Abstract

The non-line-of-sight (NLOS) imaging problem has attracted a lot of interest in recent years. The objective is to produce images of objects that are hidden around a corner, using the information encoded in the time-of-flight (ToF) of photons that scatter multiple times after incidence at a given relay surface. Most current methods assume a Lambertian, flat and static relay surface, with non-moving targets in the hidden scene. Here we show NLOS reconstructions for a relay surface that is non-planar and rapidly changing during data acquisition. Our NLOS imaging system exploits two different detectors to collect the ToF data; one pertaining to the relay surface and another one regarding the ToF information of the hidden scene. The system is then able to associate where the multiply-scattered photons originated from the relay surface. This step allows us to account for changing relay positions in the reconstruction algorithm. Results show that the reconstructions for a dynamic relay surface are similar to the ones obtained using a traditional non-dynamic relay surface.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Non-line-of-sight imaging using a time-gated single photon avalanche diode

Mauro Buttafava, Jessica Zeman, Alberto Tosi, Kevin Eliceiri, and Andreas Velten
Opt. Express 23(16) 20997-21011 (2015)

Passive non-line-of-sight imaging using plenoptic information

Di Lin, Connor Hashemi, and James R. Leger
J. Opt. Soc. Am. A 37(4) 540-551 (2020)

Non-line-of-sight tracking of people at long range

Susan Chan, Ryan E. Warburton, Genevieve Gariepy, Jonathan Leach, and Daniele Faccio
Opt. Express 25(9) 10109-10117 (2017)

References

  • View by:
  • |
  • |
  • |

  1. I. Freund, “Looking through walls and around corners,” Phys. A 168(1), 49–65 (1990).
    [Crossref]
  2. S. K. Nayar, G. Krishnan, M. D. Grossberg, and R. Raskar, “Fast separation of direct and global components of a scene using high frequency illumination,” ACM Trans. Graph. 25(3), 935–944 (2006).
    [Crossref]
  3. S. M. Seitz, Y. Matsushita, and K. N. Kutulakos, “A theory of inverse light transport,” in Proceedings of the Tenth IEEE International Conference on Computer Vision - Volume 2, (IEEE Computer Society, Washington, DC, USA, 2005), ICCV ’05, pp. 1440–1447.
  4. A. Kirmani, T. Hutchison, J. Davis, and R. Raskar, “Looking around the corner using transient imaging,” in 2009 IEEE 12th International Conference on Computer Vision, (2009), pp. 159–166.
  5. A. Kirmani, T. Hutchison, J. Davis, and R. Raskar, “Looking around the corner using ultrafast transient imaging,” Int. J. Comput. Vis. 95(1), 13–28 (2011).
    [Crossref]
  6. O. Steinvall, M. Elmqvist, and H. Larsson, “See around the corner using active imaging,” in Proc. SPIE, vol. 8186 (Electro-Optical Remote Sensing, Photonic Technologies, and Applications V) (2011).
  7. A. Kirmani, H. Jeelani, V. Montazerhodjat, and V. K. Goyal, “Diffuse imaging: Creating optical images with unfocused time-resolved illumination and sensing,” IEEE Signal Process. Lett. 19(1), 31–34 (2012).
    [Crossref]
  8. A. Jarabo, J. Marco, A. Munoz, R. Buisan, W. Jarosz, and D. Gutierrez, “A framework for transient rendering,” ACM Transactions on Graph. (Proceedings SIGGRAPH Asia) 33 (2014).
  9. A. Jarabo, B. Masia, J. Marco, and D. Gutierrez, “Recent advances in transient imaging: A computer graphics and vision perspective,” Vis. Informatics 1(1), 65–79 (2017).
    [Crossref]
  10. A. K. Pediredla, M. Buttafava, A. Tosi, O. Cossairt, and A. Veeraraghavan, “Reconstructing rooms using photon echoes: A plane based model and reconstruction algorithm for looking around the corner,” in 2017 IEEE International Conference on Computational Photography (ICCP), (2017), pp. 1–12.
  11. C. Tsai, K. N. Kutulakos, S. G. Narasimhan, and A. C. Sankaranarayanan, “The geometry of first-returning photons for non-line-of-sight imaging,” in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2017), pp. 2336–2344.
  12. M. Laurenzis, J. Klein, E. Bacher, and S. Schertzer, “Approaches to solve inverse problems for optical sensing around corners,” in Emerging Imaging and Sensing Technologies for Security and Defence IV, vol. 11163G. S. Buller, R. C. Hollins, R. A. Lamb, and M. Laurenzis, eds., International Society for Optics and Photonics (SPIE, 2019), pp. 1–7.
  13. F. Heide, M. B. Hullin, J. Gregson, and W. Heidrich, “Low-budget transient imaging using photonic mixer devices,” ACM Trans. Graph. 32(4), 1 (2013).
    [Crossref]
  14. F. Heide, L. Xiao, W. Heidrich, and M. B. Hullin, “Diffuse mirrors: 3d reconstruction from diffuse indirect illumination using inexpensive time-of-flight sensors,” in 2014 IEEE Conference on Computer Vision and Pattern Recognition, (2014), pp. 3222–3229.
  15. F. Heide, W. Heidrich, M. Hullin, and G. Wetzstein, “Doppler time-of-flight imaging,” ACM Trans. Graph. 34(4), 36:1–36:11 (2015).
    [Crossref]
  16. J. Klein, C. Peters, J. Martin, M. Laurenzis, and M. B. Hullin, “Tracking objects outside the line of sight using 2D intensity images,” Sci. Rep. 6(1), 32491 (2016).
    [Crossref]
  17. J. Klein, C. Peters, M. Laurenzis, and M. Hullin, “Non-line-of-sight mocap,” in ACM SIGGRAPH 2017 Emerging Technologies, (ACM, New York, NY, USA, 2017), SIGGRAPH ’17, pp. 18:1–18:2.
  18. G. S. Buller and R. J. Collins, “Single-photon generation and detection,” Meas. Sci. Technol. 21(1), 012002 (2010).
    [Crossref]
  19. G. Gariepy, N. Krstajic, R. Henderson, C. Li, R. R. Thomson, G. S. Buller, B. Heshmat, R. Raskar, J. Leach, and D. Faccio, “Single-photon sensitive light-in-fight imaging,” Nat. Commun. 6(1), 6021 (2015).
    [Crossref]
  20. M. Buttafava, J. Zeman, A. Tosi, K. Eliceiri, and A. Velten, “Non-line-of-sight imaging using a time-gated single photon avalanche diode,” Opt. Express 23(16), 20997–21011 (2015).
    [Crossref]
  21. M. Laurenzis, “Computational sensing approaches for enhanced active imaging,” in Proc. SPIE, vol. 10796 (Electro-Optical Remote Sensing XII) (2018).
  22. M. Laurenzis, M. La Manna, M. Buttafava, A. Tosi, J. Nam, M. Gupta, and A. Velten, “Advanced active imaging with single photon avalanche diodes,” in Proc. SPIE, vol. 10799 (Emerging Imaging and Sensing Technologies for Security and Defence III) (2018).
  23. A. Velten, T. Willwacher, O. Gupta, A. Veeraraghavan, M. G. Bawendi, and R. Raskar, “Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging,” Nat. Commun. 3(1), 745 (2012).
    [Crossref]
  24. M. Laurenzis and A. Velten, “Nonline-of-sight laser gated viewing of scattered photons,” Opt. Eng. 53(2), 023102 (2014).
    [Crossref]
  25. M. La Manna, F. Kine, E. Breitbach, J. Jackson, T. Sultan, and A. Velten, “Error backprojection algorithms for non-line-of-sight imaging,” IEEE Trans. Pattern Anal. Mach. Intell. 41(7), 1615–1626 (2019).
    [Crossref]
  26. X. Liu, I. Guillén, M. La Manna, J. H. Nam, S. Azer Reza, T. H. Le, D. Gutierrez, A. Jarabo, and A. Velten, “Non-line-of-sight imaging using phasor-field virtual waveoptics,” Nature 572(7771), 620–623 (2019).
    [Crossref]
  27. V. Arellano, D. Gutierrez, and A. Jarabo, “Fast back-projection for non-line of sight reconstruction,” in ACM SIGGRAPH 2017 Posters, (ACM, New York, NY, USA, 2017), SIGGRAPH ’17, pp. 79:1–79:2.
  28. S. A. Reza, M. La Manna, S. Bauer, and A. Velten, “Phasor field waves: A Huygens-like light transport model for non-line-of-sight imaging applications,” Opt. Express 27(20), 29380–29400 (2019).
    [Crossref]
  29. S. A. Reza, M. La Manna, S. Bauer, and A. Velten, “Phasor field waves: Experimental demonstrations of wave-like properties,” Opt. Express 27(22), 32587–32608 (2019).
    [Crossref]
  30. J. A. Teichman, “Phasor field waves: A mathematical treatment,” Opt. Express 27(20), 27500–27506 (2019).
    [Crossref]
  31. J. Dove and J. H. Shapiro, “Paraxial theory of phasor-field imaging,” Opt. Express 27(13), 18016–18037 (2019).
    [Crossref]
  32. F. Xu, G. Shulkind, C. Thrampoulidis, J. H. Shapiro, A. Torralba, F. N. C. Wong, and G. W. Wornell, “Revealing hidden scenes by photon-efficient occlusion-based opportunistic active imaging,” Opt. Express 26(8), 9945–9962 (2018).
    [Crossref]
  33. M. O’Toole, D. B. Lindell, and G. Wetzstein, “Confocal non-line-of-sight imaging,” in ACM SIGGRAPH 2018 Talks, (ACM, New York, NY, USA, 2018), SIGGRAPH ’18, pp. 1:1–1:2.
  34. D. B. Lindell, G. Wetzstein, and M. O’Toole, “Wave-based non-line-of-sight imaging using fast f-k migration,” ACM Trans. Graph. 38(4), 1–13 (2019).
    [Crossref]
  35. S. Cova, M. Ghioni, A. Lacaita, C. Samori, and F. Zappa, “Avalanche photodiodes and quenching circuits for single-photon detection,” Appl. Opt. 35(12), 1956–1976 (1996).
    [Crossref]
  36. F. Zappa, S. Tisa, A. Tosi, and S. Cova, “Principles and features of single-photon avalanche diode arrays,” Sens. Actuators, A 140(1), 103–112 (2007).
    [Crossref]
  37. M. Buttafava, G. Boso, A. Ruggeri, A. D. Mora, and A. Tosi, “Time-gated single-photon detection module with 110 ps transition time and up to 80 MHz repetition rate,” Rev. Sci. Instrum. 85(8), 083114 (2014).
    [Crossref]
  38. S. A. Reza, M. La Manna, and A. Velten, “Imaging with Phasor Fields for Non-Line-of Sight Applications,” in Imaging and Applied Optics 2018 (3D, AO, AIO, COSI, DH, IS, LACSEA, LS&C, MATH, pcAOP), (Optical Society of America, 2018), p. CM2E.7.

2019 (7)

M. La Manna, F. Kine, E. Breitbach, J. Jackson, T. Sultan, and A. Velten, “Error backprojection algorithms for non-line-of-sight imaging,” IEEE Trans. Pattern Anal. Mach. Intell. 41(7), 1615–1626 (2019).
[Crossref]

X. Liu, I. Guillén, M. La Manna, J. H. Nam, S. Azer Reza, T. H. Le, D. Gutierrez, A. Jarabo, and A. Velten, “Non-line-of-sight imaging using phasor-field virtual waveoptics,” Nature 572(7771), 620–623 (2019).
[Crossref]

S. A. Reza, M. La Manna, S. Bauer, and A. Velten, “Phasor field waves: A Huygens-like light transport model for non-line-of-sight imaging applications,” Opt. Express 27(20), 29380–29400 (2019).
[Crossref]

S. A. Reza, M. La Manna, S. Bauer, and A. Velten, “Phasor field waves: Experimental demonstrations of wave-like properties,” Opt. Express 27(22), 32587–32608 (2019).
[Crossref]

J. A. Teichman, “Phasor field waves: A mathematical treatment,” Opt. Express 27(20), 27500–27506 (2019).
[Crossref]

J. Dove and J. H. Shapiro, “Paraxial theory of phasor-field imaging,” Opt. Express 27(13), 18016–18037 (2019).
[Crossref]

D. B. Lindell, G. Wetzstein, and M. O’Toole, “Wave-based non-line-of-sight imaging using fast f-k migration,” ACM Trans. Graph. 38(4), 1–13 (2019).
[Crossref]

2018 (1)

2017 (1)

A. Jarabo, B. Masia, J. Marco, and D. Gutierrez, “Recent advances in transient imaging: A computer graphics and vision perspective,” Vis. Informatics 1(1), 65–79 (2017).
[Crossref]

2016 (1)

J. Klein, C. Peters, J. Martin, M. Laurenzis, and M. B. Hullin, “Tracking objects outside the line of sight using 2D intensity images,” Sci. Rep. 6(1), 32491 (2016).
[Crossref]

2015 (3)

G. Gariepy, N. Krstajic, R. Henderson, C. Li, R. R. Thomson, G. S. Buller, B. Heshmat, R. Raskar, J. Leach, and D. Faccio, “Single-photon sensitive light-in-fight imaging,” Nat. Commun. 6(1), 6021 (2015).
[Crossref]

M. Buttafava, J. Zeman, A. Tosi, K. Eliceiri, and A. Velten, “Non-line-of-sight imaging using a time-gated single photon avalanche diode,” Opt. Express 23(16), 20997–21011 (2015).
[Crossref]

F. Heide, W. Heidrich, M. Hullin, and G. Wetzstein, “Doppler time-of-flight imaging,” ACM Trans. Graph. 34(4), 36:1–36:11 (2015).
[Crossref]

2014 (2)

M. Laurenzis and A. Velten, “Nonline-of-sight laser gated viewing of scattered photons,” Opt. Eng. 53(2), 023102 (2014).
[Crossref]

M. Buttafava, G. Boso, A. Ruggeri, A. D. Mora, and A. Tosi, “Time-gated single-photon detection module with 110 ps transition time and up to 80 MHz repetition rate,” Rev. Sci. Instrum. 85(8), 083114 (2014).
[Crossref]

2013 (1)

F. Heide, M. B. Hullin, J. Gregson, and W. Heidrich, “Low-budget transient imaging using photonic mixer devices,” ACM Trans. Graph. 32(4), 1 (2013).
[Crossref]

2012 (2)

A. Kirmani, H. Jeelani, V. Montazerhodjat, and V. K. Goyal, “Diffuse imaging: Creating optical images with unfocused time-resolved illumination and sensing,” IEEE Signal Process. Lett. 19(1), 31–34 (2012).
[Crossref]

A. Velten, T. Willwacher, O. Gupta, A. Veeraraghavan, M. G. Bawendi, and R. Raskar, “Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging,” Nat. Commun. 3(1), 745 (2012).
[Crossref]

2011 (1)

A. Kirmani, T. Hutchison, J. Davis, and R. Raskar, “Looking around the corner using ultrafast transient imaging,” Int. J. Comput. Vis. 95(1), 13–28 (2011).
[Crossref]

2010 (1)

G. S. Buller and R. J. Collins, “Single-photon generation and detection,” Meas. Sci. Technol. 21(1), 012002 (2010).
[Crossref]

2007 (1)

F. Zappa, S. Tisa, A. Tosi, and S. Cova, “Principles and features of single-photon avalanche diode arrays,” Sens. Actuators, A 140(1), 103–112 (2007).
[Crossref]

2006 (1)

S. K. Nayar, G. Krishnan, M. D. Grossberg, and R. Raskar, “Fast separation of direct and global components of a scene using high frequency illumination,” ACM Trans. Graph. 25(3), 935–944 (2006).
[Crossref]

1996 (1)

1990 (1)

I. Freund, “Looking through walls and around corners,” Phys. A 168(1), 49–65 (1990).
[Crossref]

Arellano, V.

V. Arellano, D. Gutierrez, and A. Jarabo, “Fast back-projection for non-line of sight reconstruction,” in ACM SIGGRAPH 2017 Posters, (ACM, New York, NY, USA, 2017), SIGGRAPH ’17, pp. 79:1–79:2.

Azer Reza, S.

X. Liu, I. Guillén, M. La Manna, J. H. Nam, S. Azer Reza, T. H. Le, D. Gutierrez, A. Jarabo, and A. Velten, “Non-line-of-sight imaging using phasor-field virtual waveoptics,” Nature 572(7771), 620–623 (2019).
[Crossref]

Bacher, E.

M. Laurenzis, J. Klein, E. Bacher, and S. Schertzer, “Approaches to solve inverse problems for optical sensing around corners,” in Emerging Imaging and Sensing Technologies for Security and Defence IV, vol. 11163G. S. Buller, R. C. Hollins, R. A. Lamb, and M. Laurenzis, eds., International Society for Optics and Photonics (SPIE, 2019), pp. 1–7.

Bauer, S.

Bawendi, M. G.

A. Velten, T. Willwacher, O. Gupta, A. Veeraraghavan, M. G. Bawendi, and R. Raskar, “Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging,” Nat. Commun. 3(1), 745 (2012).
[Crossref]

Boso, G.

M. Buttafava, G. Boso, A. Ruggeri, A. D. Mora, and A. Tosi, “Time-gated single-photon detection module with 110 ps transition time and up to 80 MHz repetition rate,” Rev. Sci. Instrum. 85(8), 083114 (2014).
[Crossref]

Breitbach, E.

M. La Manna, F. Kine, E. Breitbach, J. Jackson, T. Sultan, and A. Velten, “Error backprojection algorithms for non-line-of-sight imaging,” IEEE Trans. Pattern Anal. Mach. Intell. 41(7), 1615–1626 (2019).
[Crossref]

Buisan, R.

A. Jarabo, J. Marco, A. Munoz, R. Buisan, W. Jarosz, and D. Gutierrez, “A framework for transient rendering,” ACM Transactions on Graph. (Proceedings SIGGRAPH Asia) 33 (2014).

Buller, G. S.

G. Gariepy, N. Krstajic, R. Henderson, C. Li, R. R. Thomson, G. S. Buller, B. Heshmat, R. Raskar, J. Leach, and D. Faccio, “Single-photon sensitive light-in-fight imaging,” Nat. Commun. 6(1), 6021 (2015).
[Crossref]

G. S. Buller and R. J. Collins, “Single-photon generation and detection,” Meas. Sci. Technol. 21(1), 012002 (2010).
[Crossref]

Buttafava, M.

M. Buttafava, J. Zeman, A. Tosi, K. Eliceiri, and A. Velten, “Non-line-of-sight imaging using a time-gated single photon avalanche diode,” Opt. Express 23(16), 20997–21011 (2015).
[Crossref]

M. Buttafava, G. Boso, A. Ruggeri, A. D. Mora, and A. Tosi, “Time-gated single-photon detection module with 110 ps transition time and up to 80 MHz repetition rate,” Rev. Sci. Instrum. 85(8), 083114 (2014).
[Crossref]

M. Laurenzis, M. La Manna, M. Buttafava, A. Tosi, J. Nam, M. Gupta, and A. Velten, “Advanced active imaging with single photon avalanche diodes,” in Proc. SPIE, vol. 10799 (Emerging Imaging and Sensing Technologies for Security and Defence III) (2018).

A. K. Pediredla, M. Buttafava, A. Tosi, O. Cossairt, and A. Veeraraghavan, “Reconstructing rooms using photon echoes: A plane based model and reconstruction algorithm for looking around the corner,” in 2017 IEEE International Conference on Computational Photography (ICCP), (2017), pp. 1–12.

Collins, R. J.

G. S. Buller and R. J. Collins, “Single-photon generation and detection,” Meas. Sci. Technol. 21(1), 012002 (2010).
[Crossref]

Cossairt, O.

A. K. Pediredla, M. Buttafava, A. Tosi, O. Cossairt, and A. Veeraraghavan, “Reconstructing rooms using photon echoes: A plane based model and reconstruction algorithm for looking around the corner,” in 2017 IEEE International Conference on Computational Photography (ICCP), (2017), pp. 1–12.

Cova, S.

F. Zappa, S. Tisa, A. Tosi, and S. Cova, “Principles and features of single-photon avalanche diode arrays,” Sens. Actuators, A 140(1), 103–112 (2007).
[Crossref]

S. Cova, M. Ghioni, A. Lacaita, C. Samori, and F. Zappa, “Avalanche photodiodes and quenching circuits for single-photon detection,” Appl. Opt. 35(12), 1956–1976 (1996).
[Crossref]

Davis, J.

A. Kirmani, T. Hutchison, J. Davis, and R. Raskar, “Looking around the corner using ultrafast transient imaging,” Int. J. Comput. Vis. 95(1), 13–28 (2011).
[Crossref]

A. Kirmani, T. Hutchison, J. Davis, and R. Raskar, “Looking around the corner using transient imaging,” in 2009 IEEE 12th International Conference on Computer Vision, (2009), pp. 159–166.

Dove, J.

Eliceiri, K.

Elmqvist, M.

O. Steinvall, M. Elmqvist, and H. Larsson, “See around the corner using active imaging,” in Proc. SPIE, vol. 8186 (Electro-Optical Remote Sensing, Photonic Technologies, and Applications V) (2011).

Faccio, D.

G. Gariepy, N. Krstajic, R. Henderson, C. Li, R. R. Thomson, G. S. Buller, B. Heshmat, R. Raskar, J. Leach, and D. Faccio, “Single-photon sensitive light-in-fight imaging,” Nat. Commun. 6(1), 6021 (2015).
[Crossref]

Freund, I.

I. Freund, “Looking through walls and around corners,” Phys. A 168(1), 49–65 (1990).
[Crossref]

Gariepy, G.

G. Gariepy, N. Krstajic, R. Henderson, C. Li, R. R. Thomson, G. S. Buller, B. Heshmat, R. Raskar, J. Leach, and D. Faccio, “Single-photon sensitive light-in-fight imaging,” Nat. Commun. 6(1), 6021 (2015).
[Crossref]

Ghioni, M.

Goyal, V. K.

A. Kirmani, H. Jeelani, V. Montazerhodjat, and V. K. Goyal, “Diffuse imaging: Creating optical images with unfocused time-resolved illumination and sensing,” IEEE Signal Process. Lett. 19(1), 31–34 (2012).
[Crossref]

Gregson, J.

F. Heide, M. B. Hullin, J. Gregson, and W. Heidrich, “Low-budget transient imaging using photonic mixer devices,” ACM Trans. Graph. 32(4), 1 (2013).
[Crossref]

Grossberg, M. D.

S. K. Nayar, G. Krishnan, M. D. Grossberg, and R. Raskar, “Fast separation of direct and global components of a scene using high frequency illumination,” ACM Trans. Graph. 25(3), 935–944 (2006).
[Crossref]

Guillén, I.

X. Liu, I. Guillén, M. La Manna, J. H. Nam, S. Azer Reza, T. H. Le, D. Gutierrez, A. Jarabo, and A. Velten, “Non-line-of-sight imaging using phasor-field virtual waveoptics,” Nature 572(7771), 620–623 (2019).
[Crossref]

Gupta, M.

M. Laurenzis, M. La Manna, M. Buttafava, A. Tosi, J. Nam, M. Gupta, and A. Velten, “Advanced active imaging with single photon avalanche diodes,” in Proc. SPIE, vol. 10799 (Emerging Imaging and Sensing Technologies for Security and Defence III) (2018).

Gupta, O.

A. Velten, T. Willwacher, O. Gupta, A. Veeraraghavan, M. G. Bawendi, and R. Raskar, “Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging,” Nat. Commun. 3(1), 745 (2012).
[Crossref]

Gutierrez, D.

X. Liu, I. Guillén, M. La Manna, J. H. Nam, S. Azer Reza, T. H. Le, D. Gutierrez, A. Jarabo, and A. Velten, “Non-line-of-sight imaging using phasor-field virtual waveoptics,” Nature 572(7771), 620–623 (2019).
[Crossref]

A. Jarabo, B. Masia, J. Marco, and D. Gutierrez, “Recent advances in transient imaging: A computer graphics and vision perspective,” Vis. Informatics 1(1), 65–79 (2017).
[Crossref]

V. Arellano, D. Gutierrez, and A. Jarabo, “Fast back-projection for non-line of sight reconstruction,” in ACM SIGGRAPH 2017 Posters, (ACM, New York, NY, USA, 2017), SIGGRAPH ’17, pp. 79:1–79:2.

A. Jarabo, J. Marco, A. Munoz, R. Buisan, W. Jarosz, and D. Gutierrez, “A framework for transient rendering,” ACM Transactions on Graph. (Proceedings SIGGRAPH Asia) 33 (2014).

Heide, F.

F. Heide, W. Heidrich, M. Hullin, and G. Wetzstein, “Doppler time-of-flight imaging,” ACM Trans. Graph. 34(4), 36:1–36:11 (2015).
[Crossref]

F. Heide, M. B. Hullin, J. Gregson, and W. Heidrich, “Low-budget transient imaging using photonic mixer devices,” ACM Trans. Graph. 32(4), 1 (2013).
[Crossref]

F. Heide, L. Xiao, W. Heidrich, and M. B. Hullin, “Diffuse mirrors: 3d reconstruction from diffuse indirect illumination using inexpensive time-of-flight sensors,” in 2014 IEEE Conference on Computer Vision and Pattern Recognition, (2014), pp. 3222–3229.

Heidrich, W.

F. Heide, W. Heidrich, M. Hullin, and G. Wetzstein, “Doppler time-of-flight imaging,” ACM Trans. Graph. 34(4), 36:1–36:11 (2015).
[Crossref]

F. Heide, M. B. Hullin, J. Gregson, and W. Heidrich, “Low-budget transient imaging using photonic mixer devices,” ACM Trans. Graph. 32(4), 1 (2013).
[Crossref]

F. Heide, L. Xiao, W. Heidrich, and M. B. Hullin, “Diffuse mirrors: 3d reconstruction from diffuse indirect illumination using inexpensive time-of-flight sensors,” in 2014 IEEE Conference on Computer Vision and Pattern Recognition, (2014), pp. 3222–3229.

Henderson, R.

G. Gariepy, N. Krstajic, R. Henderson, C. Li, R. R. Thomson, G. S. Buller, B. Heshmat, R. Raskar, J. Leach, and D. Faccio, “Single-photon sensitive light-in-fight imaging,” Nat. Commun. 6(1), 6021 (2015).
[Crossref]

Heshmat, B.

G. Gariepy, N. Krstajic, R. Henderson, C. Li, R. R. Thomson, G. S. Buller, B. Heshmat, R. Raskar, J. Leach, and D. Faccio, “Single-photon sensitive light-in-fight imaging,” Nat. Commun. 6(1), 6021 (2015).
[Crossref]

Hullin, M.

F. Heide, W. Heidrich, M. Hullin, and G. Wetzstein, “Doppler time-of-flight imaging,” ACM Trans. Graph. 34(4), 36:1–36:11 (2015).
[Crossref]

J. Klein, C. Peters, M. Laurenzis, and M. Hullin, “Non-line-of-sight mocap,” in ACM SIGGRAPH 2017 Emerging Technologies, (ACM, New York, NY, USA, 2017), SIGGRAPH ’17, pp. 18:1–18:2.

Hullin, M. B.

J. Klein, C. Peters, J. Martin, M. Laurenzis, and M. B. Hullin, “Tracking objects outside the line of sight using 2D intensity images,” Sci. Rep. 6(1), 32491 (2016).
[Crossref]

F. Heide, M. B. Hullin, J. Gregson, and W. Heidrich, “Low-budget transient imaging using photonic mixer devices,” ACM Trans. Graph. 32(4), 1 (2013).
[Crossref]

F. Heide, L. Xiao, W. Heidrich, and M. B. Hullin, “Diffuse mirrors: 3d reconstruction from diffuse indirect illumination using inexpensive time-of-flight sensors,” in 2014 IEEE Conference on Computer Vision and Pattern Recognition, (2014), pp. 3222–3229.

Hutchison, T.

A. Kirmani, T. Hutchison, J. Davis, and R. Raskar, “Looking around the corner using ultrafast transient imaging,” Int. J. Comput. Vis. 95(1), 13–28 (2011).
[Crossref]

A. Kirmani, T. Hutchison, J. Davis, and R. Raskar, “Looking around the corner using transient imaging,” in 2009 IEEE 12th International Conference on Computer Vision, (2009), pp. 159–166.

Jackson, J.

M. La Manna, F. Kine, E. Breitbach, J. Jackson, T. Sultan, and A. Velten, “Error backprojection algorithms for non-line-of-sight imaging,” IEEE Trans. Pattern Anal. Mach. Intell. 41(7), 1615–1626 (2019).
[Crossref]

Jarabo, A.

X. Liu, I. Guillén, M. La Manna, J. H. Nam, S. Azer Reza, T. H. Le, D. Gutierrez, A. Jarabo, and A. Velten, “Non-line-of-sight imaging using phasor-field virtual waveoptics,” Nature 572(7771), 620–623 (2019).
[Crossref]

A. Jarabo, B. Masia, J. Marco, and D. Gutierrez, “Recent advances in transient imaging: A computer graphics and vision perspective,” Vis. Informatics 1(1), 65–79 (2017).
[Crossref]

V. Arellano, D. Gutierrez, and A. Jarabo, “Fast back-projection for non-line of sight reconstruction,” in ACM SIGGRAPH 2017 Posters, (ACM, New York, NY, USA, 2017), SIGGRAPH ’17, pp. 79:1–79:2.

A. Jarabo, J. Marco, A. Munoz, R. Buisan, W. Jarosz, and D. Gutierrez, “A framework for transient rendering,” ACM Transactions on Graph. (Proceedings SIGGRAPH Asia) 33 (2014).

Jarosz, W.

A. Jarabo, J. Marco, A. Munoz, R. Buisan, W. Jarosz, and D. Gutierrez, “A framework for transient rendering,” ACM Transactions on Graph. (Proceedings SIGGRAPH Asia) 33 (2014).

Jeelani, H.

A. Kirmani, H. Jeelani, V. Montazerhodjat, and V. K. Goyal, “Diffuse imaging: Creating optical images with unfocused time-resolved illumination and sensing,” IEEE Signal Process. Lett. 19(1), 31–34 (2012).
[Crossref]

Kine, F.

M. La Manna, F. Kine, E. Breitbach, J. Jackson, T. Sultan, and A. Velten, “Error backprojection algorithms for non-line-of-sight imaging,” IEEE Trans. Pattern Anal. Mach. Intell. 41(7), 1615–1626 (2019).
[Crossref]

Kirmani, A.

A. Kirmani, H. Jeelani, V. Montazerhodjat, and V. K. Goyal, “Diffuse imaging: Creating optical images with unfocused time-resolved illumination and sensing,” IEEE Signal Process. Lett. 19(1), 31–34 (2012).
[Crossref]

A. Kirmani, T. Hutchison, J. Davis, and R. Raskar, “Looking around the corner using ultrafast transient imaging,” Int. J. Comput. Vis. 95(1), 13–28 (2011).
[Crossref]

A. Kirmani, T. Hutchison, J. Davis, and R. Raskar, “Looking around the corner using transient imaging,” in 2009 IEEE 12th International Conference on Computer Vision, (2009), pp. 159–166.

Klein, J.

J. Klein, C. Peters, J. Martin, M. Laurenzis, and M. B. Hullin, “Tracking objects outside the line of sight using 2D intensity images,” Sci. Rep. 6(1), 32491 (2016).
[Crossref]

M. Laurenzis, J. Klein, E. Bacher, and S. Schertzer, “Approaches to solve inverse problems for optical sensing around corners,” in Emerging Imaging and Sensing Technologies for Security and Defence IV, vol. 11163G. S. Buller, R. C. Hollins, R. A. Lamb, and M. Laurenzis, eds., International Society for Optics and Photonics (SPIE, 2019), pp. 1–7.

J. Klein, C. Peters, M. Laurenzis, and M. Hullin, “Non-line-of-sight mocap,” in ACM SIGGRAPH 2017 Emerging Technologies, (ACM, New York, NY, USA, 2017), SIGGRAPH ’17, pp. 18:1–18:2.

Krishnan, G.

S. K. Nayar, G. Krishnan, M. D. Grossberg, and R. Raskar, “Fast separation of direct and global components of a scene using high frequency illumination,” ACM Trans. Graph. 25(3), 935–944 (2006).
[Crossref]

Krstajic, N.

G. Gariepy, N. Krstajic, R. Henderson, C. Li, R. R. Thomson, G. S. Buller, B. Heshmat, R. Raskar, J. Leach, and D. Faccio, “Single-photon sensitive light-in-fight imaging,” Nat. Commun. 6(1), 6021 (2015).
[Crossref]

Kutulakos, K. N.

C. Tsai, K. N. Kutulakos, S. G. Narasimhan, and A. C. Sankaranarayanan, “The geometry of first-returning photons for non-line-of-sight imaging,” in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2017), pp. 2336–2344.

S. M. Seitz, Y. Matsushita, and K. N. Kutulakos, “A theory of inverse light transport,” in Proceedings of the Tenth IEEE International Conference on Computer Vision - Volume 2, (IEEE Computer Society, Washington, DC, USA, 2005), ICCV ’05, pp. 1440–1447.

La Manna, M.

S. A. Reza, M. La Manna, S. Bauer, and A. Velten, “Phasor field waves: A Huygens-like light transport model for non-line-of-sight imaging applications,” Opt. Express 27(20), 29380–29400 (2019).
[Crossref]

X. Liu, I. Guillén, M. La Manna, J. H. Nam, S. Azer Reza, T. H. Le, D. Gutierrez, A. Jarabo, and A. Velten, “Non-line-of-sight imaging using phasor-field virtual waveoptics,” Nature 572(7771), 620–623 (2019).
[Crossref]

M. La Manna, F. Kine, E. Breitbach, J. Jackson, T. Sultan, and A. Velten, “Error backprojection algorithms for non-line-of-sight imaging,” IEEE Trans. Pattern Anal. Mach. Intell. 41(7), 1615–1626 (2019).
[Crossref]

S. A. Reza, M. La Manna, S. Bauer, and A. Velten, “Phasor field waves: Experimental demonstrations of wave-like properties,” Opt. Express 27(22), 32587–32608 (2019).
[Crossref]

M. Laurenzis, M. La Manna, M. Buttafava, A. Tosi, J. Nam, M. Gupta, and A. Velten, “Advanced active imaging with single photon avalanche diodes,” in Proc. SPIE, vol. 10799 (Emerging Imaging and Sensing Technologies for Security and Defence III) (2018).

S. A. Reza, M. La Manna, and A. Velten, “Imaging with Phasor Fields for Non-Line-of Sight Applications,” in Imaging and Applied Optics 2018 (3D, AO, AIO, COSI, DH, IS, LACSEA, LS&C, MATH, pcAOP), (Optical Society of America, 2018), p. CM2E.7.

Lacaita, A.

Larsson, H.

O. Steinvall, M. Elmqvist, and H. Larsson, “See around the corner using active imaging,” in Proc. SPIE, vol. 8186 (Electro-Optical Remote Sensing, Photonic Technologies, and Applications V) (2011).

Laurenzis, M.

J. Klein, C. Peters, J. Martin, M. Laurenzis, and M. B. Hullin, “Tracking objects outside the line of sight using 2D intensity images,” Sci. Rep. 6(1), 32491 (2016).
[Crossref]

M. Laurenzis and A. Velten, “Nonline-of-sight laser gated viewing of scattered photons,” Opt. Eng. 53(2), 023102 (2014).
[Crossref]

M. Laurenzis, M. La Manna, M. Buttafava, A. Tosi, J. Nam, M. Gupta, and A. Velten, “Advanced active imaging with single photon avalanche diodes,” in Proc. SPIE, vol. 10799 (Emerging Imaging and Sensing Technologies for Security and Defence III) (2018).

M. Laurenzis, “Computational sensing approaches for enhanced active imaging,” in Proc. SPIE, vol. 10796 (Electro-Optical Remote Sensing XII) (2018).

M. Laurenzis, J. Klein, E. Bacher, and S. Schertzer, “Approaches to solve inverse problems for optical sensing around corners,” in Emerging Imaging and Sensing Technologies for Security and Defence IV, vol. 11163G. S. Buller, R. C. Hollins, R. A. Lamb, and M. Laurenzis, eds., International Society for Optics and Photonics (SPIE, 2019), pp. 1–7.

J. Klein, C. Peters, M. Laurenzis, and M. Hullin, “Non-line-of-sight mocap,” in ACM SIGGRAPH 2017 Emerging Technologies, (ACM, New York, NY, USA, 2017), SIGGRAPH ’17, pp. 18:1–18:2.

Le, T. H.

X. Liu, I. Guillén, M. La Manna, J. H. Nam, S. Azer Reza, T. H. Le, D. Gutierrez, A. Jarabo, and A. Velten, “Non-line-of-sight imaging using phasor-field virtual waveoptics,” Nature 572(7771), 620–623 (2019).
[Crossref]

Leach, J.

G. Gariepy, N. Krstajic, R. Henderson, C. Li, R. R. Thomson, G. S. Buller, B. Heshmat, R. Raskar, J. Leach, and D. Faccio, “Single-photon sensitive light-in-fight imaging,” Nat. Commun. 6(1), 6021 (2015).
[Crossref]

Li, C.

G. Gariepy, N. Krstajic, R. Henderson, C. Li, R. R. Thomson, G. S. Buller, B. Heshmat, R. Raskar, J. Leach, and D. Faccio, “Single-photon sensitive light-in-fight imaging,” Nat. Commun. 6(1), 6021 (2015).
[Crossref]

Lindell, D. B.

D. B. Lindell, G. Wetzstein, and M. O’Toole, “Wave-based non-line-of-sight imaging using fast f-k migration,” ACM Trans. Graph. 38(4), 1–13 (2019).
[Crossref]

M. O’Toole, D. B. Lindell, and G. Wetzstein, “Confocal non-line-of-sight imaging,” in ACM SIGGRAPH 2018 Talks, (ACM, New York, NY, USA, 2018), SIGGRAPH ’18, pp. 1:1–1:2.

Liu, X.

X. Liu, I. Guillén, M. La Manna, J. H. Nam, S. Azer Reza, T. H. Le, D. Gutierrez, A. Jarabo, and A. Velten, “Non-line-of-sight imaging using phasor-field virtual waveoptics,” Nature 572(7771), 620–623 (2019).
[Crossref]

Marco, J.

A. Jarabo, B. Masia, J. Marco, and D. Gutierrez, “Recent advances in transient imaging: A computer graphics and vision perspective,” Vis. Informatics 1(1), 65–79 (2017).
[Crossref]

A. Jarabo, J. Marco, A. Munoz, R. Buisan, W. Jarosz, and D. Gutierrez, “A framework for transient rendering,” ACM Transactions on Graph. (Proceedings SIGGRAPH Asia) 33 (2014).

Martin, J.

J. Klein, C. Peters, J. Martin, M. Laurenzis, and M. B. Hullin, “Tracking objects outside the line of sight using 2D intensity images,” Sci. Rep. 6(1), 32491 (2016).
[Crossref]

Masia, B.

A. Jarabo, B. Masia, J. Marco, and D. Gutierrez, “Recent advances in transient imaging: A computer graphics and vision perspective,” Vis. Informatics 1(1), 65–79 (2017).
[Crossref]

Matsushita, Y.

S. M. Seitz, Y. Matsushita, and K. N. Kutulakos, “A theory of inverse light transport,” in Proceedings of the Tenth IEEE International Conference on Computer Vision - Volume 2, (IEEE Computer Society, Washington, DC, USA, 2005), ICCV ’05, pp. 1440–1447.

Montazerhodjat, V.

A. Kirmani, H. Jeelani, V. Montazerhodjat, and V. K. Goyal, “Diffuse imaging: Creating optical images with unfocused time-resolved illumination and sensing,” IEEE Signal Process. Lett. 19(1), 31–34 (2012).
[Crossref]

Mora, A. D.

M. Buttafava, G. Boso, A. Ruggeri, A. D. Mora, and A. Tosi, “Time-gated single-photon detection module with 110 ps transition time and up to 80 MHz repetition rate,” Rev. Sci. Instrum. 85(8), 083114 (2014).
[Crossref]

Munoz, A.

A. Jarabo, J. Marco, A. Munoz, R. Buisan, W. Jarosz, and D. Gutierrez, “A framework for transient rendering,” ACM Transactions on Graph. (Proceedings SIGGRAPH Asia) 33 (2014).

Nam, J.

M. Laurenzis, M. La Manna, M. Buttafava, A. Tosi, J. Nam, M. Gupta, and A. Velten, “Advanced active imaging with single photon avalanche diodes,” in Proc. SPIE, vol. 10799 (Emerging Imaging and Sensing Technologies for Security and Defence III) (2018).

Nam, J. H.

X. Liu, I. Guillén, M. La Manna, J. H. Nam, S. Azer Reza, T. H. Le, D. Gutierrez, A. Jarabo, and A. Velten, “Non-line-of-sight imaging using phasor-field virtual waveoptics,” Nature 572(7771), 620–623 (2019).
[Crossref]

Narasimhan, S. G.

C. Tsai, K. N. Kutulakos, S. G. Narasimhan, and A. C. Sankaranarayanan, “The geometry of first-returning photons for non-line-of-sight imaging,” in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2017), pp. 2336–2344.

Nayar, S. K.

S. K. Nayar, G. Krishnan, M. D. Grossberg, and R. Raskar, “Fast separation of direct and global components of a scene using high frequency illumination,” ACM Trans. Graph. 25(3), 935–944 (2006).
[Crossref]

O’Toole, M.

D. B. Lindell, G. Wetzstein, and M. O’Toole, “Wave-based non-line-of-sight imaging using fast f-k migration,” ACM Trans. Graph. 38(4), 1–13 (2019).
[Crossref]

M. O’Toole, D. B. Lindell, and G. Wetzstein, “Confocal non-line-of-sight imaging,” in ACM SIGGRAPH 2018 Talks, (ACM, New York, NY, USA, 2018), SIGGRAPH ’18, pp. 1:1–1:2.

Pediredla, A. K.

A. K. Pediredla, M. Buttafava, A. Tosi, O. Cossairt, and A. Veeraraghavan, “Reconstructing rooms using photon echoes: A plane based model and reconstruction algorithm for looking around the corner,” in 2017 IEEE International Conference on Computational Photography (ICCP), (2017), pp. 1–12.

Peters, C.

J. Klein, C. Peters, J. Martin, M. Laurenzis, and M. B. Hullin, “Tracking objects outside the line of sight using 2D intensity images,” Sci. Rep. 6(1), 32491 (2016).
[Crossref]

J. Klein, C. Peters, M. Laurenzis, and M. Hullin, “Non-line-of-sight mocap,” in ACM SIGGRAPH 2017 Emerging Technologies, (ACM, New York, NY, USA, 2017), SIGGRAPH ’17, pp. 18:1–18:2.

Raskar, R.

G. Gariepy, N. Krstajic, R. Henderson, C. Li, R. R. Thomson, G. S. Buller, B. Heshmat, R. Raskar, J. Leach, and D. Faccio, “Single-photon sensitive light-in-fight imaging,” Nat. Commun. 6(1), 6021 (2015).
[Crossref]

A. Velten, T. Willwacher, O. Gupta, A. Veeraraghavan, M. G. Bawendi, and R. Raskar, “Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging,” Nat. Commun. 3(1), 745 (2012).
[Crossref]

A. Kirmani, T. Hutchison, J. Davis, and R. Raskar, “Looking around the corner using ultrafast transient imaging,” Int. J. Comput. Vis. 95(1), 13–28 (2011).
[Crossref]

S. K. Nayar, G. Krishnan, M. D. Grossberg, and R. Raskar, “Fast separation of direct and global components of a scene using high frequency illumination,” ACM Trans. Graph. 25(3), 935–944 (2006).
[Crossref]

A. Kirmani, T. Hutchison, J. Davis, and R. Raskar, “Looking around the corner using transient imaging,” in 2009 IEEE 12th International Conference on Computer Vision, (2009), pp. 159–166.

Reza, S. A.

Ruggeri, A.

M. Buttafava, G. Boso, A. Ruggeri, A. D. Mora, and A. Tosi, “Time-gated single-photon detection module with 110 ps transition time and up to 80 MHz repetition rate,” Rev. Sci. Instrum. 85(8), 083114 (2014).
[Crossref]

Samori, C.

Sankaranarayanan, A. C.

C. Tsai, K. N. Kutulakos, S. G. Narasimhan, and A. C. Sankaranarayanan, “The geometry of first-returning photons for non-line-of-sight imaging,” in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2017), pp. 2336–2344.

Schertzer, S.

M. Laurenzis, J. Klein, E. Bacher, and S. Schertzer, “Approaches to solve inverse problems for optical sensing around corners,” in Emerging Imaging and Sensing Technologies for Security and Defence IV, vol. 11163G. S. Buller, R. C. Hollins, R. A. Lamb, and M. Laurenzis, eds., International Society for Optics and Photonics (SPIE, 2019), pp. 1–7.

Seitz, S. M.

S. M. Seitz, Y. Matsushita, and K. N. Kutulakos, “A theory of inverse light transport,” in Proceedings of the Tenth IEEE International Conference on Computer Vision - Volume 2, (IEEE Computer Society, Washington, DC, USA, 2005), ICCV ’05, pp. 1440–1447.

Shapiro, J. H.

Shulkind, G.

Steinvall, O.

O. Steinvall, M. Elmqvist, and H. Larsson, “See around the corner using active imaging,” in Proc. SPIE, vol. 8186 (Electro-Optical Remote Sensing, Photonic Technologies, and Applications V) (2011).

Sultan, T.

M. La Manna, F. Kine, E. Breitbach, J. Jackson, T. Sultan, and A. Velten, “Error backprojection algorithms for non-line-of-sight imaging,” IEEE Trans. Pattern Anal. Mach. Intell. 41(7), 1615–1626 (2019).
[Crossref]

Teichman, J. A.

Thomson, R. R.

G. Gariepy, N. Krstajic, R. Henderson, C. Li, R. R. Thomson, G. S. Buller, B. Heshmat, R. Raskar, J. Leach, and D. Faccio, “Single-photon sensitive light-in-fight imaging,” Nat. Commun. 6(1), 6021 (2015).
[Crossref]

Thrampoulidis, C.

Tisa, S.

F. Zappa, S. Tisa, A. Tosi, and S. Cova, “Principles and features of single-photon avalanche diode arrays,” Sens. Actuators, A 140(1), 103–112 (2007).
[Crossref]

Torralba, A.

Tosi, A.

M. Buttafava, J. Zeman, A. Tosi, K. Eliceiri, and A. Velten, “Non-line-of-sight imaging using a time-gated single photon avalanche diode,” Opt. Express 23(16), 20997–21011 (2015).
[Crossref]

M. Buttafava, G. Boso, A. Ruggeri, A. D. Mora, and A. Tosi, “Time-gated single-photon detection module with 110 ps transition time and up to 80 MHz repetition rate,” Rev. Sci. Instrum. 85(8), 083114 (2014).
[Crossref]

F. Zappa, S. Tisa, A. Tosi, and S. Cova, “Principles and features of single-photon avalanche diode arrays,” Sens. Actuators, A 140(1), 103–112 (2007).
[Crossref]

A. K. Pediredla, M. Buttafava, A. Tosi, O. Cossairt, and A. Veeraraghavan, “Reconstructing rooms using photon echoes: A plane based model and reconstruction algorithm for looking around the corner,” in 2017 IEEE International Conference on Computational Photography (ICCP), (2017), pp. 1–12.

M. Laurenzis, M. La Manna, M. Buttafava, A. Tosi, J. Nam, M. Gupta, and A. Velten, “Advanced active imaging with single photon avalanche diodes,” in Proc. SPIE, vol. 10799 (Emerging Imaging and Sensing Technologies for Security and Defence III) (2018).

Tsai, C.

C. Tsai, K. N. Kutulakos, S. G. Narasimhan, and A. C. Sankaranarayanan, “The geometry of first-returning photons for non-line-of-sight imaging,” in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2017), pp. 2336–2344.

Veeraraghavan, A.

A. Velten, T. Willwacher, O. Gupta, A. Veeraraghavan, M. G. Bawendi, and R. Raskar, “Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging,” Nat. Commun. 3(1), 745 (2012).
[Crossref]

A. K. Pediredla, M. Buttafava, A. Tosi, O. Cossairt, and A. Veeraraghavan, “Reconstructing rooms using photon echoes: A plane based model and reconstruction algorithm for looking around the corner,” in 2017 IEEE International Conference on Computational Photography (ICCP), (2017), pp. 1–12.

Velten, A.

X. Liu, I. Guillén, M. La Manna, J. H. Nam, S. Azer Reza, T. H. Le, D. Gutierrez, A. Jarabo, and A. Velten, “Non-line-of-sight imaging using phasor-field virtual waveoptics,” Nature 572(7771), 620–623 (2019).
[Crossref]

M. La Manna, F. Kine, E. Breitbach, J. Jackson, T. Sultan, and A. Velten, “Error backprojection algorithms for non-line-of-sight imaging,” IEEE Trans. Pattern Anal. Mach. Intell. 41(7), 1615–1626 (2019).
[Crossref]

S. A. Reza, M. La Manna, S. Bauer, and A. Velten, “Phasor field waves: A Huygens-like light transport model for non-line-of-sight imaging applications,” Opt. Express 27(20), 29380–29400 (2019).
[Crossref]

S. A. Reza, M. La Manna, S. Bauer, and A. Velten, “Phasor field waves: Experimental demonstrations of wave-like properties,” Opt. Express 27(22), 32587–32608 (2019).
[Crossref]

M. Buttafava, J. Zeman, A. Tosi, K. Eliceiri, and A. Velten, “Non-line-of-sight imaging using a time-gated single photon avalanche diode,” Opt. Express 23(16), 20997–21011 (2015).
[Crossref]

M. Laurenzis and A. Velten, “Nonline-of-sight laser gated viewing of scattered photons,” Opt. Eng. 53(2), 023102 (2014).
[Crossref]

A. Velten, T. Willwacher, O. Gupta, A. Veeraraghavan, M. G. Bawendi, and R. Raskar, “Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging,” Nat. Commun. 3(1), 745 (2012).
[Crossref]

M. Laurenzis, M. La Manna, M. Buttafava, A. Tosi, J. Nam, M. Gupta, and A. Velten, “Advanced active imaging with single photon avalanche diodes,” in Proc. SPIE, vol. 10799 (Emerging Imaging and Sensing Technologies for Security and Defence III) (2018).

S. A. Reza, M. La Manna, and A. Velten, “Imaging with Phasor Fields for Non-Line-of Sight Applications,” in Imaging and Applied Optics 2018 (3D, AO, AIO, COSI, DH, IS, LACSEA, LS&C, MATH, pcAOP), (Optical Society of America, 2018), p. CM2E.7.

Wetzstein, G.

D. B. Lindell, G. Wetzstein, and M. O’Toole, “Wave-based non-line-of-sight imaging using fast f-k migration,” ACM Trans. Graph. 38(4), 1–13 (2019).
[Crossref]

F. Heide, W. Heidrich, M. Hullin, and G. Wetzstein, “Doppler time-of-flight imaging,” ACM Trans. Graph. 34(4), 36:1–36:11 (2015).
[Crossref]

M. O’Toole, D. B. Lindell, and G. Wetzstein, “Confocal non-line-of-sight imaging,” in ACM SIGGRAPH 2018 Talks, (ACM, New York, NY, USA, 2018), SIGGRAPH ’18, pp. 1:1–1:2.

Willwacher, T.

A. Velten, T. Willwacher, O. Gupta, A. Veeraraghavan, M. G. Bawendi, and R. Raskar, “Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging,” Nat. Commun. 3(1), 745 (2012).
[Crossref]

Wong, F. N. C.

Wornell, G. W.

Xiao, L.

F. Heide, L. Xiao, W. Heidrich, and M. B. Hullin, “Diffuse mirrors: 3d reconstruction from diffuse indirect illumination using inexpensive time-of-flight sensors,” in 2014 IEEE Conference on Computer Vision and Pattern Recognition, (2014), pp. 3222–3229.

Xu, F.

Zappa, F.

F. Zappa, S. Tisa, A. Tosi, and S. Cova, “Principles and features of single-photon avalanche diode arrays,” Sens. Actuators, A 140(1), 103–112 (2007).
[Crossref]

S. Cova, M. Ghioni, A. Lacaita, C. Samori, and F. Zappa, “Avalanche photodiodes and quenching circuits for single-photon detection,” Appl. Opt. 35(12), 1956–1976 (1996).
[Crossref]

Zeman, J.

ACM Trans. Graph. (4)

S. K. Nayar, G. Krishnan, M. D. Grossberg, and R. Raskar, “Fast separation of direct and global components of a scene using high frequency illumination,” ACM Trans. Graph. 25(3), 935–944 (2006).
[Crossref]

F. Heide, M. B. Hullin, J. Gregson, and W. Heidrich, “Low-budget transient imaging using photonic mixer devices,” ACM Trans. Graph. 32(4), 1 (2013).
[Crossref]

F. Heide, W. Heidrich, M. Hullin, and G. Wetzstein, “Doppler time-of-flight imaging,” ACM Trans. Graph. 34(4), 36:1–36:11 (2015).
[Crossref]

D. B. Lindell, G. Wetzstein, and M. O’Toole, “Wave-based non-line-of-sight imaging using fast f-k migration,” ACM Trans. Graph. 38(4), 1–13 (2019).
[Crossref]

Appl. Opt. (1)

IEEE Signal Process. Lett. (1)

A. Kirmani, H. Jeelani, V. Montazerhodjat, and V. K. Goyal, “Diffuse imaging: Creating optical images with unfocused time-resolved illumination and sensing,” IEEE Signal Process. Lett. 19(1), 31–34 (2012).
[Crossref]

IEEE Trans. Pattern Anal. Mach. Intell. (1)

M. La Manna, F. Kine, E. Breitbach, J. Jackson, T. Sultan, and A. Velten, “Error backprojection algorithms for non-line-of-sight imaging,” IEEE Trans. Pattern Anal. Mach. Intell. 41(7), 1615–1626 (2019).
[Crossref]

Int. J. Comput. Vis. (1)

A. Kirmani, T. Hutchison, J. Davis, and R. Raskar, “Looking around the corner using ultrafast transient imaging,” Int. J. Comput. Vis. 95(1), 13–28 (2011).
[Crossref]

Meas. Sci. Technol. (1)

G. S. Buller and R. J. Collins, “Single-photon generation and detection,” Meas. Sci. Technol. 21(1), 012002 (2010).
[Crossref]

Nat. Commun. (2)

G. Gariepy, N. Krstajic, R. Henderson, C. Li, R. R. Thomson, G. S. Buller, B. Heshmat, R. Raskar, J. Leach, and D. Faccio, “Single-photon sensitive light-in-fight imaging,” Nat. Commun. 6(1), 6021 (2015).
[Crossref]

A. Velten, T. Willwacher, O. Gupta, A. Veeraraghavan, M. G. Bawendi, and R. Raskar, “Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging,” Nat. Commun. 3(1), 745 (2012).
[Crossref]

Nature (1)

X. Liu, I. Guillén, M. La Manna, J. H. Nam, S. Azer Reza, T. H. Le, D. Gutierrez, A. Jarabo, and A. Velten, “Non-line-of-sight imaging using phasor-field virtual waveoptics,” Nature 572(7771), 620–623 (2019).
[Crossref]

Opt. Eng. (1)

M. Laurenzis and A. Velten, “Nonline-of-sight laser gated viewing of scattered photons,” Opt. Eng. 53(2), 023102 (2014).
[Crossref]

Opt. Express (6)

Phys. A (1)

I. Freund, “Looking through walls and around corners,” Phys. A 168(1), 49–65 (1990).
[Crossref]

Rev. Sci. Instrum. (1)

M. Buttafava, G. Boso, A. Ruggeri, A. D. Mora, and A. Tosi, “Time-gated single-photon detection module with 110 ps transition time and up to 80 MHz repetition rate,” Rev. Sci. Instrum. 85(8), 083114 (2014).
[Crossref]

Sci. Rep. (1)

J. Klein, C. Peters, J. Martin, M. Laurenzis, and M. B. Hullin, “Tracking objects outside the line of sight using 2D intensity images,” Sci. Rep. 6(1), 32491 (2016).
[Crossref]

Sens. Actuators, A (1)

F. Zappa, S. Tisa, A. Tosi, and S. Cova, “Principles and features of single-photon avalanche diode arrays,” Sens. Actuators, A 140(1), 103–112 (2007).
[Crossref]

Vis. Informatics (1)

A. Jarabo, B. Masia, J. Marco, and D. Gutierrez, “Recent advances in transient imaging: A computer graphics and vision perspective,” Vis. Informatics 1(1), 65–79 (2017).
[Crossref]

Other (14)

A. K. Pediredla, M. Buttafava, A. Tosi, O. Cossairt, and A. Veeraraghavan, “Reconstructing rooms using photon echoes: A plane based model and reconstruction algorithm for looking around the corner,” in 2017 IEEE International Conference on Computational Photography (ICCP), (2017), pp. 1–12.

C. Tsai, K. N. Kutulakos, S. G. Narasimhan, and A. C. Sankaranarayanan, “The geometry of first-returning photons for non-line-of-sight imaging,” in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2017), pp. 2336–2344.

M. Laurenzis, J. Klein, E. Bacher, and S. Schertzer, “Approaches to solve inverse problems for optical sensing around corners,” in Emerging Imaging and Sensing Technologies for Security and Defence IV, vol. 11163G. S. Buller, R. C. Hollins, R. A. Lamb, and M. Laurenzis, eds., International Society for Optics and Photonics (SPIE, 2019), pp. 1–7.

O. Steinvall, M. Elmqvist, and H. Larsson, “See around the corner using active imaging,” in Proc. SPIE, vol. 8186 (Electro-Optical Remote Sensing, Photonic Technologies, and Applications V) (2011).

S. M. Seitz, Y. Matsushita, and K. N. Kutulakos, “A theory of inverse light transport,” in Proceedings of the Tenth IEEE International Conference on Computer Vision - Volume 2, (IEEE Computer Society, Washington, DC, USA, 2005), ICCV ’05, pp. 1440–1447.

A. Kirmani, T. Hutchison, J. Davis, and R. Raskar, “Looking around the corner using transient imaging,” in 2009 IEEE 12th International Conference on Computer Vision, (2009), pp. 159–166.

M. Laurenzis, “Computational sensing approaches for enhanced active imaging,” in Proc. SPIE, vol. 10796 (Electro-Optical Remote Sensing XII) (2018).

M. Laurenzis, M. La Manna, M. Buttafava, A. Tosi, J. Nam, M. Gupta, and A. Velten, “Advanced active imaging with single photon avalanche diodes,” in Proc. SPIE, vol. 10799 (Emerging Imaging and Sensing Technologies for Security and Defence III) (2018).

A. Jarabo, J. Marco, A. Munoz, R. Buisan, W. Jarosz, and D. Gutierrez, “A framework for transient rendering,” ACM Transactions on Graph. (Proceedings SIGGRAPH Asia) 33 (2014).

F. Heide, L. Xiao, W. Heidrich, and M. B. Hullin, “Diffuse mirrors: 3d reconstruction from diffuse indirect illumination using inexpensive time-of-flight sensors,” in 2014 IEEE Conference on Computer Vision and Pattern Recognition, (2014), pp. 3222–3229.

S. A. Reza, M. La Manna, and A. Velten, “Imaging with Phasor Fields for Non-Line-of Sight Applications,” in Imaging and Applied Optics 2018 (3D, AO, AIO, COSI, DH, IS, LACSEA, LS&C, MATH, pcAOP), (Optical Society of America, 2018), p. CM2E.7.

J. Klein, C. Peters, M. Laurenzis, and M. Hullin, “Non-line-of-sight mocap,” in ACM SIGGRAPH 2017 Emerging Technologies, (ACM, New York, NY, USA, 2017), SIGGRAPH ’17, pp. 18:1–18:2.

V. Arellano, D. Gutierrez, and A. Jarabo, “Fast back-projection for non-line of sight reconstruction,” in ACM SIGGRAPH 2017 Posters, (ACM, New York, NY, USA, 2017), SIGGRAPH ’17, pp. 79:1–79:2.

M. O’Toole, D. B. Lindell, and G. Wetzstein, “Confocal non-line-of-sight imaging,” in ACM SIGGRAPH 2018 Talks, (ACM, New York, NY, USA, 2018), SIGGRAPH ’18, pp. 1:1–1:2.

Supplementary Material (1)

NameDescription
» Visualization 1       Video of the dynamic relay surface during capture

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Shown in (a) is a typical LOS scene where the imaging system is collecting data of the object under investigation. Conversely shown in (b) is an example of a NLOS scenario, where an occluder wall blocks the imaging systems’ field of view. The optical imaging system discussed in this paper is capable of collecting data that has been scattered from the relay surface and create an image of the hidden object around the corner.
Fig. 2.
Fig. 2. Capture system described in Sec. 2.
Fig. 3.
Fig. 3. Data acquisition method described in Sec. 2.2. The TCSPC TTTR mode registers only the time events. Afterwards, we need to discretize the scanned area into laser positions and associate the time events to laser positions.
Fig. 4.
Fig. 4. The relay wall for this experiment comprises two curtains mounted on a rectangular frame. The black lines represent the laser scanning area. Moreover, we assume that the gated SPAD is focused on the statue between the two curtains. The red arrow indicates where the hidden scene is located w.r.t. to the relay surface. To create motion, we use an air fan, which is located on the right (but not visible here).Visualization 1.
Fig. 5.
Fig. 5. Experiment 1: (a) depicts the true hidden scene, whereas (b) shows the reconstructions with the fan off, (c) with the fan set to ‘high’.
Fig. 6.
Fig. 6. Experiment 2: (a) depicts the true hidden scene, whereas (b) shows the reconstructions with the fan off, (c) with the fan set to ‘high’, and (d) when the fan is set to ‘high’, but we reconstruct using the laser positions retrieved from (b).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

events { x l , m } x l , m v + [ Δ T 2 , Δ T 2 ] ,

Metrics