9(48), 42278–42286 (2017).
[Crossref]

Zappe, H.

D. Kopp, L. Lehmann, and H. Zappe, “Optofluidic laser scanner based on a rotating liquid prism,” Appl. Phys. 55(9), 2136–2142 (2016).
[Crossref]

S. Schuhladen, K. Banerjee, M. Stürmer, P. Müller, U. Wallrabe, and H. Zappe, “Variable optofluidic slit aperture,” Light: Sci. Appl. 5(1), e16005 (2016).
[Crossref]

D. Kopp and H. Zappe, “Tubular astigmatism-tunable fluidic lens,” Opt. Lett. 41(12), 2735–2738 (2016).
[Crossref]

P. Müller, D. Kopp, A. Llobera, and H. Zappe, “Optofluidic router based on tunable liquid–liquid mirrors,” Lab Chip 14(4), 737–743 (2014).
[Crossref]

P. Müller, R. Feuerstein, and H. Zappe, “Integrated optofluidic iris,” J. Microelectromech. Syst. 21(5), 1156–1164 (2012).
[Crossref]

P. Müller, A. Kloss, P. Liebetraut, W. Mönch, and H. Zappe, “A fully integrated optofluidic attenuator,” J. Micromech. Microeng. 21(12), 125027 (2011).
[Crossref]

F. Krogmann, W. Monch, and H. Zappe, “Electrowetting for tunable microoptics,” J. Microelectromech. Syst. 17(6), 1501–1512 (2008).
[Crossref]

Zhang, D.-Y.

D.-Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y.-H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82(19), 3171–3172 (2003).
[Crossref]

Zhang, J.

L. Hou, J. Zhang, N. Smith, J. Yang, and J. Heikenfeld, “A full description of a scalable microfabrication process for arrayed electrowetting microprisms,” J. Micromech. Microeng. 20(1), 015044 (2010).
[Crossref]

J. Zhang, D. Van Meter, L. Hou, N. Smith, J. Yang, A. Stalcup, R. Laughlin, and J. Heikenfeld, “Preparation and analysis of 1-chloronaphthalene for highly refractive electrowetting optics,” Langmuir 25(17), 10413–10416 (2009).
[Crossref]

Zhao, Y.

A. Shahini, J. Xia, Z. Zhou, Y. Zhao, and M. M.-C. Cheng, “Versatile miniature tunable liquid lenses using transparent graphene electrodes,” Langmuir 32(6), 1658–1665 (2016).
[Crossref]

Zhou, G.

G. Yang, B. Tang, D. Yuan, A. Henzen, and G. Zhou, “Scalable fabrication and testing processes for three-layer multi-color segmented electrowetting display,” Micromachines 10(5), 341 (2019).
[Crossref]

Zhou, K.

K. Zhou, J. Heikenfeld, K. A. Dean, E. M. Howard, and M. R. Johnson, “A full description of a simple and scalable fabrication process for electrowetting displays,” J. Micromech. Microeng. 19(6), 065029 (2009).
[Crossref]

Zhou, Z.

A. Shahini, J. Xia, Z. Zhou, Y. Zhao, and M. M.-C. Cheng, “Versatile miniature tunable liquid lenses using transparent graphene electrodes,” Langmuir 32(6), 1658–1665 (2016).
[Crossref]

Zhu, L.

Zohrabi, M.

ACS Appl. Mater. Interfaces (1)

M. Mibus and G. Zangari, “Performance and reliability of electrowetting-on-dielectric (ewod) systems based on tantalum oxide,” ACS Appl. Mater. Interfaces 9(48), 42278–42286 (2017).
[Crossref]

ACS Comb. Sci. (1)

M. S. Ober, D. Dermody, M. Daniel, M. Maillard, F. Amiot, G. Malet, B. Burger, C. Woelfle-Gupta, and B. Berge, “Development of biphasic formulations for use in electrowetting-based liquid lenses with a high refractive index difference,” ACS Comb. Sci. 20(9), 554–566 (2018).
[Crossref]

Appl. Opt. (2)

Appl. Phys. (1)

D. Kopp, L. Lehmann, and H. Zappe, “Optofluidic laser scanner based on a rotating liquid prism,” Appl. Phys. 55(9), 2136–2142 (2016).
[Crossref]

Appl. Phys. Lett. (9)

D.-Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y.-H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82(19), 3171–3172 (2003).
[Crossref]

T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82(3), 316–318 (2003).
[Crossref]

N. Binh-Khiem, K. Matsumoto, and I. Shimoyama, “Polymer thin film deposited on liquid for varifocal encapsulated liquid lenses,” Appl. Phys. Lett. 93(12), 124101 (2008).
[Crossref]

C. Li and H. Jiang, “Electrowetting-driven variable-focus microlens on flexible surfaces,” Appl. Phys. Lett. 100(23), 231105 (2012).
[Crossref]

H. You and A. J. Steckl, “Three-color electrowetting display device for electronic paper,” Appl. Phys. Lett. 97(2), 023514 (2010).
[Crossref]

J. Heikenfeld and A. J. Steckl, “High-transmission electrowetting light valves,” Appl. Phys. Lett. 86(15), 151121 (2005).
[Crossref]

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[Crossref]

F. Ribet, E. De Luca, F. Ottonello-Briano, M. Swillo, N. Roxhed, and G. Stemme, “Zero-insertion-loss optical shutter based on electrowetting-on-dielectric actuation of opaque ionic liquid microdroplets,” Appl. Phys. Lett. 115(7), 073502 (2019).
[Crossref]

T. Guo, K. Deng, X. Chen, and Z. Wang, “Atomic clock based on transient coherent population trapping,” Appl. Phys. Lett. 94(15), 151108 (2009).
[Crossref]

ASME J. Fluids Eng. (1)

S.-L. Lee and H.-D. Lee, “Evolution of liquid meniscus shape in a capillary tube,” ASME J. Fluids Eng. 129(8), 957–965 (2007).
[Crossref]

Biomed. Opt. Express (3)

Curr. Opin. Colloid Interface Sci. (1)

M. L. Schlossman, “Liquid-liquid interfaces: studied by x-ray and neutron scattering,” Curr. Opin. Colloid Interface Sci. 7(3-4), 235–243 (2002).
[Crossref]

Electron. Lett. (1)

E. P. Raynes and I. A. Shanks, “Fast-switching twisted nematic electro-optical shutter and colour filter,” Electron. Lett. 10(7), 114–115 (1974).
[Crossref]

Eur. J. Phys. (1)

M. A. Rodríguez-Valverde, M. A. Cabrerizo-Vílchez, and R. Hidalgo-Álvarez, “The young laplace equation links capillarity with geometrical optics,” Eur. J. Phys. 24(2), 159–168 (2003).
[Crossref]

Eur. Phys. J. E: Soft Matter Biol. Phys. (1)

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J. E: Soft Matter Biol. Phys. 3(2), 159–163 (2000).
[Crossref]

Faraday Discuss. (1)

G. Luo, S. Malkova, S. V. Pingali, D. G. Schultz, B. Lin, M. Meron, T. J. Graber, J. Gebhardt, P. Vanysek, and M. L. Schlossman, “X-ray studies of the interface between two polar liquids: neat and with electrolytes,” Faraday Discuss. 129, 23–34 (2005).
[Crossref]

IEEE Commun. Mag. (1)

Ma Xiaohua and Kuo Geng-Sheng, “Optical switching technology comparison: optical mems vs. other technologies,” IEEE Commun. Mag. 41(11), 50–57 (2003).
[Crossref]

IEEE Photonics Technol. Lett. (1)

Y. Peter, F. Gonte, H. P. Herzig, and R. Dandliker, “Micro-optical fiber switch for a large number of interconnects using a deformable mirror,” IEEE Photonics Technol. Lett. 14(3), 301–303 (2002).
[Crossref]

J. Adhes. Sci. Technol. (1)

W. C. Nelson and C. J. Kim, “Droplet actuation by electrowetting-on-dielectric (ewod): A review,” J. Adhes. Sci. Technol. 26(12-17), 1747–1771 (2012).
[Crossref]

J. Appl. Phys. (1)

C. Liu, L. Li, and Q.-H. Wang, “Bidirectional optical switch based on electrowetting,” J. Appl. Phys. 113(19), 193106 (2013).
[Crossref]

J. Disp. Technol. (1)

S. Chevalliot, J. Heikenfeld, L. Clapp, A. Milarcik, and S. Vilner, “Analysis of nonaqueous electrowetting fluids for displays,” J. Disp. Technol. 7(12), 649–656 (2011).
[Crossref]

J. Lightwave Technol. (1)

J. Microelectromech. Syst. (4)

F. Krogmann, W. Monch, and H. Zappe, “Electrowetting for tunable microoptics,” J. Microelectromech. Syst. 17(6), 1501–1512 (2008).
[Crossref]

P. Müller, R. Feuerstein, and H. Zappe, “Integrated optofluidic iris,” J. Microelectromech. Syst. 21(5), 1156–1164 (2012).
[Crossref]

L. Huang, B. Koo, and C. Kim, “Sputtered-anodized Ta2O5 as the dielectric layer for electrowetting-on-dielectric,” J. Microelectromech. Syst. 22(2), 253–255 (2013).
[Crossref]

Meng-Hsiung Kiang, O. Solgaard, K. Y. Lau, and R. S. Muller, “Electrostatic combdrive-actuated micromirrors for laser-beam scanning and positioning,” J. Microelectromech. Syst. 7(1), 27–37 (1998).
[Crossref]

J. Micromech. Microeng. (3)

P. Müller, A. Kloss, P. Liebetraut, W. Mönch, and H. Zappe, “A fully integrated optofluidic attenuator,” J. Micromech. Microeng. 21(12), 125027 (2011).
[Crossref]

K. Zhou, J. Heikenfeld, K. A. Dean, E. M. Howard, and M. R. Johnson, “A full description of a simple and scalable fabrication process for electrowetting displays,” J. Micromech. Microeng. 19(6), 065029 (2009).
[Crossref]

L. Hou, J. Zhang, N. Smith, J. Yang, and J. Heikenfeld, “A full description of a scalable microfabrication process for arrayed electrowetting microprisms,” J. Micromech. Microeng. 20(1), 015044 (2010).
[Crossref]

J. Phys. Commun. (1)

X. Wang and H. Ren, “Dielectrically actuated attenuator at 1.55 µm,” J. Phys. Commun. 2(8), 085026 (2018).
[Crossref]

J. Phys. D: Appl. Phys. (1)

S. Xu, H. Ren, and S.-T. Wu, “Dielectrophoretically tunable optofluidic devices,” J. Phys. D: Appl. Phys. 46(48), 483001 (2013).
[Crossref]

J. Phys.: Condens. Matter (1)

F. Mugele and J. Baret, “Electrowetting: from basics to applications,” J. Phys.: Condens. Matter 17(28), R705–R774 (2005).
[Crossref]

Lab Chip (3)

D. Chatterjee, B. Hetayothin, A. R. Wheeler, D. J. M. King, and R. L. Garrell, “Droplet-based microfluidics with nonaqueous solvents and solutions,” Lab Chip 6(2), 199–206 (2006).
[Crossref]

P. Müller, D. Kopp, A. Llobera, and H. Zappe, “Optofluidic router based on tunable liquid–liquid mirrors,” Lab Chip 14(4), 737–743 (2014).
[Crossref]

L. Pang, H. M. Chen, L. M. Freeman, and Y. Fainman, “Optofluidic devices and applications in photonics, sensing and imaging,” Lab Chip 12(19), 3543–3551 (2012).
[Crossref]

Langmuir (5)

H. J. J. Verheijen and M. W. J. Prins, “Reversible electrowetting and trapping of charge: Model and experiments,” Langmuir 15(20), 6616–6620 (1999).
[Crossref]

W. Y. Lim, O. Supekar, M. Zohrabi, J. Gopinath, and V. Bright, “A liquid combination with high refractive index contrast and fast scanning speeds for electrowetting adaptive optics,” Langmuir 34(48), 14511–14518 (2018).
[Crossref]

J. Zhang, D. Van Meter, L. Hou, N. Smith, J. Yang, A. Stalcup, R. Laughlin, and J. Heikenfeld, “Preparation and analysis of 1-chloronaphthalene for highly refractive electrowetting optics,” Langmuir 25(17), 10413–10416 (2009).
[Crossref]

A. Shahini, J. Xia, Z. Zhou, Y. Zhao, and M. M.-C. Cheng, “Versatile miniature tunable liquid lenses using transparent graphene electrodes,” Langmuir 32(6), 1658–1665 (2016).
[Crossref]

O. D. Supekar, M. Zohrabi, J. T. Gopinath, and V. M. Bright, “Enhanced response time of electrowetting lenses with shaped input voltage functions,” Langmuir 33(19), 4863–4869 (2017).
[Crossref]

Light: Sci. Appl. (1)

S. Schuhladen, K. Banerjee, M. Stürmer, P. Müller, U. Wallrabe, and H. Zappe, “Variable optofluidic slit aperture,” Light: Sci. Appl. 5(1), e16005 (2016).
[Crossref]

Measurement (1)

A. Acharya, S. De, P. Arora, and A. S. Gupta, “A universal driver for vibration free operation of mechanical shutters,” Measurement 61, 16–20 (2015).
[Crossref]

Microfluid. Nanofluid. (1)

U. Levy and R. Shamai, “Tunable optofluidic devices,” Microfluid. Nanofluid. 4(1-2), 97–105 (2008).
[Crossref]

Micromachines (2)

K. Mishra, D. van den Ende, and F. Mugele, “Recent developments in optofluidic lens technology,” Micromachines 7(6), 102 (2016).
[Crossref]

G. Yang, B. Tang, D. Yuan, A. Henzen, and G. Zhou, “Scalable fabrication and testing processes for three-layer multi-color segmented electrowetting display,” Micromachines 10(5), 341 (2019).
[Crossref]

Nature (1)

R. A. Hayes and B. J. Feenstra, “Video-speed electronic paper based on electrowetting,” Nature 425(6956), 383–385 (2003).
[Crossref]

Opt. Commun. (1)

S. A. Reza and N. A. Riza, “A liquid lens-based broadband variable fiber optical attenuator,” Opt. Commun. 282(7), 1298–1303 (2009).
[Crossref]

Opt. Eng. (1)

C.-C. Yu, J.-R. Ho, and J. W. J. Cheng, “Tunable liquid iris actuated using electrowetting effect,” Opt. Eng. 53(5), 057106 (2014).
[Crossref]

Opt. Express (11)

M. Zohrabi, R. H. Cormack, C. Mccullough, O. D. Supekar, E. A. Gibson, V. M. Bright, and J. T. Gopinath, “Numerical analysis of wavefront aberration correction using multielectrode electrowetting-based devices,” Opt. Express 25(25), 31451–31461 (2017).
[Crossref]

S. Terrab, A. M. Watson, C. Roath, J. T. Gopinath, and V. M. Bright, “Adaptive electrowetting lens-prism element,” Opt. Express 23(20), 25838–25845 (2015).
[Crossref]

L. Li, D. Wang, C. Liu, and Q.-H. Wang, “Zoom microscope objective using electrowetting lenses,” Opt. Express 24(3), 2931–2940 (2016).
[Crossref]

S.-L. Lee and C.-F. Yang, “Numerical simulation for meniscus shape and optical performance of a mems-based liquid micro-lens,” Opt. Express 16(24), 19995–20007 (2008).
[Crossref]

M. Zohrabi, W. Y. Lim, R. H. Cormack, O. D. Supekar, V. M. Bright, and J. T. Gopinath, “Lidar system with nonmechanical electrowetting-based wide-angle beam steering,” Opt. Express 27(4), 4404–4415 (2019).
[Crossref]

C. U. Murade, D. van der Ende, and F. Mugele, “High speed adaptive liquid microlens array,” Opt. Express 20(16), 18180–18187 (2012).
[Crossref]

N. C. Lima, A. Cavalli, K. Mishra, and F. Mugele, “Numerical simulation of astigmatic liquid lenses tuned by a stripe electrode,” Opt. Express 24(4), 4210–4220 (2016).
[Crossref]

L. Zhu, Y. Huang, and A. Yariv, “Integrated microfluidic variable optical attenuator,” Opt. Express 13(24), 9916–9921 (2005).
[Crossref]

C. Liu, D. Wang, and Q.-H. Wang, “Variable aperture with graded attenuation combined with adjustable focal length lens,” Opt. Express 27(10), 14075–14084 (2019).
[Crossref]

N. R. Smith, D. C. Abeysinghe, J. W. Haus, and J. Heikenfeld, “Agile wide-angle beam steering with electrowetting microprisms,” Opt. Express 14(14), 6557–6563 (2006).
[Crossref]

R. D. Montoya, K. Underwood, S. Terrab, A. M. Watson, V. M. Bright, and J. T. Gopinath, “Large extinction ratio optical electrowetting shutter,” Opt. Express 24(9), 9660–9666 (2016).
[Crossref]

Opt. Lett. (3)

Opt. Rev. (1)

M. Ide, A. Suguro, Y. Hosaka, A. Katsunuma, K. Takahashi, and A. Shiraishi, “A pixelized variable optical attenuator using liquid crystal on silicon technology for tunable filters,” Opt. Rev. 11(2), 132–139 (2004).
[Crossref]

Phys. Rev. Lett. (2)

M. K. Sanyal, S. K. Sinha, K. G. Huang, and B. M. Ocko, “X-ray-scattering study of capillary-wave fluctuations at a liquid surface,” Phys. Rev. Lett. 66(5), 628–631 (1991).
[Crossref]

G. Vallone, D. Bacco, D. Dequal, S. Gaiarin, V. Luceri, G. Bianco, and P. Villoresi, “Experimental satellite quantum communications,” Phys. Rev. Lett. 115(4), 040502 (2015).
[Crossref]

Polymer (1)

M. Vallet, B. Berge, and L. Vovelle, “Electrowetting of water and aqueous solutions on poly(ethylene terephthalate) insulating films,” Polymer 37(12), 2465–2470 (1996).
[Crossref]

Q. J. Mech. Appl. Math. (1)

C. F. Scott, G. C. Sander, and J. Norbury, “Computation of capillary surfaces for the laplace-young equation,” Q. J. Mech. Appl. Math. 58(2), 201–212 (2005).
[Crossref]

Rev. Sci. Instrum. (3)

W. J. Schwenger and J. M. Higbie, “High-speed acousto-optic shutter with no optical frequency shift,” Rev. Sci. Instrum. 83(8), 083110 (2012).
[Crossref]

C. S. Adams, “A mechanical shutter for light using piezoelectric actuators,” Rev. Sci. Instrum. 71(1), 59–60 (2000).
[Crossref]

W. Bowden, I. R. Hill, P. E. G. Baird, and P. Gill, “Note: A high-performance, low-cost laser shutter using a piezoelectric cantilever actuator,” Rev. Sci. Instrum. 88(1), 016102 (2017).
[Crossref]

Sci. Rep. (1)

B. N. Ozbay, G. L. Futia, M. Ma, V. M. Bright, J. T. Gopinath, E. G. Hughes, D. Restrepo, and E. A. Gibson, “Three dimensional two-photon brain imaging in freely moving mice using a miniature fiber coupled microscope with active axial-scanning,” Sci. Rep. 8(1), 8108 (2018).
[Crossref]

Sens. Actuators, A (2)

J. B. Chae, J. O. Kwon, J. S. Yang, D. Kim, K. Rhee, and S. K. Chung, “Optimum thickness of hydrophobic layer for operating voltage reduction in ewod systems,” Sens. Actuators, A 215, 8–16 (2014).
[Crossref]

H. W. Seo, J. B. Chae, S. J. Hong, K. Rhee, J. hyeon Chang, and S. K. Chung, “Electromagnetically driven liquid iris,” Sens. Actuators, A 231, 52–58 (2015).
[Crossref]

Sens. Actuators, B (1)

Y.-Y. Lin, R. D. Evans, E. Welch, B.-N. Hsu, A. C. Madison, and R. B. Fair, “Low voltage electrowetting-on-dielectric platform using multi-layer insulators,” Sens. Actuators, B 150(1), 465–470 (2010).
[Crossref]

Thin Solid Films (1)

A. Schultz, S. Chevalliot, S. Kuiper, and J. Heikenfeld, “Detailed analysis of defect reduction in electrowetting dielectrics through a two-layer ’barrier’ approach,” Thin Solid Films 534, 348–355 (2013).
[Crossref]

Other (13)

OpticStudio Zemax, User’s Manual, v. 19, https://www.zemax.com/products/opticstudio/ (2019).

R. Finn, Equilibrium capillary surfaces (Springer-Verlag, 1986).

S. Wang, J. Shi, H.-H. Chen, T. Xu, and C.-L. C. L. Chen, “Numerical and experimental investigation of bubble dynamics via electrowetting-on-dielectric (ewod),” in “International Conference on Micro/Nanoscale Heat Transfer,” vol. 1 (2016).

J. C. Berg, An Introduction to Interfaces and Colloids (World Scientific, 2009).

COMSOL Multiphysics Reference Manual, v. 5.1, http://www.comsol.com/ (2018).

T. Satyanarayana, G. A. K. Reddy, and V. S. P. Rajesh, “Design and simulation of micro electro wetting liquid lens for miniature cameras,” in “International Journal of Science and Research (IJSR),” vol. 2 (2013), vol. 2.

W. M. Salman, H. A. Ali, M. S. Abdelsalam, M. F. F. El-Dosoky, and M. Abdelgawad, “Interfacial electrical shear stresses induce electrohydrodynamic flows inside droplets actuated by electrowetting,” in “ASME International Mechanical Engineering Congress and Exposition,” vol. 7B (2015).

K. L. Mittal, Advances in Contact Angle, Wettability and Adhesion, Volume 1 (ohn Wiley & Sons, 2013).

K. L. Mittal, Advances in Contact Angle, Wettability and Adhesion, Volume 2 (ohn Wiley & Sons, 2015).

K. L. Mittal, Advances in Contact Angle, Wettability and Adhesion, Volume 3 (John Wiley & Sons, 2018).

D. R. Scherer, R. Lutwak, M. Mescher, R. Stoner, B. Timmons, F. Rogomentich, G. Tepolt, S. Mahnkopf, J. Noble, S. Chang, and D. Taylor, “Progress on a miniature cold-atom frequency standard,” arXiv 1411.5006 (2014).

J. Lee, Y. Park, and S. K. Chung, “Switchable liquid shutter for security and design of mobile electronic devices,” in 2018 IEEE Micro Electro Mechanical Systems (MEMS), (2018), pp. 14–16.

F. Mugele and J. Heikenfeld, Electrowetting: Fundamental Principles and Practical Applications (John Wiley & Sons, 2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) A perspective view of the two-electrode prism device, labeled with electrode gap separation and printed circuit board assembly. (b) Schematic of the two-electrode prism device. The device is constructed in a cylindrical glass tube with Indium Tin Oxide (ITO) sidewall electrodes, Parylene HT as the dielectric and Cytop as the hydrophobic layer. An anti-reflection (AR) coated optical window patterned with an annular pattern of Ti/Au/Ti serves as the ground electrode. The device is filled with deionized (DI) water and 1-Phenyl-1-cyclohexene (PCH). The device is capped with an AR coated optical window.
Fig. 2.
Fig. 2. Schematic optical design of the electrowetting prism optical switch modeled in Zemax for a collimated input beam diameter of 1.2 mm (1/ $e^2$ ), $\uplambda = 650~{\textrm{nm}}$ . The switch consists of a tunable pressure-driven lens (Optotune EL10-30 – not shown here), an electrowetting prism, an achromatic doublet lens (effective focal length of 4.4 mm), and a multimode fiber with a core diameter of 50 µm. The fiber is coupled to a photodiode. The EWOD prism produced a $\pm 3^\circ$ scanning beam. Three configurations are shown here with steering angles of 0 $^\circ$ and $\pm 3^\circ$ .
Fig. 3.
Fig. 3. (a)–(d) The incoherent irradiance maps (incoherent ray intensity distribution for various incident angles) at the imaging plane of the optical setup (Fiber entrance plane in Fig. 2) for steering angles of 0 $^\circ$ , 0.87 $^\circ$ , 1.7 $^\circ$ , and 2.3 $^\circ$ . The dark circle at (0,0) with 50 µm diameter represents the fiber core position in the imaging plane. The imaging plane shows the point-spread function for different steering angles. The scattered ray pattern in the imaging plane is a result of secondary rays split at each optical interface. (e)–(f) The integrated power within the 25 µm radius as a function of steering angles of $\pm$ 3 $^\circ$ plotted in linear and log scale. The extinction ratio defined as: 10log( $P_{max}$ / $P_{min}$ ), where $P_{max}$ and $P_{min}$ are the power transmitted in the ON and OFF states, respectively. Optical switching with a high extinction ratio of 50 dB is obtained by steering the beam to angles larger than $\pm 2.5^\circ$ .
Fig. 4.
Fig. 4. (a)–(b) Transmitted power through the optical switch as a function of steering angle of the EWOD prism in linear and log scale, respectively. The extinction ratio defined as: 10log( $P_{max}$ / $P_{min}$ ), where $P_{max}$ and $P_{min}$ are the power transmitted in the ON and OFF states. The transmitted beam exhibits $\sim$ 47 dB of extinction ratio by steering the beam to angles > 2 $^\circ$ . The standard deviation errors are evaluated from 20 measurements. The standard deviation error bars are smaller than the data points (circle marker).
Fig. 5.
Fig. 5. Light intensity variation for scanning frequencies of (a) 100 Hz, (b) 200 Hz, and (c) 300 Hz. The scanning is performed at bias voltage of 72 Vrms. The modulating voltage is 6 V in (a) and (b) and 12 V in (c). The fiber core is positioned at the center of the scan cycle (at 0 $^\circ$ - on the optical axis, the scan starts from -3 $^\circ$ to 3 $^\circ$ and back to -3 $^\circ$ to complete one cycle) hence, in every scanning cycle, two intensity peaks will be recorded on the photodetector. (d)–(f) Fourier transform of the time series presented in (a)–(c). The fundamental frequency evaluated through Fourier transform is double the scanning frequency as a result of the scanning method. Lastly, the periodicity of the photodetector signal results in other harmonic peaks that appear as subsequent intensity peaks in the Fourier transform.

Metrics