Abstract

Entangled sources are important components for quantum information science and technology (QIST). The ability to generate high-quality entangled sources will determine the extent of progress in this field. Unlike previous schemes, a thin quasi-phase matching nonlinear crystal and a dense-wave-division-multiplexing device are used here to build high-quality versatile photonic sources with a simple configuration that can be used to perform Hong-Ou-Mandel interference, time-energy entanglement and multi-channel polarization entanglement experiments. The measurement results from various quantum optical experiments show the high quality of these photonic sources. These multi-functional photonic sources will be very useful in a variety of QIST applications.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
CW-pumped telecom band polarization entangled photon pair generation in a Sagnac interferometer

Yan Li, Zhi-Yuan Zhou, Dong-Sheng Ding, and Bao-Sen Shi
Opt. Express 23(22) 28792-28800 (2015)

On-chip generation of time-and wavelength-division multiplexed multiple time-bin entanglement

Wen-Tan Fang, Yin-Hai Li, Zhi-Yuan Zhou, Li-Xin Xu, Guang-Can Guo, and Bao-Sen Shi
Opt. Express 26(10) 12912-12921 (2018)

Direct generation of frequency-bin entangled photons via two-period quasi-phase-matched parametric downconversion

Fumihiro Kaneda, Hirofumi Suzuki, Ryosuke Shimizu, and Keiichi Edamatsu
Opt. Express 27(2) 1416-1424 (2019)

References

  • View by:
  • |
  • |
  • |

  1. F. Flamini, N. Spagnolo, and F. Sciarrino, “Photonic quantum information processing: a review,” Rep. Prog. Phys. 82(1), 016001 (2019).
    [Crossref]
  2. L. Caspani, C. Xiong, B. J. Eggleton, D. Bajoni, M. Liscidini, M. Galli, R. Morandotti, and D. J. Moss, “Integrated sources of photon quantum states based on nonlinear optics,” Light: Sci. Appl. 6(11), e17100 (2017).
    [Crossref]
  3. D. C. Burnham and D. L. Weinberg, “Observation of Simultaneity in Parametric Production of Optical Photon Pairs,” Phys. Rev. Lett. 25(2), 84–87 (1970).
    [Crossref]
  4. H. Takesue and K. Inoue, “Generation of polarization-entangled photon pairs and violation of Bell's inequality using spontaneous four-wave mixing in a fiber loop,” Phys. Rev. A 70(3), 031802 (2004).
    [Crossref]
  5. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New High-Intensity Source of Polarization-Entangled Photon Pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
    [Crossref]
  6. Y. Li, Z.-Y. Zhou, D.-S. Ding, and B.-S. Shi, “CW-pumped telecom band polarization entangled photon pair generation in a Sagnac interferometer,” Opt. Express 23(22), 28792–28800 (2015).
    [Crossref]
  7. A. Martin, A. Issautier, H. Herrmann, W. Sohler, D. B. Ostrowsky, O. Alibart, and S. Tanzilli, “A polarization entangled photon-pair source based on a type-II PPLN waveguide emitting at a telecom wavelength,” New J. Phys. 12(10), 103005 (2010).
    [Crossref]
  8. R.-B. Jin, R. Shimizu, K. Wakui, M. Fujiwara, T. Yamashita, S. Miki, H. Terai, Z. Wang, and M. Sasaki, “Pulsed Sagnac polarization-entangled photon source with a PPKTP crystal at telecom wavelength,” Opt. Express 22(10), 11498–11507 (2014).
    [Crossref]
  9. Y.-F. Huang, B.-H. Liu, L. Peng, Y.-H. Li, L. Li, C.-F. Li, and G.-C. Guo, “Experimental generation of an eight-photon Greenberger–Horne–Zeilinger state,” Nat. Commun. 2(1), 546 (2011).
    [Crossref]
  10. P. G. Evans, R. S. Bennink, W. P. Grice, T. S. Humble, and J. Schaake, “Bright Source of Spectrally Uncorrelated Polarization-Entangled Photons with Nearly Single-Mode Emission,” Phys. Rev. Lett. 105(25), 253601 (2010).
    [Crossref]
  11. Y. Chen, S. Ecker, S. Wengerowsky, L. Bulla, S. K. Joshi, F. Steinlechner, and R. Ursin, “Polarization Entanglement by Time-Reversed Hong-Ou-Mandel Interference,” Phys. Rev. Lett. 121(20), 200502 (2018).
    [Crossref]
  12. D. Grassani, S. Azzini, M. Liscidini, M. Galli, M. J. Strain, M. Sorel, J. E. Sipe, and D. Bajoni, “Micrometer-scale integrated silicon source of time-energy entangled photons,” Optica 2(2), 88–94 (2015).
    [Crossref]
  13. J. Park, T. Jeong, H. Kim, and H. S. Moon, “Time-Energy Entangled Photon Pairs from Doppler-Broadened Atomic Ensemble via Collective Two-Photon Coherence,” Phys. Rev. Lett. 121(26), 263601 (2018).
    [Crossref]
  14. Y.-H. Li, Z.-Y. Zhou, L.-T. Feng, W.-T. Fang, S.-l. Liu, S.-K. Liu, K. Wang, X.-F. Ren, D.-S. Ding, L.-X. Xu, and B.-S. Shi, “On-Chip Multiplexed Multiple Entanglement Sources in a Single Silicon Nanowire,” Phys. Rev. Appl. 7(6), 064005 (2017).
    [Crossref]
  15. Y.-H. Li, Z.-Y. Zhou, Z.-H. Xu, L.-X. Xu, B.-S. Shi, and G.-C. Guo, “Multiplexed entangled photon-pair sources for all-fiber quantum networks,” Phys. Rev. A 94(4), 043810 (2016).
    [Crossref]
  16. H. Takesue and K. Inoue, “Generation of 1.5 µm band time-bin entanglement using spontaneous fiber four-wave mixing and planar light-wave circuit interferometers,” Phys. Rev. A 72(4), 041804 (2005).
    [Crossref]
  17. J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed Energy-Time Entangled Twin-Photon Source for Quantum Communication,” Phys. Rev. Lett. 82(12), 2594–2597 (1999).
    [Crossref]
  18. R. Fickler, R. Lapkiewicz, W. N. Plick, M. Krenn, C. Schaeff, S. Ramelow, and A. Zeilinger, “Quantum Entanglement of High Angular Momenta,” Science 338(6107), 640–643 (2012).
    [Crossref]
  19. A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and E. Andersson, “Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities,” Nat. Phys. 7(9), 677–680 (2011).
    [Crossref]
  20. Z.-Y. Zhou, Y. Li, D.-S. Ding, W. Zhang, S. Shi, and B.-S. Shi, “Classical to quantum optical network link for orbital angular momentum-carrying light,” Opt. Express 23(14), 18435–18444 (2015).
    [Crossref]
  21. J. C. Howell, R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Realization of the Einstein-Podolsky-Rosen Paradox Using Momentum- and Position-Entangled Photons from Spontaneous Parametric Down Conversion,” Phys. Rev. Lett. 92(21), 210403 (2004).
    [Crossref]
  22. J.-C. Lee, K.-K. Park, T.-M. Zhao, and Y.-H. Kim, “Einstein-Podolsky-Rosen Entanglement of Narrow-Band Photons from Cold Atoms,” Phys. Rev. Lett. 117(25), 250501 (2016).
    [Crossref]
  23. S. Shi, D. S. Ding, Y. C. Yu, W. Zhang, M. X. Dong, K. Wang, Y. H. Ye, G. C. Guo, and B. S. Shi, “Vortex-phase-dependent momentum and position entanglement generated from cold atoms,” Phys. Rev. A 97(6), 063847 (2018).
    [Crossref]
  24. C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59(18), 2044–2046 (1987).
    [Crossref]
  25. Z.-Y. Zhou, S.-K. Liu, S.-L. Liu, Y.-H. Li, Y. Li, C. Yang, Z.-H. Xu, G.-C. Guo, and B.-S. Shi, “Revealing the Behavior of Photons in a Birefringent Interferometer,” Phys. Rev. Lett. 120(26), 263601 (2018).
    [Crossref]
  26. Y. Chen, M. Fink, F. Steinlechner, J. P. Torres, and R. Ursin, “Hong-Ou-Mandel interferometry on a biphoton beat note,” npj Quantum Inf. 5(1), 43 (2019).
    [Crossref]
  27. A. Lyons, G. C. Knee, E. Bolduc, T. Roger, J. Leach, E. M. Gauger, and D. Faccio, “Attosecond-resolution Hong-Ou-Mandel interferometry,” Sci. Adv. 4(5), eaap9416 (2018).
    [Crossref]
  28. J. D. Franson, “Bell inequality for position and time,” Phys. Rev. Lett. 62(19), 2205–2208 (1989).
    [Crossref]
  29. Z.-Y. Zhou, Y.-K. Jiang, D.-S. Ding, B.-S. Shi, and G.-C. Guo, “Actively switchable nondegenerate polarization-entangled photon-pair distribution in dense wave-division multiplexing,” Phys. Rev. A 87(4), 045806 (2013).
    [Crossref]
  30. C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, “High flux source of polarization entangled photons from a periodically poled KTiOPO4 parametric down converter,” Phys. Rev. A 69(1), 013807 (2004).
    [Crossref]
  31. J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed Experiment to Test Local Hidden-Variable Theories,” Phys. Rev. Lett. 23(15), 880–884 (1969).
    [Crossref]
  32. D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64(5), 052312 (2001).
    [Crossref]
  33. V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-Enhanced Measurements: Beating the Standard Quantum Limit,” Science 306(5700), 1330–1336 (2004).
    [Crossref]
  34. C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351(6278), 1176–1180 (2016).
    [Crossref]
  35. J. A. Jaramillo-Villegas, P. Imany, O. D. Odele, D. E. Leaird, Z.-Y. Ou, M. Qi, and A. M. Weiner, “Persistent energy–time entanglement covering multiple resonances of an on-chip biphoton frequency comb,” Optica 4(6), 655 (2017).
    [Crossref]
  36. S. Wengerowsky, S. K. Joshi, F. Steinlechner, H. Hübel, and R. Ursin, “An entanglement-based wavelength-multiplexed quantum communication network,” Nature 564(7735), 225–228 (2018).
    [Crossref]
  37. T. Xiang, Y. Li, Y. Zheng, and X. Chen, “Multiple-DWDM-channel heralded single photon source based on a periodically poled lithium niobate waveguide,” Opt. Express 25(11), 12493–12498 (2017).
    [Crossref]

2019 (2)

F. Flamini, N. Spagnolo, and F. Sciarrino, “Photonic quantum information processing: a review,” Rep. Prog. Phys. 82(1), 016001 (2019).
[Crossref]

Y. Chen, M. Fink, F. Steinlechner, J. P. Torres, and R. Ursin, “Hong-Ou-Mandel interferometry on a biphoton beat note,” npj Quantum Inf. 5(1), 43 (2019).
[Crossref]

2018 (6)

A. Lyons, G. C. Knee, E. Bolduc, T. Roger, J. Leach, E. M. Gauger, and D. Faccio, “Attosecond-resolution Hong-Ou-Mandel interferometry,” Sci. Adv. 4(5), eaap9416 (2018).
[Crossref]

Z.-Y. Zhou, S.-K. Liu, S.-L. Liu, Y.-H. Li, Y. Li, C. Yang, Z.-H. Xu, G.-C. Guo, and B.-S. Shi, “Revealing the Behavior of Photons in a Birefringent Interferometer,” Phys. Rev. Lett. 120(26), 263601 (2018).
[Crossref]

S. Shi, D. S. Ding, Y. C. Yu, W. Zhang, M. X. Dong, K. Wang, Y. H. Ye, G. C. Guo, and B. S. Shi, “Vortex-phase-dependent momentum and position entanglement generated from cold atoms,” Phys. Rev. A 97(6), 063847 (2018).
[Crossref]

S. Wengerowsky, S. K. Joshi, F. Steinlechner, H. Hübel, and R. Ursin, “An entanglement-based wavelength-multiplexed quantum communication network,” Nature 564(7735), 225–228 (2018).
[Crossref]

J. Park, T. Jeong, H. Kim, and H. S. Moon, “Time-Energy Entangled Photon Pairs from Doppler-Broadened Atomic Ensemble via Collective Two-Photon Coherence,” Phys. Rev. Lett. 121(26), 263601 (2018).
[Crossref]

Y. Chen, S. Ecker, S. Wengerowsky, L. Bulla, S. K. Joshi, F. Steinlechner, and R. Ursin, “Polarization Entanglement by Time-Reversed Hong-Ou-Mandel Interference,” Phys. Rev. Lett. 121(20), 200502 (2018).
[Crossref]

2017 (4)

Y.-H. Li, Z.-Y. Zhou, L.-T. Feng, W.-T. Fang, S.-l. Liu, S.-K. Liu, K. Wang, X.-F. Ren, D.-S. Ding, L.-X. Xu, and B.-S. Shi, “On-Chip Multiplexed Multiple Entanglement Sources in a Single Silicon Nanowire,” Phys. Rev. Appl. 7(6), 064005 (2017).
[Crossref]

L. Caspani, C. Xiong, B. J. Eggleton, D. Bajoni, M. Liscidini, M. Galli, R. Morandotti, and D. J. Moss, “Integrated sources of photon quantum states based on nonlinear optics,” Light: Sci. Appl. 6(11), e17100 (2017).
[Crossref]

T. Xiang, Y. Li, Y. Zheng, and X. Chen, “Multiple-DWDM-channel heralded single photon source based on a periodically poled lithium niobate waveguide,” Opt. Express 25(11), 12493–12498 (2017).
[Crossref]

J. A. Jaramillo-Villegas, P. Imany, O. D. Odele, D. E. Leaird, Z.-Y. Ou, M. Qi, and A. M. Weiner, “Persistent energy–time entanglement covering multiple resonances of an on-chip biphoton frequency comb,” Optica 4(6), 655 (2017).
[Crossref]

2016 (3)

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351(6278), 1176–1180 (2016).
[Crossref]

J.-C. Lee, K.-K. Park, T.-M. Zhao, and Y.-H. Kim, “Einstein-Podolsky-Rosen Entanglement of Narrow-Band Photons from Cold Atoms,” Phys. Rev. Lett. 117(25), 250501 (2016).
[Crossref]

Y.-H. Li, Z.-Y. Zhou, Z.-H. Xu, L.-X. Xu, B.-S. Shi, and G.-C. Guo, “Multiplexed entangled photon-pair sources for all-fiber quantum networks,” Phys. Rev. A 94(4), 043810 (2016).
[Crossref]

2015 (3)

2014 (1)

2013 (1)

Z.-Y. Zhou, Y.-K. Jiang, D.-S. Ding, B.-S. Shi, and G.-C. Guo, “Actively switchable nondegenerate polarization-entangled photon-pair distribution in dense wave-division multiplexing,” Phys. Rev. A 87(4), 045806 (2013).
[Crossref]

2012 (1)

R. Fickler, R. Lapkiewicz, W. N. Plick, M. Krenn, C. Schaeff, S. Ramelow, and A. Zeilinger, “Quantum Entanglement of High Angular Momenta,” Science 338(6107), 640–643 (2012).
[Crossref]

2011 (2)

A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and E. Andersson, “Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities,” Nat. Phys. 7(9), 677–680 (2011).
[Crossref]

Y.-F. Huang, B.-H. Liu, L. Peng, Y.-H. Li, L. Li, C.-F. Li, and G.-C. Guo, “Experimental generation of an eight-photon Greenberger–Horne–Zeilinger state,” Nat. Commun. 2(1), 546 (2011).
[Crossref]

2010 (2)

P. G. Evans, R. S. Bennink, W. P. Grice, T. S. Humble, and J. Schaake, “Bright Source of Spectrally Uncorrelated Polarization-Entangled Photons with Nearly Single-Mode Emission,” Phys. Rev. Lett. 105(25), 253601 (2010).
[Crossref]

A. Martin, A. Issautier, H. Herrmann, W. Sohler, D. B. Ostrowsky, O. Alibart, and S. Tanzilli, “A polarization entangled photon-pair source based on a type-II PPLN waveguide emitting at a telecom wavelength,” New J. Phys. 12(10), 103005 (2010).
[Crossref]

2005 (1)

H. Takesue and K. Inoue, “Generation of 1.5 µm band time-bin entanglement using spontaneous fiber four-wave mixing and planar light-wave circuit interferometers,” Phys. Rev. A 72(4), 041804 (2005).
[Crossref]

2004 (4)

H. Takesue and K. Inoue, “Generation of polarization-entangled photon pairs and violation of Bell's inequality using spontaneous four-wave mixing in a fiber loop,” Phys. Rev. A 70(3), 031802 (2004).
[Crossref]

C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, “High flux source of polarization entangled photons from a periodically poled KTiOPO4 parametric down converter,” Phys. Rev. A 69(1), 013807 (2004).
[Crossref]

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-Enhanced Measurements: Beating the Standard Quantum Limit,” Science 306(5700), 1330–1336 (2004).
[Crossref]

J. C. Howell, R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Realization of the Einstein-Podolsky-Rosen Paradox Using Momentum- and Position-Entangled Photons from Spontaneous Parametric Down Conversion,” Phys. Rev. Lett. 92(21), 210403 (2004).
[Crossref]

2001 (1)

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64(5), 052312 (2001).
[Crossref]

1999 (1)

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed Energy-Time Entangled Twin-Photon Source for Quantum Communication,” Phys. Rev. Lett. 82(12), 2594–2597 (1999).
[Crossref]

1995 (1)

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New High-Intensity Source of Polarization-Entangled Photon Pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[Crossref]

1989 (1)

J. D. Franson, “Bell inequality for position and time,” Phys. Rev. Lett. 62(19), 2205–2208 (1989).
[Crossref]

1987 (1)

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59(18), 2044–2046 (1987).
[Crossref]

1970 (1)

D. C. Burnham and D. L. Weinberg, “Observation of Simultaneity in Parametric Production of Optical Photon Pairs,” Phys. Rev. Lett. 25(2), 84–87 (1970).
[Crossref]

1969 (1)

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed Experiment to Test Local Hidden-Variable Theories,” Phys. Rev. Lett. 23(15), 880–884 (1969).
[Crossref]

Alibart, O.

A. Martin, A. Issautier, H. Herrmann, W. Sohler, D. B. Ostrowsky, O. Alibart, and S. Tanzilli, “A polarization entangled photon-pair source based on a type-II PPLN waveguide emitting at a telecom wavelength,” New J. Phys. 12(10), 103005 (2010).
[Crossref]

Andersson, E.

A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and E. Andersson, “Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities,” Nat. Phys. 7(9), 677–680 (2011).
[Crossref]

Azzini, S.

Bajoni, D.

L. Caspani, C. Xiong, B. J. Eggleton, D. Bajoni, M. Liscidini, M. Galli, R. Morandotti, and D. J. Moss, “Integrated sources of photon quantum states based on nonlinear optics,” Light: Sci. Appl. 6(11), e17100 (2017).
[Crossref]

D. Grassani, S. Azzini, M. Liscidini, M. Galli, M. J. Strain, M. Sorel, J. E. Sipe, and D. Bajoni, “Micrometer-scale integrated silicon source of time-energy entangled photons,” Optica 2(2), 88–94 (2015).
[Crossref]

Bennink, R. S.

P. G. Evans, R. S. Bennink, W. P. Grice, T. S. Humble, and J. Schaake, “Bright Source of Spectrally Uncorrelated Polarization-Entangled Photons with Nearly Single-Mode Emission,” Phys. Rev. Lett. 105(25), 253601 (2010).
[Crossref]

J. C. Howell, R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Realization of the Einstein-Podolsky-Rosen Paradox Using Momentum- and Position-Entangled Photons from Spontaneous Parametric Down Conversion,” Phys. Rev. Lett. 92(21), 210403 (2004).
[Crossref]

Bentley, S. J.

J. C. Howell, R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Realization of the Einstein-Podolsky-Rosen Paradox Using Momentum- and Position-Entangled Photons from Spontaneous Parametric Down Conversion,” Phys. Rev. Lett. 92(21), 210403 (2004).
[Crossref]

Bolduc, E.

A. Lyons, G. C. Knee, E. Bolduc, T. Roger, J. Leach, E. M. Gauger, and D. Faccio, “Attosecond-resolution Hong-Ou-Mandel interferometry,” Sci. Adv. 4(5), eaap9416 (2018).
[Crossref]

Boyd, R. W.

J. C. Howell, R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Realization of the Einstein-Podolsky-Rosen Paradox Using Momentum- and Position-Entangled Photons from Spontaneous Parametric Down Conversion,” Phys. Rev. Lett. 92(21), 210403 (2004).
[Crossref]

Brendel, J.

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed Energy-Time Entangled Twin-Photon Source for Quantum Communication,” Phys. Rev. Lett. 82(12), 2594–2597 (1999).
[Crossref]

Bromberg, Y.

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351(6278), 1176–1180 (2016).
[Crossref]

Bulla, L.

Y. Chen, S. Ecker, S. Wengerowsky, L. Bulla, S. K. Joshi, F. Steinlechner, and R. Ursin, “Polarization Entanglement by Time-Reversed Hong-Ou-Mandel Interference,” Phys. Rev. Lett. 121(20), 200502 (2018).
[Crossref]

Buller, G. S.

A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and E. Andersson, “Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities,” Nat. Phys. 7(9), 677–680 (2011).
[Crossref]

Burnham, D. C.

D. C. Burnham and D. L. Weinberg, “Observation of Simultaneity in Parametric Production of Optical Photon Pairs,” Phys. Rev. Lett. 25(2), 84–87 (1970).
[Crossref]

Caspani, L.

L. Caspani, C. Xiong, B. J. Eggleton, D. Bajoni, M. Liscidini, M. Galli, R. Morandotti, and D. J. Moss, “Integrated sources of photon quantum states based on nonlinear optics,” Light: Sci. Appl. 6(11), e17100 (2017).
[Crossref]

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351(6278), 1176–1180 (2016).
[Crossref]

Chen, X.

Chen, Y.

Y. Chen, M. Fink, F. Steinlechner, J. P. Torres, and R. Ursin, “Hong-Ou-Mandel interferometry on a biphoton beat note,” npj Quantum Inf. 5(1), 43 (2019).
[Crossref]

Y. Chen, S. Ecker, S. Wengerowsky, L. Bulla, S. K. Joshi, F. Steinlechner, and R. Ursin, “Polarization Entanglement by Time-Reversed Hong-Ou-Mandel Interference,” Phys. Rev. Lett. 121(20), 200502 (2018).
[Crossref]

Chu, S. T.

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351(6278), 1176–1180 (2016).
[Crossref]

Clauser, J. F.

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed Experiment to Test Local Hidden-Variable Theories,” Phys. Rev. Lett. 23(15), 880–884 (1969).
[Crossref]

Dada, A. C.

A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and E. Andersson, “Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities,” Nat. Phys. 7(9), 677–680 (2011).
[Crossref]

Ding, D. S.

S. Shi, D. S. Ding, Y. C. Yu, W. Zhang, M. X. Dong, K. Wang, Y. H. Ye, G. C. Guo, and B. S. Shi, “Vortex-phase-dependent momentum and position entanglement generated from cold atoms,” Phys. Rev. A 97(6), 063847 (2018).
[Crossref]

Ding, D.-S.

Y.-H. Li, Z.-Y. Zhou, L.-T. Feng, W.-T. Fang, S.-l. Liu, S.-K. Liu, K. Wang, X.-F. Ren, D.-S. Ding, L.-X. Xu, and B.-S. Shi, “On-Chip Multiplexed Multiple Entanglement Sources in a Single Silicon Nanowire,” Phys. Rev. Appl. 7(6), 064005 (2017).
[Crossref]

Z.-Y. Zhou, Y. Li, D.-S. Ding, W. Zhang, S. Shi, and B.-S. Shi, “Classical to quantum optical network link for orbital angular momentum-carrying light,” Opt. Express 23(14), 18435–18444 (2015).
[Crossref]

Y. Li, Z.-Y. Zhou, D.-S. Ding, and B.-S. Shi, “CW-pumped telecom band polarization entangled photon pair generation in a Sagnac interferometer,” Opt. Express 23(22), 28792–28800 (2015).
[Crossref]

Z.-Y. Zhou, Y.-K. Jiang, D.-S. Ding, B.-S. Shi, and G.-C. Guo, “Actively switchable nondegenerate polarization-entangled photon-pair distribution in dense wave-division multiplexing,” Phys. Rev. A 87(4), 045806 (2013).
[Crossref]

Dong, M. X.

S. Shi, D. S. Ding, Y. C. Yu, W. Zhang, M. X. Dong, K. Wang, Y. H. Ye, G. C. Guo, and B. S. Shi, “Vortex-phase-dependent momentum and position entanglement generated from cold atoms,” Phys. Rev. A 97(6), 063847 (2018).
[Crossref]

Ecker, S.

Y. Chen, S. Ecker, S. Wengerowsky, L. Bulla, S. K. Joshi, F. Steinlechner, and R. Ursin, “Polarization Entanglement by Time-Reversed Hong-Ou-Mandel Interference,” Phys. Rev. Lett. 121(20), 200502 (2018).
[Crossref]

Eggleton, B. J.

L. Caspani, C. Xiong, B. J. Eggleton, D. Bajoni, M. Liscidini, M. Galli, R. Morandotti, and D. J. Moss, “Integrated sources of photon quantum states based on nonlinear optics,” Light: Sci. Appl. 6(11), e17100 (2017).
[Crossref]

Evans, P. G.

P. G. Evans, R. S. Bennink, W. P. Grice, T. S. Humble, and J. Schaake, “Bright Source of Spectrally Uncorrelated Polarization-Entangled Photons with Nearly Single-Mode Emission,” Phys. Rev. Lett. 105(25), 253601 (2010).
[Crossref]

Faccio, D.

A. Lyons, G. C. Knee, E. Bolduc, T. Roger, J. Leach, E. M. Gauger, and D. Faccio, “Attosecond-resolution Hong-Ou-Mandel interferometry,” Sci. Adv. 4(5), eaap9416 (2018).
[Crossref]

Fang, W.-T.

Y.-H. Li, Z.-Y. Zhou, L.-T. Feng, W.-T. Fang, S.-l. Liu, S.-K. Liu, K. Wang, X.-F. Ren, D.-S. Ding, L.-X. Xu, and B.-S. Shi, “On-Chip Multiplexed Multiple Entanglement Sources in a Single Silicon Nanowire,” Phys. Rev. Appl. 7(6), 064005 (2017).
[Crossref]

Feng, L.-T.

Y.-H. Li, Z.-Y. Zhou, L.-T. Feng, W.-T. Fang, S.-l. Liu, S.-K. Liu, K. Wang, X.-F. Ren, D.-S. Ding, L.-X. Xu, and B.-S. Shi, “On-Chip Multiplexed Multiple Entanglement Sources in a Single Silicon Nanowire,” Phys. Rev. Appl. 7(6), 064005 (2017).
[Crossref]

Fickler, R.

R. Fickler, R. Lapkiewicz, W. N. Plick, M. Krenn, C. Schaeff, S. Ramelow, and A. Zeilinger, “Quantum Entanglement of High Angular Momenta,” Science 338(6107), 640–643 (2012).
[Crossref]

Fink, M.

Y. Chen, M. Fink, F. Steinlechner, J. P. Torres, and R. Ursin, “Hong-Ou-Mandel interferometry on a biphoton beat note,” npj Quantum Inf. 5(1), 43 (2019).
[Crossref]

Fiorentino, M.

C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, “High flux source of polarization entangled photons from a periodically poled KTiOPO4 parametric down converter,” Phys. Rev. A 69(1), 013807 (2004).
[Crossref]

Flamini, F.

F. Flamini, N. Spagnolo, and F. Sciarrino, “Photonic quantum information processing: a review,” Rep. Prog. Phys. 82(1), 016001 (2019).
[Crossref]

Franson, J. D.

J. D. Franson, “Bell inequality for position and time,” Phys. Rev. Lett. 62(19), 2205–2208 (1989).
[Crossref]

Fujiwara, M.

Galli, M.

L. Caspani, C. Xiong, B. J. Eggleton, D. Bajoni, M. Liscidini, M. Galli, R. Morandotti, and D. J. Moss, “Integrated sources of photon quantum states based on nonlinear optics,” Light: Sci. Appl. 6(11), e17100 (2017).
[Crossref]

D. Grassani, S. Azzini, M. Liscidini, M. Galli, M. J. Strain, M. Sorel, J. E. Sipe, and D. Bajoni, “Micrometer-scale integrated silicon source of time-energy entangled photons,” Optica 2(2), 88–94 (2015).
[Crossref]

Gauger, E. M.

A. Lyons, G. C. Knee, E. Bolduc, T. Roger, J. Leach, E. M. Gauger, and D. Faccio, “Attosecond-resolution Hong-Ou-Mandel interferometry,” Sci. Adv. 4(5), eaap9416 (2018).
[Crossref]

Giovannetti, V.

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-Enhanced Measurements: Beating the Standard Quantum Limit,” Science 306(5700), 1330–1336 (2004).
[Crossref]

Gisin, N.

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed Energy-Time Entangled Twin-Photon Source for Quantum Communication,” Phys. Rev. Lett. 82(12), 2594–2597 (1999).
[Crossref]

Grassani, D.

Grazioso, F.

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351(6278), 1176–1180 (2016).
[Crossref]

Grice, W. P.

P. G. Evans, R. S. Bennink, W. P. Grice, T. S. Humble, and J. Schaake, “Bright Source of Spectrally Uncorrelated Polarization-Entangled Photons with Nearly Single-Mode Emission,” Phys. Rev. Lett. 105(25), 253601 (2010).
[Crossref]

Guo, G. C.

S. Shi, D. S. Ding, Y. C. Yu, W. Zhang, M. X. Dong, K. Wang, Y. H. Ye, G. C. Guo, and B. S. Shi, “Vortex-phase-dependent momentum and position entanglement generated from cold atoms,” Phys. Rev. A 97(6), 063847 (2018).
[Crossref]

Guo, G.-C.

Z.-Y. Zhou, S.-K. Liu, S.-L. Liu, Y.-H. Li, Y. Li, C. Yang, Z.-H. Xu, G.-C. Guo, and B.-S. Shi, “Revealing the Behavior of Photons in a Birefringent Interferometer,” Phys. Rev. Lett. 120(26), 263601 (2018).
[Crossref]

Y.-H. Li, Z.-Y. Zhou, Z.-H. Xu, L.-X. Xu, B.-S. Shi, and G.-C. Guo, “Multiplexed entangled photon-pair sources for all-fiber quantum networks,” Phys. Rev. A 94(4), 043810 (2016).
[Crossref]

Z.-Y. Zhou, Y.-K. Jiang, D.-S. Ding, B.-S. Shi, and G.-C. Guo, “Actively switchable nondegenerate polarization-entangled photon-pair distribution in dense wave-division multiplexing,” Phys. Rev. A 87(4), 045806 (2013).
[Crossref]

Y.-F. Huang, B.-H. Liu, L. Peng, Y.-H. Li, L. Li, C.-F. Li, and G.-C. Guo, “Experimental generation of an eight-photon Greenberger–Horne–Zeilinger state,” Nat. Commun. 2(1), 546 (2011).
[Crossref]

Herrmann, H.

A. Martin, A. Issautier, H. Herrmann, W. Sohler, D. B. Ostrowsky, O. Alibart, and S. Tanzilli, “A polarization entangled photon-pair source based on a type-II PPLN waveguide emitting at a telecom wavelength,” New J. Phys. 12(10), 103005 (2010).
[Crossref]

Holt, R. A.

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed Experiment to Test Local Hidden-Variable Theories,” Phys. Rev. Lett. 23(15), 880–884 (1969).
[Crossref]

Hong, C. K.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59(18), 2044–2046 (1987).
[Crossref]

Horne, M. A.

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed Experiment to Test Local Hidden-Variable Theories,” Phys. Rev. Lett. 23(15), 880–884 (1969).
[Crossref]

Howell, J. C.

J. C. Howell, R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Realization of the Einstein-Podolsky-Rosen Paradox Using Momentum- and Position-Entangled Photons from Spontaneous Parametric Down Conversion,” Phys. Rev. Lett. 92(21), 210403 (2004).
[Crossref]

Huang, Y.-F.

Y.-F. Huang, B.-H. Liu, L. Peng, Y.-H. Li, L. Li, C.-F. Li, and G.-C. Guo, “Experimental generation of an eight-photon Greenberger–Horne–Zeilinger state,” Nat. Commun. 2(1), 546 (2011).
[Crossref]

Hübel, H.

S. Wengerowsky, S. K. Joshi, F. Steinlechner, H. Hübel, and R. Ursin, “An entanglement-based wavelength-multiplexed quantum communication network,” Nature 564(7735), 225–228 (2018).
[Crossref]

Humble, T. S.

P. G. Evans, R. S. Bennink, W. P. Grice, T. S. Humble, and J. Schaake, “Bright Source of Spectrally Uncorrelated Polarization-Entangled Photons with Nearly Single-Mode Emission,” Phys. Rev. Lett. 105(25), 253601 (2010).
[Crossref]

Imany, P.

Inoue, K.

H. Takesue and K. Inoue, “Generation of 1.5 µm band time-bin entanglement using spontaneous fiber four-wave mixing and planar light-wave circuit interferometers,” Phys. Rev. A 72(4), 041804 (2005).
[Crossref]

H. Takesue and K. Inoue, “Generation of polarization-entangled photon pairs and violation of Bell's inequality using spontaneous four-wave mixing in a fiber loop,” Phys. Rev. A 70(3), 031802 (2004).
[Crossref]

Issautier, A.

A. Martin, A. Issautier, H. Herrmann, W. Sohler, D. B. Ostrowsky, O. Alibart, and S. Tanzilli, “A polarization entangled photon-pair source based on a type-II PPLN waveguide emitting at a telecom wavelength,” New J. Phys. 12(10), 103005 (2010).
[Crossref]

James, D. F. V.

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64(5), 052312 (2001).
[Crossref]

Jaramillo-Villegas, J. A.

Jeong, T.

J. Park, T. Jeong, H. Kim, and H. S. Moon, “Time-Energy Entangled Photon Pairs from Doppler-Broadened Atomic Ensemble via Collective Two-Photon Coherence,” Phys. Rev. Lett. 121(26), 263601 (2018).
[Crossref]

Jiang, Y.-K.

Z.-Y. Zhou, Y.-K. Jiang, D.-S. Ding, B.-S. Shi, and G.-C. Guo, “Actively switchable nondegenerate polarization-entangled photon-pair distribution in dense wave-division multiplexing,” Phys. Rev. A 87(4), 045806 (2013).
[Crossref]

Jin, R.-B.

Johnston, T.

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351(6278), 1176–1180 (2016).
[Crossref]

Joshi, S. K.

S. Wengerowsky, S. K. Joshi, F. Steinlechner, H. Hübel, and R. Ursin, “An entanglement-based wavelength-multiplexed quantum communication network,” Nature 564(7735), 225–228 (2018).
[Crossref]

Y. Chen, S. Ecker, S. Wengerowsky, L. Bulla, S. K. Joshi, F. Steinlechner, and R. Ursin, “Polarization Entanglement by Time-Reversed Hong-Ou-Mandel Interference,” Phys. Rev. Lett. 121(20), 200502 (2018).
[Crossref]

Kim, H.

J. Park, T. Jeong, H. Kim, and H. S. Moon, “Time-Energy Entangled Photon Pairs from Doppler-Broadened Atomic Ensemble via Collective Two-Photon Coherence,” Phys. Rev. Lett. 121(26), 263601 (2018).
[Crossref]

Kim, Y.-H.

J.-C. Lee, K.-K. Park, T.-M. Zhao, and Y.-H. Kim, “Einstein-Podolsky-Rosen Entanglement of Narrow-Band Photons from Cold Atoms,” Phys. Rev. Lett. 117(25), 250501 (2016).
[Crossref]

Knee, G. C.

A. Lyons, G. C. Knee, E. Bolduc, T. Roger, J. Leach, E. M. Gauger, and D. Faccio, “Attosecond-resolution Hong-Ou-Mandel interferometry,” Sci. Adv. 4(5), eaap9416 (2018).
[Crossref]

Krenn, M.

R. Fickler, R. Lapkiewicz, W. N. Plick, M. Krenn, C. Schaeff, S. Ramelow, and A. Zeilinger, “Quantum Entanglement of High Angular Momenta,” Science 338(6107), 640–643 (2012).
[Crossref]

Kues, M.

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351(6278), 1176–1180 (2016).
[Crossref]

Kuklewicz, C. E.

C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, “High flux source of polarization entangled photons from a periodically poled KTiOPO4 parametric down converter,” Phys. Rev. A 69(1), 013807 (2004).
[Crossref]

Kwiat, P. G.

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64(5), 052312 (2001).
[Crossref]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New High-Intensity Source of Polarization-Entangled Photon Pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[Crossref]

Lapkiewicz, R.

R. Fickler, R. Lapkiewicz, W. N. Plick, M. Krenn, C. Schaeff, S. Ramelow, and A. Zeilinger, “Quantum Entanglement of High Angular Momenta,” Science 338(6107), 640–643 (2012).
[Crossref]

Leach, J.

A. Lyons, G. C. Knee, E. Bolduc, T. Roger, J. Leach, E. M. Gauger, and D. Faccio, “Attosecond-resolution Hong-Ou-Mandel interferometry,” Sci. Adv. 4(5), eaap9416 (2018).
[Crossref]

A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and E. Andersson, “Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities,” Nat. Phys. 7(9), 677–680 (2011).
[Crossref]

Leaird, D. E.

Lee, J.-C.

J.-C. Lee, K.-K. Park, T.-M. Zhao, and Y.-H. Kim, “Einstein-Podolsky-Rosen Entanglement of Narrow-Band Photons from Cold Atoms,” Phys. Rev. Lett. 117(25), 250501 (2016).
[Crossref]

Li, C.-F.

Y.-F. Huang, B.-H. Liu, L. Peng, Y.-H. Li, L. Li, C.-F. Li, and G.-C. Guo, “Experimental generation of an eight-photon Greenberger–Horne–Zeilinger state,” Nat. Commun. 2(1), 546 (2011).
[Crossref]

Li, L.

Y.-F. Huang, B.-H. Liu, L. Peng, Y.-H. Li, L. Li, C.-F. Li, and G.-C. Guo, “Experimental generation of an eight-photon Greenberger–Horne–Zeilinger state,” Nat. Commun. 2(1), 546 (2011).
[Crossref]

Li, Y.

Li, Y.-H.

Z.-Y. Zhou, S.-K. Liu, S.-L. Liu, Y.-H. Li, Y. Li, C. Yang, Z.-H. Xu, G.-C. Guo, and B.-S. Shi, “Revealing the Behavior of Photons in a Birefringent Interferometer,” Phys. Rev. Lett. 120(26), 263601 (2018).
[Crossref]

Y.-H. Li, Z.-Y. Zhou, L.-T. Feng, W.-T. Fang, S.-l. Liu, S.-K. Liu, K. Wang, X.-F. Ren, D.-S. Ding, L.-X. Xu, and B.-S. Shi, “On-Chip Multiplexed Multiple Entanglement Sources in a Single Silicon Nanowire,” Phys. Rev. Appl. 7(6), 064005 (2017).
[Crossref]

Y.-H. Li, Z.-Y. Zhou, Z.-H. Xu, L.-X. Xu, B.-S. Shi, and G.-C. Guo, “Multiplexed entangled photon-pair sources for all-fiber quantum networks,” Phys. Rev. A 94(4), 043810 (2016).
[Crossref]

Y.-F. Huang, B.-H. Liu, L. Peng, Y.-H. Li, L. Li, C.-F. Li, and G.-C. Guo, “Experimental generation of an eight-photon Greenberger–Horne–Zeilinger state,” Nat. Commun. 2(1), 546 (2011).
[Crossref]

Liscidini, M.

L. Caspani, C. Xiong, B. J. Eggleton, D. Bajoni, M. Liscidini, M. Galli, R. Morandotti, and D. J. Moss, “Integrated sources of photon quantum states based on nonlinear optics,” Light: Sci. Appl. 6(11), e17100 (2017).
[Crossref]

D. Grassani, S. Azzini, M. Liscidini, M. Galli, M. J. Strain, M. Sorel, J. E. Sipe, and D. Bajoni, “Micrometer-scale integrated silicon source of time-energy entangled photons,” Optica 2(2), 88–94 (2015).
[Crossref]

Little, B. E.

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351(6278), 1176–1180 (2016).
[Crossref]

Liu, B.-H.

Y.-F. Huang, B.-H. Liu, L. Peng, Y.-H. Li, L. Li, C.-F. Li, and G.-C. Guo, “Experimental generation of an eight-photon Greenberger–Horne–Zeilinger state,” Nat. Commun. 2(1), 546 (2011).
[Crossref]

Liu, S.-K.

Z.-Y. Zhou, S.-K. Liu, S.-L. Liu, Y.-H. Li, Y. Li, C. Yang, Z.-H. Xu, G.-C. Guo, and B.-S. Shi, “Revealing the Behavior of Photons in a Birefringent Interferometer,” Phys. Rev. Lett. 120(26), 263601 (2018).
[Crossref]

Y.-H. Li, Z.-Y. Zhou, L.-T. Feng, W.-T. Fang, S.-l. Liu, S.-K. Liu, K. Wang, X.-F. Ren, D.-S. Ding, L.-X. Xu, and B.-S. Shi, “On-Chip Multiplexed Multiple Entanglement Sources in a Single Silicon Nanowire,” Phys. Rev. Appl. 7(6), 064005 (2017).
[Crossref]

Liu, S.-L.

Z.-Y. Zhou, S.-K. Liu, S.-L. Liu, Y.-H. Li, Y. Li, C. Yang, Z.-H. Xu, G.-C. Guo, and B.-S. Shi, “Revealing the Behavior of Photons in a Birefringent Interferometer,” Phys. Rev. Lett. 120(26), 263601 (2018).
[Crossref]

Y.-H. Li, Z.-Y. Zhou, L.-T. Feng, W.-T. Fang, S.-l. Liu, S.-K. Liu, K. Wang, X.-F. Ren, D.-S. Ding, L.-X. Xu, and B.-S. Shi, “On-Chip Multiplexed Multiple Entanglement Sources in a Single Silicon Nanowire,” Phys. Rev. Appl. 7(6), 064005 (2017).
[Crossref]

Lloyd, S.

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-Enhanced Measurements: Beating the Standard Quantum Limit,” Science 306(5700), 1330–1336 (2004).
[Crossref]

Lyons, A.

A. Lyons, G. C. Knee, E. Bolduc, T. Roger, J. Leach, E. M. Gauger, and D. Faccio, “Attosecond-resolution Hong-Ou-Mandel interferometry,” Sci. Adv. 4(5), eaap9416 (2018).
[Crossref]

Maccone, L.

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-Enhanced Measurements: Beating the Standard Quantum Limit,” Science 306(5700), 1330–1336 (2004).
[Crossref]

Mandel, L.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59(18), 2044–2046 (1987).
[Crossref]

Martin, A.

A. Martin, A. Issautier, H. Herrmann, W. Sohler, D. B. Ostrowsky, O. Alibart, and S. Tanzilli, “A polarization entangled photon-pair source based on a type-II PPLN waveguide emitting at a telecom wavelength,” New J. Phys. 12(10), 103005 (2010).
[Crossref]

Mattle, K.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New High-Intensity Source of Polarization-Entangled Photon Pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[Crossref]

Messin, G.

C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, “High flux source of polarization entangled photons from a periodically poled KTiOPO4 parametric down converter,” Phys. Rev. A 69(1), 013807 (2004).
[Crossref]

Miki, S.

Moon, H. S.

J. Park, T. Jeong, H. Kim, and H. S. Moon, “Time-Energy Entangled Photon Pairs from Doppler-Broadened Atomic Ensemble via Collective Two-Photon Coherence,” Phys. Rev. Lett. 121(26), 263601 (2018).
[Crossref]

Morandotti, R.

L. Caspani, C. Xiong, B. J. Eggleton, D. Bajoni, M. Liscidini, M. Galli, R. Morandotti, and D. J. Moss, “Integrated sources of photon quantum states based on nonlinear optics,” Light: Sci. Appl. 6(11), e17100 (2017).
[Crossref]

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351(6278), 1176–1180 (2016).
[Crossref]

Moss, D. J.

L. Caspani, C. Xiong, B. J. Eggleton, D. Bajoni, M. Liscidini, M. Galli, R. Morandotti, and D. J. Moss, “Integrated sources of photon quantum states based on nonlinear optics,” Light: Sci. Appl. 6(11), e17100 (2017).
[Crossref]

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351(6278), 1176–1180 (2016).
[Crossref]

Munro, W. J.

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64(5), 052312 (2001).
[Crossref]

Odele, O. D.

Ostrowsky, D. B.

A. Martin, A. Issautier, H. Herrmann, W. Sohler, D. B. Ostrowsky, O. Alibart, and S. Tanzilli, “A polarization entangled photon-pair source based on a type-II PPLN waveguide emitting at a telecom wavelength,” New J. Phys. 12(10), 103005 (2010).
[Crossref]

Ou, Z. Y.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59(18), 2044–2046 (1987).
[Crossref]

Ou, Z.-Y.

Padgett, M. J.

A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and E. Andersson, “Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities,” Nat. Phys. 7(9), 677–680 (2011).
[Crossref]

Park, J.

J. Park, T. Jeong, H. Kim, and H. S. Moon, “Time-Energy Entangled Photon Pairs from Doppler-Broadened Atomic Ensemble via Collective Two-Photon Coherence,” Phys. Rev. Lett. 121(26), 263601 (2018).
[Crossref]

Park, K.-K.

J.-C. Lee, K.-K. Park, T.-M. Zhao, and Y.-H. Kim, “Einstein-Podolsky-Rosen Entanglement of Narrow-Band Photons from Cold Atoms,” Phys. Rev. Lett. 117(25), 250501 (2016).
[Crossref]

Peng, L.

Y.-F. Huang, B.-H. Liu, L. Peng, Y.-H. Li, L. Li, C.-F. Li, and G.-C. Guo, “Experimental generation of an eight-photon Greenberger–Horne–Zeilinger state,” Nat. Commun. 2(1), 546 (2011).
[Crossref]

Plick, W. N.

R. Fickler, R. Lapkiewicz, W. N. Plick, M. Krenn, C. Schaeff, S. Ramelow, and A. Zeilinger, “Quantum Entanglement of High Angular Momenta,” Science 338(6107), 640–643 (2012).
[Crossref]

Qi, M.

Ramelow, S.

R. Fickler, R. Lapkiewicz, W. N. Plick, M. Krenn, C. Schaeff, S. Ramelow, and A. Zeilinger, “Quantum Entanglement of High Angular Momenta,” Science 338(6107), 640–643 (2012).
[Crossref]

Reimer, C.

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351(6278), 1176–1180 (2016).
[Crossref]

Ren, X.-F.

Y.-H. Li, Z.-Y. Zhou, L.-T. Feng, W.-T. Fang, S.-l. Liu, S.-K. Liu, K. Wang, X.-F. Ren, D.-S. Ding, L.-X. Xu, and B.-S. Shi, “On-Chip Multiplexed Multiple Entanglement Sources in a Single Silicon Nanowire,” Phys. Rev. Appl. 7(6), 064005 (2017).
[Crossref]

Roger, T.

A. Lyons, G. C. Knee, E. Bolduc, T. Roger, J. Leach, E. M. Gauger, and D. Faccio, “Attosecond-resolution Hong-Ou-Mandel interferometry,” Sci. Adv. 4(5), eaap9416 (2018).
[Crossref]

Roztocki, P.

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351(6278), 1176–1180 (2016).
[Crossref]

Sasaki, M.

Schaake, J.

P. G. Evans, R. S. Bennink, W. P. Grice, T. S. Humble, and J. Schaake, “Bright Source of Spectrally Uncorrelated Polarization-Entangled Photons with Nearly Single-Mode Emission,” Phys. Rev. Lett. 105(25), 253601 (2010).
[Crossref]

Schaeff, C.

R. Fickler, R. Lapkiewicz, W. N. Plick, M. Krenn, C. Schaeff, S. Ramelow, and A. Zeilinger, “Quantum Entanglement of High Angular Momenta,” Science 338(6107), 640–643 (2012).
[Crossref]

Sciarrino, F.

F. Flamini, N. Spagnolo, and F. Sciarrino, “Photonic quantum information processing: a review,” Rep. Prog. Phys. 82(1), 016001 (2019).
[Crossref]

Sergienko, A. V.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New High-Intensity Source of Polarization-Entangled Photon Pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[Crossref]

Shapiro, J. H.

C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, “High flux source of polarization entangled photons from a periodically poled KTiOPO4 parametric down converter,” Phys. Rev. A 69(1), 013807 (2004).
[Crossref]

Shi, B. S.

S. Shi, D. S. Ding, Y. C. Yu, W. Zhang, M. X. Dong, K. Wang, Y. H. Ye, G. C. Guo, and B. S. Shi, “Vortex-phase-dependent momentum and position entanglement generated from cold atoms,” Phys. Rev. A 97(6), 063847 (2018).
[Crossref]

Shi, B.-S.

Z.-Y. Zhou, S.-K. Liu, S.-L. Liu, Y.-H. Li, Y. Li, C. Yang, Z.-H. Xu, G.-C. Guo, and B.-S. Shi, “Revealing the Behavior of Photons in a Birefringent Interferometer,” Phys. Rev. Lett. 120(26), 263601 (2018).
[Crossref]

Y.-H. Li, Z.-Y. Zhou, L.-T. Feng, W.-T. Fang, S.-l. Liu, S.-K. Liu, K. Wang, X.-F. Ren, D.-S. Ding, L.-X. Xu, and B.-S. Shi, “On-Chip Multiplexed Multiple Entanglement Sources in a Single Silicon Nanowire,” Phys. Rev. Appl. 7(6), 064005 (2017).
[Crossref]

Y.-H. Li, Z.-Y. Zhou, Z.-H. Xu, L.-X. Xu, B.-S. Shi, and G.-C. Guo, “Multiplexed entangled photon-pair sources for all-fiber quantum networks,” Phys. Rev. A 94(4), 043810 (2016).
[Crossref]

Z.-Y. Zhou, Y. Li, D.-S. Ding, W. Zhang, S. Shi, and B.-S. Shi, “Classical to quantum optical network link for orbital angular momentum-carrying light,” Opt. Express 23(14), 18435–18444 (2015).
[Crossref]

Y. Li, Z.-Y. Zhou, D.-S. Ding, and B.-S. Shi, “CW-pumped telecom band polarization entangled photon pair generation in a Sagnac interferometer,” Opt. Express 23(22), 28792–28800 (2015).
[Crossref]

Z.-Y. Zhou, Y.-K. Jiang, D.-S. Ding, B.-S. Shi, and G.-C. Guo, “Actively switchable nondegenerate polarization-entangled photon-pair distribution in dense wave-division multiplexing,” Phys. Rev. A 87(4), 045806 (2013).
[Crossref]

Shi, S.

S. Shi, D. S. Ding, Y. C. Yu, W. Zhang, M. X. Dong, K. Wang, Y. H. Ye, G. C. Guo, and B. S. Shi, “Vortex-phase-dependent momentum and position entanglement generated from cold atoms,” Phys. Rev. A 97(6), 063847 (2018).
[Crossref]

Z.-Y. Zhou, Y. Li, D.-S. Ding, W. Zhang, S. Shi, and B.-S. Shi, “Classical to quantum optical network link for orbital angular momentum-carrying light,” Opt. Express 23(14), 18435–18444 (2015).
[Crossref]

Shih, Y.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New High-Intensity Source of Polarization-Entangled Photon Pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[Crossref]

Shimizu, R.

Shimony, A.

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed Experiment to Test Local Hidden-Variable Theories,” Phys. Rev. Lett. 23(15), 880–884 (1969).
[Crossref]

Sipe, J. E.

Sohler, W.

A. Martin, A. Issautier, H. Herrmann, W. Sohler, D. B. Ostrowsky, O. Alibart, and S. Tanzilli, “A polarization entangled photon-pair source based on a type-II PPLN waveguide emitting at a telecom wavelength,” New J. Phys. 12(10), 103005 (2010).
[Crossref]

Sorel, M.

Spagnolo, N.

F. Flamini, N. Spagnolo, and F. Sciarrino, “Photonic quantum information processing: a review,” Rep. Prog. Phys. 82(1), 016001 (2019).
[Crossref]

Steinlechner, F.

Y. Chen, M. Fink, F. Steinlechner, J. P. Torres, and R. Ursin, “Hong-Ou-Mandel interferometry on a biphoton beat note,” npj Quantum Inf. 5(1), 43 (2019).
[Crossref]

S. Wengerowsky, S. K. Joshi, F. Steinlechner, H. Hübel, and R. Ursin, “An entanglement-based wavelength-multiplexed quantum communication network,” Nature 564(7735), 225–228 (2018).
[Crossref]

Y. Chen, S. Ecker, S. Wengerowsky, L. Bulla, S. K. Joshi, F. Steinlechner, and R. Ursin, “Polarization Entanglement by Time-Reversed Hong-Ou-Mandel Interference,” Phys. Rev. Lett. 121(20), 200502 (2018).
[Crossref]

Strain, M. J.

Takesue, H.

H. Takesue and K. Inoue, “Generation of 1.5 µm band time-bin entanglement using spontaneous fiber four-wave mixing and planar light-wave circuit interferometers,” Phys. Rev. A 72(4), 041804 (2005).
[Crossref]

H. Takesue and K. Inoue, “Generation of polarization-entangled photon pairs and violation of Bell's inequality using spontaneous four-wave mixing in a fiber loop,” Phys. Rev. A 70(3), 031802 (2004).
[Crossref]

Tanzilli, S.

A. Martin, A. Issautier, H. Herrmann, W. Sohler, D. B. Ostrowsky, O. Alibart, and S. Tanzilli, “A polarization entangled photon-pair source based on a type-II PPLN waveguide emitting at a telecom wavelength,” New J. Phys. 12(10), 103005 (2010).
[Crossref]

Terai, H.

Tittel, W.

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed Energy-Time Entangled Twin-Photon Source for Quantum Communication,” Phys. Rev. Lett. 82(12), 2594–2597 (1999).
[Crossref]

Torres, J. P.

Y. Chen, M. Fink, F. Steinlechner, J. P. Torres, and R. Ursin, “Hong-Ou-Mandel interferometry on a biphoton beat note,” npj Quantum Inf. 5(1), 43 (2019).
[Crossref]

Ursin, R.

Y. Chen, M. Fink, F. Steinlechner, J. P. Torres, and R. Ursin, “Hong-Ou-Mandel interferometry on a biphoton beat note,” npj Quantum Inf. 5(1), 43 (2019).
[Crossref]

S. Wengerowsky, S. K. Joshi, F. Steinlechner, H. Hübel, and R. Ursin, “An entanglement-based wavelength-multiplexed quantum communication network,” Nature 564(7735), 225–228 (2018).
[Crossref]

Y. Chen, S. Ecker, S. Wengerowsky, L. Bulla, S. K. Joshi, F. Steinlechner, and R. Ursin, “Polarization Entanglement by Time-Reversed Hong-Ou-Mandel Interference,” Phys. Rev. Lett. 121(20), 200502 (2018).
[Crossref]

Wakui, K.

Wang, K.

S. Shi, D. S. Ding, Y. C. Yu, W. Zhang, M. X. Dong, K. Wang, Y. H. Ye, G. C. Guo, and B. S. Shi, “Vortex-phase-dependent momentum and position entanglement generated from cold atoms,” Phys. Rev. A 97(6), 063847 (2018).
[Crossref]

Y.-H. Li, Z.-Y. Zhou, L.-T. Feng, W.-T. Fang, S.-l. Liu, S.-K. Liu, K. Wang, X.-F. Ren, D.-S. Ding, L.-X. Xu, and B.-S. Shi, “On-Chip Multiplexed Multiple Entanglement Sources in a Single Silicon Nanowire,” Phys. Rev. Appl. 7(6), 064005 (2017).
[Crossref]

Wang, Z.

Weinberg, D. L.

D. C. Burnham and D. L. Weinberg, “Observation of Simultaneity in Parametric Production of Optical Photon Pairs,” Phys. Rev. Lett. 25(2), 84–87 (1970).
[Crossref]

Weiner, A. M.

Weinfurter, H.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New High-Intensity Source of Polarization-Entangled Photon Pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[Crossref]

Wengerowsky, S.

Y. Chen, S. Ecker, S. Wengerowsky, L. Bulla, S. K. Joshi, F. Steinlechner, and R. Ursin, “Polarization Entanglement by Time-Reversed Hong-Ou-Mandel Interference,” Phys. Rev. Lett. 121(20), 200502 (2018).
[Crossref]

S. Wengerowsky, S. K. Joshi, F. Steinlechner, H. Hübel, and R. Ursin, “An entanglement-based wavelength-multiplexed quantum communication network,” Nature 564(7735), 225–228 (2018).
[Crossref]

Wetzel, B.

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351(6278), 1176–1180 (2016).
[Crossref]

White, A. G.

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64(5), 052312 (2001).
[Crossref]

Wong, F. N. C.

C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, “High flux source of polarization entangled photons from a periodically poled KTiOPO4 parametric down converter,” Phys. Rev. A 69(1), 013807 (2004).
[Crossref]

Xiang, T.

Xiong, C.

L. Caspani, C. Xiong, B. J. Eggleton, D. Bajoni, M. Liscidini, M. Galli, R. Morandotti, and D. J. Moss, “Integrated sources of photon quantum states based on nonlinear optics,” Light: Sci. Appl. 6(11), e17100 (2017).
[Crossref]

Xu, L.-X.

Y.-H. Li, Z.-Y. Zhou, L.-T. Feng, W.-T. Fang, S.-l. Liu, S.-K. Liu, K. Wang, X.-F. Ren, D.-S. Ding, L.-X. Xu, and B.-S. Shi, “On-Chip Multiplexed Multiple Entanglement Sources in a Single Silicon Nanowire,” Phys. Rev. Appl. 7(6), 064005 (2017).
[Crossref]

Y.-H. Li, Z.-Y. Zhou, Z.-H. Xu, L.-X. Xu, B.-S. Shi, and G.-C. Guo, “Multiplexed entangled photon-pair sources for all-fiber quantum networks,” Phys. Rev. A 94(4), 043810 (2016).
[Crossref]

Xu, Z.-H.

Z.-Y. Zhou, S.-K. Liu, S.-L. Liu, Y.-H. Li, Y. Li, C. Yang, Z.-H. Xu, G.-C. Guo, and B.-S. Shi, “Revealing the Behavior of Photons in a Birefringent Interferometer,” Phys. Rev. Lett. 120(26), 263601 (2018).
[Crossref]

Y.-H. Li, Z.-Y. Zhou, Z.-H. Xu, L.-X. Xu, B.-S. Shi, and G.-C. Guo, “Multiplexed entangled photon-pair sources for all-fiber quantum networks,” Phys. Rev. A 94(4), 043810 (2016).
[Crossref]

Yamashita, T.

Yang, C.

Z.-Y. Zhou, S.-K. Liu, S.-L. Liu, Y.-H. Li, Y. Li, C. Yang, Z.-H. Xu, G.-C. Guo, and B.-S. Shi, “Revealing the Behavior of Photons in a Birefringent Interferometer,” Phys. Rev. Lett. 120(26), 263601 (2018).
[Crossref]

Ye, Y. H.

S. Shi, D. S. Ding, Y. C. Yu, W. Zhang, M. X. Dong, K. Wang, Y. H. Ye, G. C. Guo, and B. S. Shi, “Vortex-phase-dependent momentum and position entanglement generated from cold atoms,” Phys. Rev. A 97(6), 063847 (2018).
[Crossref]

Yu, Y. C.

S. Shi, D. S. Ding, Y. C. Yu, W. Zhang, M. X. Dong, K. Wang, Y. H. Ye, G. C. Guo, and B. S. Shi, “Vortex-phase-dependent momentum and position entanglement generated from cold atoms,” Phys. Rev. A 97(6), 063847 (2018).
[Crossref]

Zbinden, H.

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed Energy-Time Entangled Twin-Photon Source for Quantum Communication,” Phys. Rev. Lett. 82(12), 2594–2597 (1999).
[Crossref]

Zeilinger, A.

R. Fickler, R. Lapkiewicz, W. N. Plick, M. Krenn, C. Schaeff, S. Ramelow, and A. Zeilinger, “Quantum Entanglement of High Angular Momenta,” Science 338(6107), 640–643 (2012).
[Crossref]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New High-Intensity Source of Polarization-Entangled Photon Pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[Crossref]

Zhang, W.

S. Shi, D. S. Ding, Y. C. Yu, W. Zhang, M. X. Dong, K. Wang, Y. H. Ye, G. C. Guo, and B. S. Shi, “Vortex-phase-dependent momentum and position entanglement generated from cold atoms,” Phys. Rev. A 97(6), 063847 (2018).
[Crossref]

Z.-Y. Zhou, Y. Li, D.-S. Ding, W. Zhang, S. Shi, and B.-S. Shi, “Classical to quantum optical network link for orbital angular momentum-carrying light,” Opt. Express 23(14), 18435–18444 (2015).
[Crossref]

Zhao, T.-M.

J.-C. Lee, K.-K. Park, T.-M. Zhao, and Y.-H. Kim, “Einstein-Podolsky-Rosen Entanglement of Narrow-Band Photons from Cold Atoms,” Phys. Rev. Lett. 117(25), 250501 (2016).
[Crossref]

Zheng, Y.

Zhou, Z.-Y.

Z.-Y. Zhou, S.-K. Liu, S.-L. Liu, Y.-H. Li, Y. Li, C. Yang, Z.-H. Xu, G.-C. Guo, and B.-S. Shi, “Revealing the Behavior of Photons in a Birefringent Interferometer,” Phys. Rev. Lett. 120(26), 263601 (2018).
[Crossref]

Y.-H. Li, Z.-Y. Zhou, L.-T. Feng, W.-T. Fang, S.-l. Liu, S.-K. Liu, K. Wang, X.-F. Ren, D.-S. Ding, L.-X. Xu, and B.-S. Shi, “On-Chip Multiplexed Multiple Entanglement Sources in a Single Silicon Nanowire,” Phys. Rev. Appl. 7(6), 064005 (2017).
[Crossref]

Y.-H. Li, Z.-Y. Zhou, Z.-H. Xu, L.-X. Xu, B.-S. Shi, and G.-C. Guo, “Multiplexed entangled photon-pair sources for all-fiber quantum networks,” Phys. Rev. A 94(4), 043810 (2016).
[Crossref]

Z.-Y. Zhou, Y. Li, D.-S. Ding, W. Zhang, S. Shi, and B.-S. Shi, “Classical to quantum optical network link for orbital angular momentum-carrying light,” Opt. Express 23(14), 18435–18444 (2015).
[Crossref]

Y. Li, Z.-Y. Zhou, D.-S. Ding, and B.-S. Shi, “CW-pumped telecom band polarization entangled photon pair generation in a Sagnac interferometer,” Opt. Express 23(22), 28792–28800 (2015).
[Crossref]

Z.-Y. Zhou, Y.-K. Jiang, D.-S. Ding, B.-S. Shi, and G.-C. Guo, “Actively switchable nondegenerate polarization-entangled photon-pair distribution in dense wave-division multiplexing,” Phys. Rev. A 87(4), 045806 (2013).
[Crossref]

Light: Sci. Appl. (1)

L. Caspani, C. Xiong, B. J. Eggleton, D. Bajoni, M. Liscidini, M. Galli, R. Morandotti, and D. J. Moss, “Integrated sources of photon quantum states based on nonlinear optics,” Light: Sci. Appl. 6(11), e17100 (2017).
[Crossref]

Nat. Commun. (1)

Y.-F. Huang, B.-H. Liu, L. Peng, Y.-H. Li, L. Li, C.-F. Li, and G.-C. Guo, “Experimental generation of an eight-photon Greenberger–Horne–Zeilinger state,” Nat. Commun. 2(1), 546 (2011).
[Crossref]

Nat. Phys. (1)

A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and E. Andersson, “Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities,” Nat. Phys. 7(9), 677–680 (2011).
[Crossref]

Nature (1)

S. Wengerowsky, S. K. Joshi, F. Steinlechner, H. Hübel, and R. Ursin, “An entanglement-based wavelength-multiplexed quantum communication network,” Nature 564(7735), 225–228 (2018).
[Crossref]

New J. Phys. (1)

A. Martin, A. Issautier, H. Herrmann, W. Sohler, D. B. Ostrowsky, O. Alibart, and S. Tanzilli, “A polarization entangled photon-pair source based on a type-II PPLN waveguide emitting at a telecom wavelength,” New J. Phys. 12(10), 103005 (2010).
[Crossref]

npj Quantum Inf. (1)

Y. Chen, M. Fink, F. Steinlechner, J. P. Torres, and R. Ursin, “Hong-Ou-Mandel interferometry on a biphoton beat note,” npj Quantum Inf. 5(1), 43 (2019).
[Crossref]

Opt. Express (4)

Optica (2)

Phys. Rev. A (7)

Y.-H. Li, Z.-Y. Zhou, Z.-H. Xu, L.-X. Xu, B.-S. Shi, and G.-C. Guo, “Multiplexed entangled photon-pair sources for all-fiber quantum networks,” Phys. Rev. A 94(4), 043810 (2016).
[Crossref]

H. Takesue and K. Inoue, “Generation of 1.5 µm band time-bin entanglement using spontaneous fiber four-wave mixing and planar light-wave circuit interferometers,” Phys. Rev. A 72(4), 041804 (2005).
[Crossref]

H. Takesue and K. Inoue, “Generation of polarization-entangled photon pairs and violation of Bell's inequality using spontaneous four-wave mixing in a fiber loop,” Phys. Rev. A 70(3), 031802 (2004).
[Crossref]

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64(5), 052312 (2001).
[Crossref]

Z.-Y. Zhou, Y.-K. Jiang, D.-S. Ding, B.-S. Shi, and G.-C. Guo, “Actively switchable nondegenerate polarization-entangled photon-pair distribution in dense wave-division multiplexing,” Phys. Rev. A 87(4), 045806 (2013).
[Crossref]

C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, “High flux source of polarization entangled photons from a periodically poled KTiOPO4 parametric down converter,” Phys. Rev. A 69(1), 013807 (2004).
[Crossref]

S. Shi, D. S. Ding, Y. C. Yu, W. Zhang, M. X. Dong, K. Wang, Y. H. Ye, G. C. Guo, and B. S. Shi, “Vortex-phase-dependent momentum and position entanglement generated from cold atoms,” Phys. Rev. A 97(6), 063847 (2018).
[Crossref]

Phys. Rev. Appl. (1)

Y.-H. Li, Z.-Y. Zhou, L.-T. Feng, W.-T. Fang, S.-l. Liu, S.-K. Liu, K. Wang, X.-F. Ren, D.-S. Ding, L.-X. Xu, and B.-S. Shi, “On-Chip Multiplexed Multiple Entanglement Sources in a Single Silicon Nanowire,” Phys. Rev. Appl. 7(6), 064005 (2017).
[Crossref]

Phys. Rev. Lett. (12)

J. D. Franson, “Bell inequality for position and time,” Phys. Rev. Lett. 62(19), 2205–2208 (1989).
[Crossref]

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed Experiment to Test Local Hidden-Variable Theories,” Phys. Rev. Lett. 23(15), 880–884 (1969).
[Crossref]

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59(18), 2044–2046 (1987).
[Crossref]

Z.-Y. Zhou, S.-K. Liu, S.-L. Liu, Y.-H. Li, Y. Li, C. Yang, Z.-H. Xu, G.-C. Guo, and B.-S. Shi, “Revealing the Behavior of Photons in a Birefringent Interferometer,” Phys. Rev. Lett. 120(26), 263601 (2018).
[Crossref]

J. C. Howell, R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Realization of the Einstein-Podolsky-Rosen Paradox Using Momentum- and Position-Entangled Photons from Spontaneous Parametric Down Conversion,” Phys. Rev. Lett. 92(21), 210403 (2004).
[Crossref]

J.-C. Lee, K.-K. Park, T.-M. Zhao, and Y.-H. Kim, “Einstein-Podolsky-Rosen Entanglement of Narrow-Band Photons from Cold Atoms,” Phys. Rev. Lett. 117(25), 250501 (2016).
[Crossref]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New High-Intensity Source of Polarization-Entangled Photon Pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[Crossref]

D. C. Burnham and D. L. Weinberg, “Observation of Simultaneity in Parametric Production of Optical Photon Pairs,” Phys. Rev. Lett. 25(2), 84–87 (1970).
[Crossref]

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed Energy-Time Entangled Twin-Photon Source for Quantum Communication,” Phys. Rev. Lett. 82(12), 2594–2597 (1999).
[Crossref]

J. Park, T. Jeong, H. Kim, and H. S. Moon, “Time-Energy Entangled Photon Pairs from Doppler-Broadened Atomic Ensemble via Collective Two-Photon Coherence,” Phys. Rev. Lett. 121(26), 263601 (2018).
[Crossref]

P. G. Evans, R. S. Bennink, W. P. Grice, T. S. Humble, and J. Schaake, “Bright Source of Spectrally Uncorrelated Polarization-Entangled Photons with Nearly Single-Mode Emission,” Phys. Rev. Lett. 105(25), 253601 (2010).
[Crossref]

Y. Chen, S. Ecker, S. Wengerowsky, L. Bulla, S. K. Joshi, F. Steinlechner, and R. Ursin, “Polarization Entanglement by Time-Reversed Hong-Ou-Mandel Interference,” Phys. Rev. Lett. 121(20), 200502 (2018).
[Crossref]

Rep. Prog. Phys. (1)

F. Flamini, N. Spagnolo, and F. Sciarrino, “Photonic quantum information processing: a review,” Rep. Prog. Phys. 82(1), 016001 (2019).
[Crossref]

Sci. Adv. (1)

A. Lyons, G. C. Knee, E. Bolduc, T. Roger, J. Leach, E. M. Gauger, and D. Faccio, “Attosecond-resolution Hong-Ou-Mandel interferometry,” Sci. Adv. 4(5), eaap9416 (2018).
[Crossref]

Science (3)

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-Enhanced Measurements: Beating the Standard Quantum Limit,” Science 306(5700), 1330–1336 (2004).
[Crossref]

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351(6278), 1176–1180 (2016).
[Crossref]

R. Fickler, R. Lapkiewicz, W. N. Plick, M. Krenn, C. Schaeff, S. Ramelow, and A. Zeilinger, “Quantum Entanglement of High Angular Momenta,” Science 338(6107), 640–643 (2012).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1. Operating principle and experimental setups for versatile photon sources. (a) Simulated spectrum of the emitted photon pair and the transmission spectrum of the 100 GHz DWDM; (b) experimental setup before the photons are coupled out from the DWDM; (c) experimental setup for HOM interference; (d) experimental setup for two-photon Franson interference; (e) experimental setups for polarization entanglement generation and characterization. PPKTP: periodically poled potassium titanyl phosphate; Q/HWP: quarter/half wave plate; PBS: polarizing beam splitter; FC: fiber coupler; PC: polarization controller; FBS: fiber beam splitter; UMI: unbalanced Michelson interferometer; SNSPD: superconducting nanowire single photon detector.
Fig. 2.
Fig. 2. Experimental results for the different types of photon source. (a) HOM interference fringes in 5 s as a function of the relative delay between the two photons; (b) two-photon Franson interference fringes for time-energy entangled source in 10 s for two phase settings; (c) polarization interference fringes in 10 s for the 0° and 45° bases; (d) interference visibilities on a 45° basis for other correlated channel pairs.
Fig. 3.
Fig. 3. Reconstructed density matrix for polarization entangled photon pair for S1 and I1. (a) Real parts of the density matrix; (b) imaginary parts of the density matrix.

Tables (1)

Tables Icon

Table 1. Definition of the wavelengths of the standard ITU grid for the signal and idler photons.

Metrics