Abstract

We introduce a new shearing interferometry module for digital holographic microscopy, in which the off-axis angle, which defines the interference fringe frequency, is not coupled to the shearing distance, as is the case in most shearing interferometers. Thus, it enables the selection of shearing distance based on the spatial density of the sample, without losing spatial frequency content due to overlapping of the complex wave fronts in the spatial frequency domain. Our module is based on a 4f imaging unit and a diffraction grating, in which the hologram is generated from two mutually coherent, partially overlapping sample beams, with adjustable shearing distance, as defined by the position of the grating, but with a constant off-axis angle, as defined by the grating period. The module is simple, easy to align, and presents a nearly common-path geometry. By placing this module as an add-on unit at the exit port of an inverted microscope, quantitative phase imaging can easily be performed. The system is characterized by a 2.5 nm temporal stability and a 3.4 nm spatial stability, without using anti-vibration techniques. We provide quantitative phase imaging experiments of silica beads with different shearing distances, red blood cell fluctuations, and cancer cells flowing in a micro-channel, which demonstrate the capability and versatility of our approach in different imaging scenarios.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Off-axis digital holographic camera for quantitative phase microscopy

Zahra Monemhaghdoust, Frédéric Montfort, Yves Emery, Christian Depeursinge, and Christophe Moser
Biomed. Opt. Express 5(6) 1721-1730 (2014)

Lateral shearing common-path digital holographic microscopy based on a slightly trapezoid Sagnac interferometer

Chaojie Ma, Ying Li, Jiwei Zhang, Peng Li, Teli Xi, Jianglei Di, and Jianlin Zhao
Opt. Express 25(12) 13659-13667 (2017)

References

  • View by:
  • |
  • |
  • |

  1. E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24(5), 291–293 (1999).
    [Crossref]
  2. P. Ferraro, C. D. Core, L. Miccio, S. Grilli, S. D. Nicola, A. Finizio, and G. Coppola, “Phase map retrieval in digital holography: avoiding the under sampling effect by a lateral shear approach,” Opt. Lett. 32(15), 2233–2235 (2007).
    [Crossref]
  3. V. Biaco, B. Mandracchia, V. Marchesano, V. Pagliarulo, F. Olivieri, S. Coppola, M. Paturzo, and P. Ferraro, “Endowing a plain fluidic chip with micro-optics: a holographic microscope slide,” Light Sci. Appl. 6(9), e17055 (2017).
    [Crossref]
  4. J. Min, B. Yao, S. Ketelhut, C. Engwer, B. Greve, and B. Kemper, “Simple and fast spectral domain algorithm for quantitative phase imaging of living cells with digital holographic microscopy,” Opt. Lett. 42(2), 227–230 (2017).
    [Crossref]
  5. F. Pan, S. Liu, Z. Wang, P. Shang, and W. Xiao, “Digital holographic microscopy long-term and real-time monitoring of cell division and changes under simulated zero gravity,” Opt. Express 20(10), 11496–11505 (2012).
    [Crossref]
  6. J. Cho, J. Lim, S. Jeon, G. Choi, H. Moon, N. Park, and Y. Park, “Dual-wavelength off-axis digital holography using a single light-emitting diode,” Opt. Express 26(2), 2123–2131 (2018).
    [Crossref]
  7. L. Puyo, J. Huignard, and M. Atlan, “Off-axis digital holography with multiplexed volume Bragg gratings,” Appl. Opt. 57(12), 3281–3287 (2018).
    [Crossref]
  8. N. T. Shaked, T. M. Newpher, M. D. Ehlers, and A. Wax, “Parallel on-axis holographic phase microscopy of biological cells and unicellular microorganism dynamics,” Appl. Opt. 49(15), 2872–2878 (2010).
    [Crossref]
  9. V. Micó, J. Zheng, J. Garcia, Z. Zalevsky, and P. Gao, “Resolution enhancement in quantitative phase microscopy,” Adv. Opt. Photon. 11(1), 135–214 (2019).
    [Crossref]
  10. P. Gao, B. Yao, J. Min, R. Guo, J. Zheng, T. Ye, I. Harder, V. Nercissian, and K. Mantel, “Parallel two-step phase-shifting point-diffraction interferometry for microscopy based on a pair of cube beam splitters,” Opt. Express 19(3), 1930–1935 (2011).
    [Crossref]
  11. J. Zheng, P. Gao, X. Shao, and G. Ulrich Nienhaus, “Refractive index measurement of suspended cells using opposed-view digital holographic microscopy,” Appl. Opt. 56(32), 9000–9005 (2017).
    [Crossref]
  12. R. Guo and F. Wang, “Compact and stable real-time dual-wavelength digital holographic microscopy with a long-working distance objective,” Opt. Express 25(20), 24512–24520 (2017).
    [Crossref]
  13. R. Guo, W. Zhang, R. Liu, C. Duan, and F. Wang, “Phase unwrapping in dual-wavelength digital holographic microscopy with total variation regularization,” Opt. Lett. 43(14), 3449–3452 (2018).
    [Crossref]
  14. J. A. Picazo-Bueno, M. Trusiak, J. García, K. Patorski, and V. Micó, “Hilbert-Huang single-shot spatially multiplexed interferometric microscopy,” Opt. Lett. 43(5), 1007–1010 (2018).
    [Crossref]
  15. J. A. Picazo-Bueno, Z. Zalevsky, J. García, and V. Micó, “Superresolved spatially multiplexed interferometric microscopy,” Opt. Lett. 42(5), 927–930 (2017).
    [Crossref]
  16. M. Trusiak, J. A. Picazo-Bueno, K. Patorski, P. Zdankowski, and V. Micó, “Single-shot two-frame π-shifted spatially multiplexed interference phase microscopy,” J. Biomed. Opt. 24(09), 1 (2019).
    [Crossref]
  17. P. Hosseini, R. Zhou, Y. H. Kim, C. Peres, A. Diaspro, C. Kuang, Z. Yaqoob, and P. T. C. So, “Pushing phase and amplitude sensitivity limits in interferometric microscopy,” Opt. Lett. 41(7), 1656–1659 (2016).
    [Crossref]
  18. N. A. Turko and N. T. Shaked, “Simultaneous two-wavelength phase unwrapping using an external module for multiplexing off-axis holography,” Opt. Lett. 42, 73 (2017).
    [Crossref]
  19. P. Girshovitz and N. T. Shaked, “Compact and portable low-coherence interferometer with off-axis geometry for quantitative phase microscopy and nanoscopy,” Opt. Express 21(5), 5701–5714 (2013).
    [Crossref]
  20. N. T. Shaked, “Quantitative phase microscopy of biological samples using a portable interferometer,” Opt. Lett. 37(11), 2016–2018 (2012).
    [Crossref]
  21. G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31(6), 775–777 (2006).
    [Crossref]
  22. I. Frenklach, P. Girshovitz, and N. T. Shaked, “Off-axis interferometric phase microscopy with tripled imaging area,” Opt. Lett. 39, 1525 (2014).
    [Crossref]
  23. B. Bhaduri, H. Pham, M. Mir, and G. Popescu, “Diffraction phase microscopy with white light,” Opt. Lett. 37(6), 1094–1096 (2012).
    [Crossref]
  24. M. Shan, L. Liu, Z. Zhong, B. Liu, G. Luan, and Y. Zhang, “Single-shot dual-wavelength off-axis quasi-common-path digital holography using polarization-multiplexing,” Opt. Express 25(21), 26253–26261 (2017).
    [Crossref]
  25. H. Bai, Z. Zhong, M. Shan, L. Liu, L. Guo, and Y. Zhang, “Interferometric phase microscopy using slightly-off axis reflective point diffraction interferometer,” Opt. Las. Eng. 90, 155–160 (2017).
    [Crossref]
  26. S. Mahajan, V. Trivedi, P. Vora, V. Chhaniwal, B. Javidi, and A. Anand, “Highly stable digital holographic microscope using Sagnac interferometer,” Opt. Lett. 40(16), 3743–3746 (2015).
    [Crossref]
  27. V. Chhaniwal, A. S. Singh, R. A. Leitgeb, B. Javidi, and A. Anand, “Quantitative phase-contrast imaging with compact digital holographic microscope employing Lloyd’s mirror,” Opt. Lett. 37(24), 5127–5129 (2012).
    [Crossref]
  28. C. Ma, Y. Li, J. Zhang, P. Li, T. Xi, J. Di, and J. Zhao, “Lateral shearing common-path digital holographic microscopy based on a slightly trapezoid Sagnac interferometer,” Opt. Express 25(12), 13659–13667 (2017).
    [Crossref]
  29. J. Di, Y. Li, M. Xie, J. Zhang, C. Ma, T. Xi, E. Li, and J. Zhao, “Dual-wavelength common-path digital holographic microscopy for quantitative phase imaging based on lateral shearing interferometry,” Appl. Opt. 55(26), 7287–7293 (2016).
    [Crossref]
  30. A. S. Singh, A. Anand, R. A. Leitgeb, and B. Javidi, “Lateral shearing digital holographic imaging of small biological specimens,” Opt. Express 20(21), 23617–23622 (2012).
    [Crossref]
  31. B. Javidi, A. Markman, S. Rawat, T. O’Connor, A. Anand, and B. Andemariam, “Sickle cell disease diagnosis based on spatio-temporal cell dynamics analysis using 3D printed shearing digital holographic microscopy,” Opt. Express 26(10), 13614–13627 (2018).
    [Crossref]
  32. K. Lee and Y. Park, “Quantitative phase imaging unit,” Opt. Lett. 39(12), 3630–3633 (2014).
    [Crossref]
  33. Y. Baek, K. Lee, J. Yoon, K. Kim, and Y. Park, “White-light quantitative phase imaging unit,” Opt. Express 24(9), 9308–9315 (2016).
    [Crossref]
  34. D. Roitshtain, N. A. Turko, B. Javidi, and N. T. Shaked, “Flipping interferometry and its application for quantitative phase microscopy in a micro-channel,” Opt. Lett. 41(10), 2354–2357 (2016).
    [Crossref]
  35. N. Rotman-Nativ, N. A. Turko, and N. T. Shaked, “Flipping interferometry with doubled imaging area,” Opt. Lett. 43(22), 5543–5546 (2018).
    [Crossref]
  36. B. Kemper, A. Vollmer, C. E. Rommel, J. Schnekenburger, and G. von Bally, “Simplified approach for quantitative digital holographic phase contrast imaging of living cells,” J. Biomed. Opt. 16(2), 026014 (2011).
    [Crossref]
  37. J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts & Company Publishers, 2005).
  38. R. Guo, F. Wang, X. Hu, and W. Yang, “Off-axis low coherence digital holographic interferometry for quantitative phase imaging with an LED,” J. Opt. 19(11), 115702 (2017).
    [Crossref]
  39. B. Bhaduri, M. Kandel, C. Brugnara, K. Tangella, and G. Popescu, “Optical Assay of Erythrocyte Function in Banked Blood,” Sci. Rep. 4(1), 6211 (2015).
    [Crossref]
  40. K. Jaferzadeh, I. Moon, M. Bardyn, M. Prudent, J. D. Tissot, B. Rappaz, B. Javidi, G. Turcatti, and P. Marquet, “Quantification of stored red blood cell fluctuations by time-lapse holographic cell imaging,” Biomed. Opt. Express 9(10), 4714–4729 (2018).
    [Crossref]
  41. W. H. Southwell, “Validity of the Fresnel approximation in the near field,” J. Opt. Soc. Am. 71(1), 7–14 (1981).
    [Crossref]

2019 (2)

V. Micó, J. Zheng, J. Garcia, Z. Zalevsky, and P. Gao, “Resolution enhancement in quantitative phase microscopy,” Adv. Opt. Photon. 11(1), 135–214 (2019).
[Crossref]

M. Trusiak, J. A. Picazo-Bueno, K. Patorski, P. Zdankowski, and V. Micó, “Single-shot two-frame π-shifted spatially multiplexed interference phase microscopy,” J. Biomed. Opt. 24(09), 1 (2019).
[Crossref]

2018 (7)

2017 (10)

R. Guo, F. Wang, X. Hu, and W. Yang, “Off-axis low coherence digital holographic interferometry for quantitative phase imaging with an LED,” J. Opt. 19(11), 115702 (2017).
[Crossref]

J. A. Picazo-Bueno, Z. Zalevsky, J. García, and V. Micó, “Superresolved spatially multiplexed interferometric microscopy,” Opt. Lett. 42(5), 927–930 (2017).
[Crossref]

J. Zheng, P. Gao, X. Shao, and G. Ulrich Nienhaus, “Refractive index measurement of suspended cells using opposed-view digital holographic microscopy,” Appl. Opt. 56(32), 9000–9005 (2017).
[Crossref]

R. Guo and F. Wang, “Compact and stable real-time dual-wavelength digital holographic microscopy with a long-working distance objective,” Opt. Express 25(20), 24512–24520 (2017).
[Crossref]

N. A. Turko and N. T. Shaked, “Simultaneous two-wavelength phase unwrapping using an external module for multiplexing off-axis holography,” Opt. Lett. 42, 73 (2017).
[Crossref]

V. Biaco, B. Mandracchia, V. Marchesano, V. Pagliarulo, F. Olivieri, S. Coppola, M. Paturzo, and P. Ferraro, “Endowing a plain fluidic chip with micro-optics: a holographic microscope slide,” Light Sci. Appl. 6(9), e17055 (2017).
[Crossref]

J. Min, B. Yao, S. Ketelhut, C. Engwer, B. Greve, and B. Kemper, “Simple and fast spectral domain algorithm for quantitative phase imaging of living cells with digital holographic microscopy,” Opt. Lett. 42(2), 227–230 (2017).
[Crossref]

C. Ma, Y. Li, J. Zhang, P. Li, T. Xi, J. Di, and J. Zhao, “Lateral shearing common-path digital holographic microscopy based on a slightly trapezoid Sagnac interferometer,” Opt. Express 25(12), 13659–13667 (2017).
[Crossref]

M. Shan, L. Liu, Z. Zhong, B. Liu, G. Luan, and Y. Zhang, “Single-shot dual-wavelength off-axis quasi-common-path digital holography using polarization-multiplexing,” Opt. Express 25(21), 26253–26261 (2017).
[Crossref]

H. Bai, Z. Zhong, M. Shan, L. Liu, L. Guo, and Y. Zhang, “Interferometric phase microscopy using slightly-off axis reflective point diffraction interferometer,” Opt. Las. Eng. 90, 155–160 (2017).
[Crossref]

2016 (4)

2015 (2)

S. Mahajan, V. Trivedi, P. Vora, V. Chhaniwal, B. Javidi, and A. Anand, “Highly stable digital holographic microscope using Sagnac interferometer,” Opt. Lett. 40(16), 3743–3746 (2015).
[Crossref]

B. Bhaduri, M. Kandel, C. Brugnara, K. Tangella, and G. Popescu, “Optical Assay of Erythrocyte Function in Banked Blood,” Sci. Rep. 4(1), 6211 (2015).
[Crossref]

2014 (2)

2013 (1)

2012 (5)

2011 (2)

B. Kemper, A. Vollmer, C. E. Rommel, J. Schnekenburger, and G. von Bally, “Simplified approach for quantitative digital holographic phase contrast imaging of living cells,” J. Biomed. Opt. 16(2), 026014 (2011).
[Crossref]

P. Gao, B. Yao, J. Min, R. Guo, J. Zheng, T. Ye, I. Harder, V. Nercissian, and K. Mantel, “Parallel two-step phase-shifting point-diffraction interferometry for microscopy based on a pair of cube beam splitters,” Opt. Express 19(3), 1930–1935 (2011).
[Crossref]

2010 (1)

2007 (1)

2006 (1)

1999 (1)

1981 (1)

Anand, A.

Andemariam, B.

Atlan, M.

Baek, Y.

Bai, H.

H. Bai, Z. Zhong, M. Shan, L. Liu, L. Guo, and Y. Zhang, “Interferometric phase microscopy using slightly-off axis reflective point diffraction interferometer,” Opt. Las. Eng. 90, 155–160 (2017).
[Crossref]

Bardyn, M.

Bevilacqua, F.

Bhaduri, B.

B. Bhaduri, M. Kandel, C. Brugnara, K. Tangella, and G. Popescu, “Optical Assay of Erythrocyte Function in Banked Blood,” Sci. Rep. 4(1), 6211 (2015).
[Crossref]

B. Bhaduri, H. Pham, M. Mir, and G. Popescu, “Diffraction phase microscopy with white light,” Opt. Lett. 37(6), 1094–1096 (2012).
[Crossref]

Biaco, V.

V. Biaco, B. Mandracchia, V. Marchesano, V. Pagliarulo, F. Olivieri, S. Coppola, M. Paturzo, and P. Ferraro, “Endowing a plain fluidic chip with micro-optics: a holographic microscope slide,” Light Sci. Appl. 6(9), e17055 (2017).
[Crossref]

Brugnara, C.

B. Bhaduri, M. Kandel, C. Brugnara, K. Tangella, and G. Popescu, “Optical Assay of Erythrocyte Function in Banked Blood,” Sci. Rep. 4(1), 6211 (2015).
[Crossref]

Chhaniwal, V.

Cho, J.

Choi, G.

Coppola, G.

Coppola, S.

V. Biaco, B. Mandracchia, V. Marchesano, V. Pagliarulo, F. Olivieri, S. Coppola, M. Paturzo, and P. Ferraro, “Endowing a plain fluidic chip with micro-optics: a holographic microscope slide,” Light Sci. Appl. 6(9), e17055 (2017).
[Crossref]

Core, C. D.

Cuche, E.

Dasari, R. R.

Depeursinge, C.

Di, J.

Diaspro, A.

Duan, C.

Ehlers, M. D.

Engwer, C.

Feld, M. S.

Ferraro, P.

V. Biaco, B. Mandracchia, V. Marchesano, V. Pagliarulo, F. Olivieri, S. Coppola, M. Paturzo, and P. Ferraro, “Endowing a plain fluidic chip with micro-optics: a holographic microscope slide,” Light Sci. Appl. 6(9), e17055 (2017).
[Crossref]

P. Ferraro, C. D. Core, L. Miccio, S. Grilli, S. D. Nicola, A. Finizio, and G. Coppola, “Phase map retrieval in digital holography: avoiding the under sampling effect by a lateral shear approach,” Opt. Lett. 32(15), 2233–2235 (2007).
[Crossref]

Finizio, A.

Frenklach, I.

Gao, P.

Garcia, J.

García, J.

Girshovitz, P.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts & Company Publishers, 2005).

Greve, B.

Grilli, S.

Guo, L.

H. Bai, Z. Zhong, M. Shan, L. Liu, L. Guo, and Y. Zhang, “Interferometric phase microscopy using slightly-off axis reflective point diffraction interferometer,” Opt. Las. Eng. 90, 155–160 (2017).
[Crossref]

Guo, R.

Harder, I.

Hosseini, P.

Hu, X.

R. Guo, F. Wang, X. Hu, and W. Yang, “Off-axis low coherence digital holographic interferometry for quantitative phase imaging with an LED,” J. Opt. 19(11), 115702 (2017).
[Crossref]

Huignard, J.

Ikeda, T.

Jaferzadeh, K.

Javidi, B.

Jeon, S.

Kandel, M.

B. Bhaduri, M. Kandel, C. Brugnara, K. Tangella, and G. Popescu, “Optical Assay of Erythrocyte Function in Banked Blood,” Sci. Rep. 4(1), 6211 (2015).
[Crossref]

Kemper, B.

J. Min, B. Yao, S. Ketelhut, C. Engwer, B. Greve, and B. Kemper, “Simple and fast spectral domain algorithm for quantitative phase imaging of living cells with digital holographic microscopy,” Opt. Lett. 42(2), 227–230 (2017).
[Crossref]

B. Kemper, A. Vollmer, C. E. Rommel, J. Schnekenburger, and G. von Bally, “Simplified approach for quantitative digital holographic phase contrast imaging of living cells,” J. Biomed. Opt. 16(2), 026014 (2011).
[Crossref]

Ketelhut, S.

Kim, K.

Kim, Y. H.

Kuang, C.

Lee, K.

Leitgeb, R. A.

Li, E.

Li, P.

Li, Y.

Lim, J.

Liu, B.

Liu, L.

M. Shan, L. Liu, Z. Zhong, B. Liu, G. Luan, and Y. Zhang, “Single-shot dual-wavelength off-axis quasi-common-path digital holography using polarization-multiplexing,” Opt. Express 25(21), 26253–26261 (2017).
[Crossref]

H. Bai, Z. Zhong, M. Shan, L. Liu, L. Guo, and Y. Zhang, “Interferometric phase microscopy using slightly-off axis reflective point diffraction interferometer,” Opt. Las. Eng. 90, 155–160 (2017).
[Crossref]

Liu, R.

Liu, S.

Luan, G.

Ma, C.

Mahajan, S.

Mandracchia, B.

V. Biaco, B. Mandracchia, V. Marchesano, V. Pagliarulo, F. Olivieri, S. Coppola, M. Paturzo, and P. Ferraro, “Endowing a plain fluidic chip with micro-optics: a holographic microscope slide,” Light Sci. Appl. 6(9), e17055 (2017).
[Crossref]

Mantel, K.

Marchesano, V.

V. Biaco, B. Mandracchia, V. Marchesano, V. Pagliarulo, F. Olivieri, S. Coppola, M. Paturzo, and P. Ferraro, “Endowing a plain fluidic chip with micro-optics: a holographic microscope slide,” Light Sci. Appl. 6(9), e17055 (2017).
[Crossref]

Markman, A.

Marquet, P.

Miccio, L.

Micó, V.

Min, J.

Mir, M.

Moon, H.

Moon, I.

Nercissian, V.

Newpher, T. M.

Nicola, S. D.

O’Connor, T.

Olivieri, F.

V. Biaco, B. Mandracchia, V. Marchesano, V. Pagliarulo, F. Olivieri, S. Coppola, M. Paturzo, and P. Ferraro, “Endowing a plain fluidic chip with micro-optics: a holographic microscope slide,” Light Sci. Appl. 6(9), e17055 (2017).
[Crossref]

Pagliarulo, V.

V. Biaco, B. Mandracchia, V. Marchesano, V. Pagliarulo, F. Olivieri, S. Coppola, M. Paturzo, and P. Ferraro, “Endowing a plain fluidic chip with micro-optics: a holographic microscope slide,” Light Sci. Appl. 6(9), e17055 (2017).
[Crossref]

Pan, F.

Park, N.

Park, Y.

Patorski, K.

M. Trusiak, J. A. Picazo-Bueno, K. Patorski, P. Zdankowski, and V. Micó, “Single-shot two-frame π-shifted spatially multiplexed interference phase microscopy,” J. Biomed. Opt. 24(09), 1 (2019).
[Crossref]

J. A. Picazo-Bueno, M. Trusiak, J. García, K. Patorski, and V. Micó, “Hilbert-Huang single-shot spatially multiplexed interferometric microscopy,” Opt. Lett. 43(5), 1007–1010 (2018).
[Crossref]

Paturzo, M.

V. Biaco, B. Mandracchia, V. Marchesano, V. Pagliarulo, F. Olivieri, S. Coppola, M. Paturzo, and P. Ferraro, “Endowing a plain fluidic chip with micro-optics: a holographic microscope slide,” Light Sci. Appl. 6(9), e17055 (2017).
[Crossref]

Peres, C.

Pham, H.

Picazo-Bueno, J. A.

Popescu, G.

Prudent, M.

Puyo, L.

Rappaz, B.

Rawat, S.

Roitshtain, D.

Rommel, C. E.

B. Kemper, A. Vollmer, C. E. Rommel, J. Schnekenburger, and G. von Bally, “Simplified approach for quantitative digital holographic phase contrast imaging of living cells,” J. Biomed. Opt. 16(2), 026014 (2011).
[Crossref]

Rotman-Nativ, N.

Schnekenburger, J.

B. Kemper, A. Vollmer, C. E. Rommel, J. Schnekenburger, and G. von Bally, “Simplified approach for quantitative digital holographic phase contrast imaging of living cells,” J. Biomed. Opt. 16(2), 026014 (2011).
[Crossref]

Shaked, N. T.

Shan, M.

M. Shan, L. Liu, Z. Zhong, B. Liu, G. Luan, and Y. Zhang, “Single-shot dual-wavelength off-axis quasi-common-path digital holography using polarization-multiplexing,” Opt. Express 25(21), 26253–26261 (2017).
[Crossref]

H. Bai, Z. Zhong, M. Shan, L. Liu, L. Guo, and Y. Zhang, “Interferometric phase microscopy using slightly-off axis reflective point diffraction interferometer,” Opt. Las. Eng. 90, 155–160 (2017).
[Crossref]

Shang, P.

Shao, X.

Singh, A. S.

So, P. T. C.

Southwell, W. H.

Tangella, K.

B. Bhaduri, M. Kandel, C. Brugnara, K. Tangella, and G. Popescu, “Optical Assay of Erythrocyte Function in Banked Blood,” Sci. Rep. 4(1), 6211 (2015).
[Crossref]

Tissot, J. D.

Trivedi, V.

Trusiak, M.

M. Trusiak, J. A. Picazo-Bueno, K. Patorski, P. Zdankowski, and V. Micó, “Single-shot two-frame π-shifted spatially multiplexed interference phase microscopy,” J. Biomed. Opt. 24(09), 1 (2019).
[Crossref]

J. A. Picazo-Bueno, M. Trusiak, J. García, K. Patorski, and V. Micó, “Hilbert-Huang single-shot spatially multiplexed interferometric microscopy,” Opt. Lett. 43(5), 1007–1010 (2018).
[Crossref]

Turcatti, G.

Turko, N. A.

Ulrich Nienhaus, G.

Vollmer, A.

B. Kemper, A. Vollmer, C. E. Rommel, J. Schnekenburger, and G. von Bally, “Simplified approach for quantitative digital holographic phase contrast imaging of living cells,” J. Biomed. Opt. 16(2), 026014 (2011).
[Crossref]

von Bally, G.

B. Kemper, A. Vollmer, C. E. Rommel, J. Schnekenburger, and G. von Bally, “Simplified approach for quantitative digital holographic phase contrast imaging of living cells,” J. Biomed. Opt. 16(2), 026014 (2011).
[Crossref]

Vora, P.

Wang, F.

Wang, Z.

Wax, A.

Xi, T.

Xiao, W.

Xie, M.

Yang, W.

R. Guo, F. Wang, X. Hu, and W. Yang, “Off-axis low coherence digital holographic interferometry for quantitative phase imaging with an LED,” J. Opt. 19(11), 115702 (2017).
[Crossref]

Yao, B.

Yaqoob, Z.

Ye, T.

Yoon, J.

Zalevsky, Z.

Zdankowski, P.

M. Trusiak, J. A. Picazo-Bueno, K. Patorski, P. Zdankowski, and V. Micó, “Single-shot two-frame π-shifted spatially multiplexed interference phase microscopy,” J. Biomed. Opt. 24(09), 1 (2019).
[Crossref]

Zhang, J.

Zhang, W.

Zhang, Y.

H. Bai, Z. Zhong, M. Shan, L. Liu, L. Guo, and Y. Zhang, “Interferometric phase microscopy using slightly-off axis reflective point diffraction interferometer,” Opt. Las. Eng. 90, 155–160 (2017).
[Crossref]

M. Shan, L. Liu, Z. Zhong, B. Liu, G. Luan, and Y. Zhang, “Single-shot dual-wavelength off-axis quasi-common-path digital holography using polarization-multiplexing,” Opt. Express 25(21), 26253–26261 (2017).
[Crossref]

Zhao, J.

Zheng, J.

Zhong, Z.

M. Shan, L. Liu, Z. Zhong, B. Liu, G. Luan, and Y. Zhang, “Single-shot dual-wavelength off-axis quasi-common-path digital holography using polarization-multiplexing,” Opt. Express 25(21), 26253–26261 (2017).
[Crossref]

H. Bai, Z. Zhong, M. Shan, L. Liu, L. Guo, and Y. Zhang, “Interferometric phase microscopy using slightly-off axis reflective point diffraction interferometer,” Opt. Las. Eng. 90, 155–160 (2017).
[Crossref]

Zhou, R.

Adv. Opt. Photon. (1)

Appl. Opt. (4)

Biomed. Opt. Express (1)

J. Biomed. Opt. (2)

M. Trusiak, J. A. Picazo-Bueno, K. Patorski, P. Zdankowski, and V. Micó, “Single-shot two-frame π-shifted spatially multiplexed interference phase microscopy,” J. Biomed. Opt. 24(09), 1 (2019).
[Crossref]

B. Kemper, A. Vollmer, C. E. Rommel, J. Schnekenburger, and G. von Bally, “Simplified approach for quantitative digital holographic phase contrast imaging of living cells,” J. Biomed. Opt. 16(2), 026014 (2011).
[Crossref]

J. Opt. (1)

R. Guo, F. Wang, X. Hu, and W. Yang, “Off-axis low coherence digital holographic interferometry for quantitative phase imaging with an LED,” J. Opt. 19(11), 115702 (2017).
[Crossref]

J. Opt. Soc. Am. (1)

Light Sci. Appl. (1)

V. Biaco, B. Mandracchia, V. Marchesano, V. Pagliarulo, F. Olivieri, S. Coppola, M. Paturzo, and P. Ferraro, “Endowing a plain fluidic chip with micro-optics: a holographic microscope slide,” Light Sci. Appl. 6(9), e17055 (2017).
[Crossref]

Opt. Express (10)

P. Gao, B. Yao, J. Min, R. Guo, J. Zheng, T. Ye, I. Harder, V. Nercissian, and K. Mantel, “Parallel two-step phase-shifting point-diffraction interferometry for microscopy based on a pair of cube beam splitters,” Opt. Express 19(3), 1930–1935 (2011).
[Crossref]

F. Pan, S. Liu, Z. Wang, P. Shang, and W. Xiao, “Digital holographic microscopy long-term and real-time monitoring of cell division and changes under simulated zero gravity,” Opt. Express 20(10), 11496–11505 (2012).
[Crossref]

A. S. Singh, A. Anand, R. A. Leitgeb, and B. Javidi, “Lateral shearing digital holographic imaging of small biological specimens,” Opt. Express 20(21), 23617–23622 (2012).
[Crossref]

B. Javidi, A. Markman, S. Rawat, T. O’Connor, A. Anand, and B. Andemariam, “Sickle cell disease diagnosis based on spatio-temporal cell dynamics analysis using 3D printed shearing digital holographic microscopy,” Opt. Express 26(10), 13614–13627 (2018).
[Crossref]

J. Cho, J. Lim, S. Jeon, G. Choi, H. Moon, N. Park, and Y. Park, “Dual-wavelength off-axis digital holography using a single light-emitting diode,” Opt. Express 26(2), 2123–2131 (2018).
[Crossref]

Y. Baek, K. Lee, J. Yoon, K. Kim, and Y. Park, “White-light quantitative phase imaging unit,” Opt. Express 24(9), 9308–9315 (2016).
[Crossref]

C. Ma, Y. Li, J. Zhang, P. Li, T. Xi, J. Di, and J. Zhao, “Lateral shearing common-path digital holographic microscopy based on a slightly trapezoid Sagnac interferometer,” Opt. Express 25(12), 13659–13667 (2017).
[Crossref]

R. Guo and F. Wang, “Compact and stable real-time dual-wavelength digital holographic microscopy with a long-working distance objective,” Opt. Express 25(20), 24512–24520 (2017).
[Crossref]

M. Shan, L. Liu, Z. Zhong, B. Liu, G. Luan, and Y. Zhang, “Single-shot dual-wavelength off-axis quasi-common-path digital holography using polarization-multiplexing,” Opt. Express 25(21), 26253–26261 (2017).
[Crossref]

P. Girshovitz and N. T. Shaked, “Compact and portable low-coherence interferometer with off-axis geometry for quantitative phase microscopy and nanoscopy,” Opt. Express 21(5), 5701–5714 (2013).
[Crossref]

Opt. Las. Eng. (1)

H. Bai, Z. Zhong, M. Shan, L. Liu, L. Guo, and Y. Zhang, “Interferometric phase microscopy using slightly-off axis reflective point diffraction interferometer,” Opt. Las. Eng. 90, 155–160 (2017).
[Crossref]

Opt. Lett. (17)

E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24(5), 291–293 (1999).
[Crossref]

V. Chhaniwal, A. S. Singh, R. A. Leitgeb, B. Javidi, and A. Anand, “Quantitative phase-contrast imaging with compact digital holographic microscope employing Lloyd’s mirror,” Opt. Lett. 37(24), 5127–5129 (2012).
[Crossref]

N. T. Shaked, “Quantitative phase microscopy of biological samples using a portable interferometer,” Opt. Lett. 37(11), 2016–2018 (2012).
[Crossref]

B. Bhaduri, H. Pham, M. Mir, and G. Popescu, “Diffraction phase microscopy with white light,” Opt. Lett. 37(6), 1094–1096 (2012).
[Crossref]

G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31(6), 775–777 (2006).
[Crossref]

P. Ferraro, C. D. Core, L. Miccio, S. Grilli, S. D. Nicola, A. Finizio, and G. Coppola, “Phase map retrieval in digital holography: avoiding the under sampling effect by a lateral shear approach,” Opt. Lett. 32(15), 2233–2235 (2007).
[Crossref]

I. Frenklach, P. Girshovitz, and N. T. Shaked, “Off-axis interferometric phase microscopy with tripled imaging area,” Opt. Lett. 39, 1525 (2014).
[Crossref]

K. Lee and Y. Park, “Quantitative phase imaging unit,” Opt. Lett. 39(12), 3630–3633 (2014).
[Crossref]

S. Mahajan, V. Trivedi, P. Vora, V. Chhaniwal, B. Javidi, and A. Anand, “Highly stable digital holographic microscope using Sagnac interferometer,” Opt. Lett. 40(16), 3743–3746 (2015).
[Crossref]

P. Hosseini, R. Zhou, Y. H. Kim, C. Peres, A. Diaspro, C. Kuang, Z. Yaqoob, and P. T. C. So, “Pushing phase and amplitude sensitivity limits in interferometric microscopy,” Opt. Lett. 41(7), 1656–1659 (2016).
[Crossref]

N. A. Turko and N. T. Shaked, “Simultaneous two-wavelength phase unwrapping using an external module for multiplexing off-axis holography,” Opt. Lett. 42, 73 (2017).
[Crossref]

J. Min, B. Yao, S. Ketelhut, C. Engwer, B. Greve, and B. Kemper, “Simple and fast spectral domain algorithm for quantitative phase imaging of living cells with digital holographic microscopy,” Opt. Lett. 42(2), 227–230 (2017).
[Crossref]

J. A. Picazo-Bueno, Z. Zalevsky, J. García, and V. Micó, “Superresolved spatially multiplexed interferometric microscopy,” Opt. Lett. 42(5), 927–930 (2017).
[Crossref]

D. Roitshtain, N. A. Turko, B. Javidi, and N. T. Shaked, “Flipping interferometry and its application for quantitative phase microscopy in a micro-channel,” Opt. Lett. 41(10), 2354–2357 (2016).
[Crossref]

J. A. Picazo-Bueno, M. Trusiak, J. García, K. Patorski, and V. Micó, “Hilbert-Huang single-shot spatially multiplexed interferometric microscopy,” Opt. Lett. 43(5), 1007–1010 (2018).
[Crossref]

R. Guo, W. Zhang, R. Liu, C. Duan, and F. Wang, “Phase unwrapping in dual-wavelength digital holographic microscopy with total variation regularization,” Opt. Lett. 43(14), 3449–3452 (2018).
[Crossref]

N. Rotman-Nativ, N. A. Turko, and N. T. Shaked, “Flipping interferometry with doubled imaging area,” Opt. Lett. 43(22), 5543–5546 (2018).
[Crossref]

Sci. Rep. (1)

B. Bhaduri, M. Kandel, C. Brugnara, K. Tangella, and G. Popescu, “Optical Assay of Erythrocyte Function in Banked Blood,” Sci. Rep. 4(1), 6211 (2015).
[Crossref]

Other (1)

J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts & Company Publishers, 2005).

Supplementary Material (2)

NameDescription
» Visualization 1       Gradual changing of the shearing distance over time
» Visualization 2       Flow dynamics of cells

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. An inverted microscope with the proposed SICA module (marked by dashed rectangle), connected to its output. M1, M2, mirrors; S, sample; MO, microscope objective; TL, tube lens; IP, image plane; G, grating; L1, L2, lenses with focal lengths f1=150 mm and f2=300 mm. z, distance of G from IP; B, mask that selects only two diffraction orders; l, shearing distance; α, interference angle.
Fig. 2.
Fig. 2. Experimental results of varying shearing distances but with fixed interference angle, when imaging 1951 USAF resolution target. (a,b) Off-axis image holograms with two different shearing distances. White lines on the top right represent 10 µm on the sample. (c,d) Spatial frequency spectra corresponding to (a) and (b), respectively, where the location of the cross-correlation terms remains unchanged.
Fig. 3.
Fig. 3. Temporal OPD stability in our SICA setup (orange) and the DPM setup (blue).
Fig. 4.
Fig. 4. Quantitative phase images of silica beads with (a, b) a small vertical shearing distance and (c, d) a large vertical shearing distance, as obtained under highly coherent illumination. (a, c) Off-axis holograms, with magnified inset showing fringe period and contrast. (b, d) Quantitative phase profiles. White lines represent 10 µm. See gradual changing of the shearing distance over time in Visualization 1.
Fig. 5.
Fig. 5. (a) Quantitative phase image of a single RBC and (b) its fluctuation map, as obtained under highly coherent illumination. White lines represent 5 µm.
Fig. 6.
Fig. 6. Quantitative phase image of cancer cells (SW620) flowing in a micro-channel, as obtained under highly coherent illumination. White line represents 10 µm. See flow dynamics in Visualization 2.
Fig. 7.
Fig. 7. Schematic of the SICA module. z, z1, distance from planes x1 to x2 and x2 to x3, respectively; α, interference angle.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

α = f 1 λ / f 2 d [ r a d ] ,
l = f 2 λ z / f 1 d .
I ( x , y ) = | K 0 A [ ( x , y ) f 1 / f 2 ] + K 1 exp ( j 2 π f 1 x / f 2 d ) A [ ( x f 2 λ z / f 1 d , y ) f 1 / f 2 ] | 2 ,
u ( x 2 ) = 1 j λ z exp ( j k 2 z x 2 2 ) + A ( x 1 ) exp ( j k 2 z x 1 2 ) exp ( j k z x 1 x 2 ) d x 1 ,
t ( x 2 ) = n = + K n exp ( j n 2 π x 2 / d ) K n = 0 d t ( x 2 ) exp ( j n 2 π x 2 / d ) d x 2 .
t ( x 2 ) = K 0 + K 1 exp ( j 2 π x 2 / d ) .
u ( x 3 ) = 1 j λ z 1 exp ( j k 2 z 1 x 3 2 ) + u ( x 2 ) t ( x 2 ) exp ( j k 2 z 1 x 2 2 ) exp ( j k z 1 x 2 x 3 ) d x 2 .
u ( x 3 ) = 1 j λ z 1 1 j λ z exp ( j k 2 z 1 x 3 2 ) { K 1 + A ( x 1 ) exp ( j k 2 z x 1 2 ) + exp [ j k 2 x 2 2 ( 1 z 1 + 1 z ) ] exp [ j 2 π x 2 ( x 1 λ z + x 3 λ z 1 1 d ) ] d x 2 d x 1 + K 0 + A ( x 1 ) exp ( j k 2 z x 1 2 ) + exp [ j k 2 x 2 2 ( 1 z 1 + 1 z ) ] exp [ j 2 π x 2 ( x 1 λ z + x 3 λ z 1 ) ] d x 2 d x 1 } .
+ exp ( j k 2 m x 2 ) exp ( j 2 π ξ x ) d x = λ m exp ( j π 4 ) exp ( j π λ m ξ 2 ) ,
u ( x 3 ) = 1 i λ f 1 exp ( j k 2 f 1 x 3 2 ) { K 1 exp ( j 2 π z d f 1 x 3 ) + A ( x 1 ) exp ( j k 2 f 1 x 1 2 ) exp ( j 2 π x 3 λ f 1 x 1 ) exp ( j 2 π z 1 d f 1 x 1 ) d x 1 + K 0 + A ( x 1 ) exp ( j k 2 f 1 x 1 2 ) exp ( j 2 π x 3 λ f 1 x 1 ) d x 1 } .
t l ( x 3 ) = exp ( j k 2 f 1 x 3 2 ) .
u ( x 4 ) = 1 j λ f 1 exp ( j k 2 f 1 x 4 2 ) + u ( x 3 ) t l ( x 3 ) exp ( j k 2 f 1 x 3 2 ) exp ( j k f 1 x 4 x 3 ) d x 3 .
u ( x 4 ) = 1 j λ f 1 [ K 0 A ~ ( x 4 λ f 1 )  +  K 1 exp ( j 2 π z f 1 d x 4 ) A ~ ( x 4 λ f 1 1 d ) ] ,
u ( x 5 ) = K 0 A ( x 5 f 1 / f 2 ) + K 1 exp ( j 2 π f 1 x 5 / f 2 d ) A [ ( x 5 f 2 λ z / f 1 d ) f 1 / f 2 ] .
I ( x 5 ) = | u ( x 5 ) | 2 .