Abstract

High quality factor (Q) photonic devices in the room temperature thermal infrared region, corresponding to deeper long-wave infrared with wavelengths beyond 9 microns, have been demonstrated for the first time. Whispering gallery mode diamond microresonators were fabricated using single crystal diamond substrates and oxygen-based inductively coupled plasma (ICP) reactive ion etching (RIE) at high angles. The spectral characteristics of the devices were probed at room temperature using a tunable quantum cascade laser that was free space-coupled into the resonators. Light was extracted via an arsenic selenide (As2Se3) chalcogenide infrared fiber and directed to a cryogenically cooled mercury cadmium telluride (HgCdTe) detector. The quality factors were tested in multiple microresonators across a wide spectral range from 9 to 9.7 microns with similar performance. One example resonance (of many comparables) was found to reach 3648 at 9.601 µm. Fourier analysis of the many resonances of each device showed free spectral ranges slightly greater than 40 GHz, matching theoretical expectations for the microresonator diameter and the overlap of the whispering gallery mode with the diamond.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Perpendicular coupler for standing wave excitation and wavelength selection in high-Q silicon microresonators

Shuai Wan, Fang-Jie Shu, Rui Niu, Guang-Can Guo, Chang-Ling Zou, and Chun-Hua Dong
Opt. Express 28(11) 15835-15843 (2020)

Toward ultimate miniaturization of high Q silicon traveling-wave microresonators

Mohammad Soltani, Qing Li, Siva Yegnanarayanan, and Ali Adibi
Opt. Express 18(19) 19541-19557 (2010)

Photolithography allows high-Q AlN microresonators for near octave-spanning frequency comb and harmonic generation

Jia Liu, Haizhong Weng, Adnan Ali Afridi, Jing Li, Jiangnan Dai, Xiang Ma, Hanling Long, Yi Zhang, Qiaoyin Lu, John F. Donegan, and Weihua Guo
Opt. Express 28(13) 19270-19280 (2020)

References

  • View by:
  • |
  • |
  • |

  1. X. Liu, A. W. Bruch, Z. Gong, J. Lu, J. B. Surya, L. Zhang, J. Wang, J. Yan, and H. X. Tang, “Ultra-high-Q UV microring resonators based on a single-crystalline AlN platform,” Optica 5(10), 1279–1282 (2018).
    [Crossref]
  2. A. Giorgini, S. Avino, P. Malara, P. De Natale, and G. Gagliardi, “Fundamental limits in high-Q droplet microresonators,” Sci. Rep. 7(1), 41997 (2017).
    [Crossref]
  3. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity opticalparametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93(8), 083904 (2004).
    [Crossref]
  4. C. Lecaplain, C. Javerzac-Galy, M. L. Gorodetsky, and T. J. Kippenberg, “Mid-infrared ultra-high-Q resonators based on fluoride crystalline materials,” Nat. Commun. 7(1), 13383 (2016).
    [Crossref]
  5. X. Liu, C. Sun, B. Xiong, L. Wang, J. Wang, Y. Han, Z. Hao, H. Li, Y. Luo, J. Yan, T. Wei, Y. Zhang, and J. Wang, “Aluminum nitride-on-sapphire platform for integrated high-Q microresonators,” Opt. Express 25(2), 587–594 (2017).
    [Crossref]
  6. L. Wang, L. Chang, N. Volet, M. H. P. Pfeiffer, M. Zervas, H. Guo, T. J. Kippenberg, and J. E. Bowers, “Frequency comb generation in the green using silicon nitride microresonators,” Laser Photonics Rev. 10(4), 631–638 (2016).
    [Crossref]
  7. C. Javerzac-Galy, A. Kumar, R. D. Schilling, N. Piro, S. Khorasani, M. Barbone, I. Goykhman, J. B. Khurgin, A. C. Ferrari, and A. C. Ferrari, “Excitonic Emission of Monolayer Semiconductors Near-Field Coupled to High-Q Microresonators,” Nano Lett. 18(5), 3138–3146 (2018).
    [Crossref]
  8. J. Zhu, S. Kaya Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
    [Crossref]
  9. X. Jiang, L. Shao, S.-X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y.-F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358(6361), 344–347 (2017).
    [Crossref]
  10. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
    [Crossref]
  11. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
    [Crossref]
  12. B. Khanaliloo, M. Mitchell, A. C. Hryciw, and P. E. Barclay, “High-Q/V monolithic diamond microdisks fabricated with quasi-isotropic etching,” Nano Lett. 15(8), 5131–5136 (2015).
    [Crossref]
  13. B.-S. Song, T. Asano, S. Jeon, H. Kim, C. Chen, D. D. Kang, and S. Noda, “Ultrahigh-Q photonic crystal nanocavities based on 4H silicon carbide,” Optica 6(8), 991–995 (2019).
    [Crossref]
  14. K. Y. Yang, D. Y. Oh, S. H. Lee, Q.-F. Yang, X. Yi, B. Shen, H. Wang, and K. Vahala, “Bridging ultrahigh-Q devices and photonic circuits,” Nat. Photonics 12(5), 297–302 (2018).
    [Crossref]
  15. J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5(1), 8072 (2015).
    [Crossref]
  16. J. Zhu, ŞK Özdemir, H. Yilmaz, B. Peng, M. Dong, M. Tomes, T. Carmon, and L. Yang, “Interfacing whispering-gallery microresonators and free space light with cavity enhanced Rayleigh scattering,” Sci. Rep. 4(1), 6396 (2015).
    [Crossref]
  17. A. Rasoloniaina, V. Huet, T. K. N. Nguyên, E. Le Cren, M. Mortier, L. Michely, Y. Dumeige, and P. Féron, “Controling the coupling properties of active ultrahigh-Q WGM microcavities from undercoupling to selective amplification,” Sci. Rep. 4(1), 4023 (2015).
    [Crossref]
  18. C. Schneider, P. Gold, S. Reitzenstein, S. Höfling, and M. Kamp, “Quantum dot micropillar cavities with quality factors exceeding 250,000,” Appl. Phys. B 122(1), 19 (2016).
    [Crossref]
  19. Y. Xuan, Y. Liu, L. T. Varghese, A. J. Metcalf, X. Xue, P.-H. Wang, K. Han, J. A. Jaramillo-Villegas, A. Al Noman, C. Wang, S. Kim, M. Teng, Y. J. Lee, B. Niu, L. Fan, J. Wang, D. E. Leaird, A. M. Weiner, and M. Qi, “High-Q silicon nitride microresonators exhibiting low-power frequency comb initiation,” Optica 3(11), 1171–1180 (2016).
    [Crossref]
  20. P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
    [Crossref]
  21. G. Wachter, S. Kuhn, S. Minniberger, C. Salter, P. Asenbaum, J. Millen, M. Schneider, J. Schalko, U. Schmid, A. Felgner, D. Hüser, M. Arndt, and M. Trupke, “Silicon microcavity arrays with open access and a finesse of half a million,” Light: Sci. Appl. 8(1), 37 (2019).
    [Crossref]
  22. I. S. Grudinin, K. Mansour, and N. Yu, “Properties of fluoride microresonators for mid-IR applications,” Opt. Lett. 41(10), 2378–2381 (2016).
    [Crossref]
  23. B. Way, R. K. Jain, and M. Hossein-Zadeh, “High-Q microresonators for mid-IR light sources and molecular sensors,” Opt. Lett. 37(21), 4389–4391 (2012).
    [Crossref]
  24. J. M. Ramirez, Q. Liu, V. Vakarin, X. Le Roux, J. Frigerio, A. Ballabio, C. Alonso-Ramos, E. T. Simola, L. Vivien, G. Isella, and D. Marris-Morini, “Broadband integrated racetrack ring resonators for long-wave infrared photonics,” Opt. Lett. 44(2), 407–410 (2019).
    [Crossref]
  25. H. Mao, K. K. M. B. Dilusha Silva, M. Martyniuk, J. Antoszewski, J. Bumgarner, J. M. Dell, and L. Faraone, “Ge/ZnS-based micromachined Fabry–Perot filters for optical MEMS in the longwave infrared,” J. Microelectromech. Syst. 24(6), 2109–2116 (2015).
    [Crossref]
  26. M. Tuohiniemi, A. Näsilä, and J. Mäkynen, “Characterization of the tuning performance of a micro-machined Fabry–Pérot interferometer for thermal infrared,” J. Micromech. Microeng. 23(7), 075011 (2013).
    [Crossref]
  27. H. Mao, D. K. Tripathi, Y. Ren, K. K. M. B. Dilusha Silva, M. Martyniuk, J. Antoszewski, J. Bumgarner, J. M. Dell, and L. Faraone, “Large-area MEMS tunable Fabry–Perot filters for multi/hyperspectral infrared imaging,” IEEE J. Sel. Top. Quantum Electron. 23(2), 45–52 (2017).
    [Crossref]
  28. N. Neumann, M. Ebermann, E. Gittler, M. Meinig, S. Kurth, and K. Hiller, “Uncooled IR sensors with tunable MEMS Fabry-Pérot filters for the long-wave infrared range,” 2010 IEEE Sensors, 2383–2387.
  29. M. Meinig, M. Ebermann, N. Neumann, S. Kurth, K. Hiller, and T. Gessner, “Dual-band MEMS Fabry-Pérot filter with two movable reflectors for mid- and long-wave infrared microspectrometers,” Solid-State Sensors Actuators and Microsystems Conference (TRANSDUCERS) 2011 16th International, 2538–2541.
  30. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, Cambridge, MA, 1997).
  31. C. A. Klein, B. diBenedetto, and J. Pappis, “ZnS, ZnSe, and ZnS/ZnSe windows: their impact on FLIR system performance,” Opt. Eng. 25(4), 254519 (1986).
    [Crossref]
  32. R. P. Mildren, Optical Engineering of Diamond (Wiley-VCH Verlag GmbH & Co. KGaA, 2013).
  33. K. Iakoubovskii and A. Stesmans, “Chemical vapour deposition diamond studied by optical and electron spin resonance techniques,” J. Phys.: Condens. Matter 14(17), R467–R499 (2002).
    [Crossref]
  34. M. Bass, E. W. Van Stryland, D. R. Williams, and W. L. Wolfe, Handbook of Optics (McGraw-Hill, 1995).
  35. M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Lončar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5(1), 5718 (2014).
    [Crossref]
  36. M. J. Burek, N. P. de Leon, B. J. Shields, B. J. M. Hausmann, Y. Chu, Q. Quan, A. S. Zibrov, H. Park, M. D. Lukin, and M. Lončar, “Free-standing mechanical and photonic nanostructures in single-crystal diamond,” Nano Lett. 12(12), 6084–6089 (2012).
    [Crossref]
  37. B. J. M. Hausmann, M. Khan, Y. Zhang, T. M. Babinec, K. Martinick, M. McCutcheon, P. R. Hemmer, and M. Lončar, “Fabrication of diamond nanowires for quantum information processing applications,” Diamond Relat. Mater. 19(5-6), 621–629 (2010).
    [Crossref]
  38. M. Mitchell, B. Khanaliloo, D. P. Lake, T. Masuda, J. P. Hadden, and P. E. Barclay, “Single-crystal diamond low-dissipation cavity optomechanics,” Optica 3(9), 963–970 (2016).
    [Crossref]
  39. K. D. S. Hwang, T. Saito, and N. Fujimori, “New etching process for device fabrication using diamond,” Diamond Relat. Mater. 13(11-12), 2207–2210 (2004).
    [Crossref]
  40. Y. Tao, J. M. Boss, B. A. Moores, and C. L. Degen, “Single-crystal diamond nanomechanical resonators with quality factors exceeding one million,” Nat. Commun. 5(1), 3638 (2014).
    [Crossref]
  41. A. Faraon, P. E. Barclay, C. Santori, K.-M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Photonics 5(5), 301–305 (2011).
    [Crossref]
  42. T. Graziosi, S. Mi, M. Kiss, and N. Quack, “Single crystal diamond micro-disk resonators by focused ion beam milling,” APL Photonics 3(12), 126101 (2018).
    [Crossref]
  43. V. S. Ilchenko, A. M. Bennett, P. Santini, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Whispering gallery mode diamond resonator,” Opt. Lett. 38(21), 4320–4323 (2013).
    [Crossref]
  44. B. J. M. Hausmann, B. Bulu, P. B. Deotare, M. McCutcheon, V. Venkataraman, M. L. Markham, D. J. Twitchen, and M. Lončar, “Integrated high-quality factor optical resonators in diamond,” Nano Lett. 13(5), 1898–1902 (2013).
    [Crossref]
  45. M. M. Bayer, H. O. Çirkinoğlu, and A. Serpengüzel, “Observation of whispering-gallery modes in a diamond microsphere,” IEEE Photonics Technol. Lett. 30(1), 3–6 (2018).
    [Crossref]
  46. J. Zhu, M. Zohrabi, K. Bae, T. M. Horning, M. B. Grayson, W. Park, and J. T. Gopinath, “Nonlinear characterization of silica and chalcogenide microresonators,” Optica 6(6), 716–722 (2019).
    [Crossref]
  47. M. Yu, Y. Okawachi, A. G. Griffith, M. Lipson, and A. L. Gaeta, “Microresonator-based high-resolution gas Spectroscopy,” Opt. Lett. 42(21), 4442–4445 (2017).
    [Crossref]
  48. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69(1-2), 37–38 (1946).
    [Crossref]
  49. T. D. Barrett, T. H. Doherty, and A. Kuhn, “Pushing Purcell-enhancement beyond its limits,” arXiv preprint, arXiv:1903.08628v1 (2019).

2019 (4)

2018 (5)

M. M. Bayer, H. O. Çirkinoğlu, and A. Serpengüzel, “Observation of whispering-gallery modes in a diamond microsphere,” IEEE Photonics Technol. Lett. 30(1), 3–6 (2018).
[Crossref]

T. Graziosi, S. Mi, M. Kiss, and N. Quack, “Single crystal diamond micro-disk resonators by focused ion beam milling,” APL Photonics 3(12), 126101 (2018).
[Crossref]

K. Y. Yang, D. Y. Oh, S. H. Lee, Q.-F. Yang, X. Yi, B. Shen, H. Wang, and K. Vahala, “Bridging ultrahigh-Q devices and photonic circuits,” Nat. Photonics 12(5), 297–302 (2018).
[Crossref]

X. Liu, A. W. Bruch, Z. Gong, J. Lu, J. B. Surya, L. Zhang, J. Wang, J. Yan, and H. X. Tang, “Ultra-high-Q UV microring resonators based on a single-crystalline AlN platform,” Optica 5(10), 1279–1282 (2018).
[Crossref]

C. Javerzac-Galy, A. Kumar, R. D. Schilling, N. Piro, S. Khorasani, M. Barbone, I. Goykhman, J. B. Khurgin, A. C. Ferrari, and A. C. Ferrari, “Excitonic Emission of Monolayer Semiconductors Near-Field Coupled to High-Q Microresonators,” Nano Lett. 18(5), 3138–3146 (2018).
[Crossref]

2017 (6)

X. Jiang, L. Shao, S.-X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y.-F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358(6361), 344–347 (2017).
[Crossref]

A. Giorgini, S. Avino, P. Malara, P. De Natale, and G. Gagliardi, “Fundamental limits in high-Q droplet microresonators,” Sci. Rep. 7(1), 41997 (2017).
[Crossref]

X. Liu, C. Sun, B. Xiong, L. Wang, J. Wang, Y. Han, Z. Hao, H. Li, Y. Luo, J. Yan, T. Wei, Y. Zhang, and J. Wang, “Aluminum nitride-on-sapphire platform for integrated high-Q microresonators,” Opt. Express 25(2), 587–594 (2017).
[Crossref]

H. Mao, D. K. Tripathi, Y. Ren, K. K. M. B. Dilusha Silva, M. Martyniuk, J. Antoszewski, J. Bumgarner, J. M. Dell, and L. Faraone, “Large-area MEMS tunable Fabry–Perot filters for multi/hyperspectral infrared imaging,” IEEE J. Sel. Top. Quantum Electron. 23(2), 45–52 (2017).
[Crossref]

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref]

M. Yu, Y. Okawachi, A. G. Griffith, M. Lipson, and A. L. Gaeta, “Microresonator-based high-resolution gas Spectroscopy,” Opt. Lett. 42(21), 4442–4445 (2017).
[Crossref]

2016 (6)

I. S. Grudinin, K. Mansour, and N. Yu, “Properties of fluoride microresonators for mid-IR applications,” Opt. Lett. 41(10), 2378–2381 (2016).
[Crossref]

M. Mitchell, B. Khanaliloo, D. P. Lake, T. Masuda, J. P. Hadden, and P. E. Barclay, “Single-crystal diamond low-dissipation cavity optomechanics,” Optica 3(9), 963–970 (2016).
[Crossref]

L. Wang, L. Chang, N. Volet, M. H. P. Pfeiffer, M. Zervas, H. Guo, T. J. Kippenberg, and J. E. Bowers, “Frequency comb generation in the green using silicon nitride microresonators,” Laser Photonics Rev. 10(4), 631–638 (2016).
[Crossref]

C. Lecaplain, C. Javerzac-Galy, M. L. Gorodetsky, and T. J. Kippenberg, “Mid-infrared ultra-high-Q resonators based on fluoride crystalline materials,” Nat. Commun. 7(1), 13383 (2016).
[Crossref]

C. Schneider, P. Gold, S. Reitzenstein, S. Höfling, and M. Kamp, “Quantum dot micropillar cavities with quality factors exceeding 250,000,” Appl. Phys. B 122(1), 19 (2016).
[Crossref]

Y. Xuan, Y. Liu, L. T. Varghese, A. J. Metcalf, X. Xue, P.-H. Wang, K. Han, J. A. Jaramillo-Villegas, A. Al Noman, C. Wang, S. Kim, M. Teng, Y. J. Lee, B. Niu, L. Fan, J. Wang, D. E. Leaird, A. M. Weiner, and M. Qi, “High-Q silicon nitride microresonators exhibiting low-power frequency comb initiation,” Optica 3(11), 1171–1180 (2016).
[Crossref]

2015 (5)

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5(1), 8072 (2015).
[Crossref]

J. Zhu, ŞK Özdemir, H. Yilmaz, B. Peng, M. Dong, M. Tomes, T. Carmon, and L. Yang, “Interfacing whispering-gallery microresonators and free space light with cavity enhanced Rayleigh scattering,” Sci. Rep. 4(1), 6396 (2015).
[Crossref]

A. Rasoloniaina, V. Huet, T. K. N. Nguyên, E. Le Cren, M. Mortier, L. Michely, Y. Dumeige, and P. Féron, “Controling the coupling properties of active ultrahigh-Q WGM microcavities from undercoupling to selective amplification,” Sci. Rep. 4(1), 4023 (2015).
[Crossref]

B. Khanaliloo, M. Mitchell, A. C. Hryciw, and P. E. Barclay, “High-Q/V monolithic diamond microdisks fabricated with quasi-isotropic etching,” Nano Lett. 15(8), 5131–5136 (2015).
[Crossref]

H. Mao, K. K. M. B. Dilusha Silva, M. Martyniuk, J. Antoszewski, J. Bumgarner, J. M. Dell, and L. Faraone, “Ge/ZnS-based micromachined Fabry–Perot filters for optical MEMS in the longwave infrared,” J. Microelectromech. Syst. 24(6), 2109–2116 (2015).
[Crossref]

2014 (2)

M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Lončar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5(1), 5718 (2014).
[Crossref]

Y. Tao, J. M. Boss, B. A. Moores, and C. L. Degen, “Single-crystal diamond nanomechanical resonators with quality factors exceeding one million,” Nat. Commun. 5(1), 3638 (2014).
[Crossref]

2013 (3)

V. S. Ilchenko, A. M. Bennett, P. Santini, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Whispering gallery mode diamond resonator,” Opt. Lett. 38(21), 4320–4323 (2013).
[Crossref]

B. J. M. Hausmann, B. Bulu, P. B. Deotare, M. McCutcheon, V. Venkataraman, M. L. Markham, D. J. Twitchen, and M. Lončar, “Integrated high-quality factor optical resonators in diamond,” Nano Lett. 13(5), 1898–1902 (2013).
[Crossref]

M. Tuohiniemi, A. Näsilä, and J. Mäkynen, “Characterization of the tuning performance of a micro-machined Fabry–Pérot interferometer for thermal infrared,” J. Micromech. Microeng. 23(7), 075011 (2013).
[Crossref]

2012 (2)

B. Way, R. K. Jain, and M. Hossein-Zadeh, “High-Q microresonators for mid-IR light sources and molecular sensors,” Opt. Lett. 37(21), 4389–4391 (2012).
[Crossref]

M. J. Burek, N. P. de Leon, B. J. Shields, B. J. M. Hausmann, Y. Chu, Q. Quan, A. S. Zibrov, H. Park, M. D. Lukin, and M. Lončar, “Free-standing mechanical and photonic nanostructures in single-crystal diamond,” Nano Lett. 12(12), 6084–6089 (2012).
[Crossref]

2011 (1)

A. Faraon, P. E. Barclay, C. Santori, K.-M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Photonics 5(5), 301–305 (2011).
[Crossref]

2010 (2)

B. J. M. Hausmann, M. Khan, Y. Zhang, T. M. Babinec, K. Martinick, M. McCutcheon, P. R. Hemmer, and M. Lončar, “Fabrication of diamond nanowires for quantum information processing applications,” Diamond Relat. Mater. 19(5-6), 621–629 (2010).
[Crossref]

J. Zhu, S. Kaya Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

2007 (1)

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref]

2004 (2)

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity opticalparametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93(8), 083904 (2004).
[Crossref]

K. D. S. Hwang, T. Saito, and N. Fujimori, “New etching process for device fabrication using diamond,” Diamond Relat. Mater. 13(11-12), 2207–2210 (2004).
[Crossref]

2003 (1)

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref]

2002 (1)

K. Iakoubovskii and A. Stesmans, “Chemical vapour deposition diamond studied by optical and electron spin resonance techniques,” J. Phys.: Condens. Matter 14(17), R467–R499 (2002).
[Crossref]

1986 (1)

C. A. Klein, B. diBenedetto, and J. Pappis, “ZnS, ZnSe, and ZnS/ZnSe windows: their impact on FLIR system performance,” Opt. Eng. 25(4), 254519 (1986).
[Crossref]

1946 (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69(1-2), 37–38 (1946).
[Crossref]

Al Noman, A.

Alonso-Ramos, C.

Anderson, M. H.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref]

Antoszewski, J.

H. Mao, D. K. Tripathi, Y. Ren, K. K. M. B. Dilusha Silva, M. Martyniuk, J. Antoszewski, J. Bumgarner, J. M. Dell, and L. Faraone, “Large-area MEMS tunable Fabry–Perot filters for multi/hyperspectral infrared imaging,” IEEE J. Sel. Top. Quantum Electron. 23(2), 45–52 (2017).
[Crossref]

H. Mao, K. K. M. B. Dilusha Silva, M. Martyniuk, J. Antoszewski, J. Bumgarner, J. M. Dell, and L. Faraone, “Ge/ZnS-based micromachined Fabry–Perot filters for optical MEMS in the longwave infrared,” J. Microelectromech. Syst. 24(6), 2109–2116 (2015).
[Crossref]

Arcizet, O.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref]

Armani, D. K.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref]

Arndt, M.

G. Wachter, S. Kuhn, S. Minniberger, C. Salter, P. Asenbaum, J. Millen, M. Schneider, J. Schalko, U. Schmid, A. Felgner, D. Hüser, M. Arndt, and M. Trupke, “Silicon microcavity arrays with open access and a finesse of half a million,” Light: Sci. Appl. 8(1), 37 (2019).
[Crossref]

Asano, T.

Asenbaum, P.

G. Wachter, S. Kuhn, S. Minniberger, C. Salter, P. Asenbaum, J. Millen, M. Schneider, J. Schalko, U. Schmid, A. Felgner, D. Hüser, M. Arndt, and M. Trupke, “Silicon microcavity arrays with open access and a finesse of half a million,” Light: Sci. Appl. 8(1), 37 (2019).
[Crossref]

Avino, S.

A. Giorgini, S. Avino, P. Malara, P. De Natale, and G. Gagliardi, “Fundamental limits in high-Q droplet microresonators,” Sci. Rep. 7(1), 41997 (2017).
[Crossref]

Babinec, T. M.

B. J. M. Hausmann, M. Khan, Y. Zhang, T. M. Babinec, K. Martinick, M. McCutcheon, P. R. Hemmer, and M. Lončar, “Fabrication of diamond nanowires for quantum information processing applications,” Diamond Relat. Mater. 19(5-6), 621–629 (2010).
[Crossref]

Bae, K.

Ballabio, A.

Barbone, M.

C. Javerzac-Galy, A. Kumar, R. D. Schilling, N. Piro, S. Khorasani, M. Barbone, I. Goykhman, J. B. Khurgin, A. C. Ferrari, and A. C. Ferrari, “Excitonic Emission of Monolayer Semiconductors Near-Field Coupled to High-Q Microresonators,” Nano Lett. 18(5), 3138–3146 (2018).
[Crossref]

Barclay, P. E.

M. Mitchell, B. Khanaliloo, D. P. Lake, T. Masuda, J. P. Hadden, and P. E. Barclay, “Single-crystal diamond low-dissipation cavity optomechanics,” Optica 3(9), 963–970 (2016).
[Crossref]

B. Khanaliloo, M. Mitchell, A. C. Hryciw, and P. E. Barclay, “High-Q/V monolithic diamond microdisks fabricated with quasi-isotropic etching,” Nano Lett. 15(8), 5131–5136 (2015).
[Crossref]

A. Faraon, P. E. Barclay, C. Santori, K.-M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Photonics 5(5), 301–305 (2011).
[Crossref]

Barrett, T. D.

T. D. Barrett, T. H. Doherty, and A. Kuhn, “Pushing Purcell-enhancement beyond its limits,” arXiv preprint, arXiv:1903.08628v1 (2019).

Bass, M.

M. Bass, E. W. Van Stryland, D. R. Williams, and W. L. Wolfe, Handbook of Optics (McGraw-Hill, 1995).

Bayer, M. M.

M. M. Bayer, H. O. Çirkinoğlu, and A. Serpengüzel, “Observation of whispering-gallery modes in a diamond microsphere,” IEEE Photonics Technol. Lett. 30(1), 3–6 (2018).
[Crossref]

Beausoleil, R. G.

A. Faraon, P. E. Barclay, C. Santori, K.-M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Photonics 5(5), 301–305 (2011).
[Crossref]

Bennett, A. M.

Boss, J. M.

Y. Tao, J. M. Boss, B. A. Moores, and C. L. Degen, “Single-crystal diamond nanomechanical resonators with quality factors exceeding one million,” Nat. Commun. 5(1), 3638 (2014).
[Crossref]

Bowers, J. E.

L. Wang, L. Chang, N. Volet, M. H. P. Pfeiffer, M. Zervas, H. Guo, T. J. Kippenberg, and J. E. Bowers, “Frequency comb generation in the green using silicon nitride microresonators,” Laser Photonics Rev. 10(4), 631–638 (2016).
[Crossref]

Brasch, V.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref]

Bruch, A. W.

Bulu, B.

B. J. M. Hausmann, B. Bulu, P. B. Deotare, M. McCutcheon, V. Venkataraman, M. L. Markham, D. J. Twitchen, and M. Lončar, “Integrated high-quality factor optical resonators in diamond,” Nano Lett. 13(5), 1898–1902 (2013).
[Crossref]

Bumgarner, J.

H. Mao, D. K. Tripathi, Y. Ren, K. K. M. B. Dilusha Silva, M. Martyniuk, J. Antoszewski, J. Bumgarner, J. M. Dell, and L. Faraone, “Large-area MEMS tunable Fabry–Perot filters for multi/hyperspectral infrared imaging,” IEEE J. Sel. Top. Quantum Electron. 23(2), 45–52 (2017).
[Crossref]

H. Mao, K. K. M. B. Dilusha Silva, M. Martyniuk, J. Antoszewski, J. Bumgarner, J. M. Dell, and L. Faraone, “Ge/ZnS-based micromachined Fabry–Perot filters for optical MEMS in the longwave infrared,” J. Microelectromech. Syst. 24(6), 2109–2116 (2015).
[Crossref]

Burek, M. J.

M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Lončar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5(1), 5718 (2014).
[Crossref]

M. J. Burek, N. P. de Leon, B. J. Shields, B. J. M. Hausmann, Y. Chu, Q. Quan, A. S. Zibrov, H. Park, M. D. Lukin, and M. Lončar, “Free-standing mechanical and photonic nanostructures in single-crystal diamond,” Nano Lett. 12(12), 6084–6089 (2012).
[Crossref]

Carmon, T.

J. Zhu, ŞK Özdemir, H. Yilmaz, B. Peng, M. Dong, M. Tomes, T. Carmon, and L. Yang, “Interfacing whispering-gallery microresonators and free space light with cavity enhanced Rayleigh scattering,” Sci. Rep. 4(1), 6396 (2015).
[Crossref]

Chang, L.

L. Wang, L. Chang, N. Volet, M. H. P. Pfeiffer, M. Zervas, H. Guo, T. J. Kippenberg, and J. E. Bowers, “Frequency comb generation in the green using silicon nitride microresonators,” Laser Photonics Rev. 10(4), 631–638 (2016).
[Crossref]

Chen, C.

Chen, D.-R.

J. Zhu, S. Kaya Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

Cheng, Y.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5(1), 8072 (2015).
[Crossref]

Chu, Y.

M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Lončar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5(1), 5718 (2014).
[Crossref]

M. J. Burek, N. P. de Leon, B. J. Shields, B. J. M. Hausmann, Y. Chu, Q. Quan, A. S. Zibrov, H. Park, M. D. Lukin, and M. Lončar, “Free-standing mechanical and photonic nanostructures in single-crystal diamond,” Nano Lett. 12(12), 6084–6089 (2012).
[Crossref]

Çirkinoglu, H. O.

M. M. Bayer, H. O. Çirkinoğlu, and A. Serpengüzel, “Observation of whispering-gallery modes in a diamond microsphere,” IEEE Photonics Technol. Lett. 30(1), 3–6 (2018).
[Crossref]

de Leon, N. P.

M. J. Burek, N. P. de Leon, B. J. Shields, B. J. M. Hausmann, Y. Chu, Q. Quan, A. S. Zibrov, H. Park, M. D. Lukin, and M. Lončar, “Free-standing mechanical and photonic nanostructures in single-crystal diamond,” Nano Lett. 12(12), 6084–6089 (2012).
[Crossref]

De Natale, P.

A. Giorgini, S. Avino, P. Malara, P. De Natale, and G. Gagliardi, “Fundamental limits in high-Q droplet microresonators,” Sci. Rep. 7(1), 41997 (2017).
[Crossref]

Degen, C. L.

Y. Tao, J. M. Boss, B. A. Moores, and C. L. Degen, “Single-crystal diamond nanomechanical resonators with quality factors exceeding one million,” Nat. Commun. 5(1), 3638 (2014).
[Crossref]

Del’Haye, P.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref]

Dell, J. M.

H. Mao, D. K. Tripathi, Y. Ren, K. K. M. B. Dilusha Silva, M. Martyniuk, J. Antoszewski, J. Bumgarner, J. M. Dell, and L. Faraone, “Large-area MEMS tunable Fabry–Perot filters for multi/hyperspectral infrared imaging,” IEEE J. Sel. Top. Quantum Electron. 23(2), 45–52 (2017).
[Crossref]

H. Mao, K. K. M. B. Dilusha Silva, M. Martyniuk, J. Antoszewski, J. Bumgarner, J. M. Dell, and L. Faraone, “Ge/ZnS-based micromachined Fabry–Perot filters for optical MEMS in the longwave infrared,” J. Microelectromech. Syst. 24(6), 2109–2116 (2015).
[Crossref]

Deotare, P. B.

B. J. M. Hausmann, B. Bulu, P. B. Deotare, M. McCutcheon, V. Venkataraman, M. L. Markham, D. J. Twitchen, and M. Lončar, “Integrated high-quality factor optical resonators in diamond,” Nano Lett. 13(5), 1898–1902 (2013).
[Crossref]

diBenedetto, B.

C. A. Klein, B. diBenedetto, and J. Pappis, “ZnS, ZnSe, and ZnS/ZnSe windows: their impact on FLIR system performance,” Opt. Eng. 25(4), 254519 (1986).
[Crossref]

Dilusha Silva, K. K. M. B.

H. Mao, D. K. Tripathi, Y. Ren, K. K. M. B. Dilusha Silva, M. Martyniuk, J. Antoszewski, J. Bumgarner, J. M. Dell, and L. Faraone, “Large-area MEMS tunable Fabry–Perot filters for multi/hyperspectral infrared imaging,” IEEE J. Sel. Top. Quantum Electron. 23(2), 45–52 (2017).
[Crossref]

H. Mao, K. K. M. B. Dilusha Silva, M. Martyniuk, J. Antoszewski, J. Bumgarner, J. M. Dell, and L. Faraone, “Ge/ZnS-based micromachined Fabry–Perot filters for optical MEMS in the longwave infrared,” J. Microelectromech. Syst. 24(6), 2109–2116 (2015).
[Crossref]

Doherty, T. H.

T. D. Barrett, T. H. Doherty, and A. Kuhn, “Pushing Purcell-enhancement beyond its limits,” arXiv preprint, arXiv:1903.08628v1 (2019).

Dong, M.

J. Zhu, ŞK Özdemir, H. Yilmaz, B. Peng, M. Dong, M. Tomes, T. Carmon, and L. Yang, “Interfacing whispering-gallery microresonators and free space light with cavity enhanced Rayleigh scattering,” Sci. Rep. 4(1), 6396 (2015).
[Crossref]

Dumeige, Y.

A. Rasoloniaina, V. Huet, T. K. N. Nguyên, E. Le Cren, M. Mortier, L. Michely, Y. Dumeige, and P. Féron, “Controling the coupling properties of active ultrahigh-Q WGM microcavities from undercoupling to selective amplification,” Sci. Rep. 4(1), 4023 (2015).
[Crossref]

Ebermann, M.

N. Neumann, M. Ebermann, E. Gittler, M. Meinig, S. Kurth, and K. Hiller, “Uncooled IR sensors with tunable MEMS Fabry-Pérot filters for the long-wave infrared range,” 2010 IEEE Sensors, 2383–2387.

M. Meinig, M. Ebermann, N. Neumann, S. Kurth, K. Hiller, and T. Gessner, “Dual-band MEMS Fabry-Pérot filter with two movable reflectors for mid- and long-wave infrared microspectrometers,” Solid-State Sensors Actuators and Microsystems Conference (TRANSDUCERS) 2011 16th International, 2538–2541.

Fan, L.

Fang, W.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5(1), 8072 (2015).
[Crossref]

Fang, Z.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5(1), 8072 (2015).
[Crossref]

Faraon, A.

A. Faraon, P. E. Barclay, C. Santori, K.-M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Photonics 5(5), 301–305 (2011).
[Crossref]

Faraone, L.

H. Mao, D. K. Tripathi, Y. Ren, K. K. M. B. Dilusha Silva, M. Martyniuk, J. Antoszewski, J. Bumgarner, J. M. Dell, and L. Faraone, “Large-area MEMS tunable Fabry–Perot filters for multi/hyperspectral infrared imaging,” IEEE J. Sel. Top. Quantum Electron. 23(2), 45–52 (2017).
[Crossref]

H. Mao, K. K. M. B. Dilusha Silva, M. Martyniuk, J. Antoszewski, J. Bumgarner, J. M. Dell, and L. Faraone, “Ge/ZnS-based micromachined Fabry–Perot filters for optical MEMS in the longwave infrared,” J. Microelectromech. Syst. 24(6), 2109–2116 (2015).
[Crossref]

Felgner, A.

G. Wachter, S. Kuhn, S. Minniberger, C. Salter, P. Asenbaum, J. Millen, M. Schneider, J. Schalko, U. Schmid, A. Felgner, D. Hüser, M. Arndt, and M. Trupke, “Silicon microcavity arrays with open access and a finesse of half a million,” Light: Sci. Appl. 8(1), 37 (2019).
[Crossref]

Féron, P.

A. Rasoloniaina, V. Huet, T. K. N. Nguyên, E. Le Cren, M. Mortier, L. Michely, Y. Dumeige, and P. Féron, “Controling the coupling properties of active ultrahigh-Q WGM microcavities from undercoupling to selective amplification,” Sci. Rep. 4(1), 4023 (2015).
[Crossref]

Ferrari, A. C.

C. Javerzac-Galy, A. Kumar, R. D. Schilling, N. Piro, S. Khorasani, M. Barbone, I. Goykhman, J. B. Khurgin, A. C. Ferrari, and A. C. Ferrari, “Excitonic Emission of Monolayer Semiconductors Near-Field Coupled to High-Q Microresonators,” Nano Lett. 18(5), 3138–3146 (2018).
[Crossref]

C. Javerzac-Galy, A. Kumar, R. D. Schilling, N. Piro, S. Khorasani, M. Barbone, I. Goykhman, J. B. Khurgin, A. C. Ferrari, and A. C. Ferrari, “Excitonic Emission of Monolayer Semiconductors Near-Field Coupled to High-Q Microresonators,” Nano Lett. 18(5), 3138–3146 (2018).
[Crossref]

Freude, W.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref]

Frigerio, J.

Fu, K.-M. C.

A. Faraon, P. E. Barclay, C. Santori, K.-M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Photonics 5(5), 301–305 (2011).
[Crossref]

Fujimori, N.

K. D. S. Hwang, T. Saito, and N. Fujimori, “New etching process for device fabrication using diamond,” Diamond Relat. Mater. 13(11-12), 2207–2210 (2004).
[Crossref]

Gaeta, A. L.

Gagliardi, G.

A. Giorgini, S. Avino, P. Malara, P. De Natale, and G. Gagliardi, “Fundamental limits in high-Q droplet microresonators,” Sci. Rep. 7(1), 41997 (2017).
[Crossref]

Gessner, T.

M. Meinig, M. Ebermann, N. Neumann, S. Kurth, K. Hiller, and T. Gessner, “Dual-band MEMS Fabry-Pérot filter with two movable reflectors for mid- and long-wave infrared microspectrometers,” Solid-State Sensors Actuators and Microsystems Conference (TRANSDUCERS) 2011 16th International, 2538–2541.

Giorgini, A.

A. Giorgini, S. Avino, P. Malara, P. De Natale, and G. Gagliardi, “Fundamental limits in high-Q droplet microresonators,” Sci. Rep. 7(1), 41997 (2017).
[Crossref]

Gittler, E.

N. Neumann, M. Ebermann, E. Gittler, M. Meinig, S. Kurth, and K. Hiller, “Uncooled IR sensors with tunable MEMS Fabry-Pérot filters for the long-wave infrared range,” 2010 IEEE Sensors, 2383–2387.

Gold, P.

C. Schneider, P. Gold, S. Reitzenstein, S. Höfling, and M. Kamp, “Quantum dot micropillar cavities with quality factors exceeding 250,000,” Appl. Phys. B 122(1), 19 (2016).
[Crossref]

Gong, Q.

X. Jiang, L. Shao, S.-X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y.-F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358(6361), 344–347 (2017).
[Crossref]

Gong, Z.

Gopinath, J. T.

Gorodetsky, M. L.

C. Lecaplain, C. Javerzac-Galy, M. L. Gorodetsky, and T. J. Kippenberg, “Mid-infrared ultra-high-Q resonators based on fluoride crystalline materials,” Nat. Commun. 7(1), 13383 (2016).
[Crossref]

Goykhman, I.

C. Javerzac-Galy, A. Kumar, R. D. Schilling, N. Piro, S. Khorasani, M. Barbone, I. Goykhman, J. B. Khurgin, A. C. Ferrari, and A. C. Ferrari, “Excitonic Emission of Monolayer Semiconductors Near-Field Coupled to High-Q Microresonators,” Nano Lett. 18(5), 3138–3146 (2018).
[Crossref]

Grayson, M. B.

Graziosi, T.

T. Graziosi, S. Mi, M. Kiss, and N. Quack, “Single crystal diamond micro-disk resonators by focused ion beam milling,” APL Photonics 3(12), 126101 (2018).
[Crossref]

Griffith, A. G.

Grudinin, I. S.

Guo, H.

L. Wang, L. Chang, N. Volet, M. H. P. Pfeiffer, M. Zervas, H. Guo, T. J. Kippenberg, and J. E. Bowers, “Frequency comb generation in the green using silicon nitride microresonators,” Laser Photonics Rev. 10(4), 631–638 (2016).
[Crossref]

Hadden, J. P.

Han, K.

Han, Y.

Hao, Z.

Hausmann, B. J. M.

B. J. M. Hausmann, B. Bulu, P. B. Deotare, M. McCutcheon, V. Venkataraman, M. L. Markham, D. J. Twitchen, and M. Lončar, “Integrated high-quality factor optical resonators in diamond,” Nano Lett. 13(5), 1898–1902 (2013).
[Crossref]

M. J. Burek, N. P. de Leon, B. J. Shields, B. J. M. Hausmann, Y. Chu, Q. Quan, A. S. Zibrov, H. Park, M. D. Lukin, and M. Lončar, “Free-standing mechanical and photonic nanostructures in single-crystal diamond,” Nano Lett. 12(12), 6084–6089 (2012).
[Crossref]

B. J. M. Hausmann, M. Khan, Y. Zhang, T. M. Babinec, K. Martinick, M. McCutcheon, P. R. Hemmer, and M. Lončar, “Fabrication of diamond nanowires for quantum information processing applications,” Diamond Relat. Mater. 19(5-6), 621–629 (2010).
[Crossref]

He, L.

J. Zhu, S. Kaya Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

Hemmer, P. R.

B. J. M. Hausmann, M. Khan, Y. Zhang, T. M. Babinec, K. Martinick, M. McCutcheon, P. R. Hemmer, and M. Lončar, “Fabrication of diamond nanowires for quantum information processing applications,” Diamond Relat. Mater. 19(5-6), 621–629 (2010).
[Crossref]

Hiller, K.

N. Neumann, M. Ebermann, E. Gittler, M. Meinig, S. Kurth, and K. Hiller, “Uncooled IR sensors with tunable MEMS Fabry-Pérot filters for the long-wave infrared range,” 2010 IEEE Sensors, 2383–2387.

M. Meinig, M. Ebermann, N. Neumann, S. Kurth, K. Hiller, and T. Gessner, “Dual-band MEMS Fabry-Pérot filter with two movable reflectors for mid- and long-wave infrared microspectrometers,” Solid-State Sensors Actuators and Microsystems Conference (TRANSDUCERS) 2011 16th International, 2538–2541.

Höfling, S.

C. Schneider, P. Gold, S. Reitzenstein, S. Höfling, and M. Kamp, “Quantum dot micropillar cavities with quality factors exceeding 250,000,” Appl. Phys. B 122(1), 19 (2016).
[Crossref]

Holzwarth, R.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref]

Hong, W.

M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Lončar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5(1), 5718 (2014).
[Crossref]

Horning, T. M.

Hossein-Zadeh, M.

Hryciw, A. C.

B. Khanaliloo, M. Mitchell, A. C. Hryciw, and P. E. Barclay, “High-Q/V monolithic diamond microdisks fabricated with quasi-isotropic etching,” Nano Lett. 15(8), 5131–5136 (2015).
[Crossref]

Huet, V.

A. Rasoloniaina, V. Huet, T. K. N. Nguyên, E. Le Cren, M. Mortier, L. Michely, Y. Dumeige, and P. Féron, “Controling the coupling properties of active ultrahigh-Q WGM microcavities from undercoupling to selective amplification,” Sci. Rep. 4(1), 4023 (2015).
[Crossref]

Hüser, D.

G. Wachter, S. Kuhn, S. Minniberger, C. Salter, P. Asenbaum, J. Millen, M. Schneider, J. Schalko, U. Schmid, A. Felgner, D. Hüser, M. Arndt, and M. Trupke, “Silicon microcavity arrays with open access and a finesse of half a million,” Light: Sci. Appl. 8(1), 37 (2019).
[Crossref]

Hwang, K. D. S.

K. D. S. Hwang, T. Saito, and N. Fujimori, “New etching process for device fabrication using diamond,” Diamond Relat. Mater. 13(11-12), 2207–2210 (2004).
[Crossref]

Iakoubovskii, K.

K. Iakoubovskii and A. Stesmans, “Chemical vapour deposition diamond studied by optical and electron spin resonance techniques,” J. Phys.: Condens. Matter 14(17), R467–R499 (2002).
[Crossref]

Ilchenko, V. S.

Isella, G.

Jain, R. K.

Jaramillo-Villegas, J. A.

Javerzac-Galy, C.

C. Javerzac-Galy, A. Kumar, R. D. Schilling, N. Piro, S. Khorasani, M. Barbone, I. Goykhman, J. B. Khurgin, A. C. Ferrari, and A. C. Ferrari, “Excitonic Emission of Monolayer Semiconductors Near-Field Coupled to High-Q Microresonators,” Nano Lett. 18(5), 3138–3146 (2018).
[Crossref]

C. Lecaplain, C. Javerzac-Galy, M. L. Gorodetsky, and T. J. Kippenberg, “Mid-infrared ultra-high-Q resonators based on fluoride crystalline materials,” Nat. Commun. 7(1), 13383 (2016).
[Crossref]

Jeon, S.

Jiang, X.

X. Jiang, L. Shao, S.-X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y.-F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358(6361), 344–347 (2017).
[Crossref]

Kamp, M.

C. Schneider, P. Gold, S. Reitzenstein, S. Höfling, and M. Kamp, “Quantum dot micropillar cavities with quality factors exceeding 250,000,” Appl. Phys. B 122(1), 19 (2016).
[Crossref]

Kang, D. D.

Karpov, M.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref]

Kaya Ozdemir, S.

J. Zhu, S. Kaya Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

Kemal, J. N.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref]

Khan, M.

B. J. M. Hausmann, M. Khan, Y. Zhang, T. M. Babinec, K. Martinick, M. McCutcheon, P. R. Hemmer, and M. Lončar, “Fabrication of diamond nanowires for quantum information processing applications,” Diamond Relat. Mater. 19(5-6), 621–629 (2010).
[Crossref]

Khanaliloo, B.

M. Mitchell, B. Khanaliloo, D. P. Lake, T. Masuda, J. P. Hadden, and P. E. Barclay, “Single-crystal diamond low-dissipation cavity optomechanics,” Optica 3(9), 963–970 (2016).
[Crossref]

B. Khanaliloo, M. Mitchell, A. C. Hryciw, and P. E. Barclay, “High-Q/V monolithic diamond microdisks fabricated with quasi-isotropic etching,” Nano Lett. 15(8), 5131–5136 (2015).
[Crossref]

Khorasani, S.

C. Javerzac-Galy, A. Kumar, R. D. Schilling, N. Piro, S. Khorasani, M. Barbone, I. Goykhman, J. B. Khurgin, A. C. Ferrari, and A. C. Ferrari, “Excitonic Emission of Monolayer Semiconductors Near-Field Coupled to High-Q Microresonators,” Nano Lett. 18(5), 3138–3146 (2018).
[Crossref]

Khurgin, J. B.

C. Javerzac-Galy, A. Kumar, R. D. Schilling, N. Piro, S. Khorasani, M. Barbone, I. Goykhman, J. B. Khurgin, A. C. Ferrari, and A. C. Ferrari, “Excitonic Emission of Monolayer Semiconductors Near-Field Coupled to High-Q Microresonators,” Nano Lett. 18(5), 3138–3146 (2018).
[Crossref]

Kim, H.

Kim, S.

Kippenberg, T. J.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref]

L. Wang, L. Chang, N. Volet, M. H. P. Pfeiffer, M. Zervas, H. Guo, T. J. Kippenberg, and J. E. Bowers, “Frequency comb generation in the green using silicon nitride microresonators,” Laser Photonics Rev. 10(4), 631–638 (2016).
[Crossref]

C. Lecaplain, C. Javerzac-Galy, M. L. Gorodetsky, and T. J. Kippenberg, “Mid-infrared ultra-high-Q resonators based on fluoride crystalline materials,” Nat. Commun. 7(1), 13383 (2016).
[Crossref]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref]

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity opticalparametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93(8), 083904 (2004).
[Crossref]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref]

Kiss, M.

T. Graziosi, S. Mi, M. Kiss, and N. Quack, “Single crystal diamond micro-disk resonators by focused ion beam milling,” APL Photonics 3(12), 126101 (2018).
[Crossref]

Klein, C. A.

C. A. Klein, B. diBenedetto, and J. Pappis, “ZnS, ZnSe, and ZnS/ZnSe windows: their impact on FLIR system performance,” Opt. Eng. 25(4), 254519 (1986).
[Crossref]

Koos, C.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref]

Kordts, A.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref]

Kuhn, A.

T. D. Barrett, T. H. Doherty, and A. Kuhn, “Pushing Purcell-enhancement beyond its limits,” arXiv preprint, arXiv:1903.08628v1 (2019).

Kuhn, S.

G. Wachter, S. Kuhn, S. Minniberger, C. Salter, P. Asenbaum, J. Millen, M. Schneider, J. Schalko, U. Schmid, A. Felgner, D. Hüser, M. Arndt, and M. Trupke, “Silicon microcavity arrays with open access and a finesse of half a million,” Light: Sci. Appl. 8(1), 37 (2019).
[Crossref]

Kumar, A.

C. Javerzac-Galy, A. Kumar, R. D. Schilling, N. Piro, S. Khorasani, M. Barbone, I. Goykhman, J. B. Khurgin, A. C. Ferrari, and A. C. Ferrari, “Excitonic Emission of Monolayer Semiconductors Near-Field Coupled to High-Q Microresonators,” Nano Lett. 18(5), 3138–3146 (2018).
[Crossref]

Kurth, S.

N. Neumann, M. Ebermann, E. Gittler, M. Meinig, S. Kurth, and K. Hiller, “Uncooled IR sensors with tunable MEMS Fabry-Pérot filters for the long-wave infrared range,” 2010 IEEE Sensors, 2383–2387.

M. Meinig, M. Ebermann, N. Neumann, S. Kurth, K. Hiller, and T. Gessner, “Dual-band MEMS Fabry-Pérot filter with two movable reflectors for mid- and long-wave infrared microspectrometers,” Solid-State Sensors Actuators and Microsystems Conference (TRANSDUCERS) 2011 16th International, 2538–2541.

Lake, D. P.

Le Cren, E.

A. Rasoloniaina, V. Huet, T. K. N. Nguyên, E. Le Cren, M. Mortier, L. Michely, Y. Dumeige, and P. Féron, “Controling the coupling properties of active ultrahigh-Q WGM microcavities from undercoupling to selective amplification,” Sci. Rep. 4(1), 4023 (2015).
[Crossref]

Le Roux, X.

Leaird, D. E.

Lecaplain, C.

C. Lecaplain, C. Javerzac-Galy, M. L. Gorodetsky, and T. J. Kippenberg, “Mid-infrared ultra-high-Q resonators based on fluoride crystalline materials,” Nat. Commun. 7(1), 13383 (2016).
[Crossref]

Lee, S. H.

K. Y. Yang, D. Y. Oh, S. H. Lee, Q.-F. Yang, X. Yi, B. Shen, H. Wang, and K. Vahala, “Bridging ultrahigh-Q devices and photonic circuits,” Nat. Photonics 12(5), 297–302 (2018).
[Crossref]

Lee, Y. J.

Li, H.

Li, L.

J. Zhu, S. Kaya Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

Liddy, M. S. Z.

M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Lončar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5(1), 5718 (2014).
[Crossref]

Lin, J.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5(1), 8072 (2015).
[Crossref]

Lipson, M.

Liu, Q.

Liu, X.

Liu, Y.

Loncar, M.

X. Jiang, L. Shao, S.-X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y.-F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358(6361), 344–347 (2017).
[Crossref]

M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Lončar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5(1), 5718 (2014).
[Crossref]

B. J. M. Hausmann, B. Bulu, P. B. Deotare, M. McCutcheon, V. Venkataraman, M. L. Markham, D. J. Twitchen, and M. Lončar, “Integrated high-quality factor optical resonators in diamond,” Nano Lett. 13(5), 1898–1902 (2013).
[Crossref]

M. J. Burek, N. P. de Leon, B. J. Shields, B. J. M. Hausmann, Y. Chu, Q. Quan, A. S. Zibrov, H. Park, M. D. Lukin, and M. Lončar, “Free-standing mechanical and photonic nanostructures in single-crystal diamond,” Nano Lett. 12(12), 6084–6089 (2012).
[Crossref]

B. J. M. Hausmann, M. Khan, Y. Zhang, T. M. Babinec, K. Martinick, M. McCutcheon, P. R. Hemmer, and M. Lončar, “Fabrication of diamond nanowires for quantum information processing applications,” Diamond Relat. Mater. 19(5-6), 621–629 (2010).
[Crossref]

Lu, J.

Lukin, M. D.

M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Lončar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5(1), 5718 (2014).
[Crossref]

M. J. Burek, N. P. de Leon, B. J. Shields, B. J. M. Hausmann, Y. Chu, Q. Quan, A. S. Zibrov, H. Park, M. D. Lukin, and M. Lončar, “Free-standing mechanical and photonic nanostructures in single-crystal diamond,” Nano Lett. 12(12), 6084–6089 (2012).
[Crossref]

Luo, Y.

Mäkynen, J.

M. Tuohiniemi, A. Näsilä, and J. Mäkynen, “Characterization of the tuning performance of a micro-machined Fabry–Pérot interferometer for thermal infrared,” J. Micromech. Microeng. 23(7), 075011 (2013).
[Crossref]

Malara, P.

A. Giorgini, S. Avino, P. Malara, P. De Natale, and G. Gagliardi, “Fundamental limits in high-Q droplet microresonators,” Sci. Rep. 7(1), 41997 (2017).
[Crossref]

Maleki, L.

Mansour, K.

Mao, H.

H. Mao, D. K. Tripathi, Y. Ren, K. K. M. B. Dilusha Silva, M. Martyniuk, J. Antoszewski, J. Bumgarner, J. M. Dell, and L. Faraone, “Large-area MEMS tunable Fabry–Perot filters for multi/hyperspectral infrared imaging,” IEEE J. Sel. Top. Quantum Electron. 23(2), 45–52 (2017).
[Crossref]

H. Mao, K. K. M. B. Dilusha Silva, M. Martyniuk, J. Antoszewski, J. Bumgarner, J. M. Dell, and L. Faraone, “Ge/ZnS-based micromachined Fabry–Perot filters for optical MEMS in the longwave infrared,” J. Microelectromech. Syst. 24(6), 2109–2116 (2015).
[Crossref]

Marin-Palomo, P.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref]

Markham, M. L.

B. J. M. Hausmann, B. Bulu, P. B. Deotare, M. McCutcheon, V. Venkataraman, M. L. Markham, D. J. Twitchen, and M. Lončar, “Integrated high-quality factor optical resonators in diamond,” Nano Lett. 13(5), 1898–1902 (2013).
[Crossref]

Marris-Morini, D.

Martinick, K.

B. J. M. Hausmann, M. Khan, Y. Zhang, T. M. Babinec, K. Martinick, M. McCutcheon, P. R. Hemmer, and M. Lončar, “Fabrication of diamond nanowires for quantum information processing applications,” Diamond Relat. Mater. 19(5-6), 621–629 (2010).
[Crossref]

Martyniuk, M.

H. Mao, D. K. Tripathi, Y. Ren, K. K. M. B. Dilusha Silva, M. Martyniuk, J. Antoszewski, J. Bumgarner, J. M. Dell, and L. Faraone, “Large-area MEMS tunable Fabry–Perot filters for multi/hyperspectral infrared imaging,” IEEE J. Sel. Top. Quantum Electron. 23(2), 45–52 (2017).
[Crossref]

H. Mao, K. K. M. B. Dilusha Silva, M. Martyniuk, J. Antoszewski, J. Bumgarner, J. M. Dell, and L. Faraone, “Ge/ZnS-based micromachined Fabry–Perot filters for optical MEMS in the longwave infrared,” J. Microelectromech. Syst. 24(6), 2109–2116 (2015).
[Crossref]

Masuda, T.

Matsko, A. B.

McCutcheon, M.

B. J. M. Hausmann, B. Bulu, P. B. Deotare, M. McCutcheon, V. Venkataraman, M. L. Markham, D. J. Twitchen, and M. Lončar, “Integrated high-quality factor optical resonators in diamond,” Nano Lett. 13(5), 1898–1902 (2013).
[Crossref]

B. J. M. Hausmann, M. Khan, Y. Zhang, T. M. Babinec, K. Martinick, M. McCutcheon, P. R. Hemmer, and M. Lončar, “Fabrication of diamond nanowires for quantum information processing applications,” Diamond Relat. Mater. 19(5-6), 621–629 (2010).
[Crossref]

Meesala, S.

M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Lončar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5(1), 5718 (2014).
[Crossref]

Meinig, M.

M. Meinig, M. Ebermann, N. Neumann, S. Kurth, K. Hiller, and T. Gessner, “Dual-band MEMS Fabry-Pérot filter with two movable reflectors for mid- and long-wave infrared microspectrometers,” Solid-State Sensors Actuators and Microsystems Conference (TRANSDUCERS) 2011 16th International, 2538–2541.

N. Neumann, M. Ebermann, E. Gittler, M. Meinig, S. Kurth, and K. Hiller, “Uncooled IR sensors with tunable MEMS Fabry-Pérot filters for the long-wave infrared range,” 2010 IEEE Sensors, 2383–2387.

Metcalf, A. J.

Mi, S.

T. Graziosi, S. Mi, M. Kiss, and N. Quack, “Single crystal diamond micro-disk resonators by focused ion beam milling,” APL Photonics 3(12), 126101 (2018).
[Crossref]

Michely, L.

A. Rasoloniaina, V. Huet, T. K. N. Nguyên, E. Le Cren, M. Mortier, L. Michely, Y. Dumeige, and P. Féron, “Controling the coupling properties of active ultrahigh-Q WGM microcavities from undercoupling to selective amplification,” Sci. Rep. 4(1), 4023 (2015).
[Crossref]

Mildren, R. P.

R. P. Mildren, Optical Engineering of Diamond (Wiley-VCH Verlag GmbH & Co. KGaA, 2013).

Millen, J.

G. Wachter, S. Kuhn, S. Minniberger, C. Salter, P. Asenbaum, J. Millen, M. Schneider, J. Schalko, U. Schmid, A. Felgner, D. Hüser, M. Arndt, and M. Trupke, “Silicon microcavity arrays with open access and a finesse of half a million,” Light: Sci. Appl. 8(1), 37 (2019).
[Crossref]

Minniberger, S.

G. Wachter, S. Kuhn, S. Minniberger, C. Salter, P. Asenbaum, J. Millen, M. Schneider, J. Schalko, U. Schmid, A. Felgner, D. Hüser, M. Arndt, and M. Trupke, “Silicon microcavity arrays with open access and a finesse of half a million,” Light: Sci. Appl. 8(1), 37 (2019).
[Crossref]

Mitchell, M.

M. Mitchell, B. Khanaliloo, D. P. Lake, T. Masuda, J. P. Hadden, and P. E. Barclay, “Single-crystal diamond low-dissipation cavity optomechanics,” Optica 3(9), 963–970 (2016).
[Crossref]

B. Khanaliloo, M. Mitchell, A. C. Hryciw, and P. E. Barclay, “High-Q/V monolithic diamond microdisks fabricated with quasi-isotropic etching,” Nano Lett. 15(8), 5131–5136 (2015).
[Crossref]

Moores, B. A.

Y. Tao, J. M. Boss, B. A. Moores, and C. L. Degen, “Single-crystal diamond nanomechanical resonators with quality factors exceeding one million,” Nat. Commun. 5(1), 3638 (2014).
[Crossref]

Mortier, M.

A. Rasoloniaina, V. Huet, T. K. N. Nguyên, E. Le Cren, M. Mortier, L. Michely, Y. Dumeige, and P. Féron, “Controling the coupling properties of active ultrahigh-Q WGM microcavities from undercoupling to selective amplification,” Sci. Rep. 4(1), 4023 (2015).
[Crossref]

Näsilä, A.

M. Tuohiniemi, A. Näsilä, and J. Mäkynen, “Characterization of the tuning performance of a micro-machined Fabry–Pérot interferometer for thermal infrared,” J. Micromech. Microeng. 23(7), 075011 (2013).
[Crossref]

Neumann, N.

N. Neumann, M. Ebermann, E. Gittler, M. Meinig, S. Kurth, and K. Hiller, “Uncooled IR sensors with tunable MEMS Fabry-Pérot filters for the long-wave infrared range,” 2010 IEEE Sensors, 2383–2387.

M. Meinig, M. Ebermann, N. Neumann, S. Kurth, K. Hiller, and T. Gessner, “Dual-band MEMS Fabry-Pérot filter with two movable reflectors for mid- and long-wave infrared microspectrometers,” Solid-State Sensors Actuators and Microsystems Conference (TRANSDUCERS) 2011 16th International, 2538–2541.

Nguyên, T. K. N.

A. Rasoloniaina, V. Huet, T. K. N. Nguyên, E. Le Cren, M. Mortier, L. Michely, Y. Dumeige, and P. Féron, “Controling the coupling properties of active ultrahigh-Q WGM microcavities from undercoupling to selective amplification,” Sci. Rep. 4(1), 4023 (2015).
[Crossref]

Niu, B.

Noda, S.

Oh, D. Y.

K. Y. Yang, D. Y. Oh, S. H. Lee, Q.-F. Yang, X. Yi, B. Shen, H. Wang, and K. Vahala, “Bridging ultrahigh-Q devices and photonic circuits,” Nat. Photonics 12(5), 297–302 (2018).
[Crossref]

Okawachi, Y.

Özdemir, SK

J. Zhu, ŞK Özdemir, H. Yilmaz, B. Peng, M. Dong, M. Tomes, T. Carmon, and L. Yang, “Interfacing whispering-gallery microresonators and free space light with cavity enhanced Rayleigh scattering,” Sci. Rep. 4(1), 6396 (2015).
[Crossref]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, Cambridge, MA, 1997).

Pappis, J.

C. A. Klein, B. diBenedetto, and J. Pappis, “ZnS, ZnSe, and ZnS/ZnSe windows: their impact on FLIR system performance,” Opt. Eng. 25(4), 254519 (1986).
[Crossref]

Park, H.

M. J. Burek, N. P. de Leon, B. J. Shields, B. J. M. Hausmann, Y. Chu, Q. Quan, A. S. Zibrov, H. Park, M. D. Lukin, and M. Lončar, “Free-standing mechanical and photonic nanostructures in single-crystal diamond,” Nano Lett. 12(12), 6084–6089 (2012).
[Crossref]

Park, W.

Patel, P.

M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Lončar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5(1), 5718 (2014).
[Crossref]

Peng, B.

J. Zhu, ŞK Özdemir, H. Yilmaz, B. Peng, M. Dong, M. Tomes, T. Carmon, and L. Yang, “Interfacing whispering-gallery microresonators and free space light with cavity enhanced Rayleigh scattering,” Sci. Rep. 4(1), 6396 (2015).
[Crossref]

Pfeiffer, M. H. P.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref]

L. Wang, L. Chang, N. Volet, M. H. P. Pfeiffer, M. Zervas, H. Guo, T. J. Kippenberg, and J. E. Bowers, “Frequency comb generation in the green using silicon nitride microresonators,” Laser Photonics Rev. 10(4), 631–638 (2016).
[Crossref]

Pfeifle, J.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref]

Piro, N.

C. Javerzac-Galy, A. Kumar, R. D. Schilling, N. Piro, S. Khorasani, M. Barbone, I. Goykhman, J. B. Khurgin, A. C. Ferrari, and A. C. Ferrari, “Excitonic Emission of Monolayer Semiconductors Near-Field Coupled to High-Q Microresonators,” Nano Lett. 18(5), 3138–3146 (2018).
[Crossref]

Purcell, E. M.

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69(1-2), 37–38 (1946).
[Crossref]

Qi, M.

Qiao, L.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5(1), 8072 (2015).
[Crossref]

Quack, N.

T. Graziosi, S. Mi, M. Kiss, and N. Quack, “Single crystal diamond micro-disk resonators by focused ion beam milling,” APL Photonics 3(12), 126101 (2018).
[Crossref]

Quan, Q.

M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Lončar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5(1), 5718 (2014).
[Crossref]

M. J. Burek, N. P. de Leon, B. J. Shields, B. J. M. Hausmann, Y. Chu, Q. Quan, A. S. Zibrov, H. Park, M. D. Lukin, and M. Lončar, “Free-standing mechanical and photonic nanostructures in single-crystal diamond,” Nano Lett. 12(12), 6084–6089 (2012).
[Crossref]

Ramirez, J. M.

Rasoloniaina, A.

A. Rasoloniaina, V. Huet, T. K. N. Nguyên, E. Le Cren, M. Mortier, L. Michely, Y. Dumeige, and P. Féron, “Controling the coupling properties of active ultrahigh-Q WGM microcavities from undercoupling to selective amplification,” Sci. Rep. 4(1), 4023 (2015).
[Crossref]

Reitzenstein, S.

C. Schneider, P. Gold, S. Reitzenstein, S. Höfling, and M. Kamp, “Quantum dot micropillar cavities with quality factors exceeding 250,000,” Appl. Phys. B 122(1), 19 (2016).
[Crossref]

Ren, Y.

H. Mao, D. K. Tripathi, Y. Ren, K. K. M. B. Dilusha Silva, M. Martyniuk, J. Antoszewski, J. Bumgarner, J. M. Dell, and L. Faraone, “Large-area MEMS tunable Fabry–Perot filters for multi/hyperspectral infrared imaging,” IEEE J. Sel. Top. Quantum Electron. 23(2), 45–52 (2017).
[Crossref]

Rochman, J.

M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Lončar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5(1), 5718 (2014).
[Crossref]

Rosenberger, R.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref]

Saito, T.

K. D. S. Hwang, T. Saito, and N. Fujimori, “New etching process for device fabrication using diamond,” Diamond Relat. Mater. 13(11-12), 2207–2210 (2004).
[Crossref]

Salter, C.

G. Wachter, S. Kuhn, S. Minniberger, C. Salter, P. Asenbaum, J. Millen, M. Schneider, J. Schalko, U. Schmid, A. Felgner, D. Hüser, M. Arndt, and M. Trupke, “Silicon microcavity arrays with open access and a finesse of half a million,” Light: Sci. Appl. 8(1), 37 (2019).
[Crossref]

Santini, P.

Santori, C.

A. Faraon, P. E. Barclay, C. Santori, K.-M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Photonics 5(5), 301–305 (2011).
[Crossref]

Savchenkov, A. A.

Schalko, J.

G. Wachter, S. Kuhn, S. Minniberger, C. Salter, P. Asenbaum, J. Millen, M. Schneider, J. Schalko, U. Schmid, A. Felgner, D. Hüser, M. Arndt, and M. Trupke, “Silicon microcavity arrays with open access and a finesse of half a million,” Light: Sci. Appl. 8(1), 37 (2019).
[Crossref]

Schilling, R. D.

C. Javerzac-Galy, A. Kumar, R. D. Schilling, N. Piro, S. Khorasani, M. Barbone, I. Goykhman, J. B. Khurgin, A. C. Ferrari, and A. C. Ferrari, “Excitonic Emission of Monolayer Semiconductors Near-Field Coupled to High-Q Microresonators,” Nano Lett. 18(5), 3138–3146 (2018).
[Crossref]

Schliesser, A.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref]

Schmid, U.

G. Wachter, S. Kuhn, S. Minniberger, C. Salter, P. Asenbaum, J. Millen, M. Schneider, J. Schalko, U. Schmid, A. Felgner, D. Hüser, M. Arndt, and M. Trupke, “Silicon microcavity arrays with open access and a finesse of half a million,” Light: Sci. Appl. 8(1), 37 (2019).
[Crossref]

Schneider, C.

C. Schneider, P. Gold, S. Reitzenstein, S. Höfling, and M. Kamp, “Quantum dot micropillar cavities with quality factors exceeding 250,000,” Appl. Phys. B 122(1), 19 (2016).
[Crossref]

Schneider, M.

G. Wachter, S. Kuhn, S. Minniberger, C. Salter, P. Asenbaum, J. Millen, M. Schneider, J. Schalko, U. Schmid, A. Felgner, D. Hüser, M. Arndt, and M. Trupke, “Silicon microcavity arrays with open access and a finesse of half a million,” Light: Sci. Appl. 8(1), 37 (2019).
[Crossref]

Serpengüzel, A.

M. M. Bayer, H. O. Çirkinoğlu, and A. Serpengüzel, “Observation of whispering-gallery modes in a diamond microsphere,” IEEE Photonics Technol. Lett. 30(1), 3–6 (2018).
[Crossref]

Shao, L.

X. Jiang, L. Shao, S.-X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y.-F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358(6361), 344–347 (2017).
[Crossref]

Shen, B.

K. Y. Yang, D. Y. Oh, S. H. Lee, Q.-F. Yang, X. Yi, B. Shen, H. Wang, and K. Vahala, “Bridging ultrahigh-Q devices and photonic circuits,” Nat. Photonics 12(5), 297–302 (2018).
[Crossref]

Shields, B. J.

M. J. Burek, N. P. de Leon, B. J. Shields, B. J. M. Hausmann, Y. Chu, Q. Quan, A. S. Zibrov, H. Park, M. D. Lukin, and M. Lončar, “Free-standing mechanical and photonic nanostructures in single-crystal diamond,” Nano Lett. 12(12), 6084–6089 (2012).
[Crossref]

Simola, E. T.

Song, B.-S.

Song, J.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5(1), 8072 (2015).
[Crossref]

Spillane, S. M.

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity opticalparametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93(8), 083904 (2004).
[Crossref]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref]

Stesmans, A.

K. Iakoubovskii and A. Stesmans, “Chemical vapour deposition diamond studied by optical and electron spin resonance techniques,” J. Phys.: Condens. Matter 14(17), R467–R499 (2002).
[Crossref]

Sun, C.

Surya, J. B.

Tang, H. X.

Tao, Y.

Y. Tao, J. M. Boss, B. A. Moores, and C. L. Degen, “Single-crystal diamond nanomechanical resonators with quality factors exceeding one million,” Nat. Commun. 5(1), 3638 (2014).
[Crossref]

Teng, M.

Tomes, M.

J. Zhu, ŞK Özdemir, H. Yilmaz, B. Peng, M. Dong, M. Tomes, T. Carmon, and L. Yang, “Interfacing whispering-gallery microresonators and free space light with cavity enhanced Rayleigh scattering,” Sci. Rep. 4(1), 6396 (2015).
[Crossref]

Tripathi, D. K.

H. Mao, D. K. Tripathi, Y. Ren, K. K. M. B. Dilusha Silva, M. Martyniuk, J. Antoszewski, J. Bumgarner, J. M. Dell, and L. Faraone, “Large-area MEMS tunable Fabry–Perot filters for multi/hyperspectral infrared imaging,” IEEE J. Sel. Top. Quantum Electron. 23(2), 45–52 (2017).
[Crossref]

Trocha, P.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref]

Trupke, M.

G. Wachter, S. Kuhn, S. Minniberger, C. Salter, P. Asenbaum, J. Millen, M. Schneider, J. Schalko, U. Schmid, A. Felgner, D. Hüser, M. Arndt, and M. Trupke, “Silicon microcavity arrays with open access and a finesse of half a million,” Light: Sci. Appl. 8(1), 37 (2019).
[Crossref]

Tuohiniemi, M.

M. Tuohiniemi, A. Näsilä, and J. Mäkynen, “Characterization of the tuning performance of a micro-machined Fabry–Pérot interferometer for thermal infrared,” J. Micromech. Microeng. 23(7), 075011 (2013).
[Crossref]

Twitchen, D. J.

B. J. M. Hausmann, B. Bulu, P. B. Deotare, M. McCutcheon, V. Venkataraman, M. L. Markham, D. J. Twitchen, and M. Lončar, “Integrated high-quality factor optical resonators in diamond,” Nano Lett. 13(5), 1898–1902 (2013).
[Crossref]

Vahala, K.

K. Y. Yang, D. Y. Oh, S. H. Lee, Q.-F. Yang, X. Yi, B. Shen, H. Wang, and K. Vahala, “Bridging ultrahigh-Q devices and photonic circuits,” Nat. Photonics 12(5), 297–302 (2018).
[Crossref]

Vahala, K. J.

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity opticalparametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93(8), 083904 (2004).
[Crossref]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref]

Vakarin, V.

Van Stryland, E. W.

M. Bass, E. W. Van Stryland, D. R. Williams, and W. L. Wolfe, Handbook of Optics (McGraw-Hill, 1995).

Varghese, L. T.

Venkataraman, V.

B. J. M. Hausmann, B. Bulu, P. B. Deotare, M. McCutcheon, V. Venkataraman, M. L. Markham, D. J. Twitchen, and M. Lončar, “Integrated high-quality factor optical resonators in diamond,” Nano Lett. 13(5), 1898–1902 (2013).
[Crossref]

Vijayan, K.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref]

Vivien, L.

Volet, N.

L. Wang, L. Chang, N. Volet, M. H. P. Pfeiffer, M. Zervas, H. Guo, T. J. Kippenberg, and J. E. Bowers, “Frequency comb generation in the green using silicon nitride microresonators,” Laser Photonics Rev. 10(4), 631–638 (2016).
[Crossref]

Wachter, G.

G. Wachter, S. Kuhn, S. Minniberger, C. Salter, P. Asenbaum, J. Millen, M. Schneider, J. Schalko, U. Schmid, A. Felgner, D. Hüser, M. Arndt, and M. Trupke, “Silicon microcavity arrays with open access and a finesse of half a million,” Light: Sci. Appl. 8(1), 37 (2019).
[Crossref]

Wang, C.

Wang, H.

K. Y. Yang, D. Y. Oh, S. H. Lee, Q.-F. Yang, X. Yi, B. Shen, H. Wang, and K. Vahala, “Bridging ultrahigh-Q devices and photonic circuits,” Nat. Photonics 12(5), 297–302 (2018).
[Crossref]

Wang, J.

Wang, L.

X. Jiang, L. Shao, S.-X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y.-F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358(6361), 344–347 (2017).
[Crossref]

X. Liu, C. Sun, B. Xiong, L. Wang, J. Wang, Y. Han, Z. Hao, H. Li, Y. Luo, J. Yan, T. Wei, Y. Zhang, and J. Wang, “Aluminum nitride-on-sapphire platform for integrated high-Q microresonators,” Opt. Express 25(2), 587–594 (2017).
[Crossref]

L. Wang, L. Chang, N. Volet, M. H. P. Pfeiffer, M. Zervas, H. Guo, T. J. Kippenberg, and J. E. Bowers, “Frequency comb generation in the green using silicon nitride microresonators,” Laser Photonics Rev. 10(4), 631–638 (2016).
[Crossref]

Wang, M.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5(1), 8072 (2015).
[Crossref]

Wang, N.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5(1), 8072 (2015).
[Crossref]

Wang, P.-H.

Way, B.

Wei, T.

Weiner, A. M.

Wiersig, J.

X. Jiang, L. Shao, S.-X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y.-F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358(6361), 344–347 (2017).
[Crossref]

Wilken, T.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref]

Williams, D. R.

M. Bass, E. W. Van Stryland, D. R. Williams, and W. L. Wolfe, Handbook of Optics (McGraw-Hill, 1995).

Wolf, S.

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref]

Wolfe, W. L.

M. Bass, E. W. Van Stryland, D. R. Williams, and W. L. Wolfe, Handbook of Optics (McGraw-Hill, 1995).

Xiao, Y.-F.

X. Jiang, L. Shao, S.-X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y.-F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358(6361), 344–347 (2017).
[Crossref]

J. Zhu, S. Kaya Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

Xiong, B.

Xu, Y.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5(1), 8072 (2015).
[Crossref]

Xuan, Y.

Xue, X.

Yan, J.

Yang, K. Y.

K. Y. Yang, D. Y. Oh, S. H. Lee, Q.-F. Yang, X. Yi, B. Shen, H. Wang, and K. Vahala, “Bridging ultrahigh-Q devices and photonic circuits,” Nat. Photonics 12(5), 297–302 (2018).
[Crossref]

Yang, L.

X. Jiang, L. Shao, S.-X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y.-F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358(6361), 344–347 (2017).
[Crossref]

J. Zhu, ŞK Özdemir, H. Yilmaz, B. Peng, M. Dong, M. Tomes, T. Carmon, and L. Yang, “Interfacing whispering-gallery microresonators and free space light with cavity enhanced Rayleigh scattering,” Sci. Rep. 4(1), 6396 (2015).
[Crossref]

J. Zhu, S. Kaya Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

Yang, Q.-F.

K. Y. Yang, D. Y. Oh, S. H. Lee, Q.-F. Yang, X. Yi, B. Shen, H. Wang, and K. Vahala, “Bridging ultrahigh-Q devices and photonic circuits,” Nat. Photonics 12(5), 297–302 (2018).
[Crossref]

Yi, X.

K. Y. Yang, D. Y. Oh, S. H. Lee, Q.-F. Yang, X. Yi, B. Shen, H. Wang, and K. Vahala, “Bridging ultrahigh-Q devices and photonic circuits,” Nat. Photonics 12(5), 297–302 (2018).
[Crossref]

X. Jiang, L. Shao, S.-X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y.-F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358(6361), 344–347 (2017).
[Crossref]

Yilmaz, H.

J. Zhu, ŞK Özdemir, H. Yilmaz, B. Peng, M. Dong, M. Tomes, T. Carmon, and L. Yang, “Interfacing whispering-gallery microresonators and free space light with cavity enhanced Rayleigh scattering,” Sci. Rep. 4(1), 6396 (2015).
[Crossref]

Yu, M.

Yu, N.

Zervas, M.

L. Wang, L. Chang, N. Volet, M. H. P. Pfeiffer, M. Zervas, H. Guo, T. J. Kippenberg, and J. E. Bowers, “Frequency comb generation in the green using silicon nitride microresonators,” Laser Photonics Rev. 10(4), 631–638 (2016).
[Crossref]

Zhang, L.

Zhang, S.-X.

X. Jiang, L. Shao, S.-X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y.-F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358(6361), 344–347 (2017).
[Crossref]

Zhang, Y.

X. Liu, C. Sun, B. Xiong, L. Wang, J. Wang, Y. Han, Z. Hao, H. Li, Y. Luo, J. Yan, T. Wei, Y. Zhang, and J. Wang, “Aluminum nitride-on-sapphire platform for integrated high-Q microresonators,” Opt. Express 25(2), 587–594 (2017).
[Crossref]

B. J. M. Hausmann, M. Khan, Y. Zhang, T. M. Babinec, K. Martinick, M. McCutcheon, P. R. Hemmer, and M. Lončar, “Fabrication of diamond nanowires for quantum information processing applications,” Diamond Relat. Mater. 19(5-6), 621–629 (2010).
[Crossref]

Zhu, J.

J. Zhu, M. Zohrabi, K. Bae, T. M. Horning, M. B. Grayson, W. Park, and J. T. Gopinath, “Nonlinear characterization of silica and chalcogenide microresonators,” Optica 6(6), 716–722 (2019).
[Crossref]

J. Zhu, ŞK Özdemir, H. Yilmaz, B. Peng, M. Dong, M. Tomes, T. Carmon, and L. Yang, “Interfacing whispering-gallery microresonators and free space light with cavity enhanced Rayleigh scattering,” Sci. Rep. 4(1), 6396 (2015).
[Crossref]

J. Zhu, S. Kaya Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

Zibrov, A. S.

M. J. Burek, N. P. de Leon, B. J. Shields, B. J. M. Hausmann, Y. Chu, Q. Quan, A. S. Zibrov, H. Park, M. D. Lukin, and M. Lončar, “Free-standing mechanical and photonic nanostructures in single-crystal diamond,” Nano Lett. 12(12), 6084–6089 (2012).
[Crossref]

Zohrabi, M.

APL Photonics (1)

T. Graziosi, S. Mi, M. Kiss, and N. Quack, “Single crystal diamond micro-disk resonators by focused ion beam milling,” APL Photonics 3(12), 126101 (2018).
[Crossref]

Appl. Phys. B (1)

C. Schneider, P. Gold, S. Reitzenstein, S. Höfling, and M. Kamp, “Quantum dot micropillar cavities with quality factors exceeding 250,000,” Appl. Phys. B 122(1), 19 (2016).
[Crossref]

Diamond Relat. Mater. (2)

B. J. M. Hausmann, M. Khan, Y. Zhang, T. M. Babinec, K. Martinick, M. McCutcheon, P. R. Hemmer, and M. Lončar, “Fabrication of diamond nanowires for quantum information processing applications,” Diamond Relat. Mater. 19(5-6), 621–629 (2010).
[Crossref]

K. D. S. Hwang, T. Saito, and N. Fujimori, “New etching process for device fabrication using diamond,” Diamond Relat. Mater. 13(11-12), 2207–2210 (2004).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

H. Mao, D. K. Tripathi, Y. Ren, K. K. M. B. Dilusha Silva, M. Martyniuk, J. Antoszewski, J. Bumgarner, J. M. Dell, and L. Faraone, “Large-area MEMS tunable Fabry–Perot filters for multi/hyperspectral infrared imaging,” IEEE J. Sel. Top. Quantum Electron. 23(2), 45–52 (2017).
[Crossref]

IEEE Photonics Technol. Lett. (1)

M. M. Bayer, H. O. Çirkinoğlu, and A. Serpengüzel, “Observation of whispering-gallery modes in a diamond microsphere,” IEEE Photonics Technol. Lett. 30(1), 3–6 (2018).
[Crossref]

J. Microelectromech. Syst. (1)

H. Mao, K. K. M. B. Dilusha Silva, M. Martyniuk, J. Antoszewski, J. Bumgarner, J. M. Dell, and L. Faraone, “Ge/ZnS-based micromachined Fabry–Perot filters for optical MEMS in the longwave infrared,” J. Microelectromech. Syst. 24(6), 2109–2116 (2015).
[Crossref]

J. Micromech. Microeng. (1)

M. Tuohiniemi, A. Näsilä, and J. Mäkynen, “Characterization of the tuning performance of a micro-machined Fabry–Pérot interferometer for thermal infrared,” J. Micromech. Microeng. 23(7), 075011 (2013).
[Crossref]

J. Phys.: Condens. Matter (1)

K. Iakoubovskii and A. Stesmans, “Chemical vapour deposition diamond studied by optical and electron spin resonance techniques,” J. Phys.: Condens. Matter 14(17), R467–R499 (2002).
[Crossref]

Laser Photonics Rev. (1)

L. Wang, L. Chang, N. Volet, M. H. P. Pfeiffer, M. Zervas, H. Guo, T. J. Kippenberg, and J. E. Bowers, “Frequency comb generation in the green using silicon nitride microresonators,” Laser Photonics Rev. 10(4), 631–638 (2016).
[Crossref]

Light: Sci. Appl. (1)

G. Wachter, S. Kuhn, S. Minniberger, C. Salter, P. Asenbaum, J. Millen, M. Schneider, J. Schalko, U. Schmid, A. Felgner, D. Hüser, M. Arndt, and M. Trupke, “Silicon microcavity arrays with open access and a finesse of half a million,” Light: Sci. Appl. 8(1), 37 (2019).
[Crossref]

Nano Lett. (4)

C. Javerzac-Galy, A. Kumar, R. D. Schilling, N. Piro, S. Khorasani, M. Barbone, I. Goykhman, J. B. Khurgin, A. C. Ferrari, and A. C. Ferrari, “Excitonic Emission of Monolayer Semiconductors Near-Field Coupled to High-Q Microresonators,” Nano Lett. 18(5), 3138–3146 (2018).
[Crossref]

B. Khanaliloo, M. Mitchell, A. C. Hryciw, and P. E. Barclay, “High-Q/V monolithic diamond microdisks fabricated with quasi-isotropic etching,” Nano Lett. 15(8), 5131–5136 (2015).
[Crossref]

M. J. Burek, N. P. de Leon, B. J. Shields, B. J. M. Hausmann, Y. Chu, Q. Quan, A. S. Zibrov, H. Park, M. D. Lukin, and M. Lončar, “Free-standing mechanical and photonic nanostructures in single-crystal diamond,” Nano Lett. 12(12), 6084–6089 (2012).
[Crossref]

B. J. M. Hausmann, B. Bulu, P. B. Deotare, M. McCutcheon, V. Venkataraman, M. L. Markham, D. J. Twitchen, and M. Lončar, “Integrated high-quality factor optical resonators in diamond,” Nano Lett. 13(5), 1898–1902 (2013).
[Crossref]

Nat. Commun. (3)

M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Lončar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5(1), 5718 (2014).
[Crossref]

Y. Tao, J. M. Boss, B. A. Moores, and C. L. Degen, “Single-crystal diamond nanomechanical resonators with quality factors exceeding one million,” Nat. Commun. 5(1), 3638 (2014).
[Crossref]

C. Lecaplain, C. Javerzac-Galy, M. L. Gorodetsky, and T. J. Kippenberg, “Mid-infrared ultra-high-Q resonators based on fluoride crystalline materials,” Nat. Commun. 7(1), 13383 (2016).
[Crossref]

Nat. Photonics (3)

J. Zhu, S. Kaya Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010).
[Crossref]

K. Y. Yang, D. Y. Oh, S. H. Lee, Q.-F. Yang, X. Yi, B. Shen, H. Wang, and K. Vahala, “Bridging ultrahigh-Q devices and photonic circuits,” Nat. Photonics 12(5), 297–302 (2018).
[Crossref]

A. Faraon, P. E. Barclay, C. Santori, K.-M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Photonics 5(5), 301–305 (2011).
[Crossref]

Nature (3)

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450(7173), 1214–1217 (2007).
[Crossref]

P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546(7657), 274–279 (2017).
[Crossref]

Opt. Eng. (1)

C. A. Klein, B. diBenedetto, and J. Pappis, “ZnS, ZnSe, and ZnS/ZnSe windows: their impact on FLIR system performance,” Opt. Eng. 25(4), 254519 (1986).
[Crossref]

Opt. Express (1)

Opt. Lett. (5)

Optica (5)

Phys. Rev. (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69(1-2), 37–38 (1946).
[Crossref]

Phys. Rev. Lett. (1)

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity opticalparametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93(8), 083904 (2004).
[Crossref]

Sci. Rep. (4)

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Rep. 5(1), 8072 (2015).
[Crossref]

J. Zhu, ŞK Özdemir, H. Yilmaz, B. Peng, M. Dong, M. Tomes, T. Carmon, and L. Yang, “Interfacing whispering-gallery microresonators and free space light with cavity enhanced Rayleigh scattering,” Sci. Rep. 4(1), 6396 (2015).
[Crossref]

A. Rasoloniaina, V. Huet, T. K. N. Nguyên, E. Le Cren, M. Mortier, L. Michely, Y. Dumeige, and P. Féron, “Controling the coupling properties of active ultrahigh-Q WGM microcavities from undercoupling to selective amplification,” Sci. Rep. 4(1), 4023 (2015).
[Crossref]

A. Giorgini, S. Avino, P. Malara, P. De Natale, and G. Gagliardi, “Fundamental limits in high-Q droplet microresonators,” Sci. Rep. 7(1), 41997 (2017).
[Crossref]

Science (1)

X. Jiang, L. Shao, S.-X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y.-F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358(6361), 344–347 (2017).
[Crossref]

Other (6)

R. P. Mildren, Optical Engineering of Diamond (Wiley-VCH Verlag GmbH & Co. KGaA, 2013).

N. Neumann, M. Ebermann, E. Gittler, M. Meinig, S. Kurth, and K. Hiller, “Uncooled IR sensors with tunable MEMS Fabry-Pérot filters for the long-wave infrared range,” 2010 IEEE Sensors, 2383–2387.

M. Meinig, M. Ebermann, N. Neumann, S. Kurth, K. Hiller, and T. Gessner, “Dual-band MEMS Fabry-Pérot filter with two movable reflectors for mid- and long-wave infrared microspectrometers,” Solid-State Sensors Actuators and Microsystems Conference (TRANSDUCERS) 2011 16th International, 2538–2541.

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, Cambridge, MA, 1997).

T. D. Barrett, T. H. Doherty, and A. Kuhn, “Pushing Purcell-enhancement beyond its limits,” arXiv preprint, arXiv:1903.08628v1 (2019).

M. Bass, E. W. Van Stryland, D. R. Williams, and W. L. Wolfe, Handbook of Optics (McGraw-Hill, 1995).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Absorption coefficients versus wavelength for many common infrared materials [3033]. The grey dashed line indicates an absorption coefficient, $\alpha = 0.01\textrm{cm}^{ - 1}$. Using $\textrm{F} = \frac{{{\pi}\sqrt {1 - \textrm{A}}}}{\textrm{A}}$, this corresponds to a cavity finesse of about $\textrm{F} = 628,000$, which is achievable in other wavelength ranges but has never been approached in the room temperature thermal infrared. Black dash line is the expected absorption coefficient of Ge between ∼2 and 10 µm based on the properties of typical semiconductors due to free carrier absorption [34].
Fig. 2.
Fig. 2. Fabrication process flow. (a) Silicon nitride was deposited on a diamond substrate. Photoresist was subsequently applied. (b) The photoresist was patterned using standard lithography. (c) The silicon nitride was etched by ICP RIE. (d) The diamond substrate was etched by ICP RIE. (e) Silicon nitride was deposited again. (f) The silicon nitride on the top surface was etched by ICP RIE, which left residual silicon nitride on the sidewall. (g) The diamond was etched again by ICP RIE to create the desired microresonator height. (h) The diamond substrate was mounted vertically and etched at a high angle by ICP RIE to create an undercut. (i) The rest of the silicon nitride was removed by a buffered oxide etch. Acronyms used in the diagram: PR: photoresist, SiNx: silicon nitride, SCD: single-crystal diamond, ICP RIE: inductively coupled plasma reactive ion etching, HDPCVD: high density plasma chemical vapor deposition, and BOE: buffered oxide etch
Fig. 3.
Fig. 3. SEM images of diamond microdisk and Dimensions of microresonator (cross-sectional view). SEM images of the cross-sectional views of diamond microdisk were taken with a tilt angle of 75 degrees. Scale bars in (a) and (b) are 100 µm and 1 µm, respectively. Note that the 1 µm sidewall is the disk ring waveguide, and it is a smooth surface that protrudes from the rough sidewall by about 5 µm. (c) displays the dimension of the microdisk. The diameters of the diamond microresonators were 1 mm with a height of 11 µm. The thickness of the protruding disk waveguide was 1 µm, and the depth of undercut was approximately 5 µm.
Fig. 4.
Fig. 4. Optical measurement setup. An experimental setup consisting of a tunable quantum cascade laser (QCL) (λ∼9–10 µm) coupled to a single-crystal diamond microdisk was used. The uncoupled light was collected by a single-mode As2Se3 chalcogenide fiber, and was detected by an HgCdTe photodetector with a lock-in amplifier to record the signal.
Fig. 5.
Fig. 5. Control and optical measurements before and after the insertion of the diamond microresonator 1. Part (a) represents the Fourier transform of the optical measurement taken by the experimental setup (shown in Fig. 4), however, without the presence of the first microresonator (control groups). This plot shows that there was no spurious parasitic cavity in the optical setup that might interfere in the microresonator analysis. Part (b) represents the intensity (in terms of signal voltage) versus wavelength plot for the first microresonator, when included in the experimental setup. In part (b), the inset shows the expanded views of the experimental data circled by the black dashed line. The blue lines in the inset show the curve fitting of the experimental data. The quality factors for the first is found ∼3648 at 9.601 µm. Part (c) is the Fourier transform of the data presented in part (b). Obvious peak is found near ∼45 GHz in part (c), which is expanded in their corresponding inset with curve fitting (blue line). Please note that the bottom x-axis (black) of the Fourier transform plots (Parts (a) and (c)) denote the free spectral range when the scan rate of tunable laser is at 0.1 cm−1/s. In addition, the top x-axis (red) of the Fourier transform plots denote the sampling rate of the lock-in amplifier.
Fig. 6.
Fig. 6. Optical measurements for the control group and the experimental of the second diamond microdisk. Part (a) represents the Fourier transform of the optical measurement taken by the experimental setup but the second microresonator is missing (control groups). Once again, this plot shows that there was no spurious parasitic cavity in the optical setup that might interfere in the microresonator analysis. Part (b) shows the intensity versus wavelength plot when the second microresonator was included in the experimental setup. In part (b), the inset shows the expanded views of the experimental data circled by the black dashed line. The blue lines in the inset show the curve fitting of the experimental data. The quality factors for the second microdisk is found ∼3130 at 9.541 µm. Part (c) is the Fourier transform of the data presented in part (b). Obvious peak is found near ∼45 GHz in part (c), which is expanded in their corresponding inset with curve fitting (blue line). Please note that the bottom x-axis (black) of the Fourier transform plots [Parts (a) and (c)] denote the free spectral range when the scan rate of tunable laser is at 0.1 cm−1/s. In addition, the top x-axis (red) of the Fourier transform plots denote the sampling rate of the lock-in amplifier.

Metrics