Abstract

The beam fanning naturally occurring in a photorefractive crystal is shown to slow down a single light pulse at room temperature. Slow light is demonstrated for both visible and infrared wavelength light pulses as short as the response time of the photorefractive crystal and with fractional delay- i.e ratio of delay to output pulse duration- up to 0.4.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Manipulation of fast light using photorefractive beam fanning

Alexander Grabar, Pierre Mathey, and Grégory Gadret
J. Opt. Soc. Am. B 31(5) 980-986 (2014)

Backward beam fanning in photorefractive crystals

Ping Xie, Peng-Ye Wang, Jian-Hua Dai, and Hong-Jun Zhang
J. Opt. Soc. Am. B 15(5) 1521-1527 (1998)

Improved slow light performances using photorefractive two-wave mixing

Nacera Bouldja, Marc Sciamanna, and Delphine Wolfersberger
Opt. Lett. 44(6) 1496-1499 (2019)

References

  • View by:
  • |
  • |
  • |

  1. R. S. Tucker, P. C. Ku, and C. J. C. Hasnain, “Slow-light optical buffers: capabilities and fundamental limitations,” J. Lightwave Technol. 23(12), 4046–4066 (2005).
    [Crossref]
  2. T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
    [Crossref]
  3. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
    [Crossref]
  4. L. Thévenaz, “Slow and fast light in optical fibres,” Nat. Photonics 2(8), 474–481 (2008).
    [Crossref]
  5. W. Horn, J. V. Bassewitz, and C. Denz, “Slow and fast light in photorefractive SBN:60,” J. Opt. 12(10), 104011 (2010).
    [Crossref]
  6. H. Lorentz, The theory of electrons and its applications to the phenomena of light and radiant heat (Columbia University, New York, 1909).
  7. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
    [Crossref]
  8. J. E. Sharping, Y. Okawachi, and A. L. Gaeta, “Wide bandwidth slow light using a raman fiber amplifier,” Opt. Express 13(16), 6092–6098 (2005).
    [Crossref]
  9. J. Li, T. P. White, L. O’Faolain, A. G. Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16(9), 6227–6232 (2008).
    [Crossref]
  10. A. Shumelyuk, K. Shcherbin, S. Odoulov, B. Sturman, E. Podivilov, and K. Buse, “Slowing down of light in photorefractive crystals with beam intensity coupling reduced to zero,” Phys. Rev. Lett. 93(24), 243604 (2004).
    [Crossref]
  11. K. Buse, “Light-induced charge transport processes in photorefractive crystals i: Models and experimental methods,” Appl. Phys. B 64(3), 273–291 (1997).
    [Crossref]
  12. S. Residori, U. Bortolozzo, and J. Huignard, “Slow and fast light in liquid crystal light valves,” Phys. Rev. Lett. 100(20), 203603 (2008).
    [Crossref]
  13. E. Podivilov, B. Sturman, A. Shumelyuk, and S. Odoulov, “Light pulse slowing down up to 0.025 cm/s by photorefractive two-wave coupling,” Phys. Rev. Lett. 91(8), 083902 (2003).
    [Crossref]
  14. N. Bouldja, M. Sciamanna, and D. Wolfersberger, “Improved slow light performances using photorefractive two-wave mixing,” Opt. Lett. 44(6), 1496–1499 (2019).
    [Crossref]
  15. G. Salamo, M. Miller, W. Clark, G. Wood, and E. Sharp, “Strontium barium niobate as a self-pumped phase conjugator,” Opt. Commun. 59(5-6), 417–422 (1986).
    [Crossref]
  16. M. Segev, D. Engin, A. Yariv, and G. C. Valley, “Temporal evolution of fanning in photorefractive materials,” Opt. Lett. 18(12), 956–958 (1993).
    [Crossref]
  17. A. Grabar, P. Mathey, and G. Gadret, “Manipulation of fast light using photorefractive beam fanning,” J. Opt. Soc. Am. B 31(5), 980–986 (2014).
    [Crossref]
  18. T. Bach, M. Jazbinšek, G. Montemezzani, P. Günter, A. A. Grabar, and Y. M. Vysochanskii, “Tailoring of infrared photorefractive properties of sn2p2s6 crystals by te and sb doping,” J. Opt. Soc. Am. B 24(7), 1535–1541 (2007).
    [Crossref]
  19. S. Residori, P. Ramazza, and M. Zhao, “Dynamics of beam fanning in cu-doped knsbn,” Opt. Commun. 102(1-2), 100–104 (1993).
    [Crossref]
  20. B. Sturman, P. Mathey, and H. R. Jauslin, “Slowdown and speedup of light pulses using the self-compensating photorefractive response,” J. Opt. Soc. Am. B 28(2), 347–351 (2011).
    [Crossref]

2019 (1)

2014 (1)

2011 (1)

2010 (1)

W. Horn, J. V. Bassewitz, and C. Denz, “Slow and fast light in photorefractive SBN:60,” J. Opt. 12(10), 104011 (2010).
[Crossref]

2008 (4)

J. Li, T. P. White, L. O’Faolain, A. G. Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16(9), 6227–6232 (2008).
[Crossref]

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
[Crossref]

L. Thévenaz, “Slow and fast light in optical fibres,” Nat. Photonics 2(8), 474–481 (2008).
[Crossref]

S. Residori, U. Bortolozzo, and J. Huignard, “Slow and fast light in liquid crystal light valves,” Phys. Rev. Lett. 100(20), 203603 (2008).
[Crossref]

2007 (1)

2005 (3)

J. E. Sharping, Y. Okawachi, and A. L. Gaeta, “Wide bandwidth slow light using a raman fiber amplifier,” Opt. Express 13(16), 6092–6098 (2005).
[Crossref]

R. S. Tucker, P. C. Ku, and C. J. C. Hasnain, “Slow-light optical buffers: capabilities and fundamental limitations,” J. Lightwave Technol. 23(12), 4046–4066 (2005).
[Crossref]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref]

2004 (1)

A. Shumelyuk, K. Shcherbin, S. Odoulov, B. Sturman, E. Podivilov, and K. Buse, “Slowing down of light in photorefractive crystals with beam intensity coupling reduced to zero,” Phys. Rev. Lett. 93(24), 243604 (2004).
[Crossref]

2003 (1)

E. Podivilov, B. Sturman, A. Shumelyuk, and S. Odoulov, “Light pulse slowing down up to 0.025 cm/s by photorefractive two-wave coupling,” Phys. Rev. Lett. 91(8), 083902 (2003).
[Crossref]

1999 (1)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

1997 (1)

K. Buse, “Light-induced charge transport processes in photorefractive crystals i: Models and experimental methods,” Appl. Phys. B 64(3), 273–291 (1997).
[Crossref]

1993 (2)

M. Segev, D. Engin, A. Yariv, and G. C. Valley, “Temporal evolution of fanning in photorefractive materials,” Opt. Lett. 18(12), 956–958 (1993).
[Crossref]

S. Residori, P. Ramazza, and M. Zhao, “Dynamics of beam fanning in cu-doped knsbn,” Opt. Commun. 102(1-2), 100–104 (1993).
[Crossref]

1986 (1)

G. Salamo, M. Miller, W. Clark, G. Wood, and E. Sharp, “Strontium barium niobate as a self-pumped phase conjugator,” Opt. Commun. 59(5-6), 417–422 (1986).
[Crossref]

Baba, T.

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
[Crossref]

Bach, T.

Bassewitz, J. V.

W. Horn, J. V. Bassewitz, and C. Denz, “Slow and fast light in photorefractive SBN:60,” J. Opt. 12(10), 104011 (2010).
[Crossref]

Behroozi, C. H.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

Bigelow, M. S.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref]

Bortolozzo, U.

S. Residori, U. Bortolozzo, and J. Huignard, “Slow and fast light in liquid crystal light valves,” Phys. Rev. Lett. 100(20), 203603 (2008).
[Crossref]

Bouldja, N.

Boyd, R. W.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref]

Buse, K.

A. Shumelyuk, K. Shcherbin, S. Odoulov, B. Sturman, E. Podivilov, and K. Buse, “Slowing down of light in photorefractive crystals with beam intensity coupling reduced to zero,” Phys. Rev. Lett. 93(24), 243604 (2004).
[Crossref]

K. Buse, “Light-induced charge transport processes in photorefractive crystals i: Models and experimental methods,” Appl. Phys. B 64(3), 273–291 (1997).
[Crossref]

Clark, W.

G. Salamo, M. Miller, W. Clark, G. Wood, and E. Sharp, “Strontium barium niobate as a self-pumped phase conjugator,” Opt. Commun. 59(5-6), 417–422 (1986).
[Crossref]

Denz, C.

W. Horn, J. V. Bassewitz, and C. Denz, “Slow and fast light in photorefractive SBN:60,” J. Opt. 12(10), 104011 (2010).
[Crossref]

Dutton, Z.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

Engin, D.

Gadret, G.

Gaeta, A. L.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref]

J. E. Sharping, Y. Okawachi, and A. L. Gaeta, “Wide bandwidth slow light using a raman fiber amplifier,” Opt. Express 13(16), 6092–6098 (2005).
[Crossref]

Gauthier, D. J.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref]

Grabar, A.

Grabar, A. A.

Günter, P.

Harris, S. E.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

Hasnain, C. J. C.

Hau, L. V.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

Horn, W.

W. Horn, J. V. Bassewitz, and C. Denz, “Slow and fast light in photorefractive SBN:60,” J. Opt. 12(10), 104011 (2010).
[Crossref]

Huignard, J.

S. Residori, U. Bortolozzo, and J. Huignard, “Slow and fast light in liquid crystal light valves,” Phys. Rev. Lett. 100(20), 203603 (2008).
[Crossref]

Iglesias, A. G.

Jauslin, H. R.

Jazbinšek, M.

Krauss, T. F.

Ku, P. C.

Li, J.

Lorentz, H.

H. Lorentz, The theory of electrons and its applications to the phenomena of light and radiant heat (Columbia University, New York, 1909).

Mathey, P.

Miller, M.

G. Salamo, M. Miller, W. Clark, G. Wood, and E. Sharp, “Strontium barium niobate as a self-pumped phase conjugator,” Opt. Commun. 59(5-6), 417–422 (1986).
[Crossref]

Montemezzani, G.

O’Faolain, L.

Odoulov, S.

A. Shumelyuk, K. Shcherbin, S. Odoulov, B. Sturman, E. Podivilov, and K. Buse, “Slowing down of light in photorefractive crystals with beam intensity coupling reduced to zero,” Phys. Rev. Lett. 93(24), 243604 (2004).
[Crossref]

E. Podivilov, B. Sturman, A. Shumelyuk, and S. Odoulov, “Light pulse slowing down up to 0.025 cm/s by photorefractive two-wave coupling,” Phys. Rev. Lett. 91(8), 083902 (2003).
[Crossref]

Okawachi, Y.

J. E. Sharping, Y. Okawachi, and A. L. Gaeta, “Wide bandwidth slow light using a raman fiber amplifier,” Opt. Express 13(16), 6092–6098 (2005).
[Crossref]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref]

Podivilov, E.

A. Shumelyuk, K. Shcherbin, S. Odoulov, B. Sturman, E. Podivilov, and K. Buse, “Slowing down of light in photorefractive crystals with beam intensity coupling reduced to zero,” Phys. Rev. Lett. 93(24), 243604 (2004).
[Crossref]

E. Podivilov, B. Sturman, A. Shumelyuk, and S. Odoulov, “Light pulse slowing down up to 0.025 cm/s by photorefractive two-wave coupling,” Phys. Rev. Lett. 91(8), 083902 (2003).
[Crossref]

Ramazza, P.

S. Residori, P. Ramazza, and M. Zhao, “Dynamics of beam fanning in cu-doped knsbn,” Opt. Commun. 102(1-2), 100–104 (1993).
[Crossref]

Residori, S.

S. Residori, U. Bortolozzo, and J. Huignard, “Slow and fast light in liquid crystal light valves,” Phys. Rev. Lett. 100(20), 203603 (2008).
[Crossref]

S. Residori, P. Ramazza, and M. Zhao, “Dynamics of beam fanning in cu-doped knsbn,” Opt. Commun. 102(1-2), 100–104 (1993).
[Crossref]

Salamo, G.

G. Salamo, M. Miller, W. Clark, G. Wood, and E. Sharp, “Strontium barium niobate as a self-pumped phase conjugator,” Opt. Commun. 59(5-6), 417–422 (1986).
[Crossref]

Schweinsberg, A.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref]

Sciamanna, M.

Segev, M.

Sharp, E.

G. Salamo, M. Miller, W. Clark, G. Wood, and E. Sharp, “Strontium barium niobate as a self-pumped phase conjugator,” Opt. Commun. 59(5-6), 417–422 (1986).
[Crossref]

Sharping, J. E.

J. E. Sharping, Y. Okawachi, and A. L. Gaeta, “Wide bandwidth slow light using a raman fiber amplifier,” Opt. Express 13(16), 6092–6098 (2005).
[Crossref]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref]

Shcherbin, K.

A. Shumelyuk, K. Shcherbin, S. Odoulov, B. Sturman, E. Podivilov, and K. Buse, “Slowing down of light in photorefractive crystals with beam intensity coupling reduced to zero,” Phys. Rev. Lett. 93(24), 243604 (2004).
[Crossref]

Shumelyuk, A.

A. Shumelyuk, K. Shcherbin, S. Odoulov, B. Sturman, E. Podivilov, and K. Buse, “Slowing down of light in photorefractive crystals with beam intensity coupling reduced to zero,” Phys. Rev. Lett. 93(24), 243604 (2004).
[Crossref]

E. Podivilov, B. Sturman, A. Shumelyuk, and S. Odoulov, “Light pulse slowing down up to 0.025 cm/s by photorefractive two-wave coupling,” Phys. Rev. Lett. 91(8), 083902 (2003).
[Crossref]

Sturman, B.

B. Sturman, P. Mathey, and H. R. Jauslin, “Slowdown and speedup of light pulses using the self-compensating photorefractive response,” J. Opt. Soc. Am. B 28(2), 347–351 (2011).
[Crossref]

A. Shumelyuk, K. Shcherbin, S. Odoulov, B. Sturman, E. Podivilov, and K. Buse, “Slowing down of light in photorefractive crystals with beam intensity coupling reduced to zero,” Phys. Rev. Lett. 93(24), 243604 (2004).
[Crossref]

E. Podivilov, B. Sturman, A. Shumelyuk, and S. Odoulov, “Light pulse slowing down up to 0.025 cm/s by photorefractive two-wave coupling,” Phys. Rev. Lett. 91(8), 083902 (2003).
[Crossref]

Thévenaz, L.

L. Thévenaz, “Slow and fast light in optical fibres,” Nat. Photonics 2(8), 474–481 (2008).
[Crossref]

Tucker, R. S.

Valley, G. C.

Vysochanskii, Y. M.

White, T. P.

Wolfersberger, D.

Wood, G.

G. Salamo, M. Miller, W. Clark, G. Wood, and E. Sharp, “Strontium barium niobate as a self-pumped phase conjugator,” Opt. Commun. 59(5-6), 417–422 (1986).
[Crossref]

Yariv, A.

Zhao, M.

S. Residori, P. Ramazza, and M. Zhao, “Dynamics of beam fanning in cu-doped knsbn,” Opt. Commun. 102(1-2), 100–104 (1993).
[Crossref]

Zhu, Z.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref]

Appl. Phys. B (1)

K. Buse, “Light-induced charge transport processes in photorefractive crystals i: Models and experimental methods,” Appl. Phys. B 64(3), 273–291 (1997).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. (1)

W. Horn, J. V. Bassewitz, and C. Denz, “Slow and fast light in photorefractive SBN:60,” J. Opt. 12(10), 104011 (2010).
[Crossref]

J. Opt. Soc. Am. B (3)

Nat. Photonics (2)

L. Thévenaz, “Slow and fast light in optical fibres,” Nat. Photonics 2(8), 474–481 (2008).
[Crossref]

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
[Crossref]

Nature (1)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

Opt. Commun. (2)

G. Salamo, M. Miller, W. Clark, G. Wood, and E. Sharp, “Strontium barium niobate as a self-pumped phase conjugator,” Opt. Commun. 59(5-6), 417–422 (1986).
[Crossref]

S. Residori, P. Ramazza, and M. Zhao, “Dynamics of beam fanning in cu-doped knsbn,” Opt. Commun. 102(1-2), 100–104 (1993).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. Lett. (4)

A. Shumelyuk, K. Shcherbin, S. Odoulov, B. Sturman, E. Podivilov, and K. Buse, “Slowing down of light in photorefractive crystals with beam intensity coupling reduced to zero,” Phys. Rev. Lett. 93(24), 243604 (2004).
[Crossref]

S. Residori, U. Bortolozzo, and J. Huignard, “Slow and fast light in liquid crystal light valves,” Phys. Rev. Lett. 100(20), 203603 (2008).
[Crossref]

E. Podivilov, B. Sturman, A. Shumelyuk, and S. Odoulov, “Light pulse slowing down up to 0.025 cm/s by photorefractive two-wave coupling,” Phys. Rev. Lett. 91(8), 083902 (2003).
[Crossref]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref]

Other (1)

H. Lorentz, The theory of electrons and its applications to the phenomena of light and radiant heat (Columbia University, New York, 1909).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. a)Experimental setup of slow light using beam fanning at two wavelengths $638~nm$ and $1064~nm$. ; A is the attenuator, EOM is the electrooptic modulator, $D_{1,2}$ are the detectors and d is the photorefractive SPS crystal thickness. b) The beam fanning shape at the crystal output.
Fig. 2.
Fig. 2. (a) Experimental depletion factor D in the visible ($\color{blue}{\blacktriangle}$) and infrared ($\color{red}{\blacktriangledown}$) wavelengths according to the input intensities. (b) Theoretical time delay ($\color{red}{\bullet}$) calculated with Eq. (4) for different depletion factors D, $\tau =10~ms$ and $b=0.9$, ($\color{blue}{\blacksquare}$) at $\lambda =638~~nm$. (c) Temporal envelopes of the input (green line) and transmitted (black line) pulses calculated with Eq. (4) for $t_{0}$ full width at half maximum of order of $0.02~s$
Fig. 3.
Fig. 3. Experimental temporal envelopes of the normalized input pulse (black line) and output pulse (red line) as a function of the time for $\lambda =638~~nm$ and input pulse intensity $I_{0}=0.6~~W/cm^2$ ($a_{i}$) and $\lambda =1064~~nm$ with $I_{0}=1.2~~W/cm^2$ ($b_{i}$) with $i=1,2,3$. $(a_{1})$ and $(b_{1})$ Input pulses durations $t_{0}= 600~\mu s$ and $2.5~ms$ shorter than the response time of the crystal leading to deceleration given by $\Delta \tau =113~\mu s$ and $\Delta \tau =500~\mu s$. $(a_{2})$ and $(b_{2})$ Input pulses durations $t_{0}= 15.2~m s$ and $13~ms$ around the response time of the crystal leading to deceleration given by $\Delta \tau =3.2~m s$ and $\Delta \tau =2.3~m s$. $(a_{3})$ and $(b_{3})$ Input pulses durations $t_{0}= 150~ms$ and $42~ms$ greater than the response time of the crystal leading to deceleration given by $\Delta \tau =20~ms$ and $\Delta \tau =4.4~m s$.
Fig. 4.
Fig. 4. Performances of slow light as function of the input pulse durations for laser beam at $\lambda =638~~nm$, input pulse intensity $I_{0}=0.6~~W/cm^2$ and $\tau =10~ms$ (a,b,c) and for laser beam at $\lambda =1064~~nm$ with $I_{0}=1.2~~W/cm^2$ and $\tau =13~ms$ (d,e,f). (a) and (d) Time delay. (b) and (e) Ratio between the output and input pulse durations. (c) and (f) Fractional delay. Dotted green line present the response time position.
Fig. 5.
Fig. 5. Temporal envelopes of the normalized input pulse and output pulse as function of the time.(a) Theoretical advancement of an input pulse of duration $t_{0} = 500~\mu s$ by using Eq. (2), $\Delta \tau -10~~\mu s$ and $-25~~\mu s$ are obtained respectively for $D=-0.64$ and $-0.91$. (b) Experimental pulse light advancement at $1064~nm$ when the SPS is rotated through $180^\circ$, $t_{0} = 200~\mu s$ with $\Delta \tau =-10~\mu s$.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Γ = Γ 0 ( 1 e t / τ )
D = I 0 I t I 0 = 1 e G d
I ω ( d ) = I ω ( 0 ) e G d f = I ω ( 0 ) ( 1 D ) f
I ( d , t ) = I ω ( 0 ) ( 1 D ) f e i ω t d ω

Metrics