Abstract

An imaging spectrometer combining an entrance slit, a Fabry-Perot interferometer (FPI) and a plane transmission grating is presented. Each unit of the entrance slit is imaged on a separate column of the detector and different wavelengths are dispersed across different rows of that column. To cover the full spectral range, the FPI needs to scan N steps. For each unit of the entrance slit, one spectrum is obtained at each FPI spacing position and a total of N spectra are sequentially obtained to constitute a high resolution spectrum. The combination of imaging, interferometry and dispersive spectrometry enables the instrument to obtain spatial information and high-resolution spectral information of a broadband source in the ultraviolet-visible spectral region. First-order approximations of system performance are given. The unique design of the optics will make the instrument compact and suitable for high-spectral-resolution broadband ultraviolet-visible spectral imaging.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Three-area-array coherent-dispersion stereo-imaging spectrometer

Qinghua Yang
Opt. Express 27(2) 1025-1044 (2019)

Ultrahigh-resolution rapid-scan ultraviolet-visible spectrometer

Qinghua Yang
OSA Continuum 1(3) 812-821 (2018)

References

  • View by:
  • |
  • |
  • |

  1. P. R. Griffiths and J. A. de Haseth, Fourier Transform Infrared Spectrometry (Wiley-Interscience, 2007).
  2. F. W. Plankey, T. H. Glenn, L. P. Hart, and J. D. Winefordner, “Hadamard spectrometer for ultraviolet-visible spectrometry,” Anal. Chem. 46(8), 1000–1005 (1974).
    [Crossref]
  3. T. Hirschfeld, “Fellgett’s Advantage in UV-VIS Multiplex Spectroscopy,” Appl. Spectrosc. 30(1), 68–69 (1976).
    [Crossref]
  4. E. Voigtman and J. D. Winefordner, “The multiplex disadvantage and excess low-frequency noise,” Appl. Spectrosc. 41(7), 1182–1184 (1987).
    [Crossref]
  5. Q. Yang, “Compact high-resolution Littrow conical diffraction spectrometer,” Appl. Opt. 55(18), 4801–4807 (2016).
    [Crossref]
  6. L. Yu, H. Xue, and J. Chen, “Dual concave grating anastigmatic spectrometer with high spectral resolution for remote sensing,” Appl. Opt. 57(33), 9789–9796 (2018).
    [Crossref]
  7. W. M. Kunkel and J. R. Leger, “Gain dependent self-phasing in a two-core coherently combined fiber laser,” Opt. Express 26(8), 9373–9388 (2018).
    [Crossref]
  8. N. Danz, B. Höfer, E. Förster, T. Flügel-Paul, T. Harzendorf, P. Dannberg, R. Leitel, S. Kleinle, and R. Brunner, “Miniature integrated micro-spectrometer array for snap shot multispectral sensing,” Opt. Express 27(4), 5719–5728 (2019).
    [Crossref]
  9. C. Palmer and E. Loewen, Diffraction Grating Handbook (Newport Corporation, 2005).
  10. W. H. Steel, Interferometry (Cambridge University, 1983).
  11. P. Jacquinot, “The luminosity of spectrometers with Prisms, Grating, or Fabry-Perot Etalons,” J. Opt. Soc. Am. 44(10), 761–765 (1954).
    [Crossref]
  12. P. B. Fellgett, “The nature and origin of multiplex Fourier spectrometry,” Notes Rec. R. Soc 60(1), 91–93 (2006).
    [Crossref]
  13. L. W. Schumann and T. S. Lomheim, “Infrared hyperspectral imaging Fourier transform and dispersive spectrometers: comparison of signal-to-noise based performance [Invited],” Proc. SPIE 4480, 1–14 (2002).
    [Crossref]
  14. A. Barducci, D. Guzzi, C. Lastri, P. Marcoionni, V. Nardino, and I. Pippi, “Radiometric and SNR properties of multiplex dispersive spectrometry,” Appl. Opt. 49(28), 5366–5373 (2010).
    [Crossref]
  15. A. Barducci, D. Guzzi, C. Lastri, P. Marcoionni, V. Nardino, and I. Pippi, “Theoretical aspects of Fourier Transform Spectrometry and common path triangular interferometers,” Opt. Express 18(11), 11622–11649 (2010).
    [Crossref]
  16. J. V. Sweedler, R. D. Jalkian, G. R. Sims, and M. B. Denton, “Crossed Interferometric Dispersive Spectroscopy,” Appl. Spectrosc. 44(1), 14–20 (1990).
    [Crossref]
  17. M. Shirasaki, “Large angular dispersion by a virtually imaged phased array and its application to a wavelength demultiplexer,” Opt. Lett. 21(5), 366–368 (1996).
    [Crossref]
  18. P. Metz, H. Block, C. Behnke, M. Krantz, M. Gerken, and J. Adam, “Tunable elastomer-based virtually imaged phased array,” Opt. Express 21(3), 3324–3335 (2013).
    [Crossref]
  19. P. Metz, J. Adam, M. Gerken, and B. Jalali, “Compact, transmissive two-dimensional spatial disperser design with application in simultaneous endoscopic imaging,” Appl. Opt. 53(3), 376–382 (2014).
    [Crossref]
  20. C. Wang, Z. Ding, S. Mei, H. Yu, W. Hong, Y. Yan, and W. Shen, “Ultralong-range phase imaging with orthogonal dispersive spectral-domain optical coherence tomography,” Opt. Lett. 37(21), 4555–4557 (2012).
    [Crossref]
  21. W. Bao, Z. Ding, P. Li, Z. Chen, Y. Shen, and C. Wang, “Orthogonal dispersive spectral-domain optical coherence tomography,” Opt. Express 22(8), 10081–10090 (2014).
    [Crossref]
  22. W. Bao, Y. Shen, T. Chen, P. Li, and Z. Ding, “High-speed high-precision and ultralong-range complex spectral domain dimensional metrology,” Opt. Express 23(9), 11013–11022 (2015).
    [Crossref]
  23. Q. Yang, “Coherent-dispersion spectrometer for the ultraviolet and visible regions,” Opt. Express 26(10), 12372–12386 (2018).
    [Crossref]
  24. Q. Yang, “Ultrahigh-resolution rapid-scan ultraviolet-visible spectrometer,” OSA Continuum 1(3), 812–821 (2018).
    [Crossref]
  25. J. V. Sweedler, “The use of charge transfer device detectors and spatial interferometry for analytical spectroscopy,” https://arizona.openrepository.com/handle/10150/184683 .
  26. G. Hernandez, Fabry-Perot Interferometers (Cambridge University, 1986).
  27. G. Hernandez, “Afocal coupled etalons. DEM: a high-resolution double-etalon modulator spectrometer,” Appl. Opt. 26(22), 4857–4869 (1987).
    [Crossref]
  28. G. Hernandez and F. G. McCormac, “Afocal coupled etalons: experimental confirmation of a high-resolution double-etalon modulator spectrometer,” Appl. Opt. 27(16), 3492–3495 (1988).
    [Crossref]
  29. G. Hernandez and K. C. Clark, “Electro-optic high-resolution Fabry-Perot spectrometer,” Appl. Opt. 33(10), 1989–1992 (1994).
    [Crossref]
  30. S. M. Lindsay, M. W. Anderson, and J. R. Sandercock, “Construction and alignment of a high performance multipass vernier tandem Fabry-Perot interferometer,” Rev. Sci. Instrum. 52(10), 1478–1486 (1981).
    [Crossref]
  31. P. D. Atherton, K. Taylor, C. D. Pike, C. F. W. Harmer, N. M. Parker, and R. N. Hook, “TAURUS: a wide-field imaging Fabry-Perot spectrometer for astronomy,” Mon. Not. R. Astron. Soc. 201(3), 661–696 (1982).
    [Crossref]
  32. P. B. Hays and H. E. Snell, “Multiplex Fabry-Perot interferometer,” Appl. Opt. 30(22), 3108–3113 (1991).
    [Crossref]
  33. M. R. Swain, C. M. Bradford, G. J. Stacey, A. D. Bolatto, J. M. Jackson, M. L. Savage, and J. Davidson, “Design of the South Pole imaging Fabry-Perot interferometer (SPIFI),” Proc. SPIE 3354, 480–492 (1998).
    [Crossref]
  34. B. Swinyard and M. Ferlet, “Cascaded interferometric imaging spectrometer,” Appl. Opt. 46(25), 6381–6390 (2007).
    [Crossref]
  35. M. Pisani and M. Zucco, “Compact imaging spectrometer combining Fourier transform spectroscopy with a Fabry-Perot interferometer,” Opt. Express 17(10), 8319–8331 (2009).
    [Crossref]
  36. M. Zucco, M. Pisani, V. Caricato, and A. Egidi, “A hyperspectral imager based on a Fabry-Perot interferometer with dielectric mirrors,” Opt. Express 22(2), 1824–1834 (2014).
    [Crossref]
  37. T. A. Al-Saeed and D. A. Khalil, “Fourier transform spectrometer based on Fabry-Perot interferometer,” Appl. Opt. 55(20), 5322–5331 (2016).
    [Crossref]
  38. Y. M. Eltagoury, Y. M. Sabry, and D. A. Khalil, “Novel Fourier transform infrared spectrometer architecture based on cascaded Fabry-Perot interferometers,” Proc. SPIE 9760, 97600L (2016).
    [Crossref]
  39. I. S. El-Sayed, Y. M. Sabry, W. E. ElZeiny, N. Badra, and D. A. Khalil, “Transformation algorithm and analysis of the Fourier transform spectrometer based on cascaded Fabry-Perot interferometers,” Appl. Opt. 57(25), 7225–7231 (2018).
    [Crossref]
  40. Q. Yang, “Compact ultrahigh resolution interferometric spectrometer,” Opt. Express 27(21), 30606–30617 (2019).
    [Crossref]
  41. S. E. Persson, T. R. Geballe, and F. Baas, “A grating spectrometer and Fabry-Perot interferometer for use in the 1 µm-5 µm wavelength region,” Publ. Astron. Soc. Pac. 94, 381–385 (1982).
    [Crossref]
  42. R. Wade, “A 1-5 micron cooled grating array spectrometer and Fabry Perot system for UKIRT,” Proc. SPIE 0445, 47–51 (1984).
    [Crossref]
  43. G. R. Davis, I. Furniss, W. A. Towlson, P. A. R. Ade, R. J. Emery, W. M. Glencross, D. A. Naylor, T. J. Patrick, R. C. Sidey, and B. M. Swinyard, “Design and performance of cryogenic, scanning Fabry-Perot interferometers for the Long-Wavelength Spectrometer on the Infrared Space Observatory,” Appl. Opt. 34(1), 92–107 (1995).
    [Crossref]
  44. M. Ban, O. Kakuchi, H. Yamamoto, M. Ohtsuka, O. Shiba, and K. Hara, “Fabri-Perot spectroscopy method and apparatus utilizing the same,” US patent 4850709 (25 July 1989).
  45. Y. Bao, D. Daugherty, K. Hsu, T. Q. Y. Li, C. M. Miller, and J. W. Miller, “Fabry Perot/fiber Bragg grating multi-wavelength reference,” US patent 5892582 (6 April 1999).
  46. Q. Yang, “Broadband high-spectral-resolution ultraviolet-visible coherent-dispersion imaging spectrometer,” Opt. Express 26(16), 20777–20791 (2018).
    [Crossref]
  47. Q. Yang, “Three-area-array coherent-dispersion stereo-imaging spectrometer,” Opt. Express 27(2), 1025–1044 (2019).
    [Crossref]
  48. J. Kauppinen and V. M. Horneman, “Large aperture cube corner interferometer with a resolution of 0.001 cm−1,” Appl. Opt. 30(18), 2575–2578 (1991).
    [Crossref]
  49. C. L. Bennett, M. R. Carter, D. J. Fields, and J. A. M. Hernandez, “Imaging Fourier transform spectrometer,” Proc. SPIE 1937, 191–200 (1993).
    [Crossref]
  50. Q. Yang, “Moving corner-cube-mirror interferometer and reflection characteristic of corner-cube mirror,” Appl. Opt. 49(21), 4088–4095 (2010).
    [Crossref]
  51. M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).
  52. M. Bass, G. Li, and E. V. Stryland, Handbook of Optics (McGraw-Hill, 2010).

2019 (3)

2018 (6)

2016 (3)

2015 (1)

2014 (3)

2013 (1)

2012 (1)

2010 (3)

2009 (1)

2007 (1)

2006 (1)

P. B. Fellgett, “The nature and origin of multiplex Fourier spectrometry,” Notes Rec. R. Soc 60(1), 91–93 (2006).
[Crossref]

2002 (1)

L. W. Schumann and T. S. Lomheim, “Infrared hyperspectral imaging Fourier transform and dispersive spectrometers: comparison of signal-to-noise based performance [Invited],” Proc. SPIE 4480, 1–14 (2002).
[Crossref]

1998 (1)

M. R. Swain, C. M. Bradford, G. J. Stacey, A. D. Bolatto, J. M. Jackson, M. L. Savage, and J. Davidson, “Design of the South Pole imaging Fabry-Perot interferometer (SPIFI),” Proc. SPIE 3354, 480–492 (1998).
[Crossref]

1996 (1)

1995 (1)

1994 (1)

1993 (1)

C. L. Bennett, M. R. Carter, D. J. Fields, and J. A. M. Hernandez, “Imaging Fourier transform spectrometer,” Proc. SPIE 1937, 191–200 (1993).
[Crossref]

1991 (2)

1990 (1)

1988 (1)

1987 (2)

1984 (1)

R. Wade, “A 1-5 micron cooled grating array spectrometer and Fabry Perot system for UKIRT,” Proc. SPIE 0445, 47–51 (1984).
[Crossref]

1982 (2)

S. E. Persson, T. R. Geballe, and F. Baas, “A grating spectrometer and Fabry-Perot interferometer for use in the 1 µm-5 µm wavelength region,” Publ. Astron. Soc. Pac. 94, 381–385 (1982).
[Crossref]

P. D. Atherton, K. Taylor, C. D. Pike, C. F. W. Harmer, N. M. Parker, and R. N. Hook, “TAURUS: a wide-field imaging Fabry-Perot spectrometer for astronomy,” Mon. Not. R. Astron. Soc. 201(3), 661–696 (1982).
[Crossref]

1981 (1)

S. M. Lindsay, M. W. Anderson, and J. R. Sandercock, “Construction and alignment of a high performance multipass vernier tandem Fabry-Perot interferometer,” Rev. Sci. Instrum. 52(10), 1478–1486 (1981).
[Crossref]

1976 (1)

1974 (1)

F. W. Plankey, T. H. Glenn, L. P. Hart, and J. D. Winefordner, “Hadamard spectrometer for ultraviolet-visible spectrometry,” Anal. Chem. 46(8), 1000–1005 (1974).
[Crossref]

1954 (1)

Adam, J.

Ade, P. A. R.

Al-Saeed, T. A.

Anderson, M. W.

S. M. Lindsay, M. W. Anderson, and J. R. Sandercock, “Construction and alignment of a high performance multipass vernier tandem Fabry-Perot interferometer,” Rev. Sci. Instrum. 52(10), 1478–1486 (1981).
[Crossref]

Atherton, P. D.

P. D. Atherton, K. Taylor, C. D. Pike, C. F. W. Harmer, N. M. Parker, and R. N. Hook, “TAURUS: a wide-field imaging Fabry-Perot spectrometer for astronomy,” Mon. Not. R. Astron. Soc. 201(3), 661–696 (1982).
[Crossref]

Baas, F.

S. E. Persson, T. R. Geballe, and F. Baas, “A grating spectrometer and Fabry-Perot interferometer for use in the 1 µm-5 µm wavelength region,” Publ. Astron. Soc. Pac. 94, 381–385 (1982).
[Crossref]

Badra, N.

Ban, M.

M. Ban, O. Kakuchi, H. Yamamoto, M. Ohtsuka, O. Shiba, and K. Hara, “Fabri-Perot spectroscopy method and apparatus utilizing the same,” US patent 4850709 (25 July 1989).

Bao, W.

Bao, Y.

Y. Bao, D. Daugherty, K. Hsu, T. Q. Y. Li, C. M. Miller, and J. W. Miller, “Fabry Perot/fiber Bragg grating multi-wavelength reference,” US patent 5892582 (6 April 1999).

Barducci, A.

Bass, M.

M. Bass, G. Li, and E. V. Stryland, Handbook of Optics (McGraw-Hill, 2010).

Behnke, C.

Bennett, C. L.

C. L. Bennett, M. R. Carter, D. J. Fields, and J. A. M. Hernandez, “Imaging Fourier transform spectrometer,” Proc. SPIE 1937, 191–200 (1993).
[Crossref]

Block, H.

Bolatto, A. D.

M. R. Swain, C. M. Bradford, G. J. Stacey, A. D. Bolatto, J. M. Jackson, M. L. Savage, and J. Davidson, “Design of the South Pole imaging Fabry-Perot interferometer (SPIFI),” Proc. SPIE 3354, 480–492 (1998).
[Crossref]

Born, M.

M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).

Bradford, C. M.

M. R. Swain, C. M. Bradford, G. J. Stacey, A. D. Bolatto, J. M. Jackson, M. L. Savage, and J. Davidson, “Design of the South Pole imaging Fabry-Perot interferometer (SPIFI),” Proc. SPIE 3354, 480–492 (1998).
[Crossref]

Brunner, R.

Caricato, V.

Carter, M. R.

C. L. Bennett, M. R. Carter, D. J. Fields, and J. A. M. Hernandez, “Imaging Fourier transform spectrometer,” Proc. SPIE 1937, 191–200 (1993).
[Crossref]

Chen, J.

Chen, T.

Chen, Z.

Clark, K. C.

Dannberg, P.

Danz, N.

Daugherty, D.

Y. Bao, D. Daugherty, K. Hsu, T. Q. Y. Li, C. M. Miller, and J. W. Miller, “Fabry Perot/fiber Bragg grating multi-wavelength reference,” US patent 5892582 (6 April 1999).

Davidson, J.

M. R. Swain, C. M. Bradford, G. J. Stacey, A. D. Bolatto, J. M. Jackson, M. L. Savage, and J. Davidson, “Design of the South Pole imaging Fabry-Perot interferometer (SPIFI),” Proc. SPIE 3354, 480–492 (1998).
[Crossref]

Davis, G. R.

de Haseth, J. A.

P. R. Griffiths and J. A. de Haseth, Fourier Transform Infrared Spectrometry (Wiley-Interscience, 2007).

Denton, M. B.

Ding, Z.

Egidi, A.

El-Sayed, I. S.

Eltagoury, Y. M.

Y. M. Eltagoury, Y. M. Sabry, and D. A. Khalil, “Novel Fourier transform infrared spectrometer architecture based on cascaded Fabry-Perot interferometers,” Proc. SPIE 9760, 97600L (2016).
[Crossref]

ElZeiny, W. E.

Emery, R. J.

Fellgett, P. B.

P. B. Fellgett, “The nature and origin of multiplex Fourier spectrometry,” Notes Rec. R. Soc 60(1), 91–93 (2006).
[Crossref]

Ferlet, M.

Fields, D. J.

C. L. Bennett, M. R. Carter, D. J. Fields, and J. A. M. Hernandez, “Imaging Fourier transform spectrometer,” Proc. SPIE 1937, 191–200 (1993).
[Crossref]

Flügel-Paul, T.

Förster, E.

Furniss, I.

Geballe, T. R.

S. E. Persson, T. R. Geballe, and F. Baas, “A grating spectrometer and Fabry-Perot interferometer for use in the 1 µm-5 µm wavelength region,” Publ. Astron. Soc. Pac. 94, 381–385 (1982).
[Crossref]

Gerken, M.

Glencross, W. M.

Glenn, T. H.

F. W. Plankey, T. H. Glenn, L. P. Hart, and J. D. Winefordner, “Hadamard spectrometer for ultraviolet-visible spectrometry,” Anal. Chem. 46(8), 1000–1005 (1974).
[Crossref]

Griffiths, P. R.

P. R. Griffiths and J. A. de Haseth, Fourier Transform Infrared Spectrometry (Wiley-Interscience, 2007).

Guzzi, D.

Hara, K.

M. Ban, O. Kakuchi, H. Yamamoto, M. Ohtsuka, O. Shiba, and K. Hara, “Fabri-Perot spectroscopy method and apparatus utilizing the same,” US patent 4850709 (25 July 1989).

Harmer, C. F. W.

P. D. Atherton, K. Taylor, C. D. Pike, C. F. W. Harmer, N. M. Parker, and R. N. Hook, “TAURUS: a wide-field imaging Fabry-Perot spectrometer for astronomy,” Mon. Not. R. Astron. Soc. 201(3), 661–696 (1982).
[Crossref]

Hart, L. P.

F. W. Plankey, T. H. Glenn, L. P. Hart, and J. D. Winefordner, “Hadamard spectrometer for ultraviolet-visible spectrometry,” Anal. Chem. 46(8), 1000–1005 (1974).
[Crossref]

Harzendorf, T.

Hays, P. B.

Hernandez, G.

Hernandez, J. A. M.

C. L. Bennett, M. R. Carter, D. J. Fields, and J. A. M. Hernandez, “Imaging Fourier transform spectrometer,” Proc. SPIE 1937, 191–200 (1993).
[Crossref]

Hirschfeld, T.

Höfer, B.

Hong, W.

Hook, R. N.

P. D. Atherton, K. Taylor, C. D. Pike, C. F. W. Harmer, N. M. Parker, and R. N. Hook, “TAURUS: a wide-field imaging Fabry-Perot spectrometer for astronomy,” Mon. Not. R. Astron. Soc. 201(3), 661–696 (1982).
[Crossref]

Horneman, V. M.

Hsu, K.

Y. Bao, D. Daugherty, K. Hsu, T. Q. Y. Li, C. M. Miller, and J. W. Miller, “Fabry Perot/fiber Bragg grating multi-wavelength reference,” US patent 5892582 (6 April 1999).

Jackson, J. M.

M. R. Swain, C. M. Bradford, G. J. Stacey, A. D. Bolatto, J. M. Jackson, M. L. Savage, and J. Davidson, “Design of the South Pole imaging Fabry-Perot interferometer (SPIFI),” Proc. SPIE 3354, 480–492 (1998).
[Crossref]

Jacquinot, P.

Jalali, B.

Jalkian, R. D.

Kakuchi, O.

M. Ban, O. Kakuchi, H. Yamamoto, M. Ohtsuka, O. Shiba, and K. Hara, “Fabri-Perot spectroscopy method and apparatus utilizing the same,” US patent 4850709 (25 July 1989).

Kauppinen, J.

Khalil, D. A.

Kleinle, S.

Krantz, M.

Kunkel, W. M.

Lastri, C.

Leger, J. R.

Leitel, R.

Li, G.

M. Bass, G. Li, and E. V. Stryland, Handbook of Optics (McGraw-Hill, 2010).

Li, P.

Li, T. Q. Y.

Y. Bao, D. Daugherty, K. Hsu, T. Q. Y. Li, C. M. Miller, and J. W. Miller, “Fabry Perot/fiber Bragg grating multi-wavelength reference,” US patent 5892582 (6 April 1999).

Lindsay, S. M.

S. M. Lindsay, M. W. Anderson, and J. R. Sandercock, “Construction and alignment of a high performance multipass vernier tandem Fabry-Perot interferometer,” Rev. Sci. Instrum. 52(10), 1478–1486 (1981).
[Crossref]

Loewen, E.

C. Palmer and E. Loewen, Diffraction Grating Handbook (Newport Corporation, 2005).

Lomheim, T. S.

L. W. Schumann and T. S. Lomheim, “Infrared hyperspectral imaging Fourier transform and dispersive spectrometers: comparison of signal-to-noise based performance [Invited],” Proc. SPIE 4480, 1–14 (2002).
[Crossref]

Marcoionni, P.

McCormac, F. G.

Mei, S.

Metz, P.

Miller, C. M.

Y. Bao, D. Daugherty, K. Hsu, T. Q. Y. Li, C. M. Miller, and J. W. Miller, “Fabry Perot/fiber Bragg grating multi-wavelength reference,” US patent 5892582 (6 April 1999).

Miller, J. W.

Y. Bao, D. Daugherty, K. Hsu, T. Q. Y. Li, C. M. Miller, and J. W. Miller, “Fabry Perot/fiber Bragg grating multi-wavelength reference,” US patent 5892582 (6 April 1999).

Nardino, V.

Naylor, D. A.

Ohtsuka, M.

M. Ban, O. Kakuchi, H. Yamamoto, M. Ohtsuka, O. Shiba, and K. Hara, “Fabri-Perot spectroscopy method and apparatus utilizing the same,” US patent 4850709 (25 July 1989).

Palmer, C.

C. Palmer and E. Loewen, Diffraction Grating Handbook (Newport Corporation, 2005).

Parker, N. M.

P. D. Atherton, K. Taylor, C. D. Pike, C. F. W. Harmer, N. M. Parker, and R. N. Hook, “TAURUS: a wide-field imaging Fabry-Perot spectrometer for astronomy,” Mon. Not. R. Astron. Soc. 201(3), 661–696 (1982).
[Crossref]

Patrick, T. J.

Persson, S. E.

S. E. Persson, T. R. Geballe, and F. Baas, “A grating spectrometer and Fabry-Perot interferometer for use in the 1 µm-5 µm wavelength region,” Publ. Astron. Soc. Pac. 94, 381–385 (1982).
[Crossref]

Pike, C. D.

P. D. Atherton, K. Taylor, C. D. Pike, C. F. W. Harmer, N. M. Parker, and R. N. Hook, “TAURUS: a wide-field imaging Fabry-Perot spectrometer for astronomy,” Mon. Not. R. Astron. Soc. 201(3), 661–696 (1982).
[Crossref]

Pippi, I.

Pisani, M.

Plankey, F. W.

F. W. Plankey, T. H. Glenn, L. P. Hart, and J. D. Winefordner, “Hadamard spectrometer for ultraviolet-visible spectrometry,” Anal. Chem. 46(8), 1000–1005 (1974).
[Crossref]

Sabry, Y. M.

I. S. El-Sayed, Y. M. Sabry, W. E. ElZeiny, N. Badra, and D. A. Khalil, “Transformation algorithm and analysis of the Fourier transform spectrometer based on cascaded Fabry-Perot interferometers,” Appl. Opt. 57(25), 7225–7231 (2018).
[Crossref]

Y. M. Eltagoury, Y. M. Sabry, and D. A. Khalil, “Novel Fourier transform infrared spectrometer architecture based on cascaded Fabry-Perot interferometers,” Proc. SPIE 9760, 97600L (2016).
[Crossref]

Sandercock, J. R.

S. M. Lindsay, M. W. Anderson, and J. R. Sandercock, “Construction and alignment of a high performance multipass vernier tandem Fabry-Perot interferometer,” Rev. Sci. Instrum. 52(10), 1478–1486 (1981).
[Crossref]

Savage, M. L.

M. R. Swain, C. M. Bradford, G. J. Stacey, A. D. Bolatto, J. M. Jackson, M. L. Savage, and J. Davidson, “Design of the South Pole imaging Fabry-Perot interferometer (SPIFI),” Proc. SPIE 3354, 480–492 (1998).
[Crossref]

Schumann, L. W.

L. W. Schumann and T. S. Lomheim, “Infrared hyperspectral imaging Fourier transform and dispersive spectrometers: comparison of signal-to-noise based performance [Invited],” Proc. SPIE 4480, 1–14 (2002).
[Crossref]

Shen, W.

Shen, Y.

Shiba, O.

M. Ban, O. Kakuchi, H. Yamamoto, M. Ohtsuka, O. Shiba, and K. Hara, “Fabri-Perot spectroscopy method and apparatus utilizing the same,” US patent 4850709 (25 July 1989).

Shirasaki, M.

Sidey, R. C.

Sims, G. R.

Snell, H. E.

Stacey, G. J.

M. R. Swain, C. M. Bradford, G. J. Stacey, A. D. Bolatto, J. M. Jackson, M. L. Savage, and J. Davidson, “Design of the South Pole imaging Fabry-Perot interferometer (SPIFI),” Proc. SPIE 3354, 480–492 (1998).
[Crossref]

Steel, W. H.

W. H. Steel, Interferometry (Cambridge University, 1983).

Stryland, E. V.

M. Bass, G. Li, and E. V. Stryland, Handbook of Optics (McGraw-Hill, 2010).

Swain, M. R.

M. R. Swain, C. M. Bradford, G. J. Stacey, A. D. Bolatto, J. M. Jackson, M. L. Savage, and J. Davidson, “Design of the South Pole imaging Fabry-Perot interferometer (SPIFI),” Proc. SPIE 3354, 480–492 (1998).
[Crossref]

Sweedler, J. V.

J. V. Sweedler, R. D. Jalkian, G. R. Sims, and M. B. Denton, “Crossed Interferometric Dispersive Spectroscopy,” Appl. Spectrosc. 44(1), 14–20 (1990).
[Crossref]

J. V. Sweedler, “The use of charge transfer device detectors and spatial interferometry for analytical spectroscopy,” https://arizona.openrepository.com/handle/10150/184683 .

Swinyard, B.

Swinyard, B. M.

Taylor, K.

P. D. Atherton, K. Taylor, C. D. Pike, C. F. W. Harmer, N. M. Parker, and R. N. Hook, “TAURUS: a wide-field imaging Fabry-Perot spectrometer for astronomy,” Mon. Not. R. Astron. Soc. 201(3), 661–696 (1982).
[Crossref]

Towlson, W. A.

Voigtman, E.

Wade, R.

R. Wade, “A 1-5 micron cooled grating array spectrometer and Fabry Perot system for UKIRT,” Proc. SPIE 0445, 47–51 (1984).
[Crossref]

Wang, C.

Winefordner, J. D.

E. Voigtman and J. D. Winefordner, “The multiplex disadvantage and excess low-frequency noise,” Appl. Spectrosc. 41(7), 1182–1184 (1987).
[Crossref]

F. W. Plankey, T. H. Glenn, L. P. Hart, and J. D. Winefordner, “Hadamard spectrometer for ultraviolet-visible spectrometry,” Anal. Chem. 46(8), 1000–1005 (1974).
[Crossref]

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).

Xue, H.

Yamamoto, H.

M. Ban, O. Kakuchi, H. Yamamoto, M. Ohtsuka, O. Shiba, and K. Hara, “Fabri-Perot spectroscopy method and apparatus utilizing the same,” US patent 4850709 (25 July 1989).

Yan, Y.

Yang, Q.

Yu, H.

Yu, L.

Zucco, M.

Anal. Chem. (1)

F. W. Plankey, T. H. Glenn, L. P. Hart, and J. D. Winefordner, “Hadamard spectrometer for ultraviolet-visible spectrometry,” Anal. Chem. 46(8), 1000–1005 (1974).
[Crossref]

Appl. Opt. (14)

G. Hernandez, “Afocal coupled etalons. DEM: a high-resolution double-etalon modulator spectrometer,” Appl. Opt. 26(22), 4857–4869 (1987).
[Crossref]

G. Hernandez and F. G. McCormac, “Afocal coupled etalons: experimental confirmation of a high-resolution double-etalon modulator spectrometer,” Appl. Opt. 27(16), 3492–3495 (1988).
[Crossref]

J. Kauppinen and V. M. Horneman, “Large aperture cube corner interferometer with a resolution of 0.001 cm−1,” Appl. Opt. 30(18), 2575–2578 (1991).
[Crossref]

P. B. Hays and H. E. Snell, “Multiplex Fabry-Perot interferometer,” Appl. Opt. 30(22), 3108–3113 (1991).
[Crossref]

G. Hernandez and K. C. Clark, “Electro-optic high-resolution Fabry-Perot spectrometer,” Appl. Opt. 33(10), 1989–1992 (1994).
[Crossref]

G. R. Davis, I. Furniss, W. A. Towlson, P. A. R. Ade, R. J. Emery, W. M. Glencross, D. A. Naylor, T. J. Patrick, R. C. Sidey, and B. M. Swinyard, “Design and performance of cryogenic, scanning Fabry-Perot interferometers for the Long-Wavelength Spectrometer on the Infrared Space Observatory,” Appl. Opt. 34(1), 92–107 (1995).
[Crossref]

B. Swinyard and M. Ferlet, “Cascaded interferometric imaging spectrometer,” Appl. Opt. 46(25), 6381–6390 (2007).
[Crossref]

Q. Yang, “Moving corner-cube-mirror interferometer and reflection characteristic of corner-cube mirror,” Appl. Opt. 49(21), 4088–4095 (2010).
[Crossref]

A. Barducci, D. Guzzi, C. Lastri, P. Marcoionni, V. Nardino, and I. Pippi, “Radiometric and SNR properties of multiplex dispersive spectrometry,” Appl. Opt. 49(28), 5366–5373 (2010).
[Crossref]

P. Metz, J. Adam, M. Gerken, and B. Jalali, “Compact, transmissive two-dimensional spatial disperser design with application in simultaneous endoscopic imaging,” Appl. Opt. 53(3), 376–382 (2014).
[Crossref]

Q. Yang, “Compact high-resolution Littrow conical diffraction spectrometer,” Appl. Opt. 55(18), 4801–4807 (2016).
[Crossref]

T. A. Al-Saeed and D. A. Khalil, “Fourier transform spectrometer based on Fabry-Perot interferometer,” Appl. Opt. 55(20), 5322–5331 (2016).
[Crossref]

L. Yu, H. Xue, and J. Chen, “Dual concave grating anastigmatic spectrometer with high spectral resolution for remote sensing,” Appl. Opt. 57(33), 9789–9796 (2018).
[Crossref]

I. S. El-Sayed, Y. M. Sabry, W. E. ElZeiny, N. Badra, and D. A. Khalil, “Transformation algorithm and analysis of the Fourier transform spectrometer based on cascaded Fabry-Perot interferometers,” Appl. Opt. 57(25), 7225–7231 (2018).
[Crossref]

Appl. Spectrosc. (3)

J. Opt. Soc. Am. (1)

Mon. Not. R. Astron. Soc. (1)

P. D. Atherton, K. Taylor, C. D. Pike, C. F. W. Harmer, N. M. Parker, and R. N. Hook, “TAURUS: a wide-field imaging Fabry-Perot spectrometer for astronomy,” Mon. Not. R. Astron. Soc. 201(3), 661–696 (1982).
[Crossref]

Notes Rec. R. Soc (1)

P. B. Fellgett, “The nature and origin of multiplex Fourier spectrometry,” Notes Rec. R. Soc 60(1), 91–93 (2006).
[Crossref]

Opt. Express (12)

M. Zucco, M. Pisani, V. Caricato, and A. Egidi, “A hyperspectral imager based on a Fabry-Perot interferometer with dielectric mirrors,” Opt. Express 22(2), 1824–1834 (2014).
[Crossref]

W. Bao, Z. Ding, P. Li, Z. Chen, Y. Shen, and C. Wang, “Orthogonal dispersive spectral-domain optical coherence tomography,” Opt. Express 22(8), 10081–10090 (2014).
[Crossref]

W. Bao, Y. Shen, T. Chen, P. Li, and Z. Ding, “High-speed high-precision and ultralong-range complex spectral domain dimensional metrology,” Opt. Express 23(9), 11013–11022 (2015).
[Crossref]

M. Pisani and M. Zucco, “Compact imaging spectrometer combining Fourier transform spectroscopy with a Fabry-Perot interferometer,” Opt. Express 17(10), 8319–8331 (2009).
[Crossref]

A. Barducci, D. Guzzi, C. Lastri, P. Marcoionni, V. Nardino, and I. Pippi, “Theoretical aspects of Fourier Transform Spectrometry and common path triangular interferometers,” Opt. Express 18(11), 11622–11649 (2010).
[Crossref]

P. Metz, H. Block, C. Behnke, M. Krantz, M. Gerken, and J. Adam, “Tunable elastomer-based virtually imaged phased array,” Opt. Express 21(3), 3324–3335 (2013).
[Crossref]

Q. Yang, “Three-area-array coherent-dispersion stereo-imaging spectrometer,” Opt. Express 27(2), 1025–1044 (2019).
[Crossref]

N. Danz, B. Höfer, E. Förster, T. Flügel-Paul, T. Harzendorf, P. Dannberg, R. Leitel, S. Kleinle, and R. Brunner, “Miniature integrated micro-spectrometer array for snap shot multispectral sensing,” Opt. Express 27(4), 5719–5728 (2019).
[Crossref]

Q. Yang, “Compact ultrahigh resolution interferometric spectrometer,” Opt. Express 27(21), 30606–30617 (2019).
[Crossref]

W. M. Kunkel and J. R. Leger, “Gain dependent self-phasing in a two-core coherently combined fiber laser,” Opt. Express 26(8), 9373–9388 (2018).
[Crossref]

Q. Yang, “Coherent-dispersion spectrometer for the ultraviolet and visible regions,” Opt. Express 26(10), 12372–12386 (2018).
[Crossref]

Q. Yang, “Broadband high-spectral-resolution ultraviolet-visible coherent-dispersion imaging spectrometer,” Opt. Express 26(16), 20777–20791 (2018).
[Crossref]

Opt. Lett. (2)

OSA Continuum (1)

Proc. SPIE (5)

L. W. Schumann and T. S. Lomheim, “Infrared hyperspectral imaging Fourier transform and dispersive spectrometers: comparison of signal-to-noise based performance [Invited],” Proc. SPIE 4480, 1–14 (2002).
[Crossref]

M. R. Swain, C. M. Bradford, G. J. Stacey, A. D. Bolatto, J. M. Jackson, M. L. Savage, and J. Davidson, “Design of the South Pole imaging Fabry-Perot interferometer (SPIFI),” Proc. SPIE 3354, 480–492 (1998).
[Crossref]

Y. M. Eltagoury, Y. M. Sabry, and D. A. Khalil, “Novel Fourier transform infrared spectrometer architecture based on cascaded Fabry-Perot interferometers,” Proc. SPIE 9760, 97600L (2016).
[Crossref]

R. Wade, “A 1-5 micron cooled grating array spectrometer and Fabry Perot system for UKIRT,” Proc. SPIE 0445, 47–51 (1984).
[Crossref]

C. L. Bennett, M. R. Carter, D. J. Fields, and J. A. M. Hernandez, “Imaging Fourier transform spectrometer,” Proc. SPIE 1937, 191–200 (1993).
[Crossref]

Publ. Astron. Soc. Pac. (1)

S. E. Persson, T. R. Geballe, and F. Baas, “A grating spectrometer and Fabry-Perot interferometer for use in the 1 µm-5 µm wavelength region,” Publ. Astron. Soc. Pac. 94, 381–385 (1982).
[Crossref]

Rev. Sci. Instrum. (1)

S. M. Lindsay, M. W. Anderson, and J. R. Sandercock, “Construction and alignment of a high performance multipass vernier tandem Fabry-Perot interferometer,” Rev. Sci. Instrum. 52(10), 1478–1486 (1981).
[Crossref]

Other (9)

P. R. Griffiths and J. A. de Haseth, Fourier Transform Infrared Spectrometry (Wiley-Interscience, 2007).

C. Palmer and E. Loewen, Diffraction Grating Handbook (Newport Corporation, 2005).

W. H. Steel, Interferometry (Cambridge University, 1983).

J. V. Sweedler, “The use of charge transfer device detectors and spatial interferometry for analytical spectroscopy,” https://arizona.openrepository.com/handle/10150/184683 .

G. Hernandez, Fabry-Perot Interferometers (Cambridge University, 1986).

M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).

M. Bass, G. Li, and E. V. Stryland, Handbook of Optics (McGraw-Hill, 2010).

M. Ban, O. Kakuchi, H. Yamamoto, M. Ohtsuka, O. Shiba, and K. Hara, “Fabri-Perot spectroscopy method and apparatus utilizing the same,” US patent 4850709 (25 July 1989).

Y. Bao, D. Daugherty, K. Hsu, T. Q. Y. Li, C. M. Miller, and J. W. Miller, “Fabry Perot/fiber Bragg grating multi-wavelength reference,” US patent 5892582 (6 April 1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Optical Layout of the compact coherent-dispersion imaging spectrometer (CCDIS): (a) Equivalent Top view and (b) Equivalent front view. The heart of the CCDIS is a combination of an entrance slit, a Fabry-Perot interferometer (FPI) and a plane transmission grating.
Fig. 2.
Fig. 2. Equivalent light path diagram of the CCDIS: (a) in the sagittal plane and (b) in the meridian plane.
Fig. 3.
Fig. 3. The relationship between the central value of the FPI plate spacing and the number of the FPI scanning steps when the spectral resolution of the CCDIS at $\theta = 0$ is 0.5 cm−1.
Fig. 4.
Fig. 4. The relationship between $|{{y_1} - y({{\lambda_2}} )} |- b$ and N (i.e., the relationship between ${y_1} - {y_2} - b$ and $N$) when the spectral resolution of the CCDIS at $\theta = 0$ is 0.5 cm−1.
Fig. 5.
Fig. 5. The y-axis coordinates of different wavelengths at the detector plane when ${f_2} = 100 \;\textrm{mm}$, $\alpha = 30^\circ$ and the transmission grating with 900 grooves/mm.
Fig. 6.
Fig. 6. Resolving power of the CCDIS at the angle $\theta = 0$ for the wavelength range from 270 nm to 500 nm when $N = 32$ and ${d_0} = 0.31236\;mm$.
Fig. 7.
Fig. 7. Resolving power of the CCDIS at the angle ${\theta _{\max }} = 1.856^\circ$ for the wavelength range from 270 nm to 500 nm when $N = 32$ and ${d_0} = 0.31236\;mm$.
Fig. 8.
Fig. 8. Spectral resolution in wavelength of the CCDIS at the angle $\theta = 0$ and the angle ${\theta _{\max }} = 1.856^\circ$ for the wavelength range from 270 nm to 500 nm when $N = 32$ and ${d_0} = 0.31236\;mm$.
Fig. 9.
Fig. 9. Spectrum with a spectral resolution in wavelength of approximately 0.007 nm when the spectral resolution in wavenumber of the CCDIS is $\delta {\sigma _{CCDIS(0 )}} = 0.5 \;\textrm{cm}^{ - 1}$.

Tables (1)

Tables Icon

Table 1. Comparisons of the CCDIS and the CDIS reported in [46] for high-spectral-resolution broadband ultraviolet-visible spectral imaging

Equations (26)

Equations on this page are rendered with MathJax. Learn more.

θ max = arctan ( L S 2 f 1 ) = arctan ( Q b 2 f 2 ) ,
FO V X = 2 ϕ max = 2 arctan ( L S 2 f ) = 2 arctan ( Q b f 1 2 f 2 f ) .
δ x = b f 1 / b f 1 f 2 f 2 .
G λ i = g [ n ( λ i ) sin α + sin β m ( λ i ) ] .
λ i = g [ n ( λ i ) sin α + sin β 1 ( λ i ) ] ,
tan ψ ( λ i ) = tan [ β 1 ( λ C ) β 1 ( λ i ) ] = y i f 2 .
y ( λ i ) = y i = f 2 τ ( λ C ) 1 τ 2 ( λ i ) τ ( λ i ) 1 τ 2 ( λ C ) τ ( λ C ) τ ( λ i ) + 1 τ 2 ( λ C ) 1 τ 2 ( λ i ) ,
τ ( λ ) = λ g n ( λ ) sin α .
M | y 1 y K | b .
2 d cos θ = m λ .
F S R σ = 1 2 d cos θ .
F S R λ = λ 2 2 d cos θ .
F r = π R / π R ( 1 R ) ( 1 R ) .
S C C D I S ( σ , d ) = ( 1 R ) 2 B ( σ ) 1 + R 2 2 R cos ( 4 π σ d cos θ ) .
δ σ C C D I S ( 0 ) = F S R σ 0 N = 1 2 N d 0 .
δ σ C C D I S ( θ ) = F S R σ ( 0 ) N = 1 2 N d 0 cos θ .
δ λ C C D I S ( θ ) = λ 2 2 N d cos θ .
R C C D I S ( θ ) = λ λ λ F S R λ / F S R λ N N = 2 N d cos θ λ .
Δ d k = k d 0 2 N d 0 σ C + k .
d max = d 0 + ( Δ d k ) max = 4 N d 0 2 σ C 4 N d 0 σ C N .
| y 1 y ( λ 2 ) | > b ,
λ 2 = 1 1 λ 1 1 2 d max = 8 d 0 2 8 d 0 2 λ 1 4 d 0 + λ C = 1 λ C 2 ( δ σ C C D I S ( 0 ) N 1 λ C ) 2 + 1 λ 1 1 2 λ C .
δ σ C C D I S ( ϕ ) = 1 2 N d 0 cos [ arctan ( f f 1 tan ϕ ) ] .
δ λ C C D I S ( ϕ ) = λ 2 2 N d cos [ arctan ( f f 1 tan ϕ ) ] .
R C C D I S ( ϕ ) = 2 N d λ cos [ arctan ( f f 1 tan ϕ ) ] .
n 2 = 1 + 0.6961663 λ 2 λ 2 0.0684043 2 + 0.4079426 λ 2 λ 2 0.1162414 2 + 0.8974794 λ 2 λ 2 9.896161 2 .