Abstract

In recent years, the 2 µm waveband has been gaining significant attention due to its potential in the realization of several key technologies, specifically, future long-haul optical communications near the 1.9 µm wavelength region. In this work, we present a hybrid silicon photonic wavelength-tunable diode laser with an operating range of 1881-1947 nm (66 nm) for the first time, providing good compatibility with the hollow-core photonic bandgap fiber and thulium-doped fiber amplifier. Room-temperature continuous-wave operation was achieved with a favorable on-chip output power of 28 mW. Stable single-mode lasing was observed with side-mode suppression ratio up to 35 dB. Besides the abovementioned potential applications, the demonstrated wavelength region will find critical purpose in H2O spectroscopic sensing, optical logic, signal processing as well as enabling the strong optical Kerr effect on Si.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Demonstration of amplified data transmission at 2 µm in a low-loss wide bandwidth hollow core photonic bandgap fiber

M. N. Petrovich, F. Poletti, J. P. Wooler, A.M. Heidt, N.K. Baddela, Z. Li, D.R. Gray, R. Slavík, F. Parmigiani, N.V. Wheeler, J.R. Hayes, E. Numkam, L. Grűner-Nielsen, B. Pálsdóttir, R. Phelan, B. Kelly, John O’Carroll, M. Becker, N. MacSuibhne, J. Zhao, F.C. Garcia Gunning, A.D. Ellis, P. Petropoulos, S.U. Alam, and D.J. Richardson
Opt. Express 21(23) 28559-28569 (2013)

Compact GaSb/silicon-on-insulator 2.0x μm widely tunable external cavity lasers

Ruijun Wang, Aditya Malik, Ieva Šimonytė, Augustinas Vizbaras, Kristijonas Vizbaras, and Gunther Roelkens
Opt. Express 24(25) 28977-28986 (2016)

Widely-tunable, narrow-linewidth III-V/silicon hybrid external-cavity laser for coherent communication

Hang Guan, Ari Novack, Tal Galfsky, Yangjin Ma, Saeed Fathololoumi, Alexandre Horth, Tam N. Huynh, Jose Roman, Ruizhi Shi, Michael Caverley, Yang Liu, Thomas Baehr-Jones, Keren Bergman, and Michael Hochberg
Opt. Express 26(7) 7920-7933 (2018)

References

  • View by:
  • |
  • |
  • |

  1. K. Nagayama, M. Kakui, M. Matsui, T. Saitoh, and Y. Chigusa, “Ultra-low-loss (0.1484 dB∕km) pure silica core fibre and extension of transmission distance,” Electron. Lett. 38(20), 1168–1169 (2002).
    [Crossref]
  2. E. Desurvire, Erbium-doped fiber amplifiers: principles and applications (Wiley-Interscience: New York, NY, 2002).
  3. C. Brackett, “Dense wavelength division multiplexing networks: principles and applications,” IEEE J. Select. Areas Commun. 8(6), 948–964 (1990).
    [Crossref]
  4. S. J. Savory, “Digital Coherent Optical Receivers: Algorithms and Subsystems,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1164–1179 (2010).
    [Crossref]
  5. D. J. Richardson, “Filling the Light Pipe,” Science 330(6002), 327–328 (2010).
    [Crossref]
  6. L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5(1), 3069 (2014).
    [Crossref]
  7. B. Inan, B. Spinnler, F. Ferreira, D. V. D. Borne, A. Lobato, S. Adhikari, V. A. J. M. Sleiffer, M. Kuschnerov, N. Hanik, and S. L. Jansen, “DSP complexity of mode-division multiplexed receivers,” Opt. Express 20(10), 10859–10869 (2012).
    [Crossref]
  8. A. Lobato, J. Rabe, F. Ferreira, M. Kuschnerov, B. Spinnler, and B. Lankl, “Near-ML detection for MDL-impaired few-mode fiber transmission,” Opt. Express 23(8), 9589–9601 (2015).
    [Crossref]
  9. F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. N. Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
    [Crossref]
  10. M. N. Petrovich, F. Poletti, J. P. Wooler, A. Heidt, N. Baddela, Z. Li, D. Gray, R. Slavík, F. Parmigiani, N. Wheeler, J. Hayes, E. Numkam, L. Grűner-Nielsen, B. Pálsdóttir, R. Phelan, B. Kelly, J. O’Carroll, M. Becker, N. Macsuibhne, J. Zhao, F. G. Gunning, A. Ellis, P. Petropoulos, S. Alam, and D. Richardson, “Demonstration of amplified data transmission at 2 µm in a low-loss wide bandwidth hollow core photonic bandgap fiber,” Opt. Express 21(23), 28559–28569 (2013).
    [Crossref]
  11. P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. S. J. Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13(1), 236–244 (2005).
    [Crossref]
  12. B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and P. St. J. Russel, “Low loss (1.7 dB/km) hollow core photonic bandgap fiber,” in Optical Fiber Communication Conference, (Optical Society of America, 2004).
  13. Z. Li, A. M. Heidt, J. M. O. Daniel, Y. Jung, S. U. Alam, and D. J. Richardson, “Thulium-doped fiber amplifier for optical communications at 2 µm,” Opt. Express 21(8), 9289–9297 (2013).
    [Crossref]
  14. Z. Li, A. M. Heidt, N. Simakov, Y. Jung, J. M. O. Daniel, S. U. Alam, and D. J. Richardson, “Diode-pumped wideband thulium-doped fiber amplifiers for optical communications in the 1800–2050nm window,” Opt. Express 21(22), 26450–26455 (2013).
    [Crossref]
  15. H. Zhang, N. Kavanagh, Z. Li, J. Zhao, N. Ye, Y. Chen, N. V. Wheeler, J. P. Wooler, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, S. U. Alam, R. Phelan, J. O’Carroll, B. Kelly, L. Grüner-Nielsen, D. J. Richardson, B. Corbett, and F. C. G. Gunning, “100 Gbit/s WDM transmission at 2 µm: transmission studies in both low-loss hollow core photonic bandgap fiber and solid core fiber,” Opt. Express 23(4), 4946–4951 (2015).
    [Crossref]
  16. H. Zhang, M. Gleeson, N. Ye, N. Pavarelli, X. Ouyang, J. Zhao, N. Kavanagh, C. Robert, H. Yang, P. E. Morrissey, K. Thomas, A. Gocalinska, Y. Chen, T. Bradley, J. P. Wooler, J. R. Hayes, E. N. Fokoua, Z. Li, S. U. Alam, F. Poletti, M. N. Petrovich, D. J. Richardson, B. Kelly, J. O’Carroll, R. Phelan, E. Pelucchi, P. O’Brien, F. Peters, B. Corbett, and F. Gunning, “Dense WDM transmission at 2 µm enabled by an arrayed waveguide grating,” Opt. Lett. 40(14), 3308–3311 (2015).
    [Crossref]
  17. T. Milde, C. Assmann, A. Jimenez, M. Honsberg, J. O’Gorman, W. Schade, and J. Sacher, “Single mode GaSb diode lasers for sensor applications in a long wavelength regime,” Appl. Opt. 56(31), H45–H50 (2017).
    [Crossref]
  18. K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, Frontiers in Guided Wave Optics and Optoelectronics: 2 µm Sources and Their Possible Applications (Intech Open, 2010).
  19. T. M. Taczak and D. K. Killinger, “Development of a tunable, narrow-linewidth, cw 2066-µm Ho:YLF laser for remote sensing of atmospheric CO2 and H2O,” Appl. Opt. 37(36), 8460–8476 (1998).
    [Crossref]
  20. P. Dong, S. Liao, D. Feng, H. Liang, D. Zheng, R. Shafiiha, C.-C. Kung, W. Qian, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low Vpp, ultralow-energy, compact, high-speed silicon electro-optic modulator,” Opt. Express 17(25), 22484–22490 (2009).
    [Crossref]
  21. E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5(1), 4008 (2014).
    [Crossref]
  22. D. Dai, Z. Wang, and J. E. Bowers, “Ultrashort broadband polarization beam splitter based on an asymmetrical directional coupler,” Opt. Lett. 36(13), 2590–2592 (2011).
    [Crossref]
  23. W. Bogaerts, P. De Heyn, T. V. Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
    [Crossref]
  24. D. Celo, D. J. Goodwill, J. Jiang, P. Dumais, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, D. Geng, H. Mehrvar, and E. Bernier, “32 × 32 Silicon Photonic Switch,” in 21st OptoElectronics and Communications Conference, International Conference on Photonics in Switching, (2016).
  25. D. Benedikovic, L. Virot, G. Aubin, F. Amar, B. Szelag, B. Karakus, J.-M. Hartmann, C. Alonso-Ramos, X. L. Roux, P. Crozat, E. Cassan, D. Marris-Morini, C. Baudot, F. Boeuf, J.-M. Fédéli, C. Kopp, and L. Vivien, “25  Gbps low-voltage hetero-structured silicon-germanium waveguide pin photodetectors for monolithic on-chip nanophotonic architectures,” Photonics Res. 7(4), 437–444 (2019).
    [Crossref]
  26. P. De Heyn, D. Vermeulen, T. Van Vaerenbergh, G. Kuyken, and D. Van Thourhout, “Ultra-high Q and finesse all-pass microring resonators on Silicon-on-Insulator using rib waveguides,” in 16th European Conference on Integrated Optics, (2012).
  27. J. Sun, R. Kumar, M. Sakib, J. B. Driscoll, H. Jayatilleka, and H. Rong, “A 128 Gb/s PAM4 Silicon Microring Modulator With Integrated Thermo-Optic Resonance Tuning,” J. Lightwave Technol. 37(1), 110–115 (2019).
    [Crossref]
  28. J. X. B. Sia, W. Wang, X. Guo, J. Zhou, Z. Zhang, M. S. Rouifed, X. Li, Z. L. Qiao, C. Y. Liu, C. Littlejohns, G. T. Reed, and H. Wang, “Mid-Infrared, Ultra-Broadband, Low-Loss, Compact Arbitrary Power Splitter Based on Adiabatic Mode Evolution,” IEEE Photonics J. 11(2), 1–11 (2019).
    [Crossref]
  29. F. Gunning and B. Corbett, “Time to Open the 2-µm Window?” Opt. Photonics News 30(3), 42 (2019).
    [Crossref]
  30. W. Cao, D. Hagan, D. J. Thomson, M. Nedeljkovic, C. G. Littlejohns, A. Knights, S. Alam, J. Wang, F. Gardes, W. Zhang, S. Liu, K. Li, M. S. Rouifed, G. Xin, W. Wang, H. Wang, G. T. Reed, and G. Z. Mashanovich, “High-speed silicon modulators for the 2 µm band,” Optica 5(9), 1055–1062 (2018).
    [Crossref]
  31. J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9(6), 393–396 (2015).
    [Crossref]
  32. D. Liu, H. Wu, and D. Dai, “Silicon multimode waveguide grating filter at 2 µm,” J. Lightwave Technol. 37(10), 2217–2222 (2019).
    [Crossref]
  33. J. Li, Y. Liu, Y. Meng, K. Xu, J. Du, F. Wang, Z. He, and Q. Song, “2-µm Wavelength Grating Coupler, Bent Waveguide, and Tunable Microring on Silicon Photonic MPW,” IEEE Photonics Technol. Lett. 30(5), 471–474 (2018).
    [Crossref]
  34. Z. Ruan, L. Shen, S. Zheng, A. Wang, Y. Long, N. Zhou, and J. Wang, “Subwavelength grating slot (SWGS) waveguide at 2 µm for chip-scale data transmission,” Nanophotonics 7(5), 865–871 (2018).
    [Crossref]
  35. D. E. Hagan and A. P. Knights, “Mechanisms for optical loss in SOI waveguides for mid-infrared wavelengths around 2µm,” J. Opt. 19(2), 025801 (2017).
    [Crossref]
  36. T. Komljenovic, M. Davenport, J. Hume, A. Y. Liu, C. T. Santis, A. Spott, S. Srinivasan, E. J. Stanton, C. Zhang, and J. E. Bowers, “Heterogenous Silicon Photonic Integrated Circuits,” J. Lightwave Technol. 34(1), 20–35 (2016).
    [Crossref]
  37. T. Feng, T. Hosoda, L. Shterengas, A. Stein, G. Kipshidze, and G. Belenky, “Two-Step Narrow Ridge Cascade Diode Lasers Emitting Near 2 µm,” IEEE Photonics Technol. Lett. 29(6), 485–488 (2017).
    [Crossref]
  38. K. Vizbaras, E. Dvinelis, I. Šimonytė, A. Trinkūnas, M. Greibus, R. Songaila, T. Žukauskas, M. Kaušylas, and A. Vizbaras, “High power continuous-wave GaSb-based superluminescent diodes as gain chips for widely tunable laser spectroscopy in the 1.95–2.45 µm wavelength range,” Appl. Phys. Lett. 107(1), 011103 (2015).
    [Crossref]
  39. D. Huang, M. A. Tran, J. Guo, J. Peters, T. Komljenovic, A. Malik, P. A. Morton, and J. E. Bowers, “High-power sub-kHz linewidth lasers fully integrated on silicon,” Optica 6(6), 745–752 (2019).
    [Crossref]
  40. R. Wang, B. Haq, S. Sprengel, A. Malik, A. Vasiliev, G. Boehm, I. Simonyte, K. Vizbaras, J. Van Campenhout, R. Baets, M. Amann, and G. Roelkens, “Widely Tunable III-V/Silicon Lasers for Spectroscopy in the Short-Wave Infrared,” IEEE J. Sel. Top. Quantum Electron. 25(6), 1–12 (2019).
    [Crossref]
  41. T. Kita, R. Tang, and H. Yamada, “Narrow Spectral Linewidth Silicon Photonic Wavelength Tunable Laser Diode for Digital Coherent Communication System,” IEEE J. Sel. Top. Quantum Electron. 22(6), 23–34 (2016).
    [Crossref]
  42. T. Kita, R. Tang, and H. Yamada, “Compact silicon photonic wavelength-tunable laser diode with ultra-wide wavelength tuning range,” Appl. Phys. Lett. 106(11), 111104 (2015).
    [Crossref]
  43. S. Yang, Y. Zhang, D. W. Grund, G. A. Ejzak, Y. Liu, A. Novack, D. Prather, A. E.-J. Lim, G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “A single adiabatic microring-based laser in 220 nm silicon-on-insulator,” Opt. Express 22(1), 1172–1180 (2014).
    [Crossref]
  44. N. Fujioka, T. Chu, and M. Ishizaka, “Compact and Low Power Consumption Hybrid Integrated Wavelength Tunable Laser Module Using Silicon Waveguide Resonators,” J. Lightwave Technol. 28(21), 3115–3120 (2010).
    [Crossref]
  45. H. Guan, A. Novack, T. Galfsky, Y. Ma, S. Fathololoumi, A. Horth, T. N. Huynh, J. Roman, R. Shi, M. Caverley, Y. Liu, T. Baehr-Jones, K. Bergman, and M. Hochberg, “Widely-tunable, narrow-linewidth III-V/silicon hybrid external-cavity laser for coherent communication,” Opt. Express 26(7), 7920–7933 (2018).
    [Crossref]
  46. T. Chu, N. Fujioka, and M. Ishizaka, “Compact, lower-power-consumption wavelength tunable laser fabricated with silicon photonic-wire waveguide micro-ring resonators,” Opt. Express 17(16), 14063–14068 (2009).
    [Crossref]
  47. R. Wang, A. Malik, I. Šimonytė, A. Vizbaras, K. Vizbaras, and G. Roelkens, “Compact GaSb/silicon-on-insulator 2.0x µm widely tunable external cavity lasers,” Opt. Express 24(25), 28977–28986 (2016).
    [Crossref]
  48. J. X. B. Sia, W. Wang, Z. Qiao, X. Li, X. Guo, J. Zhou, Z. Zhang, C. Littlejohns, C. Liu, G. T. Reed, and H. Wang, “Compact, ultra-tunable InGaSb/AlGaAsSb Si external cavity laser at the Mid-Infrared (MIR),” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2019).
  49. A. D. Bristow, N. Rotenberg, and H. M. V. Driel, “Two-photon absorption and Kerr coefficients of silicon for 850–2200 nm,” Appl. Phys. Lett. 90(19), 191104 (2007).
    [Crossref]
  50. M. Melieres and C. Marechal, Climate Change: Past, Present and Future (Wiley Blackwell, 2015), Chap. 7.
  51. X. Li, H. Wang, Z. Qiao, X. Guo, G. I. Ng, Y. Zhang, Z. Niu, C. Tong, and C. Liu, “Modal gain characteristics of a 2 µm InGaSb/AlGaAsSb passively mode-locked quantum well laser,” Appl. Phys. Lett. 111(25), 251105 (2017).
    [Crossref]
  52. C. Liu, H. Wang, Q. Meng, B. Gao, and K. S. Ang, “Modal Gain and Photoluminescence Investigation of Two-State Lasing in GaAs-Based 1.3 µm InAs/InGaAs Quantum Dot Lasers,” Appl. Phys. Express 6(10), 102702 (2013).
    [Crossref]
  53. X. Li, H. Wang, Z. Qiao, Y. Liao, Y. Zhang, Y. Xu, Z. Niu, C. Tong, and C. Liu, “Temperature- and current-dependent spontaneous emission study on 2 µm InGaSb/AlGaAsSb quantum well lasers,” Jpn. J. Appl. Phys. 56(5), 050310 (2017).
    [Crossref]
  54. Everlz, “9000WDM Dense WDM 1RU Optical Unit,” https://evertz.com/products/9000DWDM

2019 (7)

D. Benedikovic, L. Virot, G. Aubin, F. Amar, B. Szelag, B. Karakus, J.-M. Hartmann, C. Alonso-Ramos, X. L. Roux, P. Crozat, E. Cassan, D. Marris-Morini, C. Baudot, F. Boeuf, J.-M. Fédéli, C. Kopp, and L. Vivien, “25  Gbps low-voltage hetero-structured silicon-germanium waveguide pin photodetectors for monolithic on-chip nanophotonic architectures,” Photonics Res. 7(4), 437–444 (2019).
[Crossref]

J. Sun, R. Kumar, M. Sakib, J. B. Driscoll, H. Jayatilleka, and H. Rong, “A 128 Gb/s PAM4 Silicon Microring Modulator With Integrated Thermo-Optic Resonance Tuning,” J. Lightwave Technol. 37(1), 110–115 (2019).
[Crossref]

J. X. B. Sia, W. Wang, X. Guo, J. Zhou, Z. Zhang, M. S. Rouifed, X. Li, Z. L. Qiao, C. Y. Liu, C. Littlejohns, G. T. Reed, and H. Wang, “Mid-Infrared, Ultra-Broadband, Low-Loss, Compact Arbitrary Power Splitter Based on Adiabatic Mode Evolution,” IEEE Photonics J. 11(2), 1–11 (2019).
[Crossref]

F. Gunning and B. Corbett, “Time to Open the 2-µm Window?” Opt. Photonics News 30(3), 42 (2019).
[Crossref]

D. Liu, H. Wu, and D. Dai, “Silicon multimode waveguide grating filter at 2 µm,” J. Lightwave Technol. 37(10), 2217–2222 (2019).
[Crossref]

D. Huang, M. A. Tran, J. Guo, J. Peters, T. Komljenovic, A. Malik, P. A. Morton, and J. E. Bowers, “High-power sub-kHz linewidth lasers fully integrated on silicon,” Optica 6(6), 745–752 (2019).
[Crossref]

R. Wang, B. Haq, S. Sprengel, A. Malik, A. Vasiliev, G. Boehm, I. Simonyte, K. Vizbaras, J. Van Campenhout, R. Baets, M. Amann, and G. Roelkens, “Widely Tunable III-V/Silicon Lasers for Spectroscopy in the Short-Wave Infrared,” IEEE J. Sel. Top. Quantum Electron. 25(6), 1–12 (2019).
[Crossref]

2018 (4)

2017 (5)

T. Feng, T. Hosoda, L. Shterengas, A. Stein, G. Kipshidze, and G. Belenky, “Two-Step Narrow Ridge Cascade Diode Lasers Emitting Near 2 µm,” IEEE Photonics Technol. Lett. 29(6), 485–488 (2017).
[Crossref]

X. Li, H. Wang, Z. Qiao, X. Guo, G. I. Ng, Y. Zhang, Z. Niu, C. Tong, and C. Liu, “Modal gain characteristics of a 2 µm InGaSb/AlGaAsSb passively mode-locked quantum well laser,” Appl. Phys. Lett. 111(25), 251105 (2017).
[Crossref]

X. Li, H. Wang, Z. Qiao, Y. Liao, Y. Zhang, Y. Xu, Z. Niu, C. Tong, and C. Liu, “Temperature- and current-dependent spontaneous emission study on 2 µm InGaSb/AlGaAsSb quantum well lasers,” Jpn. J. Appl. Phys. 56(5), 050310 (2017).
[Crossref]

D. E. Hagan and A. P. Knights, “Mechanisms for optical loss in SOI waveguides for mid-infrared wavelengths around 2µm,” J. Opt. 19(2), 025801 (2017).
[Crossref]

T. Milde, C. Assmann, A. Jimenez, M. Honsberg, J. O’Gorman, W. Schade, and J. Sacher, “Single mode GaSb diode lasers for sensor applications in a long wavelength regime,” Appl. Opt. 56(31), H45–H50 (2017).
[Crossref]

2016 (3)

2015 (6)

K. Vizbaras, E. Dvinelis, I. Šimonytė, A. Trinkūnas, M. Greibus, R. Songaila, T. Žukauskas, M. Kaušylas, and A. Vizbaras, “High power continuous-wave GaSb-based superluminescent diodes as gain chips for widely tunable laser spectroscopy in the 1.95–2.45 µm wavelength range,” Appl. Phys. Lett. 107(1), 011103 (2015).
[Crossref]

T. Kita, R. Tang, and H. Yamada, “Compact silicon photonic wavelength-tunable laser diode with ultra-wide wavelength tuning range,” Appl. Phys. Lett. 106(11), 111104 (2015).
[Crossref]

J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9(6), 393–396 (2015).
[Crossref]

H. Zhang, N. Kavanagh, Z. Li, J. Zhao, N. Ye, Y. Chen, N. V. Wheeler, J. P. Wooler, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, S. U. Alam, R. Phelan, J. O’Carroll, B. Kelly, L. Grüner-Nielsen, D. J. Richardson, B. Corbett, and F. C. G. Gunning, “100 Gbit/s WDM transmission at 2 µm: transmission studies in both low-loss hollow core photonic bandgap fiber and solid core fiber,” Opt. Express 23(4), 4946–4951 (2015).
[Crossref]

H. Zhang, M. Gleeson, N. Ye, N. Pavarelli, X. Ouyang, J. Zhao, N. Kavanagh, C. Robert, H. Yang, P. E. Morrissey, K. Thomas, A. Gocalinska, Y. Chen, T. Bradley, J. P. Wooler, J. R. Hayes, E. N. Fokoua, Z. Li, S. U. Alam, F. Poletti, M. N. Petrovich, D. J. Richardson, B. Kelly, J. O’Carroll, R. Phelan, E. Pelucchi, P. O’Brien, F. Peters, B. Corbett, and F. Gunning, “Dense WDM transmission at 2 µm enabled by an arrayed waveguide grating,” Opt. Lett. 40(14), 3308–3311 (2015).
[Crossref]

A. Lobato, J. Rabe, F. Ferreira, M. Kuschnerov, B. Spinnler, and B. Lankl, “Near-ML detection for MDL-impaired few-mode fiber transmission,” Opt. Express 23(8), 9589–9601 (2015).
[Crossref]

2014 (3)

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5(1), 3069 (2014).
[Crossref]

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5(1), 4008 (2014).
[Crossref]

S. Yang, Y. Zhang, D. W. Grund, G. A. Ejzak, Y. Liu, A. Novack, D. Prather, A. E.-J. Lim, G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “A single adiabatic microring-based laser in 220 nm silicon-on-insulator,” Opt. Express 22(1), 1172–1180 (2014).
[Crossref]

2013 (5)

2012 (2)

B. Inan, B. Spinnler, F. Ferreira, D. V. D. Borne, A. Lobato, S. Adhikari, V. A. J. M. Sleiffer, M. Kuschnerov, N. Hanik, and S. L. Jansen, “DSP complexity of mode-division multiplexed receivers,” Opt. Express 20(10), 10859–10869 (2012).
[Crossref]

W. Bogaerts, P. De Heyn, T. V. Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

2011 (1)

2010 (3)

N. Fujioka, T. Chu, and M. Ishizaka, “Compact and Low Power Consumption Hybrid Integrated Wavelength Tunable Laser Module Using Silicon Waveguide Resonators,” J. Lightwave Technol. 28(21), 3115–3120 (2010).
[Crossref]

S. J. Savory, “Digital Coherent Optical Receivers: Algorithms and Subsystems,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1164–1179 (2010).
[Crossref]

D. J. Richardson, “Filling the Light Pipe,” Science 330(6002), 327–328 (2010).
[Crossref]

2009 (2)

2007 (1)

A. D. Bristow, N. Rotenberg, and H. M. V. Driel, “Two-photon absorption and Kerr coefficients of silicon for 850–2200 nm,” Appl. Phys. Lett. 90(19), 191104 (2007).
[Crossref]

2005 (1)

2002 (1)

K. Nagayama, M. Kakui, M. Matsui, T. Saitoh, and Y. Chigusa, “Ultra-low-loss (0.1484 dB∕km) pure silica core fibre and extension of transmission distance,” Electron. Lett. 38(20), 1168–1169 (2002).
[Crossref]

1998 (1)

1990 (1)

C. Brackett, “Dense wavelength division multiplexing networks: principles and applications,” IEEE J. Select. Areas Commun. 8(6), 948–964 (1990).
[Crossref]

Ackert, J. J.

J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9(6), 393–396 (2015).
[Crossref]

Adhikari, S.

Alam, S.

Alam, S. U.

Alonso-Ramos, C.

D. Benedikovic, L. Virot, G. Aubin, F. Amar, B. Szelag, B. Karakus, J.-M. Hartmann, C. Alonso-Ramos, X. L. Roux, P. Crozat, E. Cassan, D. Marris-Morini, C. Baudot, F. Boeuf, J.-M. Fédéli, C. Kopp, and L. Vivien, “25  Gbps low-voltage hetero-structured silicon-germanium waveguide pin photodetectors for monolithic on-chip nanophotonic architectures,” Photonics Res. 7(4), 437–444 (2019).
[Crossref]

Amann, M.

R. Wang, B. Haq, S. Sprengel, A. Malik, A. Vasiliev, G. Boehm, I. Simonyte, K. Vizbaras, J. Van Campenhout, R. Baets, M. Amann, and G. Roelkens, “Widely Tunable III-V/Silicon Lasers for Spectroscopy in the Short-Wave Infrared,” IEEE J. Sel. Top. Quantum Electron. 25(6), 1–12 (2019).
[Crossref]

Amar, F.

D. Benedikovic, L. Virot, G. Aubin, F. Amar, B. Szelag, B. Karakus, J.-M. Hartmann, C. Alonso-Ramos, X. L. Roux, P. Crozat, E. Cassan, D. Marris-Morini, C. Baudot, F. Boeuf, J.-M. Fédéli, C. Kopp, and L. Vivien, “25  Gbps low-voltage hetero-structured silicon-germanium waveguide pin photodetectors for monolithic on-chip nanophotonic architectures,” Photonics Res. 7(4), 437–444 (2019).
[Crossref]

Ang, K. S.

C. Liu, H. Wang, Q. Meng, B. Gao, and K. S. Ang, “Modal Gain and Photoluminescence Investigation of Two-State Lasing in GaAs-Based 1.3 µm InAs/InGaAs Quantum Dot Lasers,” Appl. Phys. Express 6(10), 102702 (2013).
[Crossref]

Asghari, M.

Assmann, C.

Aubin, G.

D. Benedikovic, L. Virot, G. Aubin, F. Amar, B. Szelag, B. Karakus, J.-M. Hartmann, C. Alonso-Ramos, X. L. Roux, P. Crozat, E. Cassan, D. Marris-Morini, C. Baudot, F. Boeuf, J.-M. Fédéli, C. Kopp, and L. Vivien, “25  Gbps low-voltage hetero-structured silicon-germanium waveguide pin photodetectors for monolithic on-chip nanophotonic architectures,” Photonics Res. 7(4), 437–444 (2019).
[Crossref]

Baddela, N.

Baehr-Jones, T.

Baets, R.

R. Wang, B. Haq, S. Sprengel, A. Malik, A. Vasiliev, G. Boehm, I. Simonyte, K. Vizbaras, J. Van Campenhout, R. Baets, M. Amann, and G. Roelkens, “Widely Tunable III-V/Silicon Lasers for Spectroscopy in the Short-Wave Infrared,” IEEE J. Sel. Top. Quantum Electron. 25(6), 1–12 (2019).
[Crossref]

W. Bogaerts, P. De Heyn, T. V. Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Baudot, C.

D. Benedikovic, L. Virot, G. Aubin, F. Amar, B. Szelag, B. Karakus, J.-M. Hartmann, C. Alonso-Ramos, X. L. Roux, P. Crozat, E. Cassan, D. Marris-Morini, C. Baudot, F. Boeuf, J.-M. Fédéli, C. Kopp, and L. Vivien, “25  Gbps low-voltage hetero-structured silicon-germanium waveguide pin photodetectors for monolithic on-chip nanophotonic architectures,” Photonics Res. 7(4), 437–444 (2019).
[Crossref]

Becker, M.

Belenky, G.

T. Feng, T. Hosoda, L. Shterengas, A. Stein, G. Kipshidze, and G. Belenky, “Two-Step Narrow Ridge Cascade Diode Lasers Emitting Near 2 µm,” IEEE Photonics Technol. Lett. 29(6), 485–488 (2017).
[Crossref]

Benedikovic, D.

D. Benedikovic, L. Virot, G. Aubin, F. Amar, B. Szelag, B. Karakus, J.-M. Hartmann, C. Alonso-Ramos, X. L. Roux, P. Crozat, E. Cassan, D. Marris-Morini, C. Baudot, F. Boeuf, J.-M. Fédéli, C. Kopp, and L. Vivien, “25  Gbps low-voltage hetero-structured silicon-germanium waveguide pin photodetectors for monolithic on-chip nanophotonic architectures,” Photonics Res. 7(4), 437–444 (2019).
[Crossref]

Bergman, K.

Bergmen, K.

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5(1), 3069 (2014).
[Crossref]

Bernier, E.

D. Celo, D. J. Goodwill, J. Jiang, P. Dumais, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, D. Geng, H. Mehrvar, and E. Bernier, “32 × 32 Silicon Photonic Switch,” in 21st OptoElectronics and Communications Conference, International Conference on Photonics in Switching, (2016).

Biberman, A.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5(1), 4008 (2014).
[Crossref]

Bienstman, P.

W. Bogaerts, P. De Heyn, T. V. Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Birks, T. A.

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. S. J. Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13(1), 236–244 (2005).
[Crossref]

B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and P. St. J. Russel, “Low loss (1.7 dB/km) hollow core photonic bandgap fiber,” in Optical Fiber Communication Conference, (Optical Society of America, 2004).

Boehm, G.

R. Wang, B. Haq, S. Sprengel, A. Malik, A. Vasiliev, G. Boehm, I. Simonyte, K. Vizbaras, J. Van Campenhout, R. Baets, M. Amann, and G. Roelkens, “Widely Tunable III-V/Silicon Lasers for Spectroscopy in the Short-Wave Infrared,” IEEE J. Sel. Top. Quantum Electron. 25(6), 1–12 (2019).
[Crossref]

Boeuf, F.

D. Benedikovic, L. Virot, G. Aubin, F. Amar, B. Szelag, B. Karakus, J.-M. Hartmann, C. Alonso-Ramos, X. L. Roux, P. Crozat, E. Cassan, D. Marris-Morini, C. Baudot, F. Boeuf, J.-M. Fédéli, C. Kopp, and L. Vivien, “25  Gbps low-voltage hetero-structured silicon-germanium waveguide pin photodetectors for monolithic on-chip nanophotonic architectures,” Photonics Res. 7(4), 437–444 (2019).
[Crossref]

Bogaerts, W.

W. Bogaerts, P. De Heyn, T. V. Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Borne, D. V. D.

Bowers, J. E.

Brackett, C.

C. Brackett, “Dense wavelength division multiplexing networks: principles and applications,” IEEE J. Select. Areas Commun. 8(6), 948–964 (1990).
[Crossref]

Bradley, T.

Bristow, A. D.

A. D. Bristow, N. Rotenberg, and H. M. V. Driel, “Two-photon absorption and Kerr coefficients of silicon for 850–2200 nm,” Appl. Phys. Lett. 90(19), 191104 (2007).
[Crossref]

Cao, W.

Cassan, E.

D. Benedikovic, L. Virot, G. Aubin, F. Amar, B. Szelag, B. Karakus, J.-M. Hartmann, C. Alonso-Ramos, X. L. Roux, P. Crozat, E. Cassan, D. Marris-Morini, C. Baudot, F. Boeuf, J.-M. Fédéli, C. Kopp, and L. Vivien, “25  Gbps low-voltage hetero-structured silicon-germanium waveguide pin photodetectors for monolithic on-chip nanophotonic architectures,” Photonics Res. 7(4), 437–444 (2019).
[Crossref]

Caverley, M.

Celo, D.

D. Celo, D. J. Goodwill, J. Jiang, P. Dumais, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, D. Geng, H. Mehrvar, and E. Bernier, “32 × 32 Silicon Photonic Switch,” in 21st OptoElectronics and Communications Conference, International Conference on Photonics in Switching, (2016).

Chen, C. P.

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5(1), 3069 (2014).
[Crossref]

Chen, Y.

Chigusa, Y.

K. Nagayama, M. Kakui, M. Matsui, T. Saitoh, and Y. Chigusa, “Ultra-low-loss (0.1484 dB∕km) pure silica core fibre and extension of transmission distance,” Electron. Lett. 38(20), 1168–1169 (2002).
[Crossref]

Chu, T.

Claes, T.

W. Bogaerts, P. De Heyn, T. V. Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Corbett, B.

Couny, F.

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. S. J. Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13(1), 236–244 (2005).
[Crossref]

B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and P. St. J. Russel, “Low loss (1.7 dB/km) hollow core photonic bandgap fiber,” in Optical Fiber Communication Conference, (Optical Society of America, 2004).

Coupland, S.

B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and P. St. J. Russel, “Low loss (1.7 dB/km) hollow core photonic bandgap fiber,” in Optical Fiber Communication Conference, (Optical Society of America, 2004).

Crozat, P.

D. Benedikovic, L. Virot, G. Aubin, F. Amar, B. Szelag, B. Karakus, J.-M. Hartmann, C. Alonso-Ramos, X. L. Roux, P. Crozat, E. Cassan, D. Marris-Morini, C. Baudot, F. Boeuf, J.-M. Fédéli, C. Kopp, and L. Vivien, “25  Gbps low-voltage hetero-structured silicon-germanium waveguide pin photodetectors for monolithic on-chip nanophotonic architectures,” Photonics Res. 7(4), 437–444 (2019).
[Crossref]

Dai, D.

Daniel, J. M. O.

Davenport, M.

De Heyn, P.

W. Bogaerts, P. De Heyn, T. V. Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

P. De Heyn, D. Vermeulen, T. Van Vaerenbergh, G. Kuyken, and D. Van Thourhout, “Ultra-high Q and finesse all-pass microring resonators on Silicon-on-Insulator using rib waveguides,” in 16th European Conference on Integrated Optics, (2012).

De Vos, K.

W. Bogaerts, P. De Heyn, T. V. Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Desurvire, E.

E. Desurvire, Erbium-doped fiber amplifiers: principles and applications (Wiley-Interscience: New York, NY, 2002).

Dong, P.

Driel, H. M. V.

A. D. Bristow, N. Rotenberg, and H. M. V. Driel, “Two-photon absorption and Kerr coefficients of silicon for 850–2200 nm,” Appl. Phys. Lett. 90(19), 191104 (2007).
[Crossref]

Driscoll, J. B.

Du, J.

J. Li, Y. Liu, Y. Meng, K. Xu, J. Du, F. Wang, Z. He, and Q. Song, “2-µm Wavelength Grating Coupler, Bent Waveguide, and Tunable Microring on Silicon Photonic MPW,” IEEE Photonics Technol. Lett. 30(5), 471–474 (2018).
[Crossref]

Dumais, P.

D. Celo, D. J. Goodwill, J. Jiang, P. Dumais, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, D. Geng, H. Mehrvar, and E. Bernier, “32 × 32 Silicon Photonic Switch,” in 21st OptoElectronics and Communications Conference, International Conference on Photonics in Switching, (2016).

Dumon, P.

W. Bogaerts, P. De Heyn, T. V. Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Dvinelis, E.

K. Vizbaras, E. Dvinelis, I. Šimonytė, A. Trinkūnas, M. Greibus, R. Songaila, T. Žukauskas, M. Kaušylas, and A. Vizbaras, “High power continuous-wave GaSb-based superluminescent diodes as gain chips for widely tunable laser spectroscopy in the 1.95–2.45 µm wavelength range,” Appl. Phys. Lett. 107(1), 011103 (2015).
[Crossref]

Ejzak, G. A.

Ellis, A.

Everlz,

Everlz, “9000WDM Dense WDM 1RU Optical Unit,” https://evertz.com/products/9000DWDM

Farr, L.

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. S. J. Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13(1), 236–244 (2005).
[Crossref]

B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and P. St. J. Russel, “Low loss (1.7 dB/km) hollow core photonic bandgap fiber,” in Optical Fiber Communication Conference, (Optical Society of America, 2004).

Fathololoumi, S.

Fédéli, J.-M.

D. Benedikovic, L. Virot, G. Aubin, F. Amar, B. Szelag, B. Karakus, J.-M. Hartmann, C. Alonso-Ramos, X. L. Roux, P. Crozat, E. Cassan, D. Marris-Morini, C. Baudot, F. Boeuf, J.-M. Fédéli, C. Kopp, and L. Vivien, “25  Gbps low-voltage hetero-structured silicon-germanium waveguide pin photodetectors for monolithic on-chip nanophotonic architectures,” Photonics Res. 7(4), 437–444 (2019).
[Crossref]

Feng, D.

Feng, T.

T. Feng, T. Hosoda, L. Shterengas, A. Stein, G. Kipshidze, and G. Belenky, “Two-Step Narrow Ridge Cascade Diode Lasers Emitting Near 2 µm,” IEEE Photonics Technol. Lett. 29(6), 485–488 (2017).
[Crossref]

Ferreira, F.

Flea, R.

B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and P. St. J. Russel, “Low loss (1.7 dB/km) hollow core photonic bandgap fiber,” in Optical Fiber Communication Conference, (Optical Society of America, 2004).

Fokoua, E. N.

Fuhrberg, P.

K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, Frontiers in Guided Wave Optics and Optoelectronics: 2 µm Sources and Their Possible Applications (Intech Open, 2010).

Fujioka, N.

Gabrielli, L. H.

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5(1), 3069 (2014).
[Crossref]

Galfsky, T.

Gao, B.

C. Liu, H. Wang, Q. Meng, B. Gao, and K. S. Ang, “Modal Gain and Photoluminescence Investigation of Two-State Lasing in GaAs-Based 1.3 µm InAs/InGaAs Quantum Dot Lasers,” Appl. Phys. Express 6(10), 102702 (2013).
[Crossref]

Gardes, F.

Geng, D.

D. Celo, D. J. Goodwill, J. Jiang, P. Dumais, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, D. Geng, H. Mehrvar, and E. Bernier, “32 × 32 Silicon Photonic Switch,” in 21st OptoElectronics and Communications Conference, International Conference on Photonics in Switching, (2016).

Gleeson, M.

Gocalinska, A.

Goodwill, D. J.

D. Celo, D. J. Goodwill, J. Jiang, P. Dumais, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, D. Geng, H. Mehrvar, and E. Bernier, “32 × 32 Silicon Photonic Switch,” in 21st OptoElectronics and Communications Conference, International Conference on Photonics in Switching, (2016).

Gray, D.

Gray, D. R.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. N. Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

Greibus, M.

K. Vizbaras, E. Dvinelis, I. Šimonytė, A. Trinkūnas, M. Greibus, R. Songaila, T. Žukauskas, M. Kaušylas, and A. Vizbaras, “High power continuous-wave GaSb-based superluminescent diodes as gain chips for widely tunable laser spectroscopy in the 1.95–2.45 µm wavelength range,” Appl. Phys. Lett. 107(1), 011103 (2015).
[Crossref]

Grund, D. W.

Gruner-Nielsen, L.

Grüner-Nielsen, L.

Guan, H.

Gunning, F.

Gunning, F. C. G.

Gunning, F. G.

Guo, J.

Guo, X.

J. X. B. Sia, W. Wang, X. Guo, J. Zhou, Z. Zhang, M. S. Rouifed, X. Li, Z. L. Qiao, C. Y. Liu, C. Littlejohns, G. T. Reed, and H. Wang, “Mid-Infrared, Ultra-Broadband, Low-Loss, Compact Arbitrary Power Splitter Based on Adiabatic Mode Evolution,” IEEE Photonics J. 11(2), 1–11 (2019).
[Crossref]

X. Li, H. Wang, Z. Qiao, X. Guo, G. I. Ng, Y. Zhang, Z. Niu, C. Tong, and C. Liu, “Modal gain characteristics of a 2 µm InGaSb/AlGaAsSb passively mode-locked quantum well laser,” Appl. Phys. Lett. 111(25), 251105 (2017).
[Crossref]

J. X. B. Sia, W. Wang, Z. Qiao, X. Li, X. Guo, J. Zhou, Z. Zhang, C. Littlejohns, C. Liu, G. T. Reed, and H. Wang, “Compact, ultra-tunable InGaSb/AlGaAsSb Si external cavity laser at the Mid-Infrared (MIR),” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2019).

Hagan, D.

Hagan, D. E.

D. E. Hagan and A. P. Knights, “Mechanisms for optical loss in SOI waveguides for mid-infrared wavelengths around 2µm,” J. Opt. 19(2), 025801 (2017).
[Crossref]

Hanik, N.

Haq, B.

R. Wang, B. Haq, S. Sprengel, A. Malik, A. Vasiliev, G. Boehm, I. Simonyte, K. Vizbaras, J. Van Campenhout, R. Baets, M. Amann, and G. Roelkens, “Widely Tunable III-V/Silicon Lasers for Spectroscopy in the Short-Wave Infrared,” IEEE J. Sel. Top. Quantum Electron. 25(6), 1–12 (2019).
[Crossref]

Hartmann, J.-M.

D. Benedikovic, L. Virot, G. Aubin, F. Amar, B. Szelag, B. Karakus, J.-M. Hartmann, C. Alonso-Ramos, X. L. Roux, P. Crozat, E. Cassan, D. Marris-Morini, C. Baudot, F. Boeuf, J.-M. Fédéli, C. Kopp, and L. Vivien, “25  Gbps low-voltage hetero-structured silicon-germanium waveguide pin photodetectors for monolithic on-chip nanophotonic architectures,” Photonics Res. 7(4), 437–444 (2019).
[Crossref]

Hayes, J.

Hayes, J. R.

He, J.

D. Celo, D. J. Goodwill, J. Jiang, P. Dumais, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, D. Geng, H. Mehrvar, and E. Bernier, “32 × 32 Silicon Photonic Switch,” in 21st OptoElectronics and Communications Conference, International Conference on Photonics in Switching, (2016).

He, Z.

J. Li, Y. Liu, Y. Meng, K. Xu, J. Du, F. Wang, Z. He, and Q. Song, “2-µm Wavelength Grating Coupler, Bent Waveguide, and Tunable Microring on Silicon Photonic MPW,” IEEE Photonics Technol. Lett. 30(5), 471–474 (2018).
[Crossref]

Heidt, A.

Heidt, A. M.

Hochberg, M.

Honsberg, M.

Horth, A.

Hosoda, T.

T. Feng, T. Hosoda, L. Shterengas, A. Stein, G. Kipshidze, and G. Belenky, “Two-Step Narrow Ridge Cascade Diode Lasers Emitting Near 2 µm,” IEEE Photonics Technol. Lett. 29(6), 485–488 (2017).
[Crossref]

Hosseini, E. S.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5(1), 4008 (2014).
[Crossref]

Huang, D.

Hume, J.

Huynh, T. N.

Inan, B.

Ishizaka, M.

Jansen, S. L.

Jayatilleka, H.

Jessop, P. E.

J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9(6), 393–396 (2015).
[Crossref]

Jiang, J.

D. Celo, D. J. Goodwill, J. Jiang, P. Dumais, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, D. Geng, H. Mehrvar, and E. Bernier, “32 × 32 Silicon Photonic Switch,” in 21st OptoElectronics and Communications Conference, International Conference on Photonics in Switching, (2016).

Jimenez, A.

Jung, Y.

Kakui, M.

K. Nagayama, M. Kakui, M. Matsui, T. Saitoh, and Y. Chigusa, “Ultra-low-loss (0.1484 dB∕km) pure silica core fibre and extension of transmission distance,” Electron. Lett. 38(20), 1168–1169 (2002).
[Crossref]

Karakus, B.

D. Benedikovic, L. Virot, G. Aubin, F. Amar, B. Szelag, B. Karakus, J.-M. Hartmann, C. Alonso-Ramos, X. L. Roux, P. Crozat, E. Cassan, D. Marris-Morini, C. Baudot, F. Boeuf, J.-M. Fédéli, C. Kopp, and L. Vivien, “25  Gbps low-voltage hetero-structured silicon-germanium waveguide pin photodetectors for monolithic on-chip nanophotonic architectures,” Photonics Res. 7(4), 437–444 (2019).
[Crossref]

Kaušylas, M.

K. Vizbaras, E. Dvinelis, I. Šimonytė, A. Trinkūnas, M. Greibus, R. Songaila, T. Žukauskas, M. Kaušylas, and A. Vizbaras, “High power continuous-wave GaSb-based superluminescent diodes as gain chips for widely tunable laser spectroscopy in the 1.95–2.45 µm wavelength range,” Appl. Phys. Lett. 107(1), 011103 (2015).
[Crossref]

Kavanagh, N.

Kelly, B.

Killinger, D. K.

Kipshidze, G.

T. Feng, T. Hosoda, L. Shterengas, A. Stein, G. Kipshidze, and G. Belenky, “Two-Step Narrow Ridge Cascade Diode Lasers Emitting Near 2 µm,” IEEE Photonics Technol. Lett. 29(6), 485–488 (2017).
[Crossref]

Kita, T.

T. Kita, R. Tang, and H. Yamada, “Narrow Spectral Linewidth Silicon Photonic Wavelength Tunable Laser Diode for Digital Coherent Communication System,” IEEE J. Sel. Top. Quantum Electron. 22(6), 23–34 (2016).
[Crossref]

T. Kita, R. Tang, and H. Yamada, “Compact silicon photonic wavelength-tunable laser diode with ultra-wide wavelength tuning range,” Appl. Phys. Lett. 106(11), 111104 (2015).
[Crossref]

Knight, J. C.

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. S. J. Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13(1), 236–244 (2005).
[Crossref]

B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and P. St. J. Russel, “Low loss (1.7 dB/km) hollow core photonic bandgap fiber,” in Optical Fiber Communication Conference, (Optical Society of America, 2004).

Knights, A.

Knights, A. P.

D. E. Hagan and A. P. Knights, “Mechanisms for optical loss in SOI waveguides for mid-infrared wavelengths around 2µm,” J. Opt. 19(2), 025801 (2017).
[Crossref]

J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9(6), 393–396 (2015).
[Crossref]

Komljenovic, T.

Koopmann, P.

K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, Frontiers in Guided Wave Optics and Optoelectronics: 2 µm Sources and Their Possible Applications (Intech Open, 2010).

Kopp, C.

D. Benedikovic, L. Virot, G. Aubin, F. Amar, B. Szelag, B. Karakus, J.-M. Hartmann, C. Alonso-Ramos, X. L. Roux, P. Crozat, E. Cassan, D. Marris-Morini, C. Baudot, F. Boeuf, J.-M. Fédéli, C. Kopp, and L. Vivien, “25  Gbps low-voltage hetero-structured silicon-germanium waveguide pin photodetectors for monolithic on-chip nanophotonic architectures,” Photonics Res. 7(4), 437–444 (2019).
[Crossref]

Krishnamoorthy, A. V.

Kumar, R.

Kung, C.-C.

Kuschnerov, M.

Kuyken, G.

P. De Heyn, D. Vermeulen, T. Van Vaerenbergh, G. Kuyken, and D. Van Thourhout, “Ultra-high Q and finesse all-pass microring resonators on Silicon-on-Insulator using rib waveguides,” in 16th European Conference on Integrated Optics, (2012).

Lamrini, S.

K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, Frontiers in Guided Wave Optics and Optoelectronics: 2 µm Sources and Their Possible Applications (Intech Open, 2010).

Langford, A.

B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and P. St. J. Russel, “Low loss (1.7 dB/km) hollow core photonic bandgap fiber,” in Optical Fiber Communication Conference, (Optical Society of America, 2004).

Lankl, B.

Lawman, M.

B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and P. St. J. Russel, “Low loss (1.7 dB/km) hollow core photonic bandgap fiber,” in Optical Fiber Communication Conference, (Optical Society of America, 2004).

Li, G.

Li, J.

J. Li, Y. Liu, Y. Meng, K. Xu, J. Du, F. Wang, Z. He, and Q. Song, “2-µm Wavelength Grating Coupler, Bent Waveguide, and Tunable Microring on Silicon Photonic MPW,” IEEE Photonics Technol. Lett. 30(5), 471–474 (2018).
[Crossref]

Li, K.

Li, M.

D. Celo, D. J. Goodwill, J. Jiang, P. Dumais, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, D. Geng, H. Mehrvar, and E. Bernier, “32 × 32 Silicon Photonic Switch,” in 21st OptoElectronics and Communications Conference, International Conference on Photonics in Switching, (2016).

Li, X.

J. X. B. Sia, W. Wang, X. Guo, J. Zhou, Z. Zhang, M. S. Rouifed, X. Li, Z. L. Qiao, C. Y. Liu, C. Littlejohns, G. T. Reed, and H. Wang, “Mid-Infrared, Ultra-Broadband, Low-Loss, Compact Arbitrary Power Splitter Based on Adiabatic Mode Evolution,” IEEE Photonics J. 11(2), 1–11 (2019).
[Crossref]

X. Li, H. Wang, Z. Qiao, X. Guo, G. I. Ng, Y. Zhang, Z. Niu, C. Tong, and C. Liu, “Modal gain characteristics of a 2 µm InGaSb/AlGaAsSb passively mode-locked quantum well laser,” Appl. Phys. Lett. 111(25), 251105 (2017).
[Crossref]

X. Li, H. Wang, Z. Qiao, Y. Liao, Y. Zhang, Y. Xu, Z. Niu, C. Tong, and C. Liu, “Temperature- and current-dependent spontaneous emission study on 2 µm InGaSb/AlGaAsSb quantum well lasers,” Jpn. J. Appl. Phys. 56(5), 050310 (2017).
[Crossref]

J. X. B. Sia, W. Wang, Z. Qiao, X. Li, X. Guo, J. Zhou, Z. Zhang, C. Littlejohns, C. Liu, G. T. Reed, and H. Wang, “Compact, ultra-tunable InGaSb/AlGaAsSb Si external cavity laser at the Mid-Infrared (MIR),” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2019).

Li, Z.

H. Zhang, M. Gleeson, N. Ye, N. Pavarelli, X. Ouyang, J. Zhao, N. Kavanagh, C. Robert, H. Yang, P. E. Morrissey, K. Thomas, A. Gocalinska, Y. Chen, T. Bradley, J. P. Wooler, J. R. Hayes, E. N. Fokoua, Z. Li, S. U. Alam, F. Poletti, M. N. Petrovich, D. J. Richardson, B. Kelly, J. O’Carroll, R. Phelan, E. Pelucchi, P. O’Brien, F. Peters, B. Corbett, and F. Gunning, “Dense WDM transmission at 2 µm enabled by an arrayed waveguide grating,” Opt. Lett. 40(14), 3308–3311 (2015).
[Crossref]

H. Zhang, N. Kavanagh, Z. Li, J. Zhao, N. Ye, Y. Chen, N. V. Wheeler, J. P. Wooler, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, S. U. Alam, R. Phelan, J. O’Carroll, B. Kelly, L. Grüner-Nielsen, D. J. Richardson, B. Corbett, and F. C. G. Gunning, “100 Gbit/s WDM transmission at 2 µm: transmission studies in both low-loss hollow core photonic bandgap fiber and solid core fiber,” Opt. Express 23(4), 4946–4951 (2015).
[Crossref]

Z. Li, A. M. Heidt, J. M. O. Daniel, Y. Jung, S. U. Alam, and D. J. Richardson, “Thulium-doped fiber amplifier for optical communications at 2 µm,” Opt. Express 21(8), 9289–9297 (2013).
[Crossref]

Z. Li, A. M. Heidt, N. Simakov, Y. Jung, J. M. O. Daniel, S. U. Alam, and D. J. Richardson, “Diode-pumped wideband thulium-doped fiber amplifiers for optical communications in the 1800–2050nm window,” Opt. Express 21(22), 26450–26455 (2013).
[Crossref]

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. N. Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

M. N. Petrovich, F. Poletti, J. P. Wooler, A. Heidt, N. Baddela, Z. Li, D. Gray, R. Slavík, F. Parmigiani, N. Wheeler, J. Hayes, E. Numkam, L. Grűner-Nielsen, B. Pálsdóttir, R. Phelan, B. Kelly, J. O’Carroll, M. Becker, N. Macsuibhne, J. Zhao, F. G. Gunning, A. Ellis, P. Petropoulos, S. Alam, and D. Richardson, “Demonstration of amplified data transmission at 2 µm in a low-loss wide bandwidth hollow core photonic bandgap fiber,” Opt. Express 21(23), 28559–28569 (2013).
[Crossref]

Liang, H.

Liao, S.

Liao, Y.

X. Li, H. Wang, Z. Qiao, Y. Liao, Y. Zhang, Y. Xu, Z. Niu, C. Tong, and C. Liu, “Temperature- and current-dependent spontaneous emission study on 2 µm InGaSb/AlGaAsSb quantum well lasers,” Jpn. J. Appl. Phys. 56(5), 050310 (2017).
[Crossref]

Lim, A. E.-J.

Lipson, M.

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5(1), 3069 (2014).
[Crossref]

Littlejohns, C.

J. X. B. Sia, W. Wang, X. Guo, J. Zhou, Z. Zhang, M. S. Rouifed, X. Li, Z. L. Qiao, C. Y. Liu, C. Littlejohns, G. T. Reed, and H. Wang, “Mid-Infrared, Ultra-Broadband, Low-Loss, Compact Arbitrary Power Splitter Based on Adiabatic Mode Evolution,” IEEE Photonics J. 11(2), 1–11 (2019).
[Crossref]

J. X. B. Sia, W. Wang, Z. Qiao, X. Li, X. Guo, J. Zhou, Z. Zhang, C. Littlejohns, C. Liu, G. T. Reed, and H. Wang, “Compact, ultra-tunable InGaSb/AlGaAsSb Si external cavity laser at the Mid-Infrared (MIR),” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2019).

Littlejohns, C. G.

Liu, A. Y.

Liu, C.

X. Li, H. Wang, Z. Qiao, X. Guo, G. I. Ng, Y. Zhang, Z. Niu, C. Tong, and C. Liu, “Modal gain characteristics of a 2 µm InGaSb/AlGaAsSb passively mode-locked quantum well laser,” Appl. Phys. Lett. 111(25), 251105 (2017).
[Crossref]

X. Li, H. Wang, Z. Qiao, Y. Liao, Y. Zhang, Y. Xu, Z. Niu, C. Tong, and C. Liu, “Temperature- and current-dependent spontaneous emission study on 2 µm InGaSb/AlGaAsSb quantum well lasers,” Jpn. J. Appl. Phys. 56(5), 050310 (2017).
[Crossref]

C. Liu, H. Wang, Q. Meng, B. Gao, and K. S. Ang, “Modal Gain and Photoluminescence Investigation of Two-State Lasing in GaAs-Based 1.3 µm InAs/InGaAs Quantum Dot Lasers,” Appl. Phys. Express 6(10), 102702 (2013).
[Crossref]

J. X. B. Sia, W. Wang, Z. Qiao, X. Li, X. Guo, J. Zhou, Z. Zhang, C. Littlejohns, C. Liu, G. T. Reed, and H. Wang, “Compact, ultra-tunable InGaSb/AlGaAsSb Si external cavity laser at the Mid-Infrared (MIR),” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2019).

Liu, C. Y.

J. X. B. Sia, W. Wang, X. Guo, J. Zhou, Z. Zhang, M. S. Rouifed, X. Li, Z. L. Qiao, C. Y. Liu, C. Littlejohns, G. T. Reed, and H. Wang, “Mid-Infrared, Ultra-Broadband, Low-Loss, Compact Arbitrary Power Splitter Based on Adiabatic Mode Evolution,” IEEE Photonics J. 11(2), 1–11 (2019).
[Crossref]

Liu, D.

Liu, S.

Liu, W.

D. Celo, D. J. Goodwill, J. Jiang, P. Dumais, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, D. Geng, H. Mehrvar, and E. Bernier, “32 × 32 Silicon Photonic Switch,” in 21st OptoElectronics and Communications Conference, International Conference on Photonics in Switching, (2016).

Liu, Y.

Lo, G.-Q.

Lobato, A.

Long, Y.

Z. Ruan, L. Shen, S. Zheng, A. Wang, Y. Long, N. Zhou, and J. Wang, “Subwavelength grating slot (SWGS) waveguide at 2 µm for chip-scale data transmission,” Nanophotonics 7(5), 865–871 (2018).
[Crossref]

Luo, L.-W.

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5(1), 3069 (2014).
[Crossref]

Ma, Y.

Macsuibhne, N.

Malik, A.

Mangan, B. J.

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. S. J. Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13(1), 236–244 (2005).
[Crossref]

B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and P. St. J. Russel, “Low loss (1.7 dB/km) hollow core photonic bandgap fiber,” in Optical Fiber Communication Conference, (Optical Society of America, 2004).

Marechal, C.

M. Melieres and C. Marechal, Climate Change: Past, Present and Future (Wiley Blackwell, 2015), Chap. 7.

Marris-Morini, D.

D. Benedikovic, L. Virot, G. Aubin, F. Amar, B. Szelag, B. Karakus, J.-M. Hartmann, C. Alonso-Ramos, X. L. Roux, P. Crozat, E. Cassan, D. Marris-Morini, C. Baudot, F. Boeuf, J.-M. Fédéli, C. Kopp, and L. Vivien, “25  Gbps low-voltage hetero-structured silicon-germanium waveguide pin photodetectors for monolithic on-chip nanophotonic architectures,” Photonics Res. 7(4), 437–444 (2019).
[Crossref]

Mashanovich, G. Z.

W. Cao, D. Hagan, D. J. Thomson, M. Nedeljkovic, C. G. Littlejohns, A. Knights, S. Alam, J. Wang, F. Gardes, W. Zhang, S. Liu, K. Li, M. S. Rouifed, G. Xin, W. Wang, H. Wang, G. T. Reed, and G. Z. Mashanovich, “High-speed silicon modulators for the 2 µm band,” Optica 5(9), 1055–1062 (2018).
[Crossref]

J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9(6), 393–396 (2015).
[Crossref]

Mason, M.

B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and P. St. J. Russel, “Low loss (1.7 dB/km) hollow core photonic bandgap fiber,” in Optical Fiber Communication Conference, (Optical Society of America, 2004).

Mason, M. W.

Matsui, M.

K. Nagayama, M. Kakui, M. Matsui, T. Saitoh, and Y. Chigusa, “Ultra-low-loss (0.1484 dB∕km) pure silica core fibre and extension of transmission distance,” Electron. Lett. 38(20), 1168–1169 (2002).
[Crossref]

Mehrvar, H.

D. Celo, D. J. Goodwill, J. Jiang, P. Dumais, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, D. Geng, H. Mehrvar, and E. Bernier, “32 × 32 Silicon Photonic Switch,” in 21st OptoElectronics and Communications Conference, International Conference on Photonics in Switching, (2016).

Melieres, M.

M. Melieres and C. Marechal, Climate Change: Past, Present and Future (Wiley Blackwell, 2015), Chap. 7.

Meng, Q.

C. Liu, H. Wang, Q. Meng, B. Gao, and K. S. Ang, “Modal Gain and Photoluminescence Investigation of Two-State Lasing in GaAs-Based 1.3 µm InAs/InGaAs Quantum Dot Lasers,” Appl. Phys. Express 6(10), 102702 (2013).
[Crossref]

Meng, Y.

J. Li, Y. Liu, Y. Meng, K. Xu, J. Du, F. Wang, Z. He, and Q. Song, “2-µm Wavelength Grating Coupler, Bent Waveguide, and Tunable Microring on Silicon Photonic MPW,” IEEE Photonics Technol. Lett. 30(5), 471–474 (2018).
[Crossref]

Milde, T.

Morrissey, P. E.

Morton, P. A.

Nagayama, K.

K. Nagayama, M. Kakui, M. Matsui, T. Saitoh, and Y. Chigusa, “Ultra-low-loss (0.1484 dB∕km) pure silica core fibre and extension of transmission distance,” Electron. Lett. 38(20), 1168–1169 (2002).
[Crossref]

Nedeljkovic, M.

Ng, G. I.

X. Li, H. Wang, Z. Qiao, X. Guo, G. I. Ng, Y. Zhang, Z. Niu, C. Tong, and C. Liu, “Modal gain characteristics of a 2 µm InGaSb/AlGaAsSb passively mode-locked quantum well laser,” Appl. Phys. Lett. 111(25), 251105 (2017).
[Crossref]

Niu, Z.

X. Li, H. Wang, Z. Qiao, X. Guo, G. I. Ng, Y. Zhang, Z. Niu, C. Tong, and C. Liu, “Modal gain characteristics of a 2 µm InGaSb/AlGaAsSb passively mode-locked quantum well laser,” Appl. Phys. Lett. 111(25), 251105 (2017).
[Crossref]

X. Li, H. Wang, Z. Qiao, Y. Liao, Y. Zhang, Y. Xu, Z. Niu, C. Tong, and C. Liu, “Temperature- and current-dependent spontaneous emission study on 2 µm InGaSb/AlGaAsSb quantum well lasers,” Jpn. J. Appl. Phys. 56(5), 050310 (2017).
[Crossref]

Novack, A.

Numkam, E.

O’Brien, P.

O’Carroll, J.

O’Gorman, J.

Ophir, N.

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5(1), 3069 (2014).
[Crossref]

Ouyang, X.

Pálsdóttir, B.

Parmigiani, F.

Pavarelli, N.

Peacock, A. C.

J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9(6), 393–396 (2015).
[Crossref]

Pelucchi, E.

Peters, F.

Peters, J.

Petropoulos, P.

Petrovich, M. N.

H. Zhang, N. Kavanagh, Z. Li, J. Zhao, N. Ye, Y. Chen, N. V. Wheeler, J. P. Wooler, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, S. U. Alam, R. Phelan, J. O’Carroll, B. Kelly, L. Grüner-Nielsen, D. J. Richardson, B. Corbett, and F. C. G. Gunning, “100 Gbit/s WDM transmission at 2 µm: transmission studies in both low-loss hollow core photonic bandgap fiber and solid core fiber,” Opt. Express 23(4), 4946–4951 (2015).
[Crossref]

H. Zhang, M. Gleeson, N. Ye, N. Pavarelli, X. Ouyang, J. Zhao, N. Kavanagh, C. Robert, H. Yang, P. E. Morrissey, K. Thomas, A. Gocalinska, Y. Chen, T. Bradley, J. P. Wooler, J. R. Hayes, E. N. Fokoua, Z. Li, S. U. Alam, F. Poletti, M. N. Petrovich, D. J. Richardson, B. Kelly, J. O’Carroll, R. Phelan, E. Pelucchi, P. O’Brien, F. Peters, B. Corbett, and F. Gunning, “Dense WDM transmission at 2 µm enabled by an arrayed waveguide grating,” Opt. Lett. 40(14), 3308–3311 (2015).
[Crossref]

M. N. Petrovich, F. Poletti, J. P. Wooler, A. Heidt, N. Baddela, Z. Li, D. Gray, R. Slavík, F. Parmigiani, N. Wheeler, J. Hayes, E. Numkam, L. Grűner-Nielsen, B. Pálsdóttir, R. Phelan, B. Kelly, J. O’Carroll, M. Becker, N. Macsuibhne, J. Zhao, F. G. Gunning, A. Ellis, P. Petropoulos, S. Alam, and D. Richardson, “Demonstration of amplified data transmission at 2 µm in a low-loss wide bandwidth hollow core photonic bandgap fiber,” Opt. Express 21(23), 28559–28569 (2013).
[Crossref]

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. N. Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

Phelan, R.

Poitras, C. B.

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5(1), 3069 (2014).
[Crossref]

Poletti, F.

H. Zhang, N. Kavanagh, Z. Li, J. Zhao, N. Ye, Y. Chen, N. V. Wheeler, J. P. Wooler, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, S. U. Alam, R. Phelan, J. O’Carroll, B. Kelly, L. Grüner-Nielsen, D. J. Richardson, B. Corbett, and F. C. G. Gunning, “100 Gbit/s WDM transmission at 2 µm: transmission studies in both low-loss hollow core photonic bandgap fiber and solid core fiber,” Opt. Express 23(4), 4946–4951 (2015).
[Crossref]

H. Zhang, M. Gleeson, N. Ye, N. Pavarelli, X. Ouyang, J. Zhao, N. Kavanagh, C. Robert, H. Yang, P. E. Morrissey, K. Thomas, A. Gocalinska, Y. Chen, T. Bradley, J. P. Wooler, J. R. Hayes, E. N. Fokoua, Z. Li, S. U. Alam, F. Poletti, M. N. Petrovich, D. J. Richardson, B. Kelly, J. O’Carroll, R. Phelan, E. Pelucchi, P. O’Brien, F. Peters, B. Corbett, and F. Gunning, “Dense WDM transmission at 2 µm enabled by an arrayed waveguide grating,” Opt. Lett. 40(14), 3308–3311 (2015).
[Crossref]

M. N. Petrovich, F. Poletti, J. P. Wooler, A. Heidt, N. Baddela, Z. Li, D. Gray, R. Slavík, F. Parmigiani, N. Wheeler, J. Hayes, E. Numkam, L. Grűner-Nielsen, B. Pálsdóttir, R. Phelan, B. Kelly, J. O’Carroll, M. Becker, N. Macsuibhne, J. Zhao, F. G. Gunning, A. Ellis, P. Petropoulos, S. Alam, and D. Richardson, “Demonstration of amplified data transmission at 2 µm in a low-loss wide bandwidth hollow core photonic bandgap fiber,” Opt. Express 21(23), 28559–28569 (2013).
[Crossref]

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. N. Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

Prather, D.

Qian, W.

Qiao, Z.

X. Li, H. Wang, Z. Qiao, X. Guo, G. I. Ng, Y. Zhang, Z. Niu, C. Tong, and C. Liu, “Modal gain characteristics of a 2 µm InGaSb/AlGaAsSb passively mode-locked quantum well laser,” Appl. Phys. Lett. 111(25), 251105 (2017).
[Crossref]

X. Li, H. Wang, Z. Qiao, Y. Liao, Y. Zhang, Y. Xu, Z. Niu, C. Tong, and C. Liu, “Temperature- and current-dependent spontaneous emission study on 2 µm InGaSb/AlGaAsSb quantum well lasers,” Jpn. J. Appl. Phys. 56(5), 050310 (2017).
[Crossref]

J. X. B. Sia, W. Wang, Z. Qiao, X. Li, X. Guo, J. Zhou, Z. Zhang, C. Littlejohns, C. Liu, G. T. Reed, and H. Wang, “Compact, ultra-tunable InGaSb/AlGaAsSb Si external cavity laser at the Mid-Infrared (MIR),” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2019).

Qiao, Z. L.

J. X. B. Sia, W. Wang, X. Guo, J. Zhou, Z. Zhang, M. S. Rouifed, X. Li, Z. L. Qiao, C. Y. Liu, C. Littlejohns, G. T. Reed, and H. Wang, “Mid-Infrared, Ultra-Broadband, Low-Loss, Compact Arbitrary Power Splitter Based on Adiabatic Mode Evolution,” IEEE Photonics J. 11(2), 1–11 (2019).
[Crossref]

Rabe, J.

Reed, G. T.

J. X. B. Sia, W. Wang, X. Guo, J. Zhou, Z. Zhang, M. S. Rouifed, X. Li, Z. L. Qiao, C. Y. Liu, C. Littlejohns, G. T. Reed, and H. Wang, “Mid-Infrared, Ultra-Broadband, Low-Loss, Compact Arbitrary Power Splitter Based on Adiabatic Mode Evolution,” IEEE Photonics J. 11(2), 1–11 (2019).
[Crossref]

W. Cao, D. Hagan, D. J. Thomson, M. Nedeljkovic, C. G. Littlejohns, A. Knights, S. Alam, J. Wang, F. Gardes, W. Zhang, S. Liu, K. Li, M. S. Rouifed, G. Xin, W. Wang, H. Wang, G. T. Reed, and G. Z. Mashanovich, “High-speed silicon modulators for the 2 µm band,” Optica 5(9), 1055–1062 (2018).
[Crossref]

J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9(6), 393–396 (2015).
[Crossref]

J. X. B. Sia, W. Wang, Z. Qiao, X. Li, X. Guo, J. Zhou, Z. Zhang, C. Littlejohns, C. Liu, G. T. Reed, and H. Wang, “Compact, ultra-tunable InGaSb/AlGaAsSb Si external cavity laser at the Mid-Infrared (MIR),” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2019).

Richardson, D.

Richardson, D. J.

H. Zhang, M. Gleeson, N. Ye, N. Pavarelli, X. Ouyang, J. Zhao, N. Kavanagh, C. Robert, H. Yang, P. E. Morrissey, K. Thomas, A. Gocalinska, Y. Chen, T. Bradley, J. P. Wooler, J. R. Hayes, E. N. Fokoua, Z. Li, S. U. Alam, F. Poletti, M. N. Petrovich, D. J. Richardson, B. Kelly, J. O’Carroll, R. Phelan, E. Pelucchi, P. O’Brien, F. Peters, B. Corbett, and F. Gunning, “Dense WDM transmission at 2 µm enabled by an arrayed waveguide grating,” Opt. Lett. 40(14), 3308–3311 (2015).
[Crossref]

H. Zhang, N. Kavanagh, Z. Li, J. Zhao, N. Ye, Y. Chen, N. V. Wheeler, J. P. Wooler, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, S. U. Alam, R. Phelan, J. O’Carroll, B. Kelly, L. Grüner-Nielsen, D. J. Richardson, B. Corbett, and F. C. G. Gunning, “100 Gbit/s WDM transmission at 2 µm: transmission studies in both low-loss hollow core photonic bandgap fiber and solid core fiber,” Opt. Express 23(4), 4946–4951 (2015).
[Crossref]

Z. Li, A. M. Heidt, N. Simakov, Y. Jung, J. M. O. Daniel, S. U. Alam, and D. J. Richardson, “Diode-pumped wideband thulium-doped fiber amplifiers for optical communications in the 1800–2050nm window,” Opt. Express 21(22), 26450–26455 (2013).
[Crossref]

Z. Li, A. M. Heidt, J. M. O. Daniel, Y. Jung, S. U. Alam, and D. J. Richardson, “Thulium-doped fiber amplifier for optical communications at 2 µm,” Opt. Express 21(8), 9289–9297 (2013).
[Crossref]

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. N. Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

D. J. Richardson, “Filling the Light Pipe,” Science 330(6002), 327–328 (2010).
[Crossref]

Robert, C.

Roberts, P. J.

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. S. J. Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13(1), 236–244 (2005).
[Crossref]

B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and P. St. J. Russel, “Low loss (1.7 dB/km) hollow core photonic bandgap fiber,” in Optical Fiber Communication Conference, (Optical Society of America, 2004).

Roelkens, G.

R. Wang, B. Haq, S. Sprengel, A. Malik, A. Vasiliev, G. Boehm, I. Simonyte, K. Vizbaras, J. Van Campenhout, R. Baets, M. Amann, and G. Roelkens, “Widely Tunable III-V/Silicon Lasers for Spectroscopy in the Short-Wave Infrared,” IEEE J. Sel. Top. Quantum Electron. 25(6), 1–12 (2019).
[Crossref]

R. Wang, A. Malik, I. Šimonytė, A. Vizbaras, K. Vizbaras, and G. Roelkens, “Compact GaSb/silicon-on-insulator 2.0x µm widely tunable external cavity lasers,” Opt. Express 24(25), 28977–28986 (2016).
[Crossref]

Roman, J.

Rong, H.

Rotenberg, N.

A. D. Bristow, N. Rotenberg, and H. M. V. Driel, “Two-photon absorption and Kerr coefficients of silicon for 850–2200 nm,” Appl. Phys. Lett. 90(19), 191104 (2007).
[Crossref]

Rouifed, M. S.

J. X. B. Sia, W. Wang, X. Guo, J. Zhou, Z. Zhang, M. S. Rouifed, X. Li, Z. L. Qiao, C. Y. Liu, C. Littlejohns, G. T. Reed, and H. Wang, “Mid-Infrared, Ultra-Broadband, Low-Loss, Compact Arbitrary Power Splitter Based on Adiabatic Mode Evolution,” IEEE Photonics J. 11(2), 1–11 (2019).
[Crossref]

W. Cao, D. Hagan, D. J. Thomson, M. Nedeljkovic, C. G. Littlejohns, A. Knights, S. Alam, J. Wang, F. Gardes, W. Zhang, S. Liu, K. Li, M. S. Rouifed, G. Xin, W. Wang, H. Wang, G. T. Reed, and G. Z. Mashanovich, “High-speed silicon modulators for the 2 µm band,” Optica 5(9), 1055–1062 (2018).
[Crossref]

Roux, X. L.

D. Benedikovic, L. Virot, G. Aubin, F. Amar, B. Szelag, B. Karakus, J.-M. Hartmann, C. Alonso-Ramos, X. L. Roux, P. Crozat, E. Cassan, D. Marris-Morini, C. Baudot, F. Boeuf, J.-M. Fédéli, C. Kopp, and L. Vivien, “25  Gbps low-voltage hetero-structured silicon-germanium waveguide pin photodetectors for monolithic on-chip nanophotonic architectures,” Photonics Res. 7(4), 437–444 (2019).
[Crossref]

Ruan, Z.

Z. Ruan, L. Shen, S. Zheng, A. Wang, Y. Long, N. Zhou, and J. Wang, “Subwavelength grating slot (SWGS) waveguide at 2 µm for chip-scale data transmission,” Nanophotonics 7(5), 865–871 (2018).
[Crossref]

Russel, P. St. J.

B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and P. St. J. Russel, “Low loss (1.7 dB/km) hollow core photonic bandgap fiber,” in Optical Fiber Communication Conference, (Optical Society of America, 2004).

Russell, P. S. J.

Sabert, H.

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. S. J. Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13(1), 236–244 (2005).
[Crossref]

B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and P. St. J. Russel, “Low loss (1.7 dB/km) hollow core photonic bandgap fiber,” in Optical Fiber Communication Conference, (Optical Society of America, 2004).

Sacher, J.

Saitoh, T.

K. Nagayama, M. Kakui, M. Matsui, T. Saitoh, and Y. Chigusa, “Ultra-low-loss (0.1484 dB∕km) pure silica core fibre and extension of transmission distance,” Electron. Lett. 38(20), 1168–1169 (2002).
[Crossref]

Sakib, M.

Sandoghchi, S. R.

Santis, C. T.

Savory, S. J.

S. J. Savory, “Digital Coherent Optical Receivers: Algorithms and Subsystems,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1164–1179 (2010).
[Crossref]

Schade, W.

Scholle, K.

K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, Frontiers in Guided Wave Optics and Optoelectronics: 2 µm Sources and Their Possible Applications (Intech Open, 2010).

Selvaraja, S. K.

W. Bogaerts, P. De Heyn, T. V. Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Shafiiha, R.

Shen, L.

Z. Ruan, L. Shen, S. Zheng, A. Wang, Y. Long, N. Zhou, and J. Wang, “Subwavelength grating slot (SWGS) waveguide at 2 µm for chip-scale data transmission,” Nanophotonics 7(5), 865–871 (2018).
[Crossref]

J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9(6), 393–396 (2015).
[Crossref]

Shi, R.

Shterengas, L.

T. Feng, T. Hosoda, L. Shterengas, A. Stein, G. Kipshidze, and G. Belenky, “Two-Step Narrow Ridge Cascade Diode Lasers Emitting Near 2 µm,” IEEE Photonics Technol. Lett. 29(6), 485–488 (2017).
[Crossref]

Sia, J. X. B.

J. X. B. Sia, W. Wang, X. Guo, J. Zhou, Z. Zhang, M. S. Rouifed, X. Li, Z. L. Qiao, C. Y. Liu, C. Littlejohns, G. T. Reed, and H. Wang, “Mid-Infrared, Ultra-Broadband, Low-Loss, Compact Arbitrary Power Splitter Based on Adiabatic Mode Evolution,” IEEE Photonics J. 11(2), 1–11 (2019).
[Crossref]

J. X. B. Sia, W. Wang, Z. Qiao, X. Li, X. Guo, J. Zhou, Z. Zhang, C. Littlejohns, C. Liu, G. T. Reed, and H. Wang, “Compact, ultra-tunable InGaSb/AlGaAsSb Si external cavity laser at the Mid-Infrared (MIR),” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2019).

Simakov, N.

Simonyte, I.

R. Wang, B. Haq, S. Sprengel, A. Malik, A. Vasiliev, G. Boehm, I. Simonyte, K. Vizbaras, J. Van Campenhout, R. Baets, M. Amann, and G. Roelkens, “Widely Tunable III-V/Silicon Lasers for Spectroscopy in the Short-Wave Infrared,” IEEE J. Sel. Top. Quantum Electron. 25(6), 1–12 (2019).
[Crossref]

Šimonyte, I.

R. Wang, A. Malik, I. Šimonytė, A. Vizbaras, K. Vizbaras, and G. Roelkens, “Compact GaSb/silicon-on-insulator 2.0x µm widely tunable external cavity lasers,” Opt. Express 24(25), 28977–28986 (2016).
[Crossref]

K. Vizbaras, E. Dvinelis, I. Šimonytė, A. Trinkūnas, M. Greibus, R. Songaila, T. Žukauskas, M. Kaušylas, and A. Vizbaras, “High power continuous-wave GaSb-based superluminescent diodes as gain chips for widely tunable laser spectroscopy in the 1.95–2.45 µm wavelength range,” Appl. Phys. Lett. 107(1), 011103 (2015).
[Crossref]

Slavík, R.

Sleiffer, V. A. J. M.

Song, Q.

J. Li, Y. Liu, Y. Meng, K. Xu, J. Du, F. Wang, Z. He, and Q. Song, “2-µm Wavelength Grating Coupler, Bent Waveguide, and Tunable Microring on Silicon Photonic MPW,” IEEE Photonics Technol. Lett. 30(5), 471–474 (2018).
[Crossref]

Songaila, R.

K. Vizbaras, E. Dvinelis, I. Šimonytė, A. Trinkūnas, M. Greibus, R. Songaila, T. Žukauskas, M. Kaušylas, and A. Vizbaras, “High power continuous-wave GaSb-based superluminescent diodes as gain chips for widely tunable laser spectroscopy in the 1.95–2.45 µm wavelength range,” Appl. Phys. Lett. 107(1), 011103 (2015).
[Crossref]

Sorace-Agaskar, C. M.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5(1), 4008 (2014).
[Crossref]

Spinnler, B.

Spott, A.

Sprengel, S.

R. Wang, B. Haq, S. Sprengel, A. Malik, A. Vasiliev, G. Boehm, I. Simonyte, K. Vizbaras, J. Van Campenhout, R. Baets, M. Amann, and G. Roelkens, “Widely Tunable III-V/Silicon Lasers for Spectroscopy in the Short-Wave Infrared,” IEEE J. Sel. Top. Quantum Electron. 25(6), 1–12 (2019).
[Crossref]

Srinivasan, S.

Stanton, E. J.

Stein, A.

T. Feng, T. Hosoda, L. Shterengas, A. Stein, G. Kipshidze, and G. Belenky, “Two-Step Narrow Ridge Cascade Diode Lasers Emitting Near 2 µm,” IEEE Photonics Technol. Lett. 29(6), 485–488 (2017).
[Crossref]

Sun, J.

J. Sun, R. Kumar, M. Sakib, J. B. Driscoll, H. Jayatilleka, and H. Rong, “A 128 Gb/s PAM4 Silicon Microring Modulator With Integrated Thermo-Optic Resonance Tuning,” J. Lightwave Technol. 37(1), 110–115 (2019).
[Crossref]

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5(1), 4008 (2014).
[Crossref]

Szelag, B.

D. Benedikovic, L. Virot, G. Aubin, F. Amar, B. Szelag, B. Karakus, J.-M. Hartmann, C. Alonso-Ramos, X. L. Roux, P. Crozat, E. Cassan, D. Marris-Morini, C. Baudot, F. Boeuf, J.-M. Fédéli, C. Kopp, and L. Vivien, “25  Gbps low-voltage hetero-structured silicon-germanium waveguide pin photodetectors for monolithic on-chip nanophotonic architectures,” Photonics Res. 7(4), 437–444 (2019).
[Crossref]

Taczak, T. M.

Tang, R.

T. Kita, R. Tang, and H. Yamada, “Narrow Spectral Linewidth Silicon Photonic Wavelength Tunable Laser Diode for Digital Coherent Communication System,” IEEE J. Sel. Top. Quantum Electron. 22(6), 23–34 (2016).
[Crossref]

T. Kita, R. Tang, and H. Yamada, “Compact silicon photonic wavelength-tunable laser diode with ultra-wide wavelength tuning range,” Appl. Phys. Lett. 106(11), 111104 (2015).
[Crossref]

Thomas, K.

Thomson, D. J.

W. Cao, D. Hagan, D. J. Thomson, M. Nedeljkovic, C. G. Littlejohns, A. Knights, S. Alam, J. Wang, F. Gardes, W. Zhang, S. Liu, K. Li, M. S. Rouifed, G. Xin, W. Wang, H. Wang, G. T. Reed, and G. Z. Mashanovich, “High-speed silicon modulators for the 2 µm band,” Optica 5(9), 1055–1062 (2018).
[Crossref]

J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9(6), 393–396 (2015).
[Crossref]

Timurdogan, E.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5(1), 4008 (2014).
[Crossref]

Tomlinson, A.

Tong, C.

X. Li, H. Wang, Z. Qiao, X. Guo, G. I. Ng, Y. Zhang, Z. Niu, C. Tong, and C. Liu, “Modal gain characteristics of a 2 µm InGaSb/AlGaAsSb passively mode-locked quantum well laser,” Appl. Phys. Lett. 111(25), 251105 (2017).
[Crossref]

X. Li, H. Wang, Z. Qiao, Y. Liao, Y. Zhang, Y. Xu, Z. Niu, C. Tong, and C. Liu, “Temperature- and current-dependent spontaneous emission study on 2 µm InGaSb/AlGaAsSb quantum well lasers,” Jpn. J. Appl. Phys. 56(5), 050310 (2017).
[Crossref]

Tran, M. A.

Trinkunas, A.

K. Vizbaras, E. Dvinelis, I. Šimonytė, A. Trinkūnas, M. Greibus, R. Songaila, T. Žukauskas, M. Kaušylas, and A. Vizbaras, “High power continuous-wave GaSb-based superluminescent diodes as gain chips for widely tunable laser spectroscopy in the 1.95–2.45 µm wavelength range,” Appl. Phys. Lett. 107(1), 011103 (2015).
[Crossref]

Tu, X.

D. Celo, D. J. Goodwill, J. Jiang, P. Dumais, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, D. Geng, H. Mehrvar, and E. Bernier, “32 × 32 Silicon Photonic Switch,” in 21st OptoElectronics and Communications Conference, International Conference on Photonics in Switching, (2016).

Vaerenbergh, T. V.

W. Bogaerts, P. De Heyn, T. V. Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Van Campenhout, J.

R. Wang, B. Haq, S. Sprengel, A. Malik, A. Vasiliev, G. Boehm, I. Simonyte, K. Vizbaras, J. Van Campenhout, R. Baets, M. Amann, and G. Roelkens, “Widely Tunable III-V/Silicon Lasers for Spectroscopy in the Short-Wave Infrared,” IEEE J. Sel. Top. Quantum Electron. 25(6), 1–12 (2019).
[Crossref]

Van Thourhout, D.

W. Bogaerts, P. De Heyn, T. V. Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

P. De Heyn, D. Vermeulen, T. Van Vaerenbergh, G. Kuyken, and D. Van Thourhout, “Ultra-high Q and finesse all-pass microring resonators on Silicon-on-Insulator using rib waveguides,” in 16th European Conference on Integrated Optics, (2012).

Van Vaerenbergh, T.

P. De Heyn, D. Vermeulen, T. Van Vaerenbergh, G. Kuyken, and D. Van Thourhout, “Ultra-high Q and finesse all-pass microring resonators on Silicon-on-Insulator using rib waveguides,” in 16th European Conference on Integrated Optics, (2012).

Vasiliev, A.

R. Wang, B. Haq, S. Sprengel, A. Malik, A. Vasiliev, G. Boehm, I. Simonyte, K. Vizbaras, J. Van Campenhout, R. Baets, M. Amann, and G. Roelkens, “Widely Tunable III-V/Silicon Lasers for Spectroscopy in the Short-Wave Infrared,” IEEE J. Sel. Top. Quantum Electron. 25(6), 1–12 (2019).
[Crossref]

Vermeulen, D.

P. De Heyn, D. Vermeulen, T. Van Vaerenbergh, G. Kuyken, and D. Van Thourhout, “Ultra-high Q and finesse all-pass microring resonators on Silicon-on-Insulator using rib waveguides,” in 16th European Conference on Integrated Optics, (2012).

Virot, L.

D. Benedikovic, L. Virot, G. Aubin, F. Amar, B. Szelag, B. Karakus, J.-M. Hartmann, C. Alonso-Ramos, X. L. Roux, P. Crozat, E. Cassan, D. Marris-Morini, C. Baudot, F. Boeuf, J.-M. Fédéli, C. Kopp, and L. Vivien, “25  Gbps low-voltage hetero-structured silicon-germanium waveguide pin photodetectors for monolithic on-chip nanophotonic architectures,” Photonics Res. 7(4), 437–444 (2019).
[Crossref]

Vivien, L.

D. Benedikovic, L. Virot, G. Aubin, F. Amar, B. Szelag, B. Karakus, J.-M. Hartmann, C. Alonso-Ramos, X. L. Roux, P. Crozat, E. Cassan, D. Marris-Morini, C. Baudot, F. Boeuf, J.-M. Fédéli, C. Kopp, and L. Vivien, “25  Gbps low-voltage hetero-structured silicon-germanium waveguide pin photodetectors for monolithic on-chip nanophotonic architectures,” Photonics Res. 7(4), 437–444 (2019).
[Crossref]

Vizbaras, A.

R. Wang, A. Malik, I. Šimonytė, A. Vizbaras, K. Vizbaras, and G. Roelkens, “Compact GaSb/silicon-on-insulator 2.0x µm widely tunable external cavity lasers,” Opt. Express 24(25), 28977–28986 (2016).
[Crossref]

K. Vizbaras, E. Dvinelis, I. Šimonytė, A. Trinkūnas, M. Greibus, R. Songaila, T. Žukauskas, M. Kaušylas, and A. Vizbaras, “High power continuous-wave GaSb-based superluminescent diodes as gain chips for widely tunable laser spectroscopy in the 1.95–2.45 µm wavelength range,” Appl. Phys. Lett. 107(1), 011103 (2015).
[Crossref]

Vizbaras, K.

R. Wang, B. Haq, S. Sprengel, A. Malik, A. Vasiliev, G. Boehm, I. Simonyte, K. Vizbaras, J. Van Campenhout, R. Baets, M. Amann, and G. Roelkens, “Widely Tunable III-V/Silicon Lasers for Spectroscopy in the Short-Wave Infrared,” IEEE J. Sel. Top. Quantum Electron. 25(6), 1–12 (2019).
[Crossref]

R. Wang, A. Malik, I. Šimonytė, A. Vizbaras, K. Vizbaras, and G. Roelkens, “Compact GaSb/silicon-on-insulator 2.0x µm widely tunable external cavity lasers,” Opt. Express 24(25), 28977–28986 (2016).
[Crossref]

K. Vizbaras, E. Dvinelis, I. Šimonytė, A. Trinkūnas, M. Greibus, R. Songaila, T. Žukauskas, M. Kaušylas, and A. Vizbaras, “High power continuous-wave GaSb-based superluminescent diodes as gain chips for widely tunable laser spectroscopy in the 1.95–2.45 µm wavelength range,” Appl. Phys. Lett. 107(1), 011103 (2015).
[Crossref]

Wang, A.

Z. Ruan, L. Shen, S. Zheng, A. Wang, Y. Long, N. Zhou, and J. Wang, “Subwavelength grating slot (SWGS) waveguide at 2 µm for chip-scale data transmission,” Nanophotonics 7(5), 865–871 (2018).
[Crossref]

Wang, F.

J. Li, Y. Liu, Y. Meng, K. Xu, J. Du, F. Wang, Z. He, and Q. Song, “2-µm Wavelength Grating Coupler, Bent Waveguide, and Tunable Microring on Silicon Photonic MPW,” IEEE Photonics Technol. Lett. 30(5), 471–474 (2018).
[Crossref]

Wang, H.

J. X. B. Sia, W. Wang, X. Guo, J. Zhou, Z. Zhang, M. S. Rouifed, X. Li, Z. L. Qiao, C. Y. Liu, C. Littlejohns, G. T. Reed, and H. Wang, “Mid-Infrared, Ultra-Broadband, Low-Loss, Compact Arbitrary Power Splitter Based on Adiabatic Mode Evolution,” IEEE Photonics J. 11(2), 1–11 (2019).
[Crossref]

W. Cao, D. Hagan, D. J. Thomson, M. Nedeljkovic, C. G. Littlejohns, A. Knights, S. Alam, J. Wang, F. Gardes, W. Zhang, S. Liu, K. Li, M. S. Rouifed, G. Xin, W. Wang, H. Wang, G. T. Reed, and G. Z. Mashanovich, “High-speed silicon modulators for the 2 µm band,” Optica 5(9), 1055–1062 (2018).
[Crossref]

X. Li, H. Wang, Z. Qiao, Y. Liao, Y. Zhang, Y. Xu, Z. Niu, C. Tong, and C. Liu, “Temperature- and current-dependent spontaneous emission study on 2 µm InGaSb/AlGaAsSb quantum well lasers,” Jpn. J. Appl. Phys. 56(5), 050310 (2017).
[Crossref]

X. Li, H. Wang, Z. Qiao, X. Guo, G. I. Ng, Y. Zhang, Z. Niu, C. Tong, and C. Liu, “Modal gain characteristics of a 2 µm InGaSb/AlGaAsSb passively mode-locked quantum well laser,” Appl. Phys. Lett. 111(25), 251105 (2017).
[Crossref]

C. Liu, H. Wang, Q. Meng, B. Gao, and K. S. Ang, “Modal Gain and Photoluminescence Investigation of Two-State Lasing in GaAs-Based 1.3 µm InAs/InGaAs Quantum Dot Lasers,” Appl. Phys. Express 6(10), 102702 (2013).
[Crossref]

J. X. B. Sia, W. Wang, Z. Qiao, X. Li, X. Guo, J. Zhou, Z. Zhang, C. Littlejohns, C. Liu, G. T. Reed, and H. Wang, “Compact, ultra-tunable InGaSb/AlGaAsSb Si external cavity laser at the Mid-Infrared (MIR),” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2019).

Wang, J.

Wang, R.

R. Wang, B. Haq, S. Sprengel, A. Malik, A. Vasiliev, G. Boehm, I. Simonyte, K. Vizbaras, J. Van Campenhout, R. Baets, M. Amann, and G. Roelkens, “Widely Tunable III-V/Silicon Lasers for Spectroscopy in the Short-Wave Infrared,” IEEE J. Sel. Top. Quantum Electron. 25(6), 1–12 (2019).
[Crossref]

R. Wang, A. Malik, I. Šimonytė, A. Vizbaras, K. Vizbaras, and G. Roelkens, “Compact GaSb/silicon-on-insulator 2.0x µm widely tunable external cavity lasers,” Opt. Express 24(25), 28977–28986 (2016).
[Crossref]

Wang, W.

J. X. B. Sia, W. Wang, X. Guo, J. Zhou, Z. Zhang, M. S. Rouifed, X. Li, Z. L. Qiao, C. Y. Liu, C. Littlejohns, G. T. Reed, and H. Wang, “Mid-Infrared, Ultra-Broadband, Low-Loss, Compact Arbitrary Power Splitter Based on Adiabatic Mode Evolution,” IEEE Photonics J. 11(2), 1–11 (2019).
[Crossref]

W. Cao, D. Hagan, D. J. Thomson, M. Nedeljkovic, C. G. Littlejohns, A. Knights, S. Alam, J. Wang, F. Gardes, W. Zhang, S. Liu, K. Li, M. S. Rouifed, G. Xin, W. Wang, H. Wang, G. T. Reed, and G. Z. Mashanovich, “High-speed silicon modulators for the 2 µm band,” Optica 5(9), 1055–1062 (2018).
[Crossref]

J. X. B. Sia, W. Wang, Z. Qiao, X. Li, X. Guo, J. Zhou, Z. Zhang, C. Littlejohns, C. Liu, G. T. Reed, and H. Wang, “Compact, ultra-tunable InGaSb/AlGaAsSb Si external cavity laser at the Mid-Infrared (MIR),” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2019).

Wang, Z.

Watts, M. R.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5(1), 4008 (2014).
[Crossref]

Wei, Y.

D. Celo, D. J. Goodwill, J. Jiang, P. Dumais, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, D. Geng, H. Mehrvar, and E. Bernier, “32 × 32 Silicon Photonic Switch,” in 21st OptoElectronics and Communications Conference, International Conference on Photonics in Switching, (2016).

Wheeler, N.

Wheeler, N. V.

Williams, D. P.

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. S. J. Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13(1), 236–244 (2005).
[Crossref]

B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and P. St. J. Russel, “Low loss (1.7 dB/km) hollow core photonic bandgap fiber,” in Optical Fiber Communication Conference, (Optical Society of America, 2004).

Wooler, J. P.

Wu, H.

Xin, G.

Xu, K.

J. Li, Y. Liu, Y. Meng, K. Xu, J. Du, F. Wang, Z. He, and Q. Song, “2-µm Wavelength Grating Coupler, Bent Waveguide, and Tunable Microring on Silicon Photonic MPW,” IEEE Photonics Technol. Lett. 30(5), 471–474 (2018).
[Crossref]

Xu, Y.

X. Li, H. Wang, Z. Qiao, Y. Liao, Y. Zhang, Y. Xu, Z. Niu, C. Tong, and C. Liu, “Temperature- and current-dependent spontaneous emission study on 2 µm InGaSb/AlGaAsSb quantum well lasers,” Jpn. J. Appl. Phys. 56(5), 050310 (2017).
[Crossref]

Yamada, H.

T. Kita, R. Tang, and H. Yamada, “Narrow Spectral Linewidth Silicon Photonic Wavelength Tunable Laser Diode for Digital Coherent Communication System,” IEEE J. Sel. Top. Quantum Electron. 22(6), 23–34 (2016).
[Crossref]

T. Kita, R. Tang, and H. Yamada, “Compact silicon photonic wavelength-tunable laser diode with ultra-wide wavelength tuning range,” Appl. Phys. Lett. 106(11), 111104 (2015).
[Crossref]

Yan, S.

D. Celo, D. J. Goodwill, J. Jiang, P. Dumais, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, D. Geng, H. Mehrvar, and E. Bernier, “32 × 32 Silicon Photonic Switch,” in 21st OptoElectronics and Communications Conference, International Conference on Photonics in Switching, (2016).

Yang, H.

Yang, S.

Ye, N.

Zhang, C.

T. Komljenovic, M. Davenport, J. Hume, A. Y. Liu, C. T. Santis, A. Spott, S. Srinivasan, E. J. Stanton, C. Zhang, and J. E. Bowers, “Heterogenous Silicon Photonic Integrated Circuits,” J. Lightwave Technol. 34(1), 20–35 (2016).
[Crossref]

D. Celo, D. J. Goodwill, J. Jiang, P. Dumais, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, D. Geng, H. Mehrvar, and E. Bernier, “32 × 32 Silicon Photonic Switch,” in 21st OptoElectronics and Communications Conference, International Conference on Photonics in Switching, (2016).

D. Celo, D. J. Goodwill, J. Jiang, P. Dumais, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, D. Geng, H. Mehrvar, and E. Bernier, “32 × 32 Silicon Photonic Switch,” in 21st OptoElectronics and Communications Conference, International Conference on Photonics in Switching, (2016).

Zhang, H.

Zhang, W.

Zhang, Y.

X. Li, H. Wang, Z. Qiao, Y. Liao, Y. Zhang, Y. Xu, Z. Niu, C. Tong, and C. Liu, “Temperature- and current-dependent spontaneous emission study on 2 µm InGaSb/AlGaAsSb quantum well lasers,” Jpn. J. Appl. Phys. 56(5), 050310 (2017).
[Crossref]

X. Li, H. Wang, Z. Qiao, X. Guo, G. I. Ng, Y. Zhang, Z. Niu, C. Tong, and C. Liu, “Modal gain characteristics of a 2 µm InGaSb/AlGaAsSb passively mode-locked quantum well laser,” Appl. Phys. Lett. 111(25), 251105 (2017).
[Crossref]

S. Yang, Y. Zhang, D. W. Grund, G. A. Ejzak, Y. Liu, A. Novack, D. Prather, A. E.-J. Lim, G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “A single adiabatic microring-based laser in 220 nm silicon-on-insulator,” Opt. Express 22(1), 1172–1180 (2014).
[Crossref]

Zhang, Z.

J. X. B. Sia, W. Wang, X. Guo, J. Zhou, Z. Zhang, M. S. Rouifed, X. Li, Z. L. Qiao, C. Y. Liu, C. Littlejohns, G. T. Reed, and H. Wang, “Mid-Infrared, Ultra-Broadband, Low-Loss, Compact Arbitrary Power Splitter Based on Adiabatic Mode Evolution,” IEEE Photonics J. 11(2), 1–11 (2019).
[Crossref]

J. X. B. Sia, W. Wang, Z. Qiao, X. Li, X. Guo, J. Zhou, Z. Zhang, C. Littlejohns, C. Liu, G. T. Reed, and H. Wang, “Compact, ultra-tunable InGaSb/AlGaAsSb Si external cavity laser at the Mid-Infrared (MIR),” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2019).

Zhao, F.

D. Celo, D. J. Goodwill, J. Jiang, P. Dumais, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, D. Geng, H. Mehrvar, and E. Bernier, “32 × 32 Silicon Photonic Switch,” in 21st OptoElectronics and Communications Conference, International Conference on Photonics in Switching, (2016).

Zhao, J.

Zheng, D.

Zheng, S.

Z. Ruan, L. Shen, S. Zheng, A. Wang, Y. Long, N. Zhou, and J. Wang, “Subwavelength grating slot (SWGS) waveguide at 2 µm for chip-scale data transmission,” Nanophotonics 7(5), 865–871 (2018).
[Crossref]

Zheng, X.

Zhou, J.

J. X. B. Sia, W. Wang, X. Guo, J. Zhou, Z. Zhang, M. S. Rouifed, X. Li, Z. L. Qiao, C. Y. Liu, C. Littlejohns, G. T. Reed, and H. Wang, “Mid-Infrared, Ultra-Broadband, Low-Loss, Compact Arbitrary Power Splitter Based on Adiabatic Mode Evolution,” IEEE Photonics J. 11(2), 1–11 (2019).
[Crossref]

J. X. B. Sia, W. Wang, Z. Qiao, X. Li, X. Guo, J. Zhou, Z. Zhang, C. Littlejohns, C. Liu, G. T. Reed, and H. Wang, “Compact, ultra-tunable InGaSb/AlGaAsSb Si external cavity laser at the Mid-Infrared (MIR),” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2019).

Zhou, N.

Z. Ruan, L. Shen, S. Zheng, A. Wang, Y. Long, N. Zhou, and J. Wang, “Subwavelength grating slot (SWGS) waveguide at 2 µm for chip-scale data transmission,” Nanophotonics 7(5), 865–871 (2018).
[Crossref]

Žukauskas, T.

K. Vizbaras, E. Dvinelis, I. Šimonytė, A. Trinkūnas, M. Greibus, R. Songaila, T. Žukauskas, M. Kaušylas, and A. Vizbaras, “High power continuous-wave GaSb-based superluminescent diodes as gain chips for widely tunable laser spectroscopy in the 1.95–2.45 µm wavelength range,” Appl. Phys. Lett. 107(1), 011103 (2015).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Express (1)

C. Liu, H. Wang, Q. Meng, B. Gao, and K. S. Ang, “Modal Gain and Photoluminescence Investigation of Two-State Lasing in GaAs-Based 1.3 µm InAs/InGaAs Quantum Dot Lasers,” Appl. Phys. Express 6(10), 102702 (2013).
[Crossref]

Appl. Phys. Lett. (4)

A. D. Bristow, N. Rotenberg, and H. M. V. Driel, “Two-photon absorption and Kerr coefficients of silicon for 850–2200 nm,” Appl. Phys. Lett. 90(19), 191104 (2007).
[Crossref]

X. Li, H. Wang, Z. Qiao, X. Guo, G. I. Ng, Y. Zhang, Z. Niu, C. Tong, and C. Liu, “Modal gain characteristics of a 2 µm InGaSb/AlGaAsSb passively mode-locked quantum well laser,” Appl. Phys. Lett. 111(25), 251105 (2017).
[Crossref]

K. Vizbaras, E. Dvinelis, I. Šimonytė, A. Trinkūnas, M. Greibus, R. Songaila, T. Žukauskas, M. Kaušylas, and A. Vizbaras, “High power continuous-wave GaSb-based superluminescent diodes as gain chips for widely tunable laser spectroscopy in the 1.95–2.45 µm wavelength range,” Appl. Phys. Lett. 107(1), 011103 (2015).
[Crossref]

T. Kita, R. Tang, and H. Yamada, “Compact silicon photonic wavelength-tunable laser diode with ultra-wide wavelength tuning range,” Appl. Phys. Lett. 106(11), 111104 (2015).
[Crossref]

Electron. Lett. (1)

K. Nagayama, M. Kakui, M. Matsui, T. Saitoh, and Y. Chigusa, “Ultra-low-loss (0.1484 dB∕km) pure silica core fibre and extension of transmission distance,” Electron. Lett. 38(20), 1168–1169 (2002).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

S. J. Savory, “Digital Coherent Optical Receivers: Algorithms and Subsystems,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1164–1179 (2010).
[Crossref]

R. Wang, B. Haq, S. Sprengel, A. Malik, A. Vasiliev, G. Boehm, I. Simonyte, K. Vizbaras, J. Van Campenhout, R. Baets, M. Amann, and G. Roelkens, “Widely Tunable III-V/Silicon Lasers for Spectroscopy in the Short-Wave Infrared,” IEEE J. Sel. Top. Quantum Electron. 25(6), 1–12 (2019).
[Crossref]

T. Kita, R. Tang, and H. Yamada, “Narrow Spectral Linewidth Silicon Photonic Wavelength Tunable Laser Diode for Digital Coherent Communication System,” IEEE J. Sel. Top. Quantum Electron. 22(6), 23–34 (2016).
[Crossref]

IEEE J. Select. Areas Commun. (1)

C. Brackett, “Dense wavelength division multiplexing networks: principles and applications,” IEEE J. Select. Areas Commun. 8(6), 948–964 (1990).
[Crossref]

IEEE Photonics J. (1)

J. X. B. Sia, W. Wang, X. Guo, J. Zhou, Z. Zhang, M. S. Rouifed, X. Li, Z. L. Qiao, C. Y. Liu, C. Littlejohns, G. T. Reed, and H. Wang, “Mid-Infrared, Ultra-Broadband, Low-Loss, Compact Arbitrary Power Splitter Based on Adiabatic Mode Evolution,” IEEE Photonics J. 11(2), 1–11 (2019).
[Crossref]

IEEE Photonics Technol. Lett. (2)

J. Li, Y. Liu, Y. Meng, K. Xu, J. Du, F. Wang, Z. He, and Q. Song, “2-µm Wavelength Grating Coupler, Bent Waveguide, and Tunable Microring on Silicon Photonic MPW,” IEEE Photonics Technol. Lett. 30(5), 471–474 (2018).
[Crossref]

T. Feng, T. Hosoda, L. Shterengas, A. Stein, G. Kipshidze, and G. Belenky, “Two-Step Narrow Ridge Cascade Diode Lasers Emitting Near 2 µm,” IEEE Photonics Technol. Lett. 29(6), 485–488 (2017).
[Crossref]

J. Lightwave Technol. (4)

J. Opt. (1)

D. E. Hagan and A. P. Knights, “Mechanisms for optical loss in SOI waveguides for mid-infrared wavelengths around 2µm,” J. Opt. 19(2), 025801 (2017).
[Crossref]

Jpn. J. Appl. Phys. (1)

X. Li, H. Wang, Z. Qiao, Y. Liao, Y. Zhang, Y. Xu, Z. Niu, C. Tong, and C. Liu, “Temperature- and current-dependent spontaneous emission study on 2 µm InGaSb/AlGaAsSb quantum well lasers,” Jpn. J. Appl. Phys. 56(5), 050310 (2017).
[Crossref]

Laser Photonics Rev. (1)

W. Bogaerts, P. De Heyn, T. V. Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Nanophotonics (1)

Z. Ruan, L. Shen, S. Zheng, A. Wang, Y. Long, N. Zhou, and J. Wang, “Subwavelength grating slot (SWGS) waveguide at 2 µm for chip-scale data transmission,” Nanophotonics 7(5), 865–871 (2018).
[Crossref]

Nat. Commun. (2)

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5(1), 4008 (2014).
[Crossref]

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5(1), 3069 (2014).
[Crossref]

Nat. Photonics (2)

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. N. Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9(6), 393–396 (2015).
[Crossref]

Opt. Express (12)

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. S. J. Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13(1), 236–244 (2005).
[Crossref]

T. Chu, N. Fujioka, and M. Ishizaka, “Compact, lower-power-consumption wavelength tunable laser fabricated with silicon photonic-wire waveguide micro-ring resonators,” Opt. Express 17(16), 14063–14068 (2009).
[Crossref]

P. Dong, S. Liao, D. Feng, H. Liang, D. Zheng, R. Shafiiha, C.-C. Kung, W. Qian, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low Vpp, ultralow-energy, compact, high-speed silicon electro-optic modulator,” Opt. Express 17(25), 22484–22490 (2009).
[Crossref]

R. Wang, A. Malik, I. Šimonytė, A. Vizbaras, K. Vizbaras, and G. Roelkens, “Compact GaSb/silicon-on-insulator 2.0x µm widely tunable external cavity lasers,” Opt. Express 24(25), 28977–28986 (2016).
[Crossref]

H. Guan, A. Novack, T. Galfsky, Y. Ma, S. Fathololoumi, A. Horth, T. N. Huynh, J. Roman, R. Shi, M. Caverley, Y. Liu, T. Baehr-Jones, K. Bergman, and M. Hochberg, “Widely-tunable, narrow-linewidth III-V/silicon hybrid external-cavity laser for coherent communication,” Opt. Express 26(7), 7920–7933 (2018).
[Crossref]

B. Inan, B. Spinnler, F. Ferreira, D. V. D. Borne, A. Lobato, S. Adhikari, V. A. J. M. Sleiffer, M. Kuschnerov, N. Hanik, and S. L. Jansen, “DSP complexity of mode-division multiplexed receivers,” Opt. Express 20(10), 10859–10869 (2012).
[Crossref]

Z. Li, A. M. Heidt, J. M. O. Daniel, Y. Jung, S. U. Alam, and D. J. Richardson, “Thulium-doped fiber amplifier for optical communications at 2 µm,” Opt. Express 21(8), 9289–9297 (2013).
[Crossref]

Z. Li, A. M. Heidt, N. Simakov, Y. Jung, J. M. O. Daniel, S. U. Alam, and D. J. Richardson, “Diode-pumped wideband thulium-doped fiber amplifiers for optical communications in the 1800–2050nm window,” Opt. Express 21(22), 26450–26455 (2013).
[Crossref]

M. N. Petrovich, F. Poletti, J. P. Wooler, A. Heidt, N. Baddela, Z. Li, D. Gray, R. Slavík, F. Parmigiani, N. Wheeler, J. Hayes, E. Numkam, L. Grűner-Nielsen, B. Pálsdóttir, R. Phelan, B. Kelly, J. O’Carroll, M. Becker, N. Macsuibhne, J. Zhao, F. G. Gunning, A. Ellis, P. Petropoulos, S. Alam, and D. Richardson, “Demonstration of amplified data transmission at 2 µm in a low-loss wide bandwidth hollow core photonic bandgap fiber,” Opt. Express 21(23), 28559–28569 (2013).
[Crossref]

S. Yang, Y. Zhang, D. W. Grund, G. A. Ejzak, Y. Liu, A. Novack, D. Prather, A. E.-J. Lim, G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “A single adiabatic microring-based laser in 220 nm silicon-on-insulator,” Opt. Express 22(1), 1172–1180 (2014).
[Crossref]

H. Zhang, N. Kavanagh, Z. Li, J. Zhao, N. Ye, Y. Chen, N. V. Wheeler, J. P. Wooler, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, S. U. Alam, R. Phelan, J. O’Carroll, B. Kelly, L. Grüner-Nielsen, D. J. Richardson, B. Corbett, and F. C. G. Gunning, “100 Gbit/s WDM transmission at 2 µm: transmission studies in both low-loss hollow core photonic bandgap fiber and solid core fiber,” Opt. Express 23(4), 4946–4951 (2015).
[Crossref]

A. Lobato, J. Rabe, F. Ferreira, M. Kuschnerov, B. Spinnler, and B. Lankl, “Near-ML detection for MDL-impaired few-mode fiber transmission,” Opt. Express 23(8), 9589–9601 (2015).
[Crossref]

Opt. Lett. (2)

Opt. Photonics News (1)

F. Gunning and B. Corbett, “Time to Open the 2-µm Window?” Opt. Photonics News 30(3), 42 (2019).
[Crossref]

Optica (2)

Photonics Res. (1)

D. Benedikovic, L. Virot, G. Aubin, F. Amar, B. Szelag, B. Karakus, J.-M. Hartmann, C. Alonso-Ramos, X. L. Roux, P. Crozat, E. Cassan, D. Marris-Morini, C. Baudot, F. Boeuf, J.-M. Fédéli, C. Kopp, and L. Vivien, “25  Gbps low-voltage hetero-structured silicon-germanium waveguide pin photodetectors for monolithic on-chip nanophotonic architectures,” Photonics Res. 7(4), 437–444 (2019).
[Crossref]

Science (1)

D. J. Richardson, “Filling the Light Pipe,” Science 330(6002), 327–328 (2010).
[Crossref]

Other (8)

E. Desurvire, Erbium-doped fiber amplifiers: principles and applications (Wiley-Interscience: New York, NY, 2002).

K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, Frontiers in Guided Wave Optics and Optoelectronics: 2 µm Sources and Their Possible Applications (Intech Open, 2010).

B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and P. St. J. Russel, “Low loss (1.7 dB/km) hollow core photonic bandgap fiber,” in Optical Fiber Communication Conference, (Optical Society of America, 2004).

P. De Heyn, D. Vermeulen, T. Van Vaerenbergh, G. Kuyken, and D. Van Thourhout, “Ultra-high Q and finesse all-pass microring resonators on Silicon-on-Insulator using rib waveguides,” in 16th European Conference on Integrated Optics, (2012).

D. Celo, D. J. Goodwill, J. Jiang, P. Dumais, C. Zhang, F. Zhao, X. Tu, C. Zhang, S. Yan, J. He, M. Li, W. Liu, Y. Wei, D. Geng, H. Mehrvar, and E. Bernier, “32 × 32 Silicon Photonic Switch,” in 21st OptoElectronics and Communications Conference, International Conference on Photonics in Switching, (2016).

M. Melieres and C. Marechal, Climate Change: Past, Present and Future (Wiley Blackwell, 2015), Chap. 7.

J. X. B. Sia, W. Wang, Z. Qiao, X. Li, X. Guo, J. Zhou, Z. Zhang, C. Littlejohns, C. Liu, G. T. Reed, and H. Wang, “Compact, ultra-tunable InGaSb/AlGaAsSb Si external cavity laser at the Mid-Infrared (MIR),” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2019).

Everlz, “9000WDM Dense WDM 1RU Optical Unit,” https://evertz.com/products/9000DWDM

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. 3-D schematic of the SHREC wavelength-tunable laser diode; inset shows the micrograph images of the SOA, SiPh SSC and wavelength-tunable Vernier cavity.
Fig. 2.
Fig. 2. (a) The red, blue and yellow lines indicate the power transmittance spectra of the Vernier filter, MRR 1, 2 respectively when HMRR1 = HMRR2 = 0 mW. (b) Measured and theoretical Vernier power transmittance spectra (1935-1985nm) when HMRR1 = HMRR2 = 0 mW. (c) Measured and theoretical Vernier power transmittance spectra (1935-1985nm) when HMRR1 = 12.4 mW, HMRR2 = 0 mW.
Fig. 3.
Fig. 3. (a) 3-D schematic of MMI coupler with associated physical parameters. (b) Measured linear fit for 1 × 2 MMI over 4 stages. (b) Simulated operation bandwidth of the 1 × 2 MMI.
Fig. 4.
Fig. 4. (a) Epitaxial structure of InGaSb-AlGaAsSb SOA (x-y plane). (b) Measured spontaneous emission spectra of the InGaSb-AlGaAsSb SOA at Ibias = 250, 350, 450 mA.
Fig. 5.
Fig. 5. (a) Simulated SiPh Chip-SOA coupling as a function of misalignment (x/y/z). Inset shows the near-field electric-field distribution of the Si slab and $\textrm{III - V}$ waveguide. (b) Simulated insertion loss of the SSC as a function of coupler length. Inset shows the electric-field distribution (y-z plane) of a 200 µm-long SSC.
Fig. 6.
Fig. 6. (a) On-chip output power against Ibias (L-I). Inset shows the evolution of the lasing spectra as Ibias is increased. (b) Laser I-V.
Fig. 7.
Fig. 7. (a) Superimposed lasing spectra at Ibias = 450 mA. (b) SMSR at each lasing wavelength at Ibias = 450 mA. HMRR1 power required for lasing at corresponding wavelength.
Fig. 8.
Fig. 8. (a) Superimposed lasing spectra with ∼0.8 nm (100 GHz) resolution tuning. (b) HMRR1 and HMRR2 required for lasing at corresponding wavelength.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P r i n g   1 ,   2 = | κ κ α exp ( j θ r i n g   1 ,   2 ) 1 ( 1 | κ 2 | ) ( 1 | κ 2 | ) α exp ( j θ r i n g   1 ,   2 ) | 2

Metrics