Abstract

The temperature-dependent polarized photoluminescence spectra of nonpolar ZnO samples were investigated by 263 nm laser. The degree of polarization (DOP) of m-plane quantum wells changes from 76% at 10 K to 40% at 300 K, which is much higher than that of epilayer. The strong anisotropy was presumably attributed to the enhanced confinement effect of a one-dimension confinement structure formed by the intersection of quantum well and basal stacking fault. The polarization of laser beam also has an influence on the DOP. It is assumed that the luminescence polarization should be affected not only by the in-plane strains but also the microstructural defects, which do modify the electronic band structure.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Strain dependent anisotropy in photoluminescence of heteroepitaxial nonpolar a-plane ZnO layers

Jingwen Chen, Jun Zhang, Jiangnan Dai, Feng Wu, Shuai Wang, Hanling Long, Renli Liang, Jin Xu, Changqing Chen, Zhiwu Tang, Yunbin He, Mingkai Li, and Zhechuan Feng
Opt. Mater. Express 7(11) 3944-3951 (2017)

Synthesis and characterization of ZnO/ZnMgO multiple quantum wells by molecular beam epitaxy

Hsiang-Chen Wang, Che-Hao Liao, Yu-Lun Chueh, Chih-Chung Lai, Li-His Chen, and Raymond Chien-Chao Tsiang
Opt. Mater. Express 3(2) 237-247 (2013)

References

  • View by:
  • |
  • |
  • |

  1. J. Dai, J. Chen, X. Li, J. Zhang, H. Long, H. Kuo, Y. He, and C. Chen, “Ultraviolet polarized light emitting and detecting dual-functioning device based on nonpolar n-ZnO/i-ZnO/p-AlGaN heterojunction,” Opt. Lett. 44(8), 1944 (2019).
    [Crossref]
  2. H. Matsui and H. Tabata, “Lattice strains and polarized luminescence in homoepitaxial growth of a-plane ZnO,” Appl. Phys. Lett. 101(23), 231901 (2012).
    [Crossref]
  3. M. J. Mohammed Ali, J. M. Chauveau, and T. Bretagnon, “Anisotropic optical properties of a homoepitaxial (Zn, Mg)O/ZnO quantum well grown on a-plane ZnO substrate,” Phys. Status Solidi C 13(7-9), 598–601 (2016).
    [Crossref]
  4. H. R. Chen, C. Y. Tsai, Y. C. Huang, C. C. Kuo, H. C. Hsu, and W. F. Hsieh, “Optical properties of one- and two-dimensional excitons in m-plane ZnO/MgZnO multiple quantum wells,” J. Phys. D: Appl. Phys. 49(9), 095105 (2016).
    [Crossref]
  5. H. Matsui, N. Hasuike, H. Harima, and H. Tabata, “Engineering of optical polarization based on electronic band structures of A-plane ZnO layers under biaxial strains,” J. Appl. Phys. 116(11), 113505 (2014).
    [Crossref]
  6. J.-M. Chauveau, M. Teisseire, H. Kim-Chauveau, C. Morhain, C. Deparis, and B. Vinter, “Anisotropic strain effects on the photoluminescence emission from heteroepitaxial and homoepitaxial nonpolar (Zn,Mg)O/ZnO quantum wells,” Appl. Phys. Lett. 109, 102420 (2011).
    [Crossref]
  7. C.-M. Lai, Y.-E. Huang, K.-Y. Kou, C.-H. Chen, L.-W. Tu, and S.-W. Feng, “Experimental and theoretical study of polarized photoluminescence caused by anisotropic strain relaxation in nonpolar a-plane textured ZnO grown by a low-pressure chemical vapor deposition,” Appl. Phys. Lett. 107(2), 022110 (2015).
    [Crossref]
  8. H. Matsui and H. Tabata, “In-plane anisotropy of polarized photoluminescence in M-plane (10-10) ZnO and MgZnO/ZnO multiple quantum wells,” Appl. Phys. Lett. 94(16), 161907 (2009).
    [Crossref]
  9. H. H. Wang, J. S. Tian, C. Y. Chen, H. H. Huang, Y. C. Yeh, P. Y. Deng, L. Chang, Y. H. Chu, Y. R. Wu, and J. H. He, “The effect of tensile strain on optical anisotropy and exciton of m-plane ZnO,” IEEE Photonics J. 7, 6800708 (2015).
    [Crossref]
  10. C.-Y. Chen, J.-H. Huang, K.-Y. Lai, Y.-J. Jen, C.-P. Liu, and J.-H. He, “Giant optical anisotropy of oblique-aligned ZnO nanowire arrays,” Opt. Express 20(3), 2015 (2012).
    [Crossref]
  11. G. Tabares, A. Hierro, B. Vinter, and J.-M. Chauveau, “Polarization-sensitive Schottky photodiodes based on a-plane ZnO/ZnMgO multiple quantum-wells,” Appl. Phys. Lett. 99(7), 071108 (2011).
    [Crossref]
  12. J. Gao, Y. Zhang, Y. Sun, and Q. Wu, “Ultra-wide band and multifunctional polarization converter based on dielectric metamaterial,” Materials 12(23), 3857 (2019).
    [Crossref]
  13. S. Jiang, S. Gholam-Mirzaei, E. Crites, J. E. Beetar, M. Singh, R. Lu, M. Chini, and C. D. Lin, “Crystal symmetry and polarization of high-order harmonics in ZnO,” J. Phys. B: At., Mol. Opt. Phys. 52(22), 225601 (2019).
    [Crossref]
  14. P. Shankar and J. B. B. Rayappan, “Room temperature ethanol sensing properties of ZnO nanorods prepared using an electrospinning technique,” J. Mater. Chem. C 5(41), 10869–10880 (2017).
    [Crossref]
  15. D.-R. Hang, S. E. Islam, K. H. Sharma, C. Chen, C.-T. Liang, and M. M. C. Chou, “Optical characteristics of nonpolar a-plane ZnO thin film on (010) LiGaO2 substrate,” Semicond. Sci. Technol. 29(8), 085004 (2014).
    [Crossref]
  16. J. Chen, J. Zhang, J. Dai, F. Wu, S. Wang, H. Long, R. Liang, J. Xu, C. Chen, Z. Tang, Y. He, M. Li, and Z. Feng, “Strain dependent anisotropy in photoluminescence of heteroepitaxial nonpolar a-plane ZnO layers,” Opt. Mater. Express 7(11), 3944 (2017).
    [Crossref]
  17. A. Kato, S. One, M. Ikeda, R. Tajima, Y. Adachi, and K. Yasui, “Polarization properties of nonpolar ZnO films grown on R-sapphire substrates using high-temperature H2O generated by a catalytic reaction,” Thin Solid Films 644, 29–32 (2017).
    [Crossref]
  18. D. Gerthsen, D. Litvinov, T. Gruber, C. Kirchner, and A. Waag, “Origin and consequences of a high stacking fault density in epitaxial ZnO layers,” Appl. Phys. Lett. 81(21), 3972–3974 (2002).
    [Crossref]
  19. A. Ievtushenko, V. Karpyna, J. Eriksson, I. Tsiaoussis, I. Shtepliuk, G. Lashkarev, R. Yakimova, and V. Khranovskyy, “Effect of Ag doping on the structural, electrical and optical properties of ZnO grown by MOCVD at different substrate temperatures,” Superlattices Microstruct. 117, 121–131 (2018).
    [Crossref]
  20. W.-H. Lin, U. Jahn, H. T. Grahn, L. Chang, M. M. C. Chou, and J.-J. Wu, “Spectral and spatial luminescence distribution of m-plane ZnO epitaxial films containing stacking faults: A cathodoluminescence study,” Appl. Phys. Express 6(6), 061101 (2013).
    [Crossref]
  21. J. W. Lee, J.-H. Kim, S. K. Han, S.-K. Hong, J. Y. Lee, S. I. Hong, and T. Yao, “Interface and defect structures in ZnO films on m-plane sapphire substrates,” J. Cryst. Growth 312(2), 238–244 (2010).
    [Crossref]
  22. T. Yan, C.-Y. J. Lu, L. Chang, M. M. C. Chou, K. H. Ploog, C.-M. Chiang, and N. Ye, “Epitaxial growth of nonpolar m-plane ZnO epilayers and ZnO/Zn0.55Mg0.45O multiple quantum wells on a LiGaO2 (100) substrate,” RSC Adv. 5(127), 104798–104805 (2015).
    [Crossref]
  23. M. M. C. Chou, D.-R. Hang, C. L. Chen, and Y.-H. Liao, “Epitaxial growth of nonpolar m-plane ZnO (10-10) on large-size LiGaO2 (100) substrates,” Thin Solid Films 519(11), 3627–3631 (2011).
    [Crossref]
  24. T. Huang, S. Zhou, H. Teng, H. Lin, J. Wang, P. Han, and R. Zhang, “Growth and characterization of ZnO films on (001), (100) and (010) LiGaO2 substrates,” J. Cryst. Growth 310(13), 3144–3148 (2008).
    [Crossref]
  25. L. Trinkler, A. Trukhin, B. Berzina, V. Korsaks, P. Ščajev, R. Nedzinskas, S. Tumėnas, and M. M. C. Chou, “Luminescence properties of LiGaO2 crystal,” Opt. Mater. 69, 449–459 (2017).
    [Crossref]
  26. F. Xian, G. Zheng, L. Xu, W. Kuang, S. Pei, Z. Cao, J. Li, and M. Lai, “Temperature and excitation power dependence of photoluminescence of ZnO nanorods synthesized by pattern assisted hydrothermal method,” J. Alloys Compd. 710, 695–701 (2017).
    [Crossref]
  27. E. Przezdziecka, E. Guziewicz, and B. S. Witkowski, “Photoluminescence investigation of the carrier recombination processes in N-doped and undoped ZnO ALD films grown at low temperature,” J. Lumin. 198, 68–76 (2018).
    [Crossref]
  28. T.-H. Huang, W.-H. Lin, T. Yan, J.-J. Wu, L. Chang, M. M. C. Chou, U. Jahn, and K. H. Ploog, “Strain relaxation, defects and cathodoluminescence of m-plane ZnO and Zn0.8Mg0.2O epilayers grown on γ-LiAlO2 substrate,” ECS J. Solid State Sci. Technol. 2, P338 (2013).
    [Crossref]
  29. Y. Yan, G. M. Dalpian, M. M. Al-Jassim, and S.-H. Wei, “Energetics and electronic structure of stacking faults in ZnO,” Phys. Rev. B 70(19), 193206 (2004).
    [Crossref]
  30. V. Khranovskyy, M. Sendova, B. Hosterman, N. McGinnis, I. Shtepliuk, and R. Yakimova, “Temperature dependent study of basal plane stacking faults in Ag:ZnO nanorods by Raman and photoluminescence spectroscopy,” Mater. Sci. Semicond. Process. 69, 62–67 (2017).
    [Crossref]
  31. I. Gorczyca, K. Skrobas, N. E. Christensen, J. Sajkowski, M. Stachowicz, H. Teisseyre, and A. Kozanecki, “ZnO/(Zn)MgO polar and nonpolar superlattices,” J. Appl. Phys. 125(13), 135702 (2019).
    [Crossref]
  32. X. Q. Gu, H. P. He, L. P. Zhu, Z. Z. Ye, K. F. Huo, and P. K. Chu, “Dependence of photoluminescence of ZnO/Zn0.85Mg0.15O multi-quantum wells on barrier width,” Phys. Lett. A 373(36), 3281–3284 (2009).
    [Crossref]
  33. M. Al-Suleiman, A. El-Shaer, A. Bakin, H. H. Wehmann, and A. Waag, “Optical investigations and exciton localization in high quality Zn1-xMgxO/ZnO single quantum wells,” Appl. Phys. Lett. 91(8), 081911 (2007).
    [Crossref]
  34. D. Xu, P. Zapol, G. B. Stephenson, and C. Thompson, “Kinetic Monte Carlo simulations of GaN homoepitaxy on c-and m-plane surfaces,” J. Chem. Phys. 146(14), 144702 (2017).
    [Crossref]
  35. T. Zhou and Z. Zhong, “Optical properties demonstrating strong coupling of compactly arranged Ge quantum dots,” Opt. Express 27(16), 22173 (2019).
    [Crossref]
  36. G. Coli and K. K. Bajaj, “Excitonic transitions in ZnO/MgZnO quantum well heterostructures,” Appl. Phys. Lett. 78(19), 2861–2863 (2001).
    [Crossref]
  37. T. S. Ko, T. C. Lu, L. F. Zhuo, W. L. Wang, M. H. Liang, H. C. Kuo, S. C. Wang, L. Chang, and D. Y. Lin, “Optical characteristics of a-plane ZnO/Zn0.8Mg0.2O multiple quantum wells grown by pulsed laser deposition,” J. Appl. Phys. 108(7), 073504 (2010).
    [Crossref]
  38. B.-H. Lin, Y.-C. Wu, H.-Y. Chen, S.-C. Tseng, J.-X. Wu, X.-Y. Li, B.-Y. Chen, C.-Y. Lee, G.-C. Yin, S.-H. Chang, M.-T. Tang, and W.-F. Hsieh, “Peculiar near-band-edge emission of polarization-dependent XEOL from a non-polar a-plane ZnO wafer,” Opt. Express 26(3), 2731 (2018).
    [Crossref]
  39. D. C. Reynolds, D. C. Look, B. Jogai, C. W. Litton, G. Cantwell, and W. C. Harsch, “Valence-band ordering of ZnO,” Phys. Rev. B 60(4), 2340–2344 (1999).
    [Crossref]
  40. Y. Zhang, F. Qin, J. Zhu, X. Chen, J. Li, D. Tang, Y. Yang, F. Ren, C. Xu, S. Gu, R. Zhang, Y. Zheng, and J. Ye, “Low-threshold ultraviolet stimulated emissions from large-sized single crystalline ZnO transferable membranes,” Opt. Express 26(24), 31965 (2018).
    [Crossref]

2019 (5)

J. Dai, J. Chen, X. Li, J. Zhang, H. Long, H. Kuo, Y. He, and C. Chen, “Ultraviolet polarized light emitting and detecting dual-functioning device based on nonpolar n-ZnO/i-ZnO/p-AlGaN heterojunction,” Opt. Lett. 44(8), 1944 (2019).
[Crossref]

J. Gao, Y. Zhang, Y. Sun, and Q. Wu, “Ultra-wide band and multifunctional polarization converter based on dielectric metamaterial,” Materials 12(23), 3857 (2019).
[Crossref]

S. Jiang, S. Gholam-Mirzaei, E. Crites, J. E. Beetar, M. Singh, R. Lu, M. Chini, and C. D. Lin, “Crystal symmetry and polarization of high-order harmonics in ZnO,” J. Phys. B: At., Mol. Opt. Phys. 52(22), 225601 (2019).
[Crossref]

I. Gorczyca, K. Skrobas, N. E. Christensen, J. Sajkowski, M. Stachowicz, H. Teisseyre, and A. Kozanecki, “ZnO/(Zn)MgO polar and nonpolar superlattices,” J. Appl. Phys. 125(13), 135702 (2019).
[Crossref]

T. Zhou and Z. Zhong, “Optical properties demonstrating strong coupling of compactly arranged Ge quantum dots,” Opt. Express 27(16), 22173 (2019).
[Crossref]

2018 (4)

B.-H. Lin, Y.-C. Wu, H.-Y. Chen, S.-C. Tseng, J.-X. Wu, X.-Y. Li, B.-Y. Chen, C.-Y. Lee, G.-C. Yin, S.-H. Chang, M.-T. Tang, and W.-F. Hsieh, “Peculiar near-band-edge emission of polarization-dependent XEOL from a non-polar a-plane ZnO wafer,” Opt. Express 26(3), 2731 (2018).
[Crossref]

A. Ievtushenko, V. Karpyna, J. Eriksson, I. Tsiaoussis, I. Shtepliuk, G. Lashkarev, R. Yakimova, and V. Khranovskyy, “Effect of Ag doping on the structural, electrical and optical properties of ZnO grown by MOCVD at different substrate temperatures,” Superlattices Microstruct. 117, 121–131 (2018).
[Crossref]

E. Przezdziecka, E. Guziewicz, and B. S. Witkowski, “Photoluminescence investigation of the carrier recombination processes in N-doped and undoped ZnO ALD films grown at low temperature,” J. Lumin. 198, 68–76 (2018).
[Crossref]

Y. Zhang, F. Qin, J. Zhu, X. Chen, J. Li, D. Tang, Y. Yang, F. Ren, C. Xu, S. Gu, R. Zhang, Y. Zheng, and J. Ye, “Low-threshold ultraviolet stimulated emissions from large-sized single crystalline ZnO transferable membranes,” Opt. Express 26(24), 31965 (2018).
[Crossref]

2017 (7)

L. Trinkler, A. Trukhin, B. Berzina, V. Korsaks, P. Ščajev, R. Nedzinskas, S. Tumėnas, and M. M. C. Chou, “Luminescence properties of LiGaO2 crystal,” Opt. Mater. 69, 449–459 (2017).
[Crossref]

F. Xian, G. Zheng, L. Xu, W. Kuang, S. Pei, Z. Cao, J. Li, and M. Lai, “Temperature and excitation power dependence of photoluminescence of ZnO nanorods synthesized by pattern assisted hydrothermal method,” J. Alloys Compd. 710, 695–701 (2017).
[Crossref]

V. Khranovskyy, M. Sendova, B. Hosterman, N. McGinnis, I. Shtepliuk, and R. Yakimova, “Temperature dependent study of basal plane stacking faults in Ag:ZnO nanorods by Raman and photoluminescence spectroscopy,” Mater. Sci. Semicond. Process. 69, 62–67 (2017).
[Crossref]

D. Xu, P. Zapol, G. B. Stephenson, and C. Thompson, “Kinetic Monte Carlo simulations of GaN homoepitaxy on c-and m-plane surfaces,” J. Chem. Phys. 146(14), 144702 (2017).
[Crossref]

P. Shankar and J. B. B. Rayappan, “Room temperature ethanol sensing properties of ZnO nanorods prepared using an electrospinning technique,” J. Mater. Chem. C 5(41), 10869–10880 (2017).
[Crossref]

J. Chen, J. Zhang, J. Dai, F. Wu, S. Wang, H. Long, R. Liang, J. Xu, C. Chen, Z. Tang, Y. He, M. Li, and Z. Feng, “Strain dependent anisotropy in photoluminescence of heteroepitaxial nonpolar a-plane ZnO layers,” Opt. Mater. Express 7(11), 3944 (2017).
[Crossref]

A. Kato, S. One, M. Ikeda, R. Tajima, Y. Adachi, and K. Yasui, “Polarization properties of nonpolar ZnO films grown on R-sapphire substrates using high-temperature H2O generated by a catalytic reaction,” Thin Solid Films 644, 29–32 (2017).
[Crossref]

2016 (2)

M. J. Mohammed Ali, J. M. Chauveau, and T. Bretagnon, “Anisotropic optical properties of a homoepitaxial (Zn, Mg)O/ZnO quantum well grown on a-plane ZnO substrate,” Phys. Status Solidi C 13(7-9), 598–601 (2016).
[Crossref]

H. R. Chen, C. Y. Tsai, Y. C. Huang, C. C. Kuo, H. C. Hsu, and W. F. Hsieh, “Optical properties of one- and two-dimensional excitons in m-plane ZnO/MgZnO multiple quantum wells,” J. Phys. D: Appl. Phys. 49(9), 095105 (2016).
[Crossref]

2015 (3)

C.-M. Lai, Y.-E. Huang, K.-Y. Kou, C.-H. Chen, L.-W. Tu, and S.-W. Feng, “Experimental and theoretical study of polarized photoluminescence caused by anisotropic strain relaxation in nonpolar a-plane textured ZnO grown by a low-pressure chemical vapor deposition,” Appl. Phys. Lett. 107(2), 022110 (2015).
[Crossref]

H. H. Wang, J. S. Tian, C. Y. Chen, H. H. Huang, Y. C. Yeh, P. Y. Deng, L. Chang, Y. H. Chu, Y. R. Wu, and J. H. He, “The effect of tensile strain on optical anisotropy and exciton of m-plane ZnO,” IEEE Photonics J. 7, 6800708 (2015).
[Crossref]

T. Yan, C.-Y. J. Lu, L. Chang, M. M. C. Chou, K. H. Ploog, C.-M. Chiang, and N. Ye, “Epitaxial growth of nonpolar m-plane ZnO epilayers and ZnO/Zn0.55Mg0.45O multiple quantum wells on a LiGaO2 (100) substrate,” RSC Adv. 5(127), 104798–104805 (2015).
[Crossref]

2014 (2)

D.-R. Hang, S. E. Islam, K. H. Sharma, C. Chen, C.-T. Liang, and M. M. C. Chou, “Optical characteristics of nonpolar a-plane ZnO thin film on (010) LiGaO2 substrate,” Semicond. Sci. Technol. 29(8), 085004 (2014).
[Crossref]

H. Matsui, N. Hasuike, H. Harima, and H. Tabata, “Engineering of optical polarization based on electronic band structures of A-plane ZnO layers under biaxial strains,” J. Appl. Phys. 116(11), 113505 (2014).
[Crossref]

2013 (2)

W.-H. Lin, U. Jahn, H. T. Grahn, L. Chang, M. M. C. Chou, and J.-J. Wu, “Spectral and spatial luminescence distribution of m-plane ZnO epitaxial films containing stacking faults: A cathodoluminescence study,” Appl. Phys. Express 6(6), 061101 (2013).
[Crossref]

T.-H. Huang, W.-H. Lin, T. Yan, J.-J. Wu, L. Chang, M. M. C. Chou, U. Jahn, and K. H. Ploog, “Strain relaxation, defects and cathodoluminescence of m-plane ZnO and Zn0.8Mg0.2O epilayers grown on γ-LiAlO2 substrate,” ECS J. Solid State Sci. Technol. 2, P338 (2013).
[Crossref]

2012 (2)

H. Matsui and H. Tabata, “Lattice strains and polarized luminescence in homoepitaxial growth of a-plane ZnO,” Appl. Phys. Lett. 101(23), 231901 (2012).
[Crossref]

C.-Y. Chen, J.-H. Huang, K.-Y. Lai, Y.-J. Jen, C.-P. Liu, and J.-H. He, “Giant optical anisotropy of oblique-aligned ZnO nanowire arrays,” Opt. Express 20(3), 2015 (2012).
[Crossref]

2011 (3)

G. Tabares, A. Hierro, B. Vinter, and J.-M. Chauveau, “Polarization-sensitive Schottky photodiodes based on a-plane ZnO/ZnMgO multiple quantum-wells,” Appl. Phys. Lett. 99(7), 071108 (2011).
[Crossref]

J.-M. Chauveau, M. Teisseire, H. Kim-Chauveau, C. Morhain, C. Deparis, and B. Vinter, “Anisotropic strain effects on the photoluminescence emission from heteroepitaxial and homoepitaxial nonpolar (Zn,Mg)O/ZnO quantum wells,” Appl. Phys. Lett. 109, 102420 (2011).
[Crossref]

M. M. C. Chou, D.-R. Hang, C. L. Chen, and Y.-H. Liao, “Epitaxial growth of nonpolar m-plane ZnO (10-10) on large-size LiGaO2 (100) substrates,” Thin Solid Films 519(11), 3627–3631 (2011).
[Crossref]

2010 (2)

J. W. Lee, J.-H. Kim, S. K. Han, S.-K. Hong, J. Y. Lee, S. I. Hong, and T. Yao, “Interface and defect structures in ZnO films on m-plane sapphire substrates,” J. Cryst. Growth 312(2), 238–244 (2010).
[Crossref]

T. S. Ko, T. C. Lu, L. F. Zhuo, W. L. Wang, M. H. Liang, H. C. Kuo, S. C. Wang, L. Chang, and D. Y. Lin, “Optical characteristics of a-plane ZnO/Zn0.8Mg0.2O multiple quantum wells grown by pulsed laser deposition,” J. Appl. Phys. 108(7), 073504 (2010).
[Crossref]

2009 (2)

X. Q. Gu, H. P. He, L. P. Zhu, Z. Z. Ye, K. F. Huo, and P. K. Chu, “Dependence of photoluminescence of ZnO/Zn0.85Mg0.15O multi-quantum wells on barrier width,” Phys. Lett. A 373(36), 3281–3284 (2009).
[Crossref]

H. Matsui and H. Tabata, “In-plane anisotropy of polarized photoluminescence in M-plane (10-10) ZnO and MgZnO/ZnO multiple quantum wells,” Appl. Phys. Lett. 94(16), 161907 (2009).
[Crossref]

2008 (1)

T. Huang, S. Zhou, H. Teng, H. Lin, J. Wang, P. Han, and R. Zhang, “Growth and characterization of ZnO films on (001), (100) and (010) LiGaO2 substrates,” J. Cryst. Growth 310(13), 3144–3148 (2008).
[Crossref]

2007 (1)

M. Al-Suleiman, A. El-Shaer, A. Bakin, H. H. Wehmann, and A. Waag, “Optical investigations and exciton localization in high quality Zn1-xMgxO/ZnO single quantum wells,” Appl. Phys. Lett. 91(8), 081911 (2007).
[Crossref]

2004 (1)

Y. Yan, G. M. Dalpian, M. M. Al-Jassim, and S.-H. Wei, “Energetics and electronic structure of stacking faults in ZnO,” Phys. Rev. B 70(19), 193206 (2004).
[Crossref]

2002 (1)

D. Gerthsen, D. Litvinov, T. Gruber, C. Kirchner, and A. Waag, “Origin and consequences of a high stacking fault density in epitaxial ZnO layers,” Appl. Phys. Lett. 81(21), 3972–3974 (2002).
[Crossref]

2001 (1)

G. Coli and K. K. Bajaj, “Excitonic transitions in ZnO/MgZnO quantum well heterostructures,” Appl. Phys. Lett. 78(19), 2861–2863 (2001).
[Crossref]

1999 (1)

D. C. Reynolds, D. C. Look, B. Jogai, C. W. Litton, G. Cantwell, and W. C. Harsch, “Valence-band ordering of ZnO,” Phys. Rev. B 60(4), 2340–2344 (1999).
[Crossref]

Adachi, Y.

A. Kato, S. One, M. Ikeda, R. Tajima, Y. Adachi, and K. Yasui, “Polarization properties of nonpolar ZnO films grown on R-sapphire substrates using high-temperature H2O generated by a catalytic reaction,” Thin Solid Films 644, 29–32 (2017).
[Crossref]

Al-Jassim, M. M.

Y. Yan, G. M. Dalpian, M. M. Al-Jassim, and S.-H. Wei, “Energetics and electronic structure of stacking faults in ZnO,” Phys. Rev. B 70(19), 193206 (2004).
[Crossref]

Al-Suleiman, M.

M. Al-Suleiman, A. El-Shaer, A. Bakin, H. H. Wehmann, and A. Waag, “Optical investigations and exciton localization in high quality Zn1-xMgxO/ZnO single quantum wells,” Appl. Phys. Lett. 91(8), 081911 (2007).
[Crossref]

Bajaj, K. K.

G. Coli and K. K. Bajaj, “Excitonic transitions in ZnO/MgZnO quantum well heterostructures,” Appl. Phys. Lett. 78(19), 2861–2863 (2001).
[Crossref]

Bakin, A.

M. Al-Suleiman, A. El-Shaer, A. Bakin, H. H. Wehmann, and A. Waag, “Optical investigations and exciton localization in high quality Zn1-xMgxO/ZnO single quantum wells,” Appl. Phys. Lett. 91(8), 081911 (2007).
[Crossref]

Beetar, J. E.

S. Jiang, S. Gholam-Mirzaei, E. Crites, J. E. Beetar, M. Singh, R. Lu, M. Chini, and C. D. Lin, “Crystal symmetry and polarization of high-order harmonics in ZnO,” J. Phys. B: At., Mol. Opt. Phys. 52(22), 225601 (2019).
[Crossref]

Berzina, B.

L. Trinkler, A. Trukhin, B. Berzina, V. Korsaks, P. Ščajev, R. Nedzinskas, S. Tumėnas, and M. M. C. Chou, “Luminescence properties of LiGaO2 crystal,” Opt. Mater. 69, 449–459 (2017).
[Crossref]

Bretagnon, T.

M. J. Mohammed Ali, J. M. Chauveau, and T. Bretagnon, “Anisotropic optical properties of a homoepitaxial (Zn, Mg)O/ZnO quantum well grown on a-plane ZnO substrate,” Phys. Status Solidi C 13(7-9), 598–601 (2016).
[Crossref]

Cantwell, G.

D. C. Reynolds, D. C. Look, B. Jogai, C. W. Litton, G. Cantwell, and W. C. Harsch, “Valence-band ordering of ZnO,” Phys. Rev. B 60(4), 2340–2344 (1999).
[Crossref]

Cao, Z.

F. Xian, G. Zheng, L. Xu, W. Kuang, S. Pei, Z. Cao, J. Li, and M. Lai, “Temperature and excitation power dependence of photoluminescence of ZnO nanorods synthesized by pattern assisted hydrothermal method,” J. Alloys Compd. 710, 695–701 (2017).
[Crossref]

Chang, L.

H. H. Wang, J. S. Tian, C. Y. Chen, H. H. Huang, Y. C. Yeh, P. Y. Deng, L. Chang, Y. H. Chu, Y. R. Wu, and J. H. He, “The effect of tensile strain on optical anisotropy and exciton of m-plane ZnO,” IEEE Photonics J. 7, 6800708 (2015).
[Crossref]

T. Yan, C.-Y. J. Lu, L. Chang, M. M. C. Chou, K. H. Ploog, C.-M. Chiang, and N. Ye, “Epitaxial growth of nonpolar m-plane ZnO epilayers and ZnO/Zn0.55Mg0.45O multiple quantum wells on a LiGaO2 (100) substrate,” RSC Adv. 5(127), 104798–104805 (2015).
[Crossref]

T.-H. Huang, W.-H. Lin, T. Yan, J.-J. Wu, L. Chang, M. M. C. Chou, U. Jahn, and K. H. Ploog, “Strain relaxation, defects and cathodoluminescence of m-plane ZnO and Zn0.8Mg0.2O epilayers grown on γ-LiAlO2 substrate,” ECS J. Solid State Sci. Technol. 2, P338 (2013).
[Crossref]

W.-H. Lin, U. Jahn, H. T. Grahn, L. Chang, M. M. C. Chou, and J.-J. Wu, “Spectral and spatial luminescence distribution of m-plane ZnO epitaxial films containing stacking faults: A cathodoluminescence study,” Appl. Phys. Express 6(6), 061101 (2013).
[Crossref]

T. S. Ko, T. C. Lu, L. F. Zhuo, W. L. Wang, M. H. Liang, H. C. Kuo, S. C. Wang, L. Chang, and D. Y. Lin, “Optical characteristics of a-plane ZnO/Zn0.8Mg0.2O multiple quantum wells grown by pulsed laser deposition,” J. Appl. Phys. 108(7), 073504 (2010).
[Crossref]

Chang, S.-H.

Chauveau, J. M.

M. J. Mohammed Ali, J. M. Chauveau, and T. Bretagnon, “Anisotropic optical properties of a homoepitaxial (Zn, Mg)O/ZnO quantum well grown on a-plane ZnO substrate,” Phys. Status Solidi C 13(7-9), 598–601 (2016).
[Crossref]

Chauveau, J.-M.

G. Tabares, A. Hierro, B. Vinter, and J.-M. Chauveau, “Polarization-sensitive Schottky photodiodes based on a-plane ZnO/ZnMgO multiple quantum-wells,” Appl. Phys. Lett. 99(7), 071108 (2011).
[Crossref]

J.-M. Chauveau, M. Teisseire, H. Kim-Chauveau, C. Morhain, C. Deparis, and B. Vinter, “Anisotropic strain effects on the photoluminescence emission from heteroepitaxial and homoepitaxial nonpolar (Zn,Mg)O/ZnO quantum wells,” Appl. Phys. Lett. 109, 102420 (2011).
[Crossref]

Chen, B.-Y.

Chen, C.

Chen, C. L.

M. M. C. Chou, D.-R. Hang, C. L. Chen, and Y.-H. Liao, “Epitaxial growth of nonpolar m-plane ZnO (10-10) on large-size LiGaO2 (100) substrates,” Thin Solid Films 519(11), 3627–3631 (2011).
[Crossref]

Chen, C. Y.

H. H. Wang, J. S. Tian, C. Y. Chen, H. H. Huang, Y. C. Yeh, P. Y. Deng, L. Chang, Y. H. Chu, Y. R. Wu, and J. H. He, “The effect of tensile strain on optical anisotropy and exciton of m-plane ZnO,” IEEE Photonics J. 7, 6800708 (2015).
[Crossref]

Chen, C.-H.

C.-M. Lai, Y.-E. Huang, K.-Y. Kou, C.-H. Chen, L.-W. Tu, and S.-W. Feng, “Experimental and theoretical study of polarized photoluminescence caused by anisotropic strain relaxation in nonpolar a-plane textured ZnO grown by a low-pressure chemical vapor deposition,” Appl. Phys. Lett. 107(2), 022110 (2015).
[Crossref]

Chen, C.-Y.

Chen, H. R.

H. R. Chen, C. Y. Tsai, Y. C. Huang, C. C. Kuo, H. C. Hsu, and W. F. Hsieh, “Optical properties of one- and two-dimensional excitons in m-plane ZnO/MgZnO multiple quantum wells,” J. Phys. D: Appl. Phys. 49(9), 095105 (2016).
[Crossref]

Chen, H.-Y.

Chen, J.

Chen, X.

Chiang, C.-M.

T. Yan, C.-Y. J. Lu, L. Chang, M. M. C. Chou, K. H. Ploog, C.-M. Chiang, and N. Ye, “Epitaxial growth of nonpolar m-plane ZnO epilayers and ZnO/Zn0.55Mg0.45O multiple quantum wells on a LiGaO2 (100) substrate,” RSC Adv. 5(127), 104798–104805 (2015).
[Crossref]

Chini, M.

S. Jiang, S. Gholam-Mirzaei, E. Crites, J. E. Beetar, M. Singh, R. Lu, M. Chini, and C. D. Lin, “Crystal symmetry and polarization of high-order harmonics in ZnO,” J. Phys. B: At., Mol. Opt. Phys. 52(22), 225601 (2019).
[Crossref]

Chou, M. M. C.

L. Trinkler, A. Trukhin, B. Berzina, V. Korsaks, P. Ščajev, R. Nedzinskas, S. Tumėnas, and M. M. C. Chou, “Luminescence properties of LiGaO2 crystal,” Opt. Mater. 69, 449–459 (2017).
[Crossref]

T. Yan, C.-Y. J. Lu, L. Chang, M. M. C. Chou, K. H. Ploog, C.-M. Chiang, and N. Ye, “Epitaxial growth of nonpolar m-plane ZnO epilayers and ZnO/Zn0.55Mg0.45O multiple quantum wells on a LiGaO2 (100) substrate,” RSC Adv. 5(127), 104798–104805 (2015).
[Crossref]

D.-R. Hang, S. E. Islam, K. H. Sharma, C. Chen, C.-T. Liang, and M. M. C. Chou, “Optical characteristics of nonpolar a-plane ZnO thin film on (010) LiGaO2 substrate,” Semicond. Sci. Technol. 29(8), 085004 (2014).
[Crossref]

W.-H. Lin, U. Jahn, H. T. Grahn, L. Chang, M. M. C. Chou, and J.-J. Wu, “Spectral and spatial luminescence distribution of m-plane ZnO epitaxial films containing stacking faults: A cathodoluminescence study,” Appl. Phys. Express 6(6), 061101 (2013).
[Crossref]

T.-H. Huang, W.-H. Lin, T. Yan, J.-J. Wu, L. Chang, M. M. C. Chou, U. Jahn, and K. H. Ploog, “Strain relaxation, defects and cathodoluminescence of m-plane ZnO and Zn0.8Mg0.2O epilayers grown on γ-LiAlO2 substrate,” ECS J. Solid State Sci. Technol. 2, P338 (2013).
[Crossref]

M. M. C. Chou, D.-R. Hang, C. L. Chen, and Y.-H. Liao, “Epitaxial growth of nonpolar m-plane ZnO (10-10) on large-size LiGaO2 (100) substrates,” Thin Solid Films 519(11), 3627–3631 (2011).
[Crossref]

Christensen, N. E.

I. Gorczyca, K. Skrobas, N. E. Christensen, J. Sajkowski, M. Stachowicz, H. Teisseyre, and A. Kozanecki, “ZnO/(Zn)MgO polar and nonpolar superlattices,” J. Appl. Phys. 125(13), 135702 (2019).
[Crossref]

Chu, P. K.

X. Q. Gu, H. P. He, L. P. Zhu, Z. Z. Ye, K. F. Huo, and P. K. Chu, “Dependence of photoluminescence of ZnO/Zn0.85Mg0.15O multi-quantum wells on barrier width,” Phys. Lett. A 373(36), 3281–3284 (2009).
[Crossref]

Chu, Y. H.

H. H. Wang, J. S. Tian, C. Y. Chen, H. H. Huang, Y. C. Yeh, P. Y. Deng, L. Chang, Y. H. Chu, Y. R. Wu, and J. H. He, “The effect of tensile strain on optical anisotropy and exciton of m-plane ZnO,” IEEE Photonics J. 7, 6800708 (2015).
[Crossref]

Coli, G.

G. Coli and K. K. Bajaj, “Excitonic transitions in ZnO/MgZnO quantum well heterostructures,” Appl. Phys. Lett. 78(19), 2861–2863 (2001).
[Crossref]

Crites, E.

S. Jiang, S. Gholam-Mirzaei, E. Crites, J. E. Beetar, M. Singh, R. Lu, M. Chini, and C. D. Lin, “Crystal symmetry and polarization of high-order harmonics in ZnO,” J. Phys. B: At., Mol. Opt. Phys. 52(22), 225601 (2019).
[Crossref]

Dai, J.

Dalpian, G. M.

Y. Yan, G. M. Dalpian, M. M. Al-Jassim, and S.-H. Wei, “Energetics and electronic structure of stacking faults in ZnO,” Phys. Rev. B 70(19), 193206 (2004).
[Crossref]

Deng, P. Y.

H. H. Wang, J. S. Tian, C. Y. Chen, H. H. Huang, Y. C. Yeh, P. Y. Deng, L. Chang, Y. H. Chu, Y. R. Wu, and J. H. He, “The effect of tensile strain on optical anisotropy and exciton of m-plane ZnO,” IEEE Photonics J. 7, 6800708 (2015).
[Crossref]

Deparis, C.

J.-M. Chauveau, M. Teisseire, H. Kim-Chauveau, C. Morhain, C. Deparis, and B. Vinter, “Anisotropic strain effects on the photoluminescence emission from heteroepitaxial and homoepitaxial nonpolar (Zn,Mg)O/ZnO quantum wells,” Appl. Phys. Lett. 109, 102420 (2011).
[Crossref]

El-Shaer, A.

M. Al-Suleiman, A. El-Shaer, A. Bakin, H. H. Wehmann, and A. Waag, “Optical investigations and exciton localization in high quality Zn1-xMgxO/ZnO single quantum wells,” Appl. Phys. Lett. 91(8), 081911 (2007).
[Crossref]

Eriksson, J.

A. Ievtushenko, V. Karpyna, J. Eriksson, I. Tsiaoussis, I. Shtepliuk, G. Lashkarev, R. Yakimova, and V. Khranovskyy, “Effect of Ag doping on the structural, electrical and optical properties of ZnO grown by MOCVD at different substrate temperatures,” Superlattices Microstruct. 117, 121–131 (2018).
[Crossref]

Feng, S.-W.

C.-M. Lai, Y.-E. Huang, K.-Y. Kou, C.-H. Chen, L.-W. Tu, and S.-W. Feng, “Experimental and theoretical study of polarized photoluminescence caused by anisotropic strain relaxation in nonpolar a-plane textured ZnO grown by a low-pressure chemical vapor deposition,” Appl. Phys. Lett. 107(2), 022110 (2015).
[Crossref]

Feng, Z.

Gao, J.

J. Gao, Y. Zhang, Y. Sun, and Q. Wu, “Ultra-wide band and multifunctional polarization converter based on dielectric metamaterial,” Materials 12(23), 3857 (2019).
[Crossref]

Gerthsen, D.

D. Gerthsen, D. Litvinov, T. Gruber, C. Kirchner, and A. Waag, “Origin and consequences of a high stacking fault density in epitaxial ZnO layers,” Appl. Phys. Lett. 81(21), 3972–3974 (2002).
[Crossref]

Gholam-Mirzaei, S.

S. Jiang, S. Gholam-Mirzaei, E. Crites, J. E. Beetar, M. Singh, R. Lu, M. Chini, and C. D. Lin, “Crystal symmetry and polarization of high-order harmonics in ZnO,” J. Phys. B: At., Mol. Opt. Phys. 52(22), 225601 (2019).
[Crossref]

Gorczyca, I.

I. Gorczyca, K. Skrobas, N. E. Christensen, J. Sajkowski, M. Stachowicz, H. Teisseyre, and A. Kozanecki, “ZnO/(Zn)MgO polar and nonpolar superlattices,” J. Appl. Phys. 125(13), 135702 (2019).
[Crossref]

Grahn, H. T.

W.-H. Lin, U. Jahn, H. T. Grahn, L. Chang, M. M. C. Chou, and J.-J. Wu, “Spectral and spatial luminescence distribution of m-plane ZnO epitaxial films containing stacking faults: A cathodoluminescence study,” Appl. Phys. Express 6(6), 061101 (2013).
[Crossref]

Gruber, T.

D. Gerthsen, D. Litvinov, T. Gruber, C. Kirchner, and A. Waag, “Origin and consequences of a high stacking fault density in epitaxial ZnO layers,” Appl. Phys. Lett. 81(21), 3972–3974 (2002).
[Crossref]

Gu, S.

Gu, X. Q.

X. Q. Gu, H. P. He, L. P. Zhu, Z. Z. Ye, K. F. Huo, and P. K. Chu, “Dependence of photoluminescence of ZnO/Zn0.85Mg0.15O multi-quantum wells on barrier width,” Phys. Lett. A 373(36), 3281–3284 (2009).
[Crossref]

Guziewicz, E.

E. Przezdziecka, E. Guziewicz, and B. S. Witkowski, “Photoluminescence investigation of the carrier recombination processes in N-doped and undoped ZnO ALD films grown at low temperature,” J. Lumin. 198, 68–76 (2018).
[Crossref]

Han, P.

T. Huang, S. Zhou, H. Teng, H. Lin, J. Wang, P. Han, and R. Zhang, “Growth and characterization of ZnO films on (001), (100) and (010) LiGaO2 substrates,” J. Cryst. Growth 310(13), 3144–3148 (2008).
[Crossref]

Han, S. K.

J. W. Lee, J.-H. Kim, S. K. Han, S.-K. Hong, J. Y. Lee, S. I. Hong, and T. Yao, “Interface and defect structures in ZnO films on m-plane sapphire substrates,” J. Cryst. Growth 312(2), 238–244 (2010).
[Crossref]

Hang, D.-R.

D.-R. Hang, S. E. Islam, K. H. Sharma, C. Chen, C.-T. Liang, and M. M. C. Chou, “Optical characteristics of nonpolar a-plane ZnO thin film on (010) LiGaO2 substrate,” Semicond. Sci. Technol. 29(8), 085004 (2014).
[Crossref]

M. M. C. Chou, D.-R. Hang, C. L. Chen, and Y.-H. Liao, “Epitaxial growth of nonpolar m-plane ZnO (10-10) on large-size LiGaO2 (100) substrates,” Thin Solid Films 519(11), 3627–3631 (2011).
[Crossref]

Harima, H.

H. Matsui, N. Hasuike, H. Harima, and H. Tabata, “Engineering of optical polarization based on electronic band structures of A-plane ZnO layers under biaxial strains,” J. Appl. Phys. 116(11), 113505 (2014).
[Crossref]

Harsch, W. C.

D. C. Reynolds, D. C. Look, B. Jogai, C. W. Litton, G. Cantwell, and W. C. Harsch, “Valence-band ordering of ZnO,” Phys. Rev. B 60(4), 2340–2344 (1999).
[Crossref]

Hasuike, N.

H. Matsui, N. Hasuike, H. Harima, and H. Tabata, “Engineering of optical polarization based on electronic band structures of A-plane ZnO layers under biaxial strains,” J. Appl. Phys. 116(11), 113505 (2014).
[Crossref]

He, H. P.

X. Q. Gu, H. P. He, L. P. Zhu, Z. Z. Ye, K. F. Huo, and P. K. Chu, “Dependence of photoluminescence of ZnO/Zn0.85Mg0.15O multi-quantum wells on barrier width,” Phys. Lett. A 373(36), 3281–3284 (2009).
[Crossref]

He, J. H.

H. H. Wang, J. S. Tian, C. Y. Chen, H. H. Huang, Y. C. Yeh, P. Y. Deng, L. Chang, Y. H. Chu, Y. R. Wu, and J. H. He, “The effect of tensile strain on optical anisotropy and exciton of m-plane ZnO,” IEEE Photonics J. 7, 6800708 (2015).
[Crossref]

He, J.-H.

He, Y.

Hierro, A.

G. Tabares, A. Hierro, B. Vinter, and J.-M. Chauveau, “Polarization-sensitive Schottky photodiodes based on a-plane ZnO/ZnMgO multiple quantum-wells,” Appl. Phys. Lett. 99(7), 071108 (2011).
[Crossref]

Hong, S. I.

J. W. Lee, J.-H. Kim, S. K. Han, S.-K. Hong, J. Y. Lee, S. I. Hong, and T. Yao, “Interface and defect structures in ZnO films on m-plane sapphire substrates,” J. Cryst. Growth 312(2), 238–244 (2010).
[Crossref]

Hong, S.-K.

J. W. Lee, J.-H. Kim, S. K. Han, S.-K. Hong, J. Y. Lee, S. I. Hong, and T. Yao, “Interface and defect structures in ZnO films on m-plane sapphire substrates,” J. Cryst. Growth 312(2), 238–244 (2010).
[Crossref]

Hosterman, B.

V. Khranovskyy, M. Sendova, B. Hosterman, N. McGinnis, I. Shtepliuk, and R. Yakimova, “Temperature dependent study of basal plane stacking faults in Ag:ZnO nanorods by Raman and photoluminescence spectroscopy,” Mater. Sci. Semicond. Process. 69, 62–67 (2017).
[Crossref]

Hsieh, W. F.

H. R. Chen, C. Y. Tsai, Y. C. Huang, C. C. Kuo, H. C. Hsu, and W. F. Hsieh, “Optical properties of one- and two-dimensional excitons in m-plane ZnO/MgZnO multiple quantum wells,” J. Phys. D: Appl. Phys. 49(9), 095105 (2016).
[Crossref]

Hsieh, W.-F.

Hsu, H. C.

H. R. Chen, C. Y. Tsai, Y. C. Huang, C. C. Kuo, H. C. Hsu, and W. F. Hsieh, “Optical properties of one- and two-dimensional excitons in m-plane ZnO/MgZnO multiple quantum wells,” J. Phys. D: Appl. Phys. 49(9), 095105 (2016).
[Crossref]

Huang, H. H.

H. H. Wang, J. S. Tian, C. Y. Chen, H. H. Huang, Y. C. Yeh, P. Y. Deng, L. Chang, Y. H. Chu, Y. R. Wu, and J. H. He, “The effect of tensile strain on optical anisotropy and exciton of m-plane ZnO,” IEEE Photonics J. 7, 6800708 (2015).
[Crossref]

Huang, J.-H.

Huang, T.

T. Huang, S. Zhou, H. Teng, H. Lin, J. Wang, P. Han, and R. Zhang, “Growth and characterization of ZnO films on (001), (100) and (010) LiGaO2 substrates,” J. Cryst. Growth 310(13), 3144–3148 (2008).
[Crossref]

Huang, T.-H.

T.-H. Huang, W.-H. Lin, T. Yan, J.-J. Wu, L. Chang, M. M. C. Chou, U. Jahn, and K. H. Ploog, “Strain relaxation, defects and cathodoluminescence of m-plane ZnO and Zn0.8Mg0.2O epilayers grown on γ-LiAlO2 substrate,” ECS J. Solid State Sci. Technol. 2, P338 (2013).
[Crossref]

Huang, Y. C.

H. R. Chen, C. Y. Tsai, Y. C. Huang, C. C. Kuo, H. C. Hsu, and W. F. Hsieh, “Optical properties of one- and two-dimensional excitons in m-plane ZnO/MgZnO multiple quantum wells,” J. Phys. D: Appl. Phys. 49(9), 095105 (2016).
[Crossref]

Huang, Y.-E.

C.-M. Lai, Y.-E. Huang, K.-Y. Kou, C.-H. Chen, L.-W. Tu, and S.-W. Feng, “Experimental and theoretical study of polarized photoluminescence caused by anisotropic strain relaxation in nonpolar a-plane textured ZnO grown by a low-pressure chemical vapor deposition,” Appl. Phys. Lett. 107(2), 022110 (2015).
[Crossref]

Huo, K. F.

X. Q. Gu, H. P. He, L. P. Zhu, Z. Z. Ye, K. F. Huo, and P. K. Chu, “Dependence of photoluminescence of ZnO/Zn0.85Mg0.15O multi-quantum wells on barrier width,” Phys. Lett. A 373(36), 3281–3284 (2009).
[Crossref]

Ievtushenko, A.

A. Ievtushenko, V. Karpyna, J. Eriksson, I. Tsiaoussis, I. Shtepliuk, G. Lashkarev, R. Yakimova, and V. Khranovskyy, “Effect of Ag doping on the structural, electrical and optical properties of ZnO grown by MOCVD at different substrate temperatures,” Superlattices Microstruct. 117, 121–131 (2018).
[Crossref]

Ikeda, M.

A. Kato, S. One, M. Ikeda, R. Tajima, Y. Adachi, and K. Yasui, “Polarization properties of nonpolar ZnO films grown on R-sapphire substrates using high-temperature H2O generated by a catalytic reaction,” Thin Solid Films 644, 29–32 (2017).
[Crossref]

Islam, S. E.

D.-R. Hang, S. E. Islam, K. H. Sharma, C. Chen, C.-T. Liang, and M. M. C. Chou, “Optical characteristics of nonpolar a-plane ZnO thin film on (010) LiGaO2 substrate,” Semicond. Sci. Technol. 29(8), 085004 (2014).
[Crossref]

Jahn, U.

W.-H. Lin, U. Jahn, H. T. Grahn, L. Chang, M. M. C. Chou, and J.-J. Wu, “Spectral and spatial luminescence distribution of m-plane ZnO epitaxial films containing stacking faults: A cathodoluminescence study,” Appl. Phys. Express 6(6), 061101 (2013).
[Crossref]

T.-H. Huang, W.-H. Lin, T. Yan, J.-J. Wu, L. Chang, M. M. C. Chou, U. Jahn, and K. H. Ploog, “Strain relaxation, defects and cathodoluminescence of m-plane ZnO and Zn0.8Mg0.2O epilayers grown on γ-LiAlO2 substrate,” ECS J. Solid State Sci. Technol. 2, P338 (2013).
[Crossref]

Jen, Y.-J.

Jiang, S.

S. Jiang, S. Gholam-Mirzaei, E. Crites, J. E. Beetar, M. Singh, R. Lu, M. Chini, and C. D. Lin, “Crystal symmetry and polarization of high-order harmonics in ZnO,” J. Phys. B: At., Mol. Opt. Phys. 52(22), 225601 (2019).
[Crossref]

Jogai, B.

D. C. Reynolds, D. C. Look, B. Jogai, C. W. Litton, G. Cantwell, and W. C. Harsch, “Valence-band ordering of ZnO,” Phys. Rev. B 60(4), 2340–2344 (1999).
[Crossref]

Karpyna, V.

A. Ievtushenko, V. Karpyna, J. Eriksson, I. Tsiaoussis, I. Shtepliuk, G. Lashkarev, R. Yakimova, and V. Khranovskyy, “Effect of Ag doping on the structural, electrical and optical properties of ZnO grown by MOCVD at different substrate temperatures,” Superlattices Microstruct. 117, 121–131 (2018).
[Crossref]

Kato, A.

A. Kato, S. One, M. Ikeda, R. Tajima, Y. Adachi, and K. Yasui, “Polarization properties of nonpolar ZnO films grown on R-sapphire substrates using high-temperature H2O generated by a catalytic reaction,” Thin Solid Films 644, 29–32 (2017).
[Crossref]

Khranovskyy, V.

A. Ievtushenko, V. Karpyna, J. Eriksson, I. Tsiaoussis, I. Shtepliuk, G. Lashkarev, R. Yakimova, and V. Khranovskyy, “Effect of Ag doping on the structural, electrical and optical properties of ZnO grown by MOCVD at different substrate temperatures,” Superlattices Microstruct. 117, 121–131 (2018).
[Crossref]

V. Khranovskyy, M. Sendova, B. Hosterman, N. McGinnis, I. Shtepliuk, and R. Yakimova, “Temperature dependent study of basal plane stacking faults in Ag:ZnO nanorods by Raman and photoluminescence spectroscopy,” Mater. Sci. Semicond. Process. 69, 62–67 (2017).
[Crossref]

Kim, J.-H.

J. W. Lee, J.-H. Kim, S. K. Han, S.-K. Hong, J. Y. Lee, S. I. Hong, and T. Yao, “Interface and defect structures in ZnO films on m-plane sapphire substrates,” J. Cryst. Growth 312(2), 238–244 (2010).
[Crossref]

Kim-Chauveau, H.

J.-M. Chauveau, M. Teisseire, H. Kim-Chauveau, C. Morhain, C. Deparis, and B. Vinter, “Anisotropic strain effects on the photoluminescence emission from heteroepitaxial and homoepitaxial nonpolar (Zn,Mg)O/ZnO quantum wells,” Appl. Phys. Lett. 109, 102420 (2011).
[Crossref]

Kirchner, C.

D. Gerthsen, D. Litvinov, T. Gruber, C. Kirchner, and A. Waag, “Origin and consequences of a high stacking fault density in epitaxial ZnO layers,” Appl. Phys. Lett. 81(21), 3972–3974 (2002).
[Crossref]

Ko, T. S.

T. S. Ko, T. C. Lu, L. F. Zhuo, W. L. Wang, M. H. Liang, H. C. Kuo, S. C. Wang, L. Chang, and D. Y. Lin, “Optical characteristics of a-plane ZnO/Zn0.8Mg0.2O multiple quantum wells grown by pulsed laser deposition,” J. Appl. Phys. 108(7), 073504 (2010).
[Crossref]

Korsaks, V.

L. Trinkler, A. Trukhin, B. Berzina, V. Korsaks, P. Ščajev, R. Nedzinskas, S. Tumėnas, and M. M. C. Chou, “Luminescence properties of LiGaO2 crystal,” Opt. Mater. 69, 449–459 (2017).
[Crossref]

Kou, K.-Y.

C.-M. Lai, Y.-E. Huang, K.-Y. Kou, C.-H. Chen, L.-W. Tu, and S.-W. Feng, “Experimental and theoretical study of polarized photoluminescence caused by anisotropic strain relaxation in nonpolar a-plane textured ZnO grown by a low-pressure chemical vapor deposition,” Appl. Phys. Lett. 107(2), 022110 (2015).
[Crossref]

Kozanecki, A.

I. Gorczyca, K. Skrobas, N. E. Christensen, J. Sajkowski, M. Stachowicz, H. Teisseyre, and A. Kozanecki, “ZnO/(Zn)MgO polar and nonpolar superlattices,” J. Appl. Phys. 125(13), 135702 (2019).
[Crossref]

Kuang, W.

F. Xian, G. Zheng, L. Xu, W. Kuang, S. Pei, Z. Cao, J. Li, and M. Lai, “Temperature and excitation power dependence of photoluminescence of ZnO nanorods synthesized by pattern assisted hydrothermal method,” J. Alloys Compd. 710, 695–701 (2017).
[Crossref]

Kuo, C. C.

H. R. Chen, C. Y. Tsai, Y. C. Huang, C. C. Kuo, H. C. Hsu, and W. F. Hsieh, “Optical properties of one- and two-dimensional excitons in m-plane ZnO/MgZnO multiple quantum wells,” J. Phys. D: Appl. Phys. 49(9), 095105 (2016).
[Crossref]

Kuo, H.

Kuo, H. C.

T. S. Ko, T. C. Lu, L. F. Zhuo, W. L. Wang, M. H. Liang, H. C. Kuo, S. C. Wang, L. Chang, and D. Y. Lin, “Optical characteristics of a-plane ZnO/Zn0.8Mg0.2O multiple quantum wells grown by pulsed laser deposition,” J. Appl. Phys. 108(7), 073504 (2010).
[Crossref]

Lai, C.-M.

C.-M. Lai, Y.-E. Huang, K.-Y. Kou, C.-H. Chen, L.-W. Tu, and S.-W. Feng, “Experimental and theoretical study of polarized photoluminescence caused by anisotropic strain relaxation in nonpolar a-plane textured ZnO grown by a low-pressure chemical vapor deposition,” Appl. Phys. Lett. 107(2), 022110 (2015).
[Crossref]

Lai, K.-Y.

Lai, M.

F. Xian, G. Zheng, L. Xu, W. Kuang, S. Pei, Z. Cao, J. Li, and M. Lai, “Temperature and excitation power dependence of photoluminescence of ZnO nanorods synthesized by pattern assisted hydrothermal method,” J. Alloys Compd. 710, 695–701 (2017).
[Crossref]

Lashkarev, G.

A. Ievtushenko, V. Karpyna, J. Eriksson, I. Tsiaoussis, I. Shtepliuk, G. Lashkarev, R. Yakimova, and V. Khranovskyy, “Effect of Ag doping on the structural, electrical and optical properties of ZnO grown by MOCVD at different substrate temperatures,” Superlattices Microstruct. 117, 121–131 (2018).
[Crossref]

Lee, C.-Y.

Lee, J. W.

J. W. Lee, J.-H. Kim, S. K. Han, S.-K. Hong, J. Y. Lee, S. I. Hong, and T. Yao, “Interface and defect structures in ZnO films on m-plane sapphire substrates,” J. Cryst. Growth 312(2), 238–244 (2010).
[Crossref]

Lee, J. Y.

J. W. Lee, J.-H. Kim, S. K. Han, S.-K. Hong, J. Y. Lee, S. I. Hong, and T. Yao, “Interface and defect structures in ZnO films on m-plane sapphire substrates,” J. Cryst. Growth 312(2), 238–244 (2010).
[Crossref]

Li, J.

Y. Zhang, F. Qin, J. Zhu, X. Chen, J. Li, D. Tang, Y. Yang, F. Ren, C. Xu, S. Gu, R. Zhang, Y. Zheng, and J. Ye, “Low-threshold ultraviolet stimulated emissions from large-sized single crystalline ZnO transferable membranes,” Opt. Express 26(24), 31965 (2018).
[Crossref]

F. Xian, G. Zheng, L. Xu, W. Kuang, S. Pei, Z. Cao, J. Li, and M. Lai, “Temperature and excitation power dependence of photoluminescence of ZnO nanorods synthesized by pattern assisted hydrothermal method,” J. Alloys Compd. 710, 695–701 (2017).
[Crossref]

Li, M.

Li, X.

Li, X.-Y.

Liang, C.-T.

D.-R. Hang, S. E. Islam, K. H. Sharma, C. Chen, C.-T. Liang, and M. M. C. Chou, “Optical characteristics of nonpolar a-plane ZnO thin film on (010) LiGaO2 substrate,” Semicond. Sci. Technol. 29(8), 085004 (2014).
[Crossref]

Liang, M. H.

T. S. Ko, T. C. Lu, L. F. Zhuo, W. L. Wang, M. H. Liang, H. C. Kuo, S. C. Wang, L. Chang, and D. Y. Lin, “Optical characteristics of a-plane ZnO/Zn0.8Mg0.2O multiple quantum wells grown by pulsed laser deposition,” J. Appl. Phys. 108(7), 073504 (2010).
[Crossref]

Liang, R.

Liao, Y.-H.

M. M. C. Chou, D.-R. Hang, C. L. Chen, and Y.-H. Liao, “Epitaxial growth of nonpolar m-plane ZnO (10-10) on large-size LiGaO2 (100) substrates,” Thin Solid Films 519(11), 3627–3631 (2011).
[Crossref]

Lin, B.-H.

Lin, C. D.

S. Jiang, S. Gholam-Mirzaei, E. Crites, J. E. Beetar, M. Singh, R. Lu, M. Chini, and C. D. Lin, “Crystal symmetry and polarization of high-order harmonics in ZnO,” J. Phys. B: At., Mol. Opt. Phys. 52(22), 225601 (2019).
[Crossref]

Lin, D. Y.

T. S. Ko, T. C. Lu, L. F. Zhuo, W. L. Wang, M. H. Liang, H. C. Kuo, S. C. Wang, L. Chang, and D. Y. Lin, “Optical characteristics of a-plane ZnO/Zn0.8Mg0.2O multiple quantum wells grown by pulsed laser deposition,” J. Appl. Phys. 108(7), 073504 (2010).
[Crossref]

Lin, H.

T. Huang, S. Zhou, H. Teng, H. Lin, J. Wang, P. Han, and R. Zhang, “Growth and characterization of ZnO films on (001), (100) and (010) LiGaO2 substrates,” J. Cryst. Growth 310(13), 3144–3148 (2008).
[Crossref]

Lin, W.-H.

W.-H. Lin, U. Jahn, H. T. Grahn, L. Chang, M. M. C. Chou, and J.-J. Wu, “Spectral and spatial luminescence distribution of m-plane ZnO epitaxial films containing stacking faults: A cathodoluminescence study,” Appl. Phys. Express 6(6), 061101 (2013).
[Crossref]

T.-H. Huang, W.-H. Lin, T. Yan, J.-J. Wu, L. Chang, M. M. C. Chou, U. Jahn, and K. H. Ploog, “Strain relaxation, defects and cathodoluminescence of m-plane ZnO and Zn0.8Mg0.2O epilayers grown on γ-LiAlO2 substrate,” ECS J. Solid State Sci. Technol. 2, P338 (2013).
[Crossref]

Litton, C. W.

D. C. Reynolds, D. C. Look, B. Jogai, C. W. Litton, G. Cantwell, and W. C. Harsch, “Valence-band ordering of ZnO,” Phys. Rev. B 60(4), 2340–2344 (1999).
[Crossref]

Litvinov, D.

D. Gerthsen, D. Litvinov, T. Gruber, C. Kirchner, and A. Waag, “Origin and consequences of a high stacking fault density in epitaxial ZnO layers,” Appl. Phys. Lett. 81(21), 3972–3974 (2002).
[Crossref]

Liu, C.-P.

Long, H.

Look, D. C.

D. C. Reynolds, D. C. Look, B. Jogai, C. W. Litton, G. Cantwell, and W. C. Harsch, “Valence-band ordering of ZnO,” Phys. Rev. B 60(4), 2340–2344 (1999).
[Crossref]

Lu, C.-Y. J.

T. Yan, C.-Y. J. Lu, L. Chang, M. M. C. Chou, K. H. Ploog, C.-M. Chiang, and N. Ye, “Epitaxial growth of nonpolar m-plane ZnO epilayers and ZnO/Zn0.55Mg0.45O multiple quantum wells on a LiGaO2 (100) substrate,” RSC Adv. 5(127), 104798–104805 (2015).
[Crossref]

Lu, R.

S. Jiang, S. Gholam-Mirzaei, E. Crites, J. E. Beetar, M. Singh, R. Lu, M. Chini, and C. D. Lin, “Crystal symmetry and polarization of high-order harmonics in ZnO,” J. Phys. B: At., Mol. Opt. Phys. 52(22), 225601 (2019).
[Crossref]

Lu, T. C.

T. S. Ko, T. C. Lu, L. F. Zhuo, W. L. Wang, M. H. Liang, H. C. Kuo, S. C. Wang, L. Chang, and D. Y. Lin, “Optical characteristics of a-plane ZnO/Zn0.8Mg0.2O multiple quantum wells grown by pulsed laser deposition,” J. Appl. Phys. 108(7), 073504 (2010).
[Crossref]

Matsui, H.

H. Matsui, N. Hasuike, H. Harima, and H. Tabata, “Engineering of optical polarization based on electronic band structures of A-plane ZnO layers under biaxial strains,” J. Appl. Phys. 116(11), 113505 (2014).
[Crossref]

H. Matsui and H. Tabata, “Lattice strains and polarized luminescence in homoepitaxial growth of a-plane ZnO,” Appl. Phys. Lett. 101(23), 231901 (2012).
[Crossref]

H. Matsui and H. Tabata, “In-plane anisotropy of polarized photoluminescence in M-plane (10-10) ZnO and MgZnO/ZnO multiple quantum wells,” Appl. Phys. Lett. 94(16), 161907 (2009).
[Crossref]

McGinnis, N.

V. Khranovskyy, M. Sendova, B. Hosterman, N. McGinnis, I. Shtepliuk, and R. Yakimova, “Temperature dependent study of basal plane stacking faults in Ag:ZnO nanorods by Raman and photoluminescence spectroscopy,” Mater. Sci. Semicond. Process. 69, 62–67 (2017).
[Crossref]

Mohammed Ali, M. J.

M. J. Mohammed Ali, J. M. Chauveau, and T. Bretagnon, “Anisotropic optical properties of a homoepitaxial (Zn, Mg)O/ZnO quantum well grown on a-plane ZnO substrate,” Phys. Status Solidi C 13(7-9), 598–601 (2016).
[Crossref]

Morhain, C.

J.-M. Chauveau, M. Teisseire, H. Kim-Chauveau, C. Morhain, C. Deparis, and B. Vinter, “Anisotropic strain effects on the photoluminescence emission from heteroepitaxial and homoepitaxial nonpolar (Zn,Mg)O/ZnO quantum wells,” Appl. Phys. Lett. 109, 102420 (2011).
[Crossref]

Nedzinskas, R.

L. Trinkler, A. Trukhin, B. Berzina, V. Korsaks, P. Ščajev, R. Nedzinskas, S. Tumėnas, and M. M. C. Chou, “Luminescence properties of LiGaO2 crystal,” Opt. Mater. 69, 449–459 (2017).
[Crossref]

One, S.

A. Kato, S. One, M. Ikeda, R. Tajima, Y. Adachi, and K. Yasui, “Polarization properties of nonpolar ZnO films grown on R-sapphire substrates using high-temperature H2O generated by a catalytic reaction,” Thin Solid Films 644, 29–32 (2017).
[Crossref]

Pei, S.

F. Xian, G. Zheng, L. Xu, W. Kuang, S. Pei, Z. Cao, J. Li, and M. Lai, “Temperature and excitation power dependence of photoluminescence of ZnO nanorods synthesized by pattern assisted hydrothermal method,” J. Alloys Compd. 710, 695–701 (2017).
[Crossref]

Ploog, K. H.

T. Yan, C.-Y. J. Lu, L. Chang, M. M. C. Chou, K. H. Ploog, C.-M. Chiang, and N. Ye, “Epitaxial growth of nonpolar m-plane ZnO epilayers and ZnO/Zn0.55Mg0.45O multiple quantum wells on a LiGaO2 (100) substrate,” RSC Adv. 5(127), 104798–104805 (2015).
[Crossref]

T.-H. Huang, W.-H. Lin, T. Yan, J.-J. Wu, L. Chang, M. M. C. Chou, U. Jahn, and K. H. Ploog, “Strain relaxation, defects and cathodoluminescence of m-plane ZnO and Zn0.8Mg0.2O epilayers grown on γ-LiAlO2 substrate,” ECS J. Solid State Sci. Technol. 2, P338 (2013).
[Crossref]

Przezdziecka, E.

E. Przezdziecka, E. Guziewicz, and B. S. Witkowski, “Photoluminescence investigation of the carrier recombination processes in N-doped and undoped ZnO ALD films grown at low temperature,” J. Lumin. 198, 68–76 (2018).
[Crossref]

Qin, F.

Rayappan, J. B. B.

P. Shankar and J. B. B. Rayappan, “Room temperature ethanol sensing properties of ZnO nanorods prepared using an electrospinning technique,” J. Mater. Chem. C 5(41), 10869–10880 (2017).
[Crossref]

Ren, F.

Reynolds, D. C.

D. C. Reynolds, D. C. Look, B. Jogai, C. W. Litton, G. Cantwell, and W. C. Harsch, “Valence-band ordering of ZnO,” Phys. Rev. B 60(4), 2340–2344 (1999).
[Crossref]

Sajkowski, J.

I. Gorczyca, K. Skrobas, N. E. Christensen, J. Sajkowski, M. Stachowicz, H. Teisseyre, and A. Kozanecki, “ZnO/(Zn)MgO polar and nonpolar superlattices,” J. Appl. Phys. 125(13), 135702 (2019).
[Crossref]

Šcajev, P.

L. Trinkler, A. Trukhin, B. Berzina, V. Korsaks, P. Ščajev, R. Nedzinskas, S. Tumėnas, and M. M. C. Chou, “Luminescence properties of LiGaO2 crystal,” Opt. Mater. 69, 449–459 (2017).
[Crossref]

Sendova, M.

V. Khranovskyy, M. Sendova, B. Hosterman, N. McGinnis, I. Shtepliuk, and R. Yakimova, “Temperature dependent study of basal plane stacking faults in Ag:ZnO nanorods by Raman and photoluminescence spectroscopy,” Mater. Sci. Semicond. Process. 69, 62–67 (2017).
[Crossref]

Shankar, P.

P. Shankar and J. B. B. Rayappan, “Room temperature ethanol sensing properties of ZnO nanorods prepared using an electrospinning technique,” J. Mater. Chem. C 5(41), 10869–10880 (2017).
[Crossref]

Sharma, K. H.

D.-R. Hang, S. E. Islam, K. H. Sharma, C. Chen, C.-T. Liang, and M. M. C. Chou, “Optical characteristics of nonpolar a-plane ZnO thin film on (010) LiGaO2 substrate,” Semicond. Sci. Technol. 29(8), 085004 (2014).
[Crossref]

Shtepliuk, I.

A. Ievtushenko, V. Karpyna, J. Eriksson, I. Tsiaoussis, I. Shtepliuk, G. Lashkarev, R. Yakimova, and V. Khranovskyy, “Effect of Ag doping on the structural, electrical and optical properties of ZnO grown by MOCVD at different substrate temperatures,” Superlattices Microstruct. 117, 121–131 (2018).
[Crossref]

V. Khranovskyy, M. Sendova, B. Hosterman, N. McGinnis, I. Shtepliuk, and R. Yakimova, “Temperature dependent study of basal plane stacking faults in Ag:ZnO nanorods by Raman and photoluminescence spectroscopy,” Mater. Sci. Semicond. Process. 69, 62–67 (2017).
[Crossref]

Singh, M.

S. Jiang, S. Gholam-Mirzaei, E. Crites, J. E. Beetar, M. Singh, R. Lu, M. Chini, and C. D. Lin, “Crystal symmetry and polarization of high-order harmonics in ZnO,” J. Phys. B: At., Mol. Opt. Phys. 52(22), 225601 (2019).
[Crossref]

Skrobas, K.

I. Gorczyca, K. Skrobas, N. E. Christensen, J. Sajkowski, M. Stachowicz, H. Teisseyre, and A. Kozanecki, “ZnO/(Zn)MgO polar and nonpolar superlattices,” J. Appl. Phys. 125(13), 135702 (2019).
[Crossref]

Stachowicz, M.

I. Gorczyca, K. Skrobas, N. E. Christensen, J. Sajkowski, M. Stachowicz, H. Teisseyre, and A. Kozanecki, “ZnO/(Zn)MgO polar and nonpolar superlattices,” J. Appl. Phys. 125(13), 135702 (2019).
[Crossref]

Stephenson, G. B.

D. Xu, P. Zapol, G. B. Stephenson, and C. Thompson, “Kinetic Monte Carlo simulations of GaN homoepitaxy on c-and m-plane surfaces,” J. Chem. Phys. 146(14), 144702 (2017).
[Crossref]

Sun, Y.

J. Gao, Y. Zhang, Y. Sun, and Q. Wu, “Ultra-wide band and multifunctional polarization converter based on dielectric metamaterial,” Materials 12(23), 3857 (2019).
[Crossref]

Tabares, G.

G. Tabares, A. Hierro, B. Vinter, and J.-M. Chauveau, “Polarization-sensitive Schottky photodiodes based on a-plane ZnO/ZnMgO multiple quantum-wells,” Appl. Phys. Lett. 99(7), 071108 (2011).
[Crossref]

Tabata, H.

H. Matsui, N. Hasuike, H. Harima, and H. Tabata, “Engineering of optical polarization based on electronic band structures of A-plane ZnO layers under biaxial strains,” J. Appl. Phys. 116(11), 113505 (2014).
[Crossref]

H. Matsui and H. Tabata, “Lattice strains and polarized luminescence in homoepitaxial growth of a-plane ZnO,” Appl. Phys. Lett. 101(23), 231901 (2012).
[Crossref]

H. Matsui and H. Tabata, “In-plane anisotropy of polarized photoluminescence in M-plane (10-10) ZnO and MgZnO/ZnO multiple quantum wells,” Appl. Phys. Lett. 94(16), 161907 (2009).
[Crossref]

Tajima, R.

A. Kato, S. One, M. Ikeda, R. Tajima, Y. Adachi, and K. Yasui, “Polarization properties of nonpolar ZnO films grown on R-sapphire substrates using high-temperature H2O generated by a catalytic reaction,” Thin Solid Films 644, 29–32 (2017).
[Crossref]

Tang, D.

Tang, M.-T.

Tang, Z.

Teisseire, M.

J.-M. Chauveau, M. Teisseire, H. Kim-Chauveau, C. Morhain, C. Deparis, and B. Vinter, “Anisotropic strain effects on the photoluminescence emission from heteroepitaxial and homoepitaxial nonpolar (Zn,Mg)O/ZnO quantum wells,” Appl. Phys. Lett. 109, 102420 (2011).
[Crossref]

Teisseyre, H.

I. Gorczyca, K. Skrobas, N. E. Christensen, J. Sajkowski, M. Stachowicz, H. Teisseyre, and A. Kozanecki, “ZnO/(Zn)MgO polar and nonpolar superlattices,” J. Appl. Phys. 125(13), 135702 (2019).
[Crossref]

Teng, H.

T. Huang, S. Zhou, H. Teng, H. Lin, J. Wang, P. Han, and R. Zhang, “Growth and characterization of ZnO films on (001), (100) and (010) LiGaO2 substrates,” J. Cryst. Growth 310(13), 3144–3148 (2008).
[Crossref]

Thompson, C.

D. Xu, P. Zapol, G. B. Stephenson, and C. Thompson, “Kinetic Monte Carlo simulations of GaN homoepitaxy on c-and m-plane surfaces,” J. Chem. Phys. 146(14), 144702 (2017).
[Crossref]

Tian, J. S.

H. H. Wang, J. S. Tian, C. Y. Chen, H. H. Huang, Y. C. Yeh, P. Y. Deng, L. Chang, Y. H. Chu, Y. R. Wu, and J. H. He, “The effect of tensile strain on optical anisotropy and exciton of m-plane ZnO,” IEEE Photonics J. 7, 6800708 (2015).
[Crossref]

Trinkler, L.

L. Trinkler, A. Trukhin, B. Berzina, V. Korsaks, P. Ščajev, R. Nedzinskas, S. Tumėnas, and M. M. C. Chou, “Luminescence properties of LiGaO2 crystal,” Opt. Mater. 69, 449–459 (2017).
[Crossref]

Trukhin, A.

L. Trinkler, A. Trukhin, B. Berzina, V. Korsaks, P. Ščajev, R. Nedzinskas, S. Tumėnas, and M. M. C. Chou, “Luminescence properties of LiGaO2 crystal,” Opt. Mater. 69, 449–459 (2017).
[Crossref]

Tsai, C. Y.

H. R. Chen, C. Y. Tsai, Y. C. Huang, C. C. Kuo, H. C. Hsu, and W. F. Hsieh, “Optical properties of one- and two-dimensional excitons in m-plane ZnO/MgZnO multiple quantum wells,” J. Phys. D: Appl. Phys. 49(9), 095105 (2016).
[Crossref]

Tseng, S.-C.

Tsiaoussis, I.

A. Ievtushenko, V. Karpyna, J. Eriksson, I. Tsiaoussis, I. Shtepliuk, G. Lashkarev, R. Yakimova, and V. Khranovskyy, “Effect of Ag doping on the structural, electrical and optical properties of ZnO grown by MOCVD at different substrate temperatures,” Superlattices Microstruct. 117, 121–131 (2018).
[Crossref]

Tu, L.-W.

C.-M. Lai, Y.-E. Huang, K.-Y. Kou, C.-H. Chen, L.-W. Tu, and S.-W. Feng, “Experimental and theoretical study of polarized photoluminescence caused by anisotropic strain relaxation in nonpolar a-plane textured ZnO grown by a low-pressure chemical vapor deposition,” Appl. Phys. Lett. 107(2), 022110 (2015).
[Crossref]

Tumenas, S.

L. Trinkler, A. Trukhin, B. Berzina, V. Korsaks, P. Ščajev, R. Nedzinskas, S. Tumėnas, and M. M. C. Chou, “Luminescence properties of LiGaO2 crystal,” Opt. Mater. 69, 449–459 (2017).
[Crossref]

Vinter, B.

G. Tabares, A. Hierro, B. Vinter, and J.-M. Chauveau, “Polarization-sensitive Schottky photodiodes based on a-plane ZnO/ZnMgO multiple quantum-wells,” Appl. Phys. Lett. 99(7), 071108 (2011).
[Crossref]

J.-M. Chauveau, M. Teisseire, H. Kim-Chauveau, C. Morhain, C. Deparis, and B. Vinter, “Anisotropic strain effects on the photoluminescence emission from heteroepitaxial and homoepitaxial nonpolar (Zn,Mg)O/ZnO quantum wells,” Appl. Phys. Lett. 109, 102420 (2011).
[Crossref]

Waag, A.

M. Al-Suleiman, A. El-Shaer, A. Bakin, H. H. Wehmann, and A. Waag, “Optical investigations and exciton localization in high quality Zn1-xMgxO/ZnO single quantum wells,” Appl. Phys. Lett. 91(8), 081911 (2007).
[Crossref]

D. Gerthsen, D. Litvinov, T. Gruber, C. Kirchner, and A. Waag, “Origin and consequences of a high stacking fault density in epitaxial ZnO layers,” Appl. Phys. Lett. 81(21), 3972–3974 (2002).
[Crossref]

Wang, H. H.

H. H. Wang, J. S. Tian, C. Y. Chen, H. H. Huang, Y. C. Yeh, P. Y. Deng, L. Chang, Y. H. Chu, Y. R. Wu, and J. H. He, “The effect of tensile strain on optical anisotropy and exciton of m-plane ZnO,” IEEE Photonics J. 7, 6800708 (2015).
[Crossref]

Wang, J.

T. Huang, S. Zhou, H. Teng, H. Lin, J. Wang, P. Han, and R. Zhang, “Growth and characterization of ZnO films on (001), (100) and (010) LiGaO2 substrates,” J. Cryst. Growth 310(13), 3144–3148 (2008).
[Crossref]

Wang, S.

Wang, S. C.

T. S. Ko, T. C. Lu, L. F. Zhuo, W. L. Wang, M. H. Liang, H. C. Kuo, S. C. Wang, L. Chang, and D. Y. Lin, “Optical characteristics of a-plane ZnO/Zn0.8Mg0.2O multiple quantum wells grown by pulsed laser deposition,” J. Appl. Phys. 108(7), 073504 (2010).
[Crossref]

Wang, W. L.

T. S. Ko, T. C. Lu, L. F. Zhuo, W. L. Wang, M. H. Liang, H. C. Kuo, S. C. Wang, L. Chang, and D. Y. Lin, “Optical characteristics of a-plane ZnO/Zn0.8Mg0.2O multiple quantum wells grown by pulsed laser deposition,” J. Appl. Phys. 108(7), 073504 (2010).
[Crossref]

Wehmann, H. H.

M. Al-Suleiman, A. El-Shaer, A. Bakin, H. H. Wehmann, and A. Waag, “Optical investigations and exciton localization in high quality Zn1-xMgxO/ZnO single quantum wells,” Appl. Phys. Lett. 91(8), 081911 (2007).
[Crossref]

Wei, S.-H.

Y. Yan, G. M. Dalpian, M. M. Al-Jassim, and S.-H. Wei, “Energetics and electronic structure of stacking faults in ZnO,” Phys. Rev. B 70(19), 193206 (2004).
[Crossref]

Witkowski, B. S.

E. Przezdziecka, E. Guziewicz, and B. S. Witkowski, “Photoluminescence investigation of the carrier recombination processes in N-doped and undoped ZnO ALD films grown at low temperature,” J. Lumin. 198, 68–76 (2018).
[Crossref]

Wu, F.

Wu, J.-J.

W.-H. Lin, U. Jahn, H. T. Grahn, L. Chang, M. M. C. Chou, and J.-J. Wu, “Spectral and spatial luminescence distribution of m-plane ZnO epitaxial films containing stacking faults: A cathodoluminescence study,” Appl. Phys. Express 6(6), 061101 (2013).
[Crossref]

T.-H. Huang, W.-H. Lin, T. Yan, J.-J. Wu, L. Chang, M. M. C. Chou, U. Jahn, and K. H. Ploog, “Strain relaxation, defects and cathodoluminescence of m-plane ZnO and Zn0.8Mg0.2O epilayers grown on γ-LiAlO2 substrate,” ECS J. Solid State Sci. Technol. 2, P338 (2013).
[Crossref]

Wu, J.-X.

Wu, Q.

J. Gao, Y. Zhang, Y. Sun, and Q. Wu, “Ultra-wide band and multifunctional polarization converter based on dielectric metamaterial,” Materials 12(23), 3857 (2019).
[Crossref]

Wu, Y. R.

H. H. Wang, J. S. Tian, C. Y. Chen, H. H. Huang, Y. C. Yeh, P. Y. Deng, L. Chang, Y. H. Chu, Y. R. Wu, and J. H. He, “The effect of tensile strain on optical anisotropy and exciton of m-plane ZnO,” IEEE Photonics J. 7, 6800708 (2015).
[Crossref]

Wu, Y.-C.

Xian, F.

F. Xian, G. Zheng, L. Xu, W. Kuang, S. Pei, Z. Cao, J. Li, and M. Lai, “Temperature and excitation power dependence of photoluminescence of ZnO nanorods synthesized by pattern assisted hydrothermal method,” J. Alloys Compd. 710, 695–701 (2017).
[Crossref]

Xu, C.

Xu, D.

D. Xu, P. Zapol, G. B. Stephenson, and C. Thompson, “Kinetic Monte Carlo simulations of GaN homoepitaxy on c-and m-plane surfaces,” J. Chem. Phys. 146(14), 144702 (2017).
[Crossref]

Xu, J.

Xu, L.

F. Xian, G. Zheng, L. Xu, W. Kuang, S. Pei, Z. Cao, J. Li, and M. Lai, “Temperature and excitation power dependence of photoluminescence of ZnO nanorods synthesized by pattern assisted hydrothermal method,” J. Alloys Compd. 710, 695–701 (2017).
[Crossref]

Yakimova, R.

A. Ievtushenko, V. Karpyna, J. Eriksson, I. Tsiaoussis, I. Shtepliuk, G. Lashkarev, R. Yakimova, and V. Khranovskyy, “Effect of Ag doping on the structural, electrical and optical properties of ZnO grown by MOCVD at different substrate temperatures,” Superlattices Microstruct. 117, 121–131 (2018).
[Crossref]

V. Khranovskyy, M. Sendova, B. Hosterman, N. McGinnis, I. Shtepliuk, and R. Yakimova, “Temperature dependent study of basal plane stacking faults in Ag:ZnO nanorods by Raman and photoluminescence spectroscopy,” Mater. Sci. Semicond. Process. 69, 62–67 (2017).
[Crossref]

Yan, T.

T. Yan, C.-Y. J. Lu, L. Chang, M. M. C. Chou, K. H. Ploog, C.-M. Chiang, and N. Ye, “Epitaxial growth of nonpolar m-plane ZnO epilayers and ZnO/Zn0.55Mg0.45O multiple quantum wells on a LiGaO2 (100) substrate,” RSC Adv. 5(127), 104798–104805 (2015).
[Crossref]

T.-H. Huang, W.-H. Lin, T. Yan, J.-J. Wu, L. Chang, M. M. C. Chou, U. Jahn, and K. H. Ploog, “Strain relaxation, defects and cathodoluminescence of m-plane ZnO and Zn0.8Mg0.2O epilayers grown on γ-LiAlO2 substrate,” ECS J. Solid State Sci. Technol. 2, P338 (2013).
[Crossref]

Yan, Y.

Y. Yan, G. M. Dalpian, M. M. Al-Jassim, and S.-H. Wei, “Energetics and electronic structure of stacking faults in ZnO,” Phys. Rev. B 70(19), 193206 (2004).
[Crossref]

Yang, Y.

Yao, T.

J. W. Lee, J.-H. Kim, S. K. Han, S.-K. Hong, J. Y. Lee, S. I. Hong, and T. Yao, “Interface and defect structures in ZnO films on m-plane sapphire substrates,” J. Cryst. Growth 312(2), 238–244 (2010).
[Crossref]

Yasui, K.

A. Kato, S. One, M. Ikeda, R. Tajima, Y. Adachi, and K. Yasui, “Polarization properties of nonpolar ZnO films grown on R-sapphire substrates using high-temperature H2O generated by a catalytic reaction,” Thin Solid Films 644, 29–32 (2017).
[Crossref]

Ye, J.

Ye, N.

T. Yan, C.-Y. J. Lu, L. Chang, M. M. C. Chou, K. H. Ploog, C.-M. Chiang, and N. Ye, “Epitaxial growth of nonpolar m-plane ZnO epilayers and ZnO/Zn0.55Mg0.45O multiple quantum wells on a LiGaO2 (100) substrate,” RSC Adv. 5(127), 104798–104805 (2015).
[Crossref]

Ye, Z. Z.

X. Q. Gu, H. P. He, L. P. Zhu, Z. Z. Ye, K. F. Huo, and P. K. Chu, “Dependence of photoluminescence of ZnO/Zn0.85Mg0.15O multi-quantum wells on barrier width,” Phys. Lett. A 373(36), 3281–3284 (2009).
[Crossref]

Yeh, Y. C.

H. H. Wang, J. S. Tian, C. Y. Chen, H. H. Huang, Y. C. Yeh, P. Y. Deng, L. Chang, Y. H. Chu, Y. R. Wu, and J. H. He, “The effect of tensile strain on optical anisotropy and exciton of m-plane ZnO,” IEEE Photonics J. 7, 6800708 (2015).
[Crossref]

Yin, G.-C.

Zapol, P.

D. Xu, P. Zapol, G. B. Stephenson, and C. Thompson, “Kinetic Monte Carlo simulations of GaN homoepitaxy on c-and m-plane surfaces,” J. Chem. Phys. 146(14), 144702 (2017).
[Crossref]

Zhang, J.

Zhang, R.

Y. Zhang, F. Qin, J. Zhu, X. Chen, J. Li, D. Tang, Y. Yang, F. Ren, C. Xu, S. Gu, R. Zhang, Y. Zheng, and J. Ye, “Low-threshold ultraviolet stimulated emissions from large-sized single crystalline ZnO transferable membranes,” Opt. Express 26(24), 31965 (2018).
[Crossref]

T. Huang, S. Zhou, H. Teng, H. Lin, J. Wang, P. Han, and R. Zhang, “Growth and characterization of ZnO films on (001), (100) and (010) LiGaO2 substrates,” J. Cryst. Growth 310(13), 3144–3148 (2008).
[Crossref]

Zhang, Y.

Zheng, G.

F. Xian, G. Zheng, L. Xu, W. Kuang, S. Pei, Z. Cao, J. Li, and M. Lai, “Temperature and excitation power dependence of photoluminescence of ZnO nanorods synthesized by pattern assisted hydrothermal method,” J. Alloys Compd. 710, 695–701 (2017).
[Crossref]

Zheng, Y.

Zhong, Z.

Zhou, S.

T. Huang, S. Zhou, H. Teng, H. Lin, J. Wang, P. Han, and R. Zhang, “Growth and characterization of ZnO films on (001), (100) and (010) LiGaO2 substrates,” J. Cryst. Growth 310(13), 3144–3148 (2008).
[Crossref]

Zhou, T.

Zhu, J.

Zhu, L. P.

X. Q. Gu, H. P. He, L. P. Zhu, Z. Z. Ye, K. F. Huo, and P. K. Chu, “Dependence of photoluminescence of ZnO/Zn0.85Mg0.15O multi-quantum wells on barrier width,” Phys. Lett. A 373(36), 3281–3284 (2009).
[Crossref]

Zhuo, L. F.

T. S. Ko, T. C. Lu, L. F. Zhuo, W. L. Wang, M. H. Liang, H. C. Kuo, S. C. Wang, L. Chang, and D. Y. Lin, “Optical characteristics of a-plane ZnO/Zn0.8Mg0.2O multiple quantum wells grown by pulsed laser deposition,” J. Appl. Phys. 108(7), 073504 (2010).
[Crossref]

Appl. Phys. Express (1)

W.-H. Lin, U. Jahn, H. T. Grahn, L. Chang, M. M. C. Chou, and J.-J. Wu, “Spectral and spatial luminescence distribution of m-plane ZnO epitaxial films containing stacking faults: A cathodoluminescence study,” Appl. Phys. Express 6(6), 061101 (2013).
[Crossref]

Appl. Phys. Lett. (8)

D. Gerthsen, D. Litvinov, T. Gruber, C. Kirchner, and A. Waag, “Origin and consequences of a high stacking fault density in epitaxial ZnO layers,” Appl. Phys. Lett. 81(21), 3972–3974 (2002).
[Crossref]

M. Al-Suleiman, A. El-Shaer, A. Bakin, H. H. Wehmann, and A. Waag, “Optical investigations and exciton localization in high quality Zn1-xMgxO/ZnO single quantum wells,” Appl. Phys. Lett. 91(8), 081911 (2007).
[Crossref]

H. Matsui and H. Tabata, “Lattice strains and polarized luminescence in homoepitaxial growth of a-plane ZnO,” Appl. Phys. Lett. 101(23), 231901 (2012).
[Crossref]

J.-M. Chauveau, M. Teisseire, H. Kim-Chauveau, C. Morhain, C. Deparis, and B. Vinter, “Anisotropic strain effects on the photoluminescence emission from heteroepitaxial and homoepitaxial nonpolar (Zn,Mg)O/ZnO quantum wells,” Appl. Phys. Lett. 109, 102420 (2011).
[Crossref]

C.-M. Lai, Y.-E. Huang, K.-Y. Kou, C.-H. Chen, L.-W. Tu, and S.-W. Feng, “Experimental and theoretical study of polarized photoluminescence caused by anisotropic strain relaxation in nonpolar a-plane textured ZnO grown by a low-pressure chemical vapor deposition,” Appl. Phys. Lett. 107(2), 022110 (2015).
[Crossref]

H. Matsui and H. Tabata, “In-plane anisotropy of polarized photoluminescence in M-plane (10-10) ZnO and MgZnO/ZnO multiple quantum wells,” Appl. Phys. Lett. 94(16), 161907 (2009).
[Crossref]

G. Tabares, A. Hierro, B. Vinter, and J.-M. Chauveau, “Polarization-sensitive Schottky photodiodes based on a-plane ZnO/ZnMgO multiple quantum-wells,” Appl. Phys. Lett. 99(7), 071108 (2011).
[Crossref]

G. Coli and K. K. Bajaj, “Excitonic transitions in ZnO/MgZnO quantum well heterostructures,” Appl. Phys. Lett. 78(19), 2861–2863 (2001).
[Crossref]

ECS J. Solid State Sci. Technol. (1)

T.-H. Huang, W.-H. Lin, T. Yan, J.-J. Wu, L. Chang, M. M. C. Chou, U. Jahn, and K. H. Ploog, “Strain relaxation, defects and cathodoluminescence of m-plane ZnO and Zn0.8Mg0.2O epilayers grown on γ-LiAlO2 substrate,” ECS J. Solid State Sci. Technol. 2, P338 (2013).
[Crossref]

IEEE Photonics J. (1)

H. H. Wang, J. S. Tian, C. Y. Chen, H. H. Huang, Y. C. Yeh, P. Y. Deng, L. Chang, Y. H. Chu, Y. R. Wu, and J. H. He, “The effect of tensile strain on optical anisotropy and exciton of m-plane ZnO,” IEEE Photonics J. 7, 6800708 (2015).
[Crossref]

J. Alloys Compd. (1)

F. Xian, G. Zheng, L. Xu, W. Kuang, S. Pei, Z. Cao, J. Li, and M. Lai, “Temperature and excitation power dependence of photoluminescence of ZnO nanorods synthesized by pattern assisted hydrothermal method,” J. Alloys Compd. 710, 695–701 (2017).
[Crossref]

J. Appl. Phys. (3)

I. Gorczyca, K. Skrobas, N. E. Christensen, J. Sajkowski, M. Stachowicz, H. Teisseyre, and A. Kozanecki, “ZnO/(Zn)MgO polar and nonpolar superlattices,” J. Appl. Phys. 125(13), 135702 (2019).
[Crossref]

T. S. Ko, T. C. Lu, L. F. Zhuo, W. L. Wang, M. H. Liang, H. C. Kuo, S. C. Wang, L. Chang, and D. Y. Lin, “Optical characteristics of a-plane ZnO/Zn0.8Mg0.2O multiple quantum wells grown by pulsed laser deposition,” J. Appl. Phys. 108(7), 073504 (2010).
[Crossref]

H. Matsui, N. Hasuike, H. Harima, and H. Tabata, “Engineering of optical polarization based on electronic band structures of A-plane ZnO layers under biaxial strains,” J. Appl. Phys. 116(11), 113505 (2014).
[Crossref]

J. Chem. Phys. (1)

D. Xu, P. Zapol, G. B. Stephenson, and C. Thompson, “Kinetic Monte Carlo simulations of GaN homoepitaxy on c-and m-plane surfaces,” J. Chem. Phys. 146(14), 144702 (2017).
[Crossref]

J. Cryst. Growth (2)

T. Huang, S. Zhou, H. Teng, H. Lin, J. Wang, P. Han, and R. Zhang, “Growth and characterization of ZnO films on (001), (100) and (010) LiGaO2 substrates,” J. Cryst. Growth 310(13), 3144–3148 (2008).
[Crossref]

J. W. Lee, J.-H. Kim, S. K. Han, S.-K. Hong, J. Y. Lee, S. I. Hong, and T. Yao, “Interface and defect structures in ZnO films on m-plane sapphire substrates,” J. Cryst. Growth 312(2), 238–244 (2010).
[Crossref]

J. Lumin. (1)

E. Przezdziecka, E. Guziewicz, and B. S. Witkowski, “Photoluminescence investigation of the carrier recombination processes in N-doped and undoped ZnO ALD films grown at low temperature,” J. Lumin. 198, 68–76 (2018).
[Crossref]

J. Mater. Chem. C (1)

P. Shankar and J. B. B. Rayappan, “Room temperature ethanol sensing properties of ZnO nanorods prepared using an electrospinning technique,” J. Mater. Chem. C 5(41), 10869–10880 (2017).
[Crossref]

J. Phys. B: At., Mol. Opt. Phys. (1)

S. Jiang, S. Gholam-Mirzaei, E. Crites, J. E. Beetar, M. Singh, R. Lu, M. Chini, and C. D. Lin, “Crystal symmetry and polarization of high-order harmonics in ZnO,” J. Phys. B: At., Mol. Opt. Phys. 52(22), 225601 (2019).
[Crossref]

J. Phys. D: Appl. Phys. (1)

H. R. Chen, C. Y. Tsai, Y. C. Huang, C. C. Kuo, H. C. Hsu, and W. F. Hsieh, “Optical properties of one- and two-dimensional excitons in m-plane ZnO/MgZnO multiple quantum wells,” J. Phys. D: Appl. Phys. 49(9), 095105 (2016).
[Crossref]

Mater. Sci. Semicond. Process. (1)

V. Khranovskyy, M. Sendova, B. Hosterman, N. McGinnis, I. Shtepliuk, and R. Yakimova, “Temperature dependent study of basal plane stacking faults in Ag:ZnO nanorods by Raman and photoluminescence spectroscopy,” Mater. Sci. Semicond. Process. 69, 62–67 (2017).
[Crossref]

Materials (1)

J. Gao, Y. Zhang, Y. Sun, and Q. Wu, “Ultra-wide band and multifunctional polarization converter based on dielectric metamaterial,” Materials 12(23), 3857 (2019).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Opt. Mater. (1)

L. Trinkler, A. Trukhin, B. Berzina, V. Korsaks, P. Ščajev, R. Nedzinskas, S. Tumėnas, and M. M. C. Chou, “Luminescence properties of LiGaO2 crystal,” Opt. Mater. 69, 449–459 (2017).
[Crossref]

Opt. Mater. Express (1)

Phys. Lett. A (1)

X. Q. Gu, H. P. He, L. P. Zhu, Z. Z. Ye, K. F. Huo, and P. K. Chu, “Dependence of photoluminescence of ZnO/Zn0.85Mg0.15O multi-quantum wells on barrier width,” Phys. Lett. A 373(36), 3281–3284 (2009).
[Crossref]

Phys. Rev. B (2)

Y. Yan, G. M. Dalpian, M. M. Al-Jassim, and S.-H. Wei, “Energetics and electronic structure of stacking faults in ZnO,” Phys. Rev. B 70(19), 193206 (2004).
[Crossref]

D. C. Reynolds, D. C. Look, B. Jogai, C. W. Litton, G. Cantwell, and W. C. Harsch, “Valence-band ordering of ZnO,” Phys. Rev. B 60(4), 2340–2344 (1999).
[Crossref]

Phys. Status Solidi C (1)

M. J. Mohammed Ali, J. M. Chauveau, and T. Bretagnon, “Anisotropic optical properties of a homoepitaxial (Zn, Mg)O/ZnO quantum well grown on a-plane ZnO substrate,” Phys. Status Solidi C 13(7-9), 598–601 (2016).
[Crossref]

RSC Adv. (1)

T. Yan, C.-Y. J. Lu, L. Chang, M. M. C. Chou, K. H. Ploog, C.-M. Chiang, and N. Ye, “Epitaxial growth of nonpolar m-plane ZnO epilayers and ZnO/Zn0.55Mg0.45O multiple quantum wells on a LiGaO2 (100) substrate,” RSC Adv. 5(127), 104798–104805 (2015).
[Crossref]

Semicond. Sci. Technol. (1)

D.-R. Hang, S. E. Islam, K. H. Sharma, C. Chen, C.-T. Liang, and M. M. C. Chou, “Optical characteristics of nonpolar a-plane ZnO thin film on (010) LiGaO2 substrate,” Semicond. Sci. Technol. 29(8), 085004 (2014).
[Crossref]

Superlattices Microstruct. (1)

A. Ievtushenko, V. Karpyna, J. Eriksson, I. Tsiaoussis, I. Shtepliuk, G. Lashkarev, R. Yakimova, and V. Khranovskyy, “Effect of Ag doping on the structural, electrical and optical properties of ZnO grown by MOCVD at different substrate temperatures,” Superlattices Microstruct. 117, 121–131 (2018).
[Crossref]

Thin Solid Films (2)

M. M. C. Chou, D.-R. Hang, C. L. Chen, and Y.-H. Liao, “Epitaxial growth of nonpolar m-plane ZnO (10-10) on large-size LiGaO2 (100) substrates,” Thin Solid Films 519(11), 3627–3631 (2011).
[Crossref]

A. Kato, S. One, M. Ikeda, R. Tajima, Y. Adachi, and K. Yasui, “Polarization properties of nonpolar ZnO films grown on R-sapphire substrates using high-temperature H2O generated by a catalytic reaction,” Thin Solid Films 644, 29–32 (2017).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Experimental set-up for polarized PL measurements.
Fig. 2.
Fig. 2. Polarized PL spectra (0° and 90°) and the corresponding degree of polarization of the LGO (100) substrate in the temperature range of 10-300 K.
Fig. 3.
Fig. 3. (a) 90° and (b) 0° polarized PL spectra and (c) the corresponding degree of polarization of the m-plane ZnO epilayer at 10-300 K.
Fig. 4.
Fig. 4. (a) 0° and 90° Polarized PL spectra, (b) the corresponding degree of polarization, (c) peak energy of QWs emission versus T and (d) integrated PL intensity of QWs peak versus 1/T of the m-plane ZnO QWs at 10-300 K.
Fig. 5.
Fig. 5. 0° and 90° Polarized PL spectra generated by polarized laser light incident at (a) ELc and (b) EL//c and (c) the corresponding degree of polarization of the m-plane ZnO QWs at 10-300 K.
Fig. 6.
Fig. 6. (a) 0° and 90° Polarized PL spectra and (b) the corresponding degree of polarization of the a-plane ZnO epilayer at 10-300 K.

Tables (1)

Tables Icon

Table 1. Degree of polarization, in-plane strains and ΔE value of nonpolar m- and a-plane ZnO epilayer and QWs samples.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P =   ( I 90 I 0 ) / ( I 90 + I 0 ) × 100 %
I = I 0 / ( 1 + a 1 exp ( E a 1 / k T ) + a 2 exp ( E a 2 / k T ) )