Abstract

We demonstrate the enhanced polarization modulation of electromagnetic fields through hybrid skew-ring-resonator-graphene meta-surfaces that can dynamically transform the linearly polarized waves into its cross-linearly polarized counterparts or the circularly polarized waves. Such a meta-surface consists of a grounded skew-ring resonator array inserted with a monolayer graphene sheet that controls the electromagnetic interactions between the skew-ring resonators and the ground. Especially, the reconfigurable characteristic of graphene enables the reflections to be capable of converting from the cross-linearly polarized fields to the circularly polarized waves by setting different Fermi energies with the same original co-linearly polarized incidence. Finally, we demonstrate that the bandwidth of the cross-polarization conversion would be greatly expanded when the monolayer graphene sheet is integrated with skew-bar-resonator meta-surfaces.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Photo-induced enhanced negative absorption in the graphene-dielectric hybrid meta-structure

Lan Wang, Sen Gong, Yaxin Zhang, Zezhao He, Cui Yu, Xilin Zhang, Ting Zhang, Hongxin Zeng, Wei Kou, Yuncheng Zhao, Qiye Wen, Lan Feng, Yubing Gong, and Ziqiang Yang
Opt. Express 28(6) 8830-8842 (2020)

Two-dimensional tunable polarization-dependent absorptions for binary and ternary coding

Huan Jiang, Ying Cui, and Yongyuan Jiang
Opt. Mater. Express 10(3) 787-795 (2020)

Controllable linear asymmetric transmission and perfect polarization conversion in a terahertz hybrid metal-graphene metasurface

Jianxing Zhao, Jianlin Song, Tianyu Xu, Tingxiang Yang, and Jianhong Zhou
Opt. Express 27(7) 9773-9781 (2019)

References

  • View by:
  • |
  • |
  • |

  1. J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
    [Crossref]
  2. L. Liu, Y. Ding, K. Yvind, and J. M. Hvam, “Efficient and compact te-tm polarization converter built on silicon-on-insulator platform with a simple fabrication process,” Opt. Lett. 36(7), 1059–1061 (2011).
    [Crossref]
  3. N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
    [Crossref]
  4. Y. Jiang, L. Wang, J. Wang, C. N. Akwuruoha, and W. Cao, “Ultra-wideband high-efficiency reflective linear-to-circular polarization converter based on metasurface at terahertz frequencies,” Opt. Express 25(22), 27616–27623 (2017).
    [Crossref]
  5. A. Zhang and R. Yang, “Manipulating polarizations and reflecting angles of electromagnetic fields simultaneously from conformal meta-mirrors,” Appl. Phys. Lett. 113(9), 091603 (2018).
    [Crossref]
  6. W. Zhu, V. Perebeinos, M. Freitag, and P. Avouris, “Carrier scattering, mobilities, and electrostatic potential in monolayer, bilayer, and trilayer graphene,” Phys. Rev. B 80(23), 235402 (2009).
    [Crossref]
  7. L. A. Falkovsky and S. S. Pershoguba, “Optical far-infrared properties of a graphene monolayer and multilayer,” Phys. Rev. B 76(15), 153410 (2007).
    [Crossref]
  8. Y. Fan, N.-H. Shen, T. Koschny, and C. M. Soukoulis, “Tunable terahertz meta-surface with graphene cut-wires,” ACS Photonics 2(1), 151–156 (2015).
    [Crossref]
  9. C. Soldano, A. Mahmood, and E. Dujardin, “Production, properties and potential of graphene,” Carbon 48(8), 2127–2150 (2010).
    [Crossref]
  10. A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
    [Crossref]
  11. T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano 8(2), 1086–1101 (2014).
    [Crossref]
  12. Z. Zhang, X. Yan, L. Liang, D. Wei, M. Wang, Y. Wang, and J. Yao, “The novel hybrid metal-graphene metasurfaces for broadband focusing and beam-steering in farfield at the terahertz frequencies,” Carbon 132, 529–538 (2018).
    [Crossref]
  13. M. Chen, W. Sun, J. Cai, L. Chang, and X. Xiao, “Frequency-tunable mid-infrared cross polarization converters based on graphene metasurface,” Plasmonics 12(3), 699–705 (2017).
    [Crossref]
  14. S. Luo, B. Li, A. Yu, J. Gao, X. Wang, and D. Zuo, “Broadband tunable terahertz polarization converter based on graphene metamaterial,” Opt. Commun. 413, 184–189 (2018).
    [Crossref]
  15. Z. Yao, T. Wei, Y. Wang, M. Lu, C. Zhang, and L. Zhang, “Tunable multifunctional reflection polarizer based on a graphene metasurface,” Appl. Opt. 58(13), 3570–3574 (2019).
    [Crossref]
  16. Z. Yao, Y. Wang, M. Lu, and C. Zhang, “Triple-band cross-polarization converter based on an ultra-thin graphene-integrated metasurface,” J. Opt. Soc. Am. B 36(1), 7–11 (2019).
    [Crossref]
  17. X. Wang, Y. Li, Q. Zheng, and H. Yang, “Tunable dual-frequency cross polarization converters based on graphene metasurface in infrared range,” Phys. Scr. 94(10), 105503 (2019).
    [Crossref]
  18. T. Guo and C. Argyropoulos, “Broadband polarizers based on graphene metasurfaces,” Opt. Lett. 41(23), 5592–5595 (2016).
    [Crossref]
  19. Y. Huang, Z. Yao, F. Hu, C. Liu, L. Yu, Y. Jin, and X. Xu, “Tunable circular polarization conversion and asymmetric transmission of planar chiral graphene-metamaterial in terahertz region,” Carbon 119, 305–313 (2017).
    [Crossref]
  20. C. Yang, Y. Luo, J. Guo, Y. Pu, D. He, Y. Jiang, J. Xu, and Z. Liu, “Wideband tunable mid-infrared cross polarization converter using rectangle-shape perforated graphene,” Opt. Express 24(15), 16913–16922 (2016).
    [Crossref]
  21. X. Gao, W. Yang, W. Cao, M. Chen, Y. Jiang, X. Yu, and H. Li, “Bandwidth broadening of a graphene-based circular polarization converter by phase compensation,” Opt. Express 25(20), 23945–23954 (2017).
    [Crossref]
  22. S.-F. Shi, B. Zeng, H.-L. Han, X. Hong, H.-Z. Tsai, H. S. Jung, A. Zettl, M. F. Crommie, and F. Wang, “Optimizing broadband terahertz modulation with hybrid graphene/metasurface structures,” Nano Lett. 15(1), 372–377 (2015).
    [Crossref]
  23. M. M. Jadidi, A. B. Sushkov, R. L. Myers-Ward, A. K. Boyd, K. M. Daniels, D. K. Gaskill, M. S. Fuhrer, H. D. Drew, and T. E. Murphy, “Tunable terahertz hybrid metal-graphene plasmons,” Nano Lett. 15(10), 7099–7104 (2015).
    [Crossref]
  24. Q. Li, Z. Tian, X. Zhang, N. Xu, R. Singh, J. Gu, P. Lv, L.-B. Luo, S. Zhang, J. Han, and W. Zhang, “Dual control of active graphene-silicon hybrid metamaterial devices,” Carbon 90, 146–153 (2015).
    [Crossref]
  25. S. Zanotto, C. Lange, T. Maag, A. Pitanti, V. Miseikis, C. Coletti, R. Degl’Innocenti, L. Baldacci, R. Huber, and A. Tredicucci, “Magneto-optic transmittance modulation observed in a hybrid graphene-split ring resonator terahertz metasurface,” Appl. Phys. Lett. 107(12), 121104 (2015).
    [Crossref]
  26. G.-D. Liu, X. Zhai, S.-X. Xia, Q. Lin, C.-J. Zhao, and L.-L. Wang, “Toroidal resonance based optical modulator employing hybrid graphene-dielectric metasurface,” Opt. Express 25(21), 26045–26054 (2017).
    [Crossref]
  27. S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
    [Crossref]
  28. S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett. 13(3), 1111–1117 (2013).
    [Crossref]
  29. N. K. Emani, T.-F. Chung, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Electrical modulation of fano resonance in plasmonic nanostructures using graphene,” Nano Lett. 14(1), 78–82 (2014).
    [Crossref]
  30. L. Wang, S. Ge, W. Hu, M. Nakajima, and Y. Lu, “Graphene-assisted high-efficiency liquid crystal tunable terahertz metamaterial absorber,” Opt. Express 25(20), 23873–23879 (2017).
    [Crossref]
  31. Z. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, Y. Zhang, and L. Zhou, “Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces,” Phys. Rev. X 5(4), 041027 (2015).
    [Crossref]
  32. N. Dabidian, S. Dutta-Gupta, I. Kholmanov, K. Lai, F. Lu, J. Lee, M. Jin, S. Trendafilov, A. Khanikaev, B. Fallahazad, E. Tutuc, M. A. Belkin, and G. Shvets, “Experimental demonstration of phase modulation and motion sensing using graphene-integrated metasurfaces,” Nano Lett. 16(6), 3607–3615 (2016).
    [Crossref]
  33. M. C. Sherrott, P. W. C. Hon, K. T. Fountaine, J. C. Garcia, S. M. Ponti, V. W. Brar, L. A. Sweatlock, and H. A. Atwater, “Experimental demonstration of > 230 degrees phase modulation in gate-tunable graphene-gold reconfigurable mid-infrared metasurfaces,” Nano Lett. 17(5), 3027–3034 (2017).
    [Crossref]
  34. J. Li, P. Yu, H. Cheng, W. Liu, Z. Li, B. Xie, S. Chen, and J. Tian, “Optical polarization encoding using graphene-loaded plasmonic metasurfaces,” Adv. Opt. Mater. 4(1), 91–98 (2016).
    [Crossref]
  35. H. Jiang, W. Zhao, and Y. Jiang, “Frequency-tunable and functionality-switchable polarization device using silicon strip array integrated with a graphene sheet,” Opt. Mater. Express 7(12), 4277–4285 (2017).
    [Crossref]
  36. E. O. Owiti, H. Yang, P. Liu, C. F. Ominde, and X. Sun, “Polarization converter with controllable birefringence based on hybrid all-dielectric-graphene metasurface,” Nanoscale Res. Lett. 13(1), 38–39 (2018).
    [Crossref]
  37. G. W. Hanson, “Dyadic green’s functions for an anisotropic, non-local model of biased graphene,” IEEE Trans. Antennas Propag. 56(3), 747–757 (2008).
    [Crossref]
  38. E. Carrasco, M. Tamagnone, and J. Perruisseau-Carrier, “Tunable graphene reflective cells for thz reflectarrays and generalized law of reflection,” Appl. Phys. Lett. 102(10), 104103 (2013).
    [Crossref]
  39. G. W. Hanson, “Dyadic gree’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
    [Crossref]

2019 (3)

2018 (5)

Z. Zhang, X. Yan, L. Liang, D. Wei, M. Wang, Y. Wang, and J. Yao, “The novel hybrid metal-graphene metasurfaces for broadband focusing and beam-steering in farfield at the terahertz frequencies,” Carbon 132, 529–538 (2018).
[Crossref]

A. Zhang and R. Yang, “Manipulating polarizations and reflecting angles of electromagnetic fields simultaneously from conformal meta-mirrors,” Appl. Phys. Lett. 113(9), 091603 (2018).
[Crossref]

S. Luo, B. Li, A. Yu, J. Gao, X. Wang, and D. Zuo, “Broadband tunable terahertz polarization converter based on graphene metamaterial,” Opt. Commun. 413, 184–189 (2018).
[Crossref]

S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

E. O. Owiti, H. Yang, P. Liu, C. F. Ominde, and X. Sun, “Polarization converter with controllable birefringence based on hybrid all-dielectric-graphene metasurface,” Nanoscale Res. Lett. 13(1), 38–39 (2018).
[Crossref]

2017 (8)

H. Jiang, W. Zhao, and Y. Jiang, “Frequency-tunable and functionality-switchable polarization device using silicon strip array integrated with a graphene sheet,” Opt. Mater. Express 7(12), 4277–4285 (2017).
[Crossref]

L. Wang, S. Ge, W. Hu, M. Nakajima, and Y. Lu, “Graphene-assisted high-efficiency liquid crystal tunable terahertz metamaterial absorber,” Opt. Express 25(20), 23873–23879 (2017).
[Crossref]

M. C. Sherrott, P. W. C. Hon, K. T. Fountaine, J. C. Garcia, S. M. Ponti, V. W. Brar, L. A. Sweatlock, and H. A. Atwater, “Experimental demonstration of > 230 degrees phase modulation in gate-tunable graphene-gold reconfigurable mid-infrared metasurfaces,” Nano Lett. 17(5), 3027–3034 (2017).
[Crossref]

G.-D. Liu, X. Zhai, S.-X. Xia, Q. Lin, C.-J. Zhao, and L.-L. Wang, “Toroidal resonance based optical modulator employing hybrid graphene-dielectric metasurface,” Opt. Express 25(21), 26045–26054 (2017).
[Crossref]

Y. Huang, Z. Yao, F. Hu, C. Liu, L. Yu, Y. Jin, and X. Xu, “Tunable circular polarization conversion and asymmetric transmission of planar chiral graphene-metamaterial in terahertz region,” Carbon 119, 305–313 (2017).
[Crossref]

X. Gao, W. Yang, W. Cao, M. Chen, Y. Jiang, X. Yu, and H. Li, “Bandwidth broadening of a graphene-based circular polarization converter by phase compensation,” Opt. Express 25(20), 23945–23954 (2017).
[Crossref]

Y. Jiang, L. Wang, J. Wang, C. N. Akwuruoha, and W. Cao, “Ultra-wideband high-efficiency reflective linear-to-circular polarization converter based on metasurface at terahertz frequencies,” Opt. Express 25(22), 27616–27623 (2017).
[Crossref]

M. Chen, W. Sun, J. Cai, L. Chang, and X. Xiao, “Frequency-tunable mid-infrared cross polarization converters based on graphene metasurface,” Plasmonics 12(3), 699–705 (2017).
[Crossref]

2016 (4)

T. Guo and C. Argyropoulos, “Broadband polarizers based on graphene metasurfaces,” Opt. Lett. 41(23), 5592–5595 (2016).
[Crossref]

C. Yang, Y. Luo, J. Guo, Y. Pu, D. He, Y. Jiang, J. Xu, and Z. Liu, “Wideband tunable mid-infrared cross polarization converter using rectangle-shape perforated graphene,” Opt. Express 24(15), 16913–16922 (2016).
[Crossref]

J. Li, P. Yu, H. Cheng, W. Liu, Z. Li, B. Xie, S. Chen, and J. Tian, “Optical polarization encoding using graphene-loaded plasmonic metasurfaces,” Adv. Opt. Mater. 4(1), 91–98 (2016).
[Crossref]

N. Dabidian, S. Dutta-Gupta, I. Kholmanov, K. Lai, F. Lu, J. Lee, M. Jin, S. Trendafilov, A. Khanikaev, B. Fallahazad, E. Tutuc, M. A. Belkin, and G. Shvets, “Experimental demonstration of phase modulation and motion sensing using graphene-integrated metasurfaces,” Nano Lett. 16(6), 3607–3615 (2016).
[Crossref]

2015 (6)

Z. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, Y. Zhang, and L. Zhou, “Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces,” Phys. Rev. X 5(4), 041027 (2015).
[Crossref]

S.-F. Shi, B. Zeng, H.-L. Han, X. Hong, H.-Z. Tsai, H. S. Jung, A. Zettl, M. F. Crommie, and F. Wang, “Optimizing broadband terahertz modulation with hybrid graphene/metasurface structures,” Nano Lett. 15(1), 372–377 (2015).
[Crossref]

M. M. Jadidi, A. B. Sushkov, R. L. Myers-Ward, A. K. Boyd, K. M. Daniels, D. K. Gaskill, M. S. Fuhrer, H. D. Drew, and T. E. Murphy, “Tunable terahertz hybrid metal-graphene plasmons,” Nano Lett. 15(10), 7099–7104 (2015).
[Crossref]

Q. Li, Z. Tian, X. Zhang, N. Xu, R. Singh, J. Gu, P. Lv, L.-B. Luo, S. Zhang, J. Han, and W. Zhang, “Dual control of active graphene-silicon hybrid metamaterial devices,” Carbon 90, 146–153 (2015).
[Crossref]

S. Zanotto, C. Lange, T. Maag, A. Pitanti, V. Miseikis, C. Coletti, R. Degl’Innocenti, L. Baldacci, R. Huber, and A. Tredicucci, “Magneto-optic transmittance modulation observed in a hybrid graphene-split ring resonator terahertz metasurface,” Appl. Phys. Lett. 107(12), 121104 (2015).
[Crossref]

Y. Fan, N.-H. Shen, T. Koschny, and C. M. Soukoulis, “Tunable terahertz meta-surface with graphene cut-wires,” ACS Photonics 2(1), 151–156 (2015).
[Crossref]

2014 (2)

T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano 8(2), 1086–1101 (2014).
[Crossref]

N. K. Emani, T.-F. Chung, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Electrical modulation of fano resonance in plasmonic nanostructures using graphene,” Nano Lett. 14(1), 78–82 (2014).
[Crossref]

2013 (3)

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett. 13(3), 1111–1117 (2013).
[Crossref]

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref]

E. Carrasco, M. Tamagnone, and J. Perruisseau-Carrier, “Tunable graphene reflective cells for thz reflectarrays and generalized law of reflection,” Appl. Phys. Lett. 102(10), 104103 (2013).
[Crossref]

2011 (2)

2010 (1)

C. Soldano, A. Mahmood, and E. Dujardin, “Production, properties and potential of graphene,” Carbon 48(8), 2127–2150 (2010).
[Crossref]

2009 (1)

W. Zhu, V. Perebeinos, M. Freitag, and P. Avouris, “Carrier scattering, mobilities, and electrostatic potential in monolayer, bilayer, and trilayer graphene,” Phys. Rev. B 80(23), 235402 (2009).
[Crossref]

2008 (2)

G. W. Hanson, “Dyadic gree’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

G. W. Hanson, “Dyadic green’s functions for an anisotropic, non-local model of biased graphene,” IEEE Trans. Antennas Propag. 56(3), 747–757 (2008).
[Crossref]

2007 (2)

L. A. Falkovsky and S. S. Pershoguba, “Optical far-infrared properties of a graphene monolayer and multilayer,” Phys. Rev. B 76(15), 153410 (2007).
[Crossref]

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref]

Akwuruoha, C. N.

Alici, K. B.

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett. 13(3), 1111–1117 (2013).
[Crossref]

An, Z.

Z. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, Y. Zhang, and L. Zhou, “Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces,” Phys. Rev. X 5(4), 041027 (2015).
[Crossref]

Argyropoulos, C.

Arju, N.

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett. 13(3), 1111–1117 (2013).
[Crossref]

Atwater, H. A.

M. C. Sherrott, P. W. C. Hon, K. T. Fountaine, J. C. Garcia, S. M. Ponti, V. W. Brar, L. A. Sweatlock, and H. A. Atwater, “Experimental demonstration of > 230 degrees phase modulation in gate-tunable graphene-gold reconfigurable mid-infrared metasurfaces,” Nano Lett. 17(5), 3027–3034 (2017).
[Crossref]

Avouris, P.

T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano 8(2), 1086–1101 (2014).
[Crossref]

W. Zhu, V. Perebeinos, M. Freitag, and P. Avouris, “Carrier scattering, mobilities, and electrostatic potential in monolayer, bilayer, and trilayer graphene,” Phys. Rev. B 80(23), 235402 (2009).
[Crossref]

Azad, A. K.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref]

Baldacci, L.

S. Zanotto, C. Lange, T. Maag, A. Pitanti, V. Miseikis, C. Coletti, R. Degl’Innocenti, L. Baldacci, R. Huber, and A. Tredicucci, “Magneto-optic transmittance modulation observed in a hybrid graphene-split ring resonator terahertz metasurface,” Appl. Phys. Lett. 107(12), 121104 (2015).
[Crossref]

Belkin, M. A.

N. Dabidian, S. Dutta-Gupta, I. Kholmanov, K. Lai, F. Lu, J. Lee, M. Jin, S. Trendafilov, A. Khanikaev, B. Fallahazad, E. Tutuc, M. A. Belkin, and G. Shvets, “Experimental demonstration of phase modulation and motion sensing using graphene-integrated metasurfaces,” Nano Lett. 16(6), 3607–3615 (2016).
[Crossref]

Boltasseva, A.

N. K. Emani, T.-F. Chung, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Electrical modulation of fano resonance in plasmonic nanostructures using graphene,” Nano Lett. 14(1), 78–82 (2014).
[Crossref]

Boyd, A. K.

M. M. Jadidi, A. B. Sushkov, R. L. Myers-Ward, A. K. Boyd, K. M. Daniels, D. K. Gaskill, M. S. Fuhrer, H. D. Drew, and T. E. Murphy, “Tunable terahertz hybrid metal-graphene plasmons,” Nano Lett. 15(10), 7099–7104 (2015).
[Crossref]

Brar, V. W.

M. C. Sherrott, P. W. C. Hon, K. T. Fountaine, J. C. Garcia, S. M. Ponti, V. W. Brar, L. A. Sweatlock, and H. A. Atwater, “Experimental demonstration of > 230 degrees phase modulation in gate-tunable graphene-gold reconfigurable mid-infrared metasurfaces,” Nano Lett. 17(5), 3027–3034 (2017).
[Crossref]

Cai, J.

M. Chen, W. Sun, J. Cai, L. Chang, and X. Xiao, “Frequency-tunable mid-infrared cross polarization converters based on graphene metasurface,” Plasmonics 12(3), 699–705 (2017).
[Crossref]

Cao, W.

Carrasco, E.

E. Carrasco, M. Tamagnone, and J. Perruisseau-Carrier, “Tunable graphene reflective cells for thz reflectarrays and generalized law of reflection,” Appl. Phys. Lett. 102(10), 104103 (2013).
[Crossref]

Chan, C. T.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref]

Chang, L.

M. Chen, W. Sun, J. Cai, L. Chang, and X. Xiao, “Frequency-tunable mid-infrared cross polarization converters based on graphene metasurface,” Plasmonics 12(3), 699–705 (2017).
[Crossref]

Chen, H.-T.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref]

Chen, M.

M. Chen, W. Sun, J. Cai, L. Chang, and X. Xiao, “Frequency-tunable mid-infrared cross polarization converters based on graphene metasurface,” Plasmonics 12(3), 699–705 (2017).
[Crossref]

X. Gao, W. Yang, W. Cao, M. Chen, Y. Jiang, X. Yu, and H. Li, “Bandwidth broadening of a graphene-based circular polarization converter by phase compensation,” Opt. Express 25(20), 23945–23954 (2017).
[Crossref]

Chen, S.

J. Li, P. Yu, H. Cheng, W. Liu, Z. Li, B. Xie, S. Chen, and J. Tian, “Optical polarization encoding using graphene-loaded plasmonic metasurfaces,” Adv. Opt. Mater. 4(1), 91–98 (2016).
[Crossref]

Chen, Y. P.

N. K. Emani, T.-F. Chung, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Electrical modulation of fano resonance in plasmonic nanostructures using graphene,” Nano Lett. 14(1), 78–82 (2014).
[Crossref]

Cheng, H.

J. Li, P. Yu, H. Cheng, W. Liu, Z. Li, B. Xie, S. Chen, and J. Tian, “Optical polarization encoding using graphene-loaded plasmonic metasurfaces,” Adv. Opt. Mater. 4(1), 91–98 (2016).
[Crossref]

Chowdhury, D. R.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref]

Chung, T.-F.

N. K. Emani, T.-F. Chung, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Electrical modulation of fano resonance in plasmonic nanostructures using graphene,” Nano Lett. 14(1), 78–82 (2014).
[Crossref]

Coletti, C.

S. Zanotto, C. Lange, T. Maag, A. Pitanti, V. Miseikis, C. Coletti, R. Degl’Innocenti, L. Baldacci, R. Huber, and A. Tredicucci, “Magneto-optic transmittance modulation observed in a hybrid graphene-split ring resonator terahertz metasurface,” Appl. Phys. Lett. 107(12), 121104 (2015).
[Crossref]

Crommie, M. F.

S.-F. Shi, B. Zeng, H.-L. Han, X. Hong, H.-Z. Tsai, H. S. Jung, A. Zettl, M. F. Crommie, and F. Wang, “Optimizing broadband terahertz modulation with hybrid graphene/metasurface structures,” Nano Lett. 15(1), 372–377 (2015).
[Crossref]

Dabidian, N.

N. Dabidian, S. Dutta-Gupta, I. Kholmanov, K. Lai, F. Lu, J. Lee, M. Jin, S. Trendafilov, A. Khanikaev, B. Fallahazad, E. Tutuc, M. A. Belkin, and G. Shvets, “Experimental demonstration of phase modulation and motion sensing using graphene-integrated metasurfaces,” Nano Lett. 16(6), 3607–3615 (2016).
[Crossref]

Dalvit, D. A. R.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref]

Daniels, K. M.

M. M. Jadidi, A. B. Sushkov, R. L. Myers-Ward, A. K. Boyd, K. M. Daniels, D. K. Gaskill, M. S. Fuhrer, H. D. Drew, and T. E. Murphy, “Tunable terahertz hybrid metal-graphene plasmons,” Nano Lett. 15(10), 7099–7104 (2015).
[Crossref]

Degl’Innocenti, R.

S. Zanotto, C. Lange, T. Maag, A. Pitanti, V. Miseikis, C. Coletti, R. Degl’Innocenti, L. Baldacci, R. Huber, and A. Tredicucci, “Magneto-optic transmittance modulation observed in a hybrid graphene-split ring resonator terahertz metasurface,” Appl. Phys. Lett. 107(12), 121104 (2015).
[Crossref]

Ding, K.

Z. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, Y. Zhang, and L. Zhou, “Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces,” Phys. Rev. X 5(4), 041027 (2015).
[Crossref]

Ding, Y.

Drew, H. D.

M. M. Jadidi, A. B. Sushkov, R. L. Myers-Ward, A. K. Boyd, K. M. Daniels, D. K. Gaskill, M. S. Fuhrer, H. D. Drew, and T. E. Murphy, “Tunable terahertz hybrid metal-graphene plasmons,” Nano Lett. 15(10), 7099–7104 (2015).
[Crossref]

Dujardin, E.

C. Soldano, A. Mahmood, and E. Dujardin, “Production, properties and potential of graphene,” Carbon 48(8), 2127–2150 (2010).
[Crossref]

Dutta-Gupta, S.

N. Dabidian, S. Dutta-Gupta, I. Kholmanov, K. Lai, F. Lu, J. Lee, M. Jin, S. Trendafilov, A. Khanikaev, B. Fallahazad, E. Tutuc, M. A. Belkin, and G. Shvets, “Experimental demonstration of phase modulation and motion sensing using graphene-integrated metasurfaces,” Nano Lett. 16(6), 3607–3615 (2016).
[Crossref]

Emani, N. K.

N. K. Emani, T.-F. Chung, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Electrical modulation of fano resonance in plasmonic nanostructures using graphene,” Nano Lett. 14(1), 78–82 (2014).
[Crossref]

Engheta, N.

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref]

Falkovsky, L. A.

L. A. Falkovsky and S. S. Pershoguba, “Optical far-infrared properties of a graphene monolayer and multilayer,” Phys. Rev. B 76(15), 153410 (2007).
[Crossref]

Fallahazad, B.

N. Dabidian, S. Dutta-Gupta, I. Kholmanov, K. Lai, F. Lu, J. Lee, M. Jin, S. Trendafilov, A. Khanikaev, B. Fallahazad, E. Tutuc, M. A. Belkin, and G. Shvets, “Experimental demonstration of phase modulation and motion sensing using graphene-integrated metasurfaces,” Nano Lett. 16(6), 3607–3615 (2016).
[Crossref]

Fan, Y.

Y. Fan, N.-H. Shen, T. Koschny, and C. M. Soukoulis, “Tunable terahertz meta-surface with graphene cut-wires,” ACS Photonics 2(1), 151–156 (2015).
[Crossref]

Fountaine, K. T.

M. C. Sherrott, P. W. C. Hon, K. T. Fountaine, J. C. Garcia, S. M. Ponti, V. W. Brar, L. A. Sweatlock, and H. A. Atwater, “Experimental demonstration of > 230 degrees phase modulation in gate-tunable graphene-gold reconfigurable mid-infrared metasurfaces,” Nano Lett. 17(5), 3027–3034 (2017).
[Crossref]

Fozdar, D. Y.

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett. 13(3), 1111–1117 (2013).
[Crossref]

Freitag, M.

W. Zhu, V. Perebeinos, M. Freitag, and P. Avouris, “Carrier scattering, mobilities, and electrostatic potential in monolayer, bilayer, and trilayer graphene,” Phys. Rev. B 80(23), 235402 (2009).
[Crossref]

Fuhrer, M. S.

M. M. Jadidi, A. B. Sushkov, R. L. Myers-Ward, A. K. Boyd, K. M. Daniels, D. K. Gaskill, M. S. Fuhrer, H. D. Drew, and T. E. Murphy, “Tunable terahertz hybrid metal-graphene plasmons,” Nano Lett. 15(10), 7099–7104 (2015).
[Crossref]

Gao, J.

S. Luo, B. Li, A. Yu, J. Gao, X. Wang, and D. Zuo, “Broadband tunable terahertz polarization converter based on graphene metamaterial,” Opt. Commun. 413, 184–189 (2018).
[Crossref]

Gao, X.

Garcia, J. C.

M. C. Sherrott, P. W. C. Hon, K. T. Fountaine, J. C. Garcia, S. M. Ponti, V. W. Brar, L. A. Sweatlock, and H. A. Atwater, “Experimental demonstration of > 230 degrees phase modulation in gate-tunable graphene-gold reconfigurable mid-infrared metasurfaces,” Nano Lett. 17(5), 3027–3034 (2017).
[Crossref]

Gaskill, D. K.

M. M. Jadidi, A. B. Sushkov, R. L. Myers-Ward, A. K. Boyd, K. M. Daniels, D. K. Gaskill, M. S. Fuhrer, H. D. Drew, and T. E. Murphy, “Tunable terahertz hybrid metal-graphene plasmons,” Nano Lett. 15(10), 7099–7104 (2015).
[Crossref]

Ge, S.

Grady, N. K.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref]

Gu, J.

Q. Li, Z. Tian, X. Zhang, N. Xu, R. Singh, J. Gu, P. Lv, L.-B. Luo, S. Zhang, J. Han, and W. Zhang, “Dual control of active graphene-silicon hybrid metamaterial devices,” Carbon 90, 146–153 (2015).
[Crossref]

Guo, J.

Guo, T.

Han, H.-L.

S.-F. Shi, B. Zeng, H.-L. Han, X. Hong, H.-Z. Tsai, H. S. Jung, A. Zettl, M. F. Crommie, and F. Wang, “Optimizing broadband terahertz modulation with hybrid graphene/metasurface structures,” Nano Lett. 15(1), 372–377 (2015).
[Crossref]

Han, J.

Q. Li, Z. Tian, X. Zhang, N. Xu, R. Singh, J. Gu, P. Lv, L.-B. Luo, S. Zhang, J. Han, and W. Zhang, “Dual control of active graphene-silicon hybrid metamaterial devices,” Carbon 90, 146–153 (2015).
[Crossref]

Hanson, G. W.

G. W. Hanson, “Dyadic green’s functions for an anisotropic, non-local model of biased graphene,” IEEE Trans. Antennas Propag. 56(3), 747–757 (2008).
[Crossref]

G. W. Hanson, “Dyadic gree’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

Hao, J.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref]

Hao, Y.

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett. 13(3), 1111–1117 (2013).
[Crossref]

He, D.

He, Q.

Z. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, Y. Zhang, and L. Zhou, “Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces,” Phys. Rev. X 5(4), 041027 (2015).
[Crossref]

Heyes, J. E.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref]

Hon, P. W. C.

M. C. Sherrott, P. W. C. Hon, K. T. Fountaine, J. C. Garcia, S. M. Ponti, V. W. Brar, L. A. Sweatlock, and H. A. Atwater, “Experimental demonstration of > 230 degrees phase modulation in gate-tunable graphene-gold reconfigurable mid-infrared metasurfaces,” Nano Lett. 17(5), 3027–3034 (2017).
[Crossref]

Hong, X.

S.-F. Shi, B. Zeng, H.-L. Han, X. Hong, H.-Z. Tsai, H. S. Jung, A. Zettl, M. F. Crommie, and F. Wang, “Optimizing broadband terahertz modulation with hybrid graphene/metasurface structures,” Nano Lett. 15(1), 372–377 (2015).
[Crossref]

Hu, F.

Y. Huang, Z. Yao, F. Hu, C. Liu, L. Yu, Y. Jin, and X. Xu, “Tunable circular polarization conversion and asymmetric transmission of planar chiral graphene-metamaterial in terahertz region,” Carbon 119, 305–313 (2017).
[Crossref]

Hu, W.

Huang, Y.

Y. Huang, Z. Yao, F. Hu, C. Liu, L. Yu, Y. Jin, and X. Xu, “Tunable circular polarization conversion and asymmetric transmission of planar chiral graphene-metamaterial in terahertz region,” Carbon 119, 305–313 (2017).
[Crossref]

Huber, R.

S. Zanotto, C. Lange, T. Maag, A. Pitanti, V. Miseikis, C. Coletti, R. Degl’Innocenti, L. Baldacci, R. Huber, and A. Tredicucci, “Magneto-optic transmittance modulation observed in a hybrid graphene-split ring resonator terahertz metasurface,” Appl. Phys. Lett. 107(12), 121104 (2015).
[Crossref]

Hvam, J. M.

Jadidi, M. M.

M. M. Jadidi, A. B. Sushkov, R. L. Myers-Ward, A. K. Boyd, K. M. Daniels, D. K. Gaskill, M. S. Fuhrer, H. D. Drew, and T. E. Murphy, “Tunable terahertz hybrid metal-graphene plasmons,” Nano Lett. 15(10), 7099–7104 (2015).
[Crossref]

Jiang, H.

Jiang, T.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref]

Jiang, Y.

Jin, M.

N. Dabidian, S. Dutta-Gupta, I. Kholmanov, K. Lai, F. Lu, J. Lee, M. Jin, S. Trendafilov, A. Khanikaev, B. Fallahazad, E. Tutuc, M. A. Belkin, and G. Shvets, “Experimental demonstration of phase modulation and motion sensing using graphene-integrated metasurfaces,” Nano Lett. 16(6), 3607–3615 (2016).
[Crossref]

Jin, Y.

Y. Huang, Z. Yao, F. Hu, C. Liu, L. Yu, Y. Jin, and X. Xu, “Tunable circular polarization conversion and asymmetric transmission of planar chiral graphene-metamaterial in terahertz region,” Carbon 119, 305–313 (2017).
[Crossref]

Jung, H. S.

S.-F. Shi, B. Zeng, H.-L. Han, X. Hong, H.-Z. Tsai, H. S. Jung, A. Zettl, M. F. Crommie, and F. Wang, “Optimizing broadband terahertz modulation with hybrid graphene/metasurface structures,” Nano Lett. 15(1), 372–377 (2015).
[Crossref]

Khanikaev, A.

N. Dabidian, S. Dutta-Gupta, I. Kholmanov, K. Lai, F. Lu, J. Lee, M. Jin, S. Trendafilov, A. Khanikaev, B. Fallahazad, E. Tutuc, M. A. Belkin, and G. Shvets, “Experimental demonstration of phase modulation and motion sensing using graphene-integrated metasurfaces,” Nano Lett. 16(6), 3607–3615 (2016).
[Crossref]

Khanikaev, A. B.

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett. 13(3), 1111–1117 (2013).
[Crossref]

Kholmanov, I.

N. Dabidian, S. Dutta-Gupta, I. Kholmanov, K. Lai, F. Lu, J. Lee, M. Jin, S. Trendafilov, A. Khanikaev, B. Fallahazad, E. Tutuc, M. A. Belkin, and G. Shvets, “Experimental demonstration of phase modulation and motion sensing using graphene-integrated metasurfaces,” Nano Lett. 16(6), 3607–3615 (2016).
[Crossref]

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett. 13(3), 1111–1117 (2013).
[Crossref]

Kildishev, A. V.

N. K. Emani, T.-F. Chung, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Electrical modulation of fano resonance in plasmonic nanostructures using graphene,” Nano Lett. 14(1), 78–82 (2014).
[Crossref]

Kong, J. A.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref]

Koschny, T.

Y. Fan, N.-H. Shen, T. Koschny, and C. M. Soukoulis, “Tunable terahertz meta-surface with graphene cut-wires,” ACS Photonics 2(1), 151–156 (2015).
[Crossref]

Lai, K.

N. Dabidian, S. Dutta-Gupta, I. Kholmanov, K. Lai, F. Lu, J. Lee, M. Jin, S. Trendafilov, A. Khanikaev, B. Fallahazad, E. Tutuc, M. A. Belkin, and G. Shvets, “Experimental demonstration of phase modulation and motion sensing using graphene-integrated metasurfaces,” Nano Lett. 16(6), 3607–3615 (2016).
[Crossref]

Lange, C.

S. Zanotto, C. Lange, T. Maag, A. Pitanti, V. Miseikis, C. Coletti, R. Degl’Innocenti, L. Baldacci, R. Huber, and A. Tredicucci, “Magneto-optic transmittance modulation observed in a hybrid graphene-split ring resonator terahertz metasurface,” Appl. Phys. Lett. 107(12), 121104 (2015).
[Crossref]

Lee, J.

N. Dabidian, S. Dutta-Gupta, I. Kholmanov, K. Lai, F. Lu, J. Lee, M. Jin, S. Trendafilov, A. Khanikaev, B. Fallahazad, E. Tutuc, M. A. Belkin, and G. Shvets, “Experimental demonstration of phase modulation and motion sensing using graphene-integrated metasurfaces,” Nano Lett. 16(6), 3607–3615 (2016).
[Crossref]

Li, B.

S. Luo, B. Li, A. Yu, J. Gao, X. Wang, and D. Zuo, “Broadband tunable terahertz polarization converter based on graphene metamaterial,” Opt. Commun. 413, 184–189 (2018).
[Crossref]

Li, H.

Li, J.

J. Li, P. Yu, H. Cheng, W. Liu, Z. Li, B. Xie, S. Chen, and J. Tian, “Optical polarization encoding using graphene-loaded plasmonic metasurfaces,” Adv. Opt. Mater. 4(1), 91–98 (2016).
[Crossref]

Li, Q.

Q. Li, Z. Tian, X. Zhang, N. Xu, R. Singh, J. Gu, P. Lv, L.-B. Luo, S. Zhang, J. Han, and W. Zhang, “Dual control of active graphene-silicon hybrid metamaterial devices,” Carbon 90, 146–153 (2015).
[Crossref]

Li, X.

Z. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, Y. Zhang, and L. Zhou, “Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces,” Phys. Rev. X 5(4), 041027 (2015).
[Crossref]

Li, Y.

X. Wang, Y. Li, Q. Zheng, and H. Yang, “Tunable dual-frequency cross polarization converters based on graphene metasurface in infrared range,” Phys. Scr. 94(10), 105503 (2019).
[Crossref]

Li, Z.

S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

J. Li, P. Yu, H. Cheng, W. Liu, Z. Li, B. Xie, S. Chen, and J. Tian, “Optical polarization encoding using graphene-loaded plasmonic metasurfaces,” Adv. Opt. Mater. 4(1), 91–98 (2016).
[Crossref]

Liang, L.

Z. Zhang, X. Yan, L. Liang, D. Wei, M. Wang, Y. Wang, and J. Yao, “The novel hybrid metal-graphene metasurfaces for broadband focusing and beam-steering in farfield at the terahertz frequencies,” Carbon 132, 529–538 (2018).
[Crossref]

Lin, Q.

Liu, C.

Y. Huang, Z. Yao, F. Hu, C. Liu, L. Yu, Y. Jin, and X. Xu, “Tunable circular polarization conversion and asymmetric transmission of planar chiral graphene-metamaterial in terahertz region,” Carbon 119, 305–313 (2017).
[Crossref]

Liu, G.-D.

Liu, L.

Liu, P.

E. O. Owiti, H. Yang, P. Liu, C. F. Ominde, and X. Sun, “Polarization converter with controllable birefringence based on hybrid all-dielectric-graphene metasurface,” Nanoscale Res. Lett. 13(1), 38–39 (2018).
[Crossref]

Liu, T.

S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

Liu, W.

J. Li, P. Yu, H. Cheng, W. Liu, Z. Li, B. Xie, S. Chen, and J. Tian, “Optical polarization encoding using graphene-loaded plasmonic metasurfaces,” Adv. Opt. Mater. 4(1), 91–98 (2016).
[Crossref]

Liu, Z.

Low, T.

T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano 8(2), 1086–1101 (2014).
[Crossref]

Lu, F.

N. Dabidian, S. Dutta-Gupta, I. Kholmanov, K. Lai, F. Lu, J. Lee, M. Jin, S. Trendafilov, A. Khanikaev, B. Fallahazad, E. Tutuc, M. A. Belkin, and G. Shvets, “Experimental demonstration of phase modulation and motion sensing using graphene-integrated metasurfaces,” Nano Lett. 16(6), 3607–3615 (2016).
[Crossref]

Lu, M.

Lu, Y.

Luo, L.-B.

Q. Li, Z. Tian, X. Zhang, N. Xu, R. Singh, J. Gu, P. Lv, L.-B. Luo, S. Zhang, J. Han, and W. Zhang, “Dual control of active graphene-silicon hybrid metamaterial devices,” Carbon 90, 146–153 (2015).
[Crossref]

Luo, S.

S. Luo, B. Li, A. Yu, J. Gao, X. Wang, and D. Zuo, “Broadband tunable terahertz polarization converter based on graphene metamaterial,” Opt. Commun. 413, 184–189 (2018).
[Crossref]

Luo, Y.

Lv, P.

Q. Li, Z. Tian, X. Zhang, N. Xu, R. Singh, J. Gu, P. Lv, L.-B. Luo, S. Zhang, J. Han, and W. Zhang, “Dual control of active graphene-silicon hybrid metamaterial devices,” Carbon 90, 146–153 (2015).
[Crossref]

Maag, T.

S. Zanotto, C. Lange, T. Maag, A. Pitanti, V. Miseikis, C. Coletti, R. Degl’Innocenti, L. Baldacci, R. Huber, and A. Tredicucci, “Magneto-optic transmittance modulation observed in a hybrid graphene-split ring resonator terahertz metasurface,” Appl. Phys. Lett. 107(12), 121104 (2015).
[Crossref]

Mahmood, A.

C. Soldano, A. Mahmood, and E. Dujardin, “Production, properties and potential of graphene,” Carbon 48(8), 2127–2150 (2010).
[Crossref]

Miao, Z.

Z. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, Y. Zhang, and L. Zhou, “Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces,” Phys. Rev. X 5(4), 041027 (2015).
[Crossref]

Miseikis, V.

S. Zanotto, C. Lange, T. Maag, A. Pitanti, V. Miseikis, C. Coletti, R. Degl’Innocenti, L. Baldacci, R. Huber, and A. Tredicucci, “Magneto-optic transmittance modulation observed in a hybrid graphene-split ring resonator terahertz metasurface,” Appl. Phys. Lett. 107(12), 121104 (2015).
[Crossref]

Mousavi, S. H.

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett. 13(3), 1111–1117 (2013).
[Crossref]

Murphy, T. E.

M. M. Jadidi, A. B. Sushkov, R. L. Myers-Ward, A. K. Boyd, K. M. Daniels, D. K. Gaskill, M. S. Fuhrer, H. D. Drew, and T. E. Murphy, “Tunable terahertz hybrid metal-graphene plasmons,” Nano Lett. 15(10), 7099–7104 (2015).
[Crossref]

Myers-Ward, R. L.

M. M. Jadidi, A. B. Sushkov, R. L. Myers-Ward, A. K. Boyd, K. M. Daniels, D. K. Gaskill, M. S. Fuhrer, H. D. Drew, and T. E. Murphy, “Tunable terahertz hybrid metal-graphene plasmons,” Nano Lett. 15(10), 7099–7104 (2015).
[Crossref]

Nakajima, M.

Ominde, C. F.

E. O. Owiti, H. Yang, P. Liu, C. F. Ominde, and X. Sun, “Polarization converter with controllable birefringence based on hybrid all-dielectric-graphene metasurface,” Nanoscale Res. Lett. 13(1), 38–39 (2018).
[Crossref]

Owiti, E. O.

E. O. Owiti, H. Yang, P. Liu, C. F. Ominde, and X. Sun, “Polarization converter with controllable birefringence based on hybrid all-dielectric-graphene metasurface,” Nanoscale Res. Lett. 13(1), 38–39 (2018).
[Crossref]

Perebeinos, V.

W. Zhu, V. Perebeinos, M. Freitag, and P. Avouris, “Carrier scattering, mobilities, and electrostatic potential in monolayer, bilayer, and trilayer graphene,” Phys. Rev. B 80(23), 235402 (2009).
[Crossref]

Perruisseau-Carrier, J.

E. Carrasco, M. Tamagnone, and J. Perruisseau-Carrier, “Tunable graphene reflective cells for thz reflectarrays and generalized law of reflection,” Appl. Phys. Lett. 102(10), 104103 (2013).
[Crossref]

Pershoguba, S. S.

L. A. Falkovsky and S. S. Pershoguba, “Optical far-infrared properties of a graphene monolayer and multilayer,” Phys. Rev. B 76(15), 153410 (2007).
[Crossref]

Pitanti, A.

S. Zanotto, C. Lange, T. Maag, A. Pitanti, V. Miseikis, C. Coletti, R. Degl’Innocenti, L. Baldacci, R. Huber, and A. Tredicucci, “Magneto-optic transmittance modulation observed in a hybrid graphene-split ring resonator terahertz metasurface,” Appl. Phys. Lett. 107(12), 121104 (2015).
[Crossref]

Ponti, S. M.

M. C. Sherrott, P. W. C. Hon, K. T. Fountaine, J. C. Garcia, S. M. Ponti, V. W. Brar, L. A. Sweatlock, and H. A. Atwater, “Experimental demonstration of > 230 degrees phase modulation in gate-tunable graphene-gold reconfigurable mid-infrared metasurfaces,” Nano Lett. 17(5), 3027–3034 (2017).
[Crossref]

Pu, Y.

Purtseladze, D.

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett. 13(3), 1111–1117 (2013).
[Crossref]

Ran, L.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref]

Reiten, M. T.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref]

Ruoff, R. S.

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett. 13(3), 1111–1117 (2013).
[Crossref]

Shalaev, V. M.

N. K. Emani, T.-F. Chung, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Electrical modulation of fano resonance in plasmonic nanostructures using graphene,” Nano Lett. 14(1), 78–82 (2014).
[Crossref]

Shen, N.-H.

Y. Fan, N.-H. Shen, T. Koschny, and C. M. Soukoulis, “Tunable terahertz meta-surface with graphene cut-wires,” ACS Photonics 2(1), 151–156 (2015).
[Crossref]

Sherrott, M. C.

M. C. Sherrott, P. W. C. Hon, K. T. Fountaine, J. C. Garcia, S. M. Ponti, V. W. Brar, L. A. Sweatlock, and H. A. Atwater, “Experimental demonstration of > 230 degrees phase modulation in gate-tunable graphene-gold reconfigurable mid-infrared metasurfaces,” Nano Lett. 17(5), 3027–3034 (2017).
[Crossref]

Shi, S.-F.

S.-F. Shi, B. Zeng, H.-L. Han, X. Hong, H.-Z. Tsai, H. S. Jung, A. Zettl, M. F. Crommie, and F. Wang, “Optimizing broadband terahertz modulation with hybrid graphene/metasurface structures,” Nano Lett. 15(1), 372–377 (2015).
[Crossref]

Shvets, G.

N. Dabidian, S. Dutta-Gupta, I. Kholmanov, K. Lai, F. Lu, J. Lee, M. Jin, S. Trendafilov, A. Khanikaev, B. Fallahazad, E. Tutuc, M. A. Belkin, and G. Shvets, “Experimental demonstration of phase modulation and motion sensing using graphene-integrated metasurfaces,” Nano Lett. 16(6), 3607–3615 (2016).
[Crossref]

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett. 13(3), 1111–1117 (2013).
[Crossref]

Singh, R.

Q. Li, Z. Tian, X. Zhang, N. Xu, R. Singh, J. Gu, P. Lv, L.-B. Luo, S. Zhang, J. Han, and W. Zhang, “Dual control of active graphene-silicon hybrid metamaterial devices,” Carbon 90, 146–153 (2015).
[Crossref]

Soldano, C.

C. Soldano, A. Mahmood, and E. Dujardin, “Production, properties and potential of graphene,” Carbon 48(8), 2127–2150 (2010).
[Crossref]

Soukoulis, C. M.

Y. Fan, N.-H. Shen, T. Koschny, and C. M. Soukoulis, “Tunable terahertz meta-surface with graphene cut-wires,” ACS Photonics 2(1), 151–156 (2015).
[Crossref]

Suk, J. W.

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett. 13(3), 1111–1117 (2013).
[Crossref]

Sun, W.

M. Chen, W. Sun, J. Cai, L. Chang, and X. Xiao, “Frequency-tunable mid-infrared cross polarization converters based on graphene metasurface,” Plasmonics 12(3), 699–705 (2017).
[Crossref]

Sun, X.

E. O. Owiti, H. Yang, P. Liu, C. F. Ominde, and X. Sun, “Polarization converter with controllable birefringence based on hybrid all-dielectric-graphene metasurface,” Nanoscale Res. Lett. 13(1), 38–39 (2018).
[Crossref]

Sushkov, A. B.

M. M. Jadidi, A. B. Sushkov, R. L. Myers-Ward, A. K. Boyd, K. M. Daniels, D. K. Gaskill, M. S. Fuhrer, H. D. Drew, and T. E. Murphy, “Tunable terahertz hybrid metal-graphene plasmons,” Nano Lett. 15(10), 7099–7104 (2015).
[Crossref]

Sweatlock, L. A.

M. C. Sherrott, P. W. C. Hon, K. T. Fountaine, J. C. Garcia, S. M. Ponti, V. W. Brar, L. A. Sweatlock, and H. A. Atwater, “Experimental demonstration of > 230 degrees phase modulation in gate-tunable graphene-gold reconfigurable mid-infrared metasurfaces,” Nano Lett. 17(5), 3027–3034 (2017).
[Crossref]

Tamagnone, M.

E. Carrasco, M. Tamagnone, and J. Perruisseau-Carrier, “Tunable graphene reflective cells for thz reflectarrays and generalized law of reflection,” Appl. Phys. Lett. 102(10), 104103 (2013).
[Crossref]

Tatar, K.

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett. 13(3), 1111–1117 (2013).
[Crossref]

Taylor, A. J.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref]

Tian, J.

J. Li, P. Yu, H. Cheng, W. Liu, Z. Li, B. Xie, S. Chen, and J. Tian, “Optical polarization encoding using graphene-loaded plasmonic metasurfaces,” Adv. Opt. Mater. 4(1), 91–98 (2016).
[Crossref]

Tian, Z.

Q. Li, Z. Tian, X. Zhang, N. Xu, R. Singh, J. Gu, P. Lv, L.-B. Luo, S. Zhang, J. Han, and W. Zhang, “Dual control of active graphene-silicon hybrid metamaterial devices,” Carbon 90, 146–153 (2015).
[Crossref]

Tredicucci, A.

S. Zanotto, C. Lange, T. Maag, A. Pitanti, V. Miseikis, C. Coletti, R. Degl’Innocenti, L. Baldacci, R. Huber, and A. Tredicucci, “Magneto-optic transmittance modulation observed in a hybrid graphene-split ring resonator terahertz metasurface,” Appl. Phys. Lett. 107(12), 121104 (2015).
[Crossref]

Trendafilov, S.

N. Dabidian, S. Dutta-Gupta, I. Kholmanov, K. Lai, F. Lu, J. Lee, M. Jin, S. Trendafilov, A. Khanikaev, B. Fallahazad, E. Tutuc, M. A. Belkin, and G. Shvets, “Experimental demonstration of phase modulation and motion sensing using graphene-integrated metasurfaces,” Nano Lett. 16(6), 3607–3615 (2016).
[Crossref]

Tsai, H.-Z.

S.-F. Shi, B. Zeng, H.-L. Han, X. Hong, H.-Z. Tsai, H. S. Jung, A. Zettl, M. F. Crommie, and F. Wang, “Optimizing broadband terahertz modulation with hybrid graphene/metasurface structures,” Nano Lett. 15(1), 372–377 (2015).
[Crossref]

Tutuc, E.

N. Dabidian, S. Dutta-Gupta, I. Kholmanov, K. Lai, F. Lu, J. Lee, M. Jin, S. Trendafilov, A. Khanikaev, B. Fallahazad, E. Tutuc, M. A. Belkin, and G. Shvets, “Experimental demonstration of phase modulation and motion sensing using graphene-integrated metasurfaces,” Nano Lett. 16(6), 3607–3615 (2016).
[Crossref]

Vakil, A.

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref]

Wang, F.

S.-F. Shi, B. Zeng, H.-L. Han, X. Hong, H.-Z. Tsai, H. S. Jung, A. Zettl, M. F. Crommie, and F. Wang, “Optimizing broadband terahertz modulation with hybrid graphene/metasurface structures,” Nano Lett. 15(1), 372–377 (2015).
[Crossref]

Wang, J.

Wang, L.

Wang, L.-L.

Wang, M.

Z. Zhang, X. Yan, L. Liang, D. Wei, M. Wang, Y. Wang, and J. Yao, “The novel hybrid metal-graphene metasurfaces for broadband focusing and beam-steering in farfield at the terahertz frequencies,” Carbon 132, 529–538 (2018).
[Crossref]

Wang, T.

S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

Wang, X.

X. Wang, Y. Li, Q. Zheng, and H. Yang, “Tunable dual-frequency cross polarization converters based on graphene metasurface in infrared range,” Phys. Scr. 94(10), 105503 (2019).
[Crossref]

S. Luo, B. Li, A. Yu, J. Gao, X. Wang, and D. Zuo, “Broadband tunable terahertz polarization converter based on graphene metamaterial,” Opt. Commun. 413, 184–189 (2018).
[Crossref]

Wang, Y.

Wei, D.

Z. Zhang, X. Yan, L. Liang, D. Wei, M. Wang, Y. Wang, and J. Yao, “The novel hybrid metal-graphene metasurfaces for broadband focusing and beam-steering in farfield at the terahertz frequencies,” Carbon 132, 529–538 (2018).
[Crossref]

Wei, T.

Wu, Q.

Z. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, Y. Zhang, and L. Zhou, “Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces,” Phys. Rev. X 5(4), 041027 (2015).
[Crossref]

Xia, S.-X.

Xiao, S.

S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

Xiao, X.

M. Chen, W. Sun, J. Cai, L. Chang, and X. Xiao, “Frequency-tunable mid-infrared cross polarization converters based on graphene metasurface,” Plasmonics 12(3), 699–705 (2017).
[Crossref]

Xie, B.

J. Li, P. Yu, H. Cheng, W. Liu, Z. Li, B. Xie, S. Chen, and J. Tian, “Optical polarization encoding using graphene-loaded plasmonic metasurfaces,” Adv. Opt. Mater. 4(1), 91–98 (2016).
[Crossref]

Xu, C.

S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

Xu, J.

Xu, N.

Q. Li, Z. Tian, X. Zhang, N. Xu, R. Singh, J. Gu, P. Lv, L.-B. Luo, S. Zhang, J. Han, and W. Zhang, “Dual control of active graphene-silicon hybrid metamaterial devices,” Carbon 90, 146–153 (2015).
[Crossref]

Xu, X.

Y. Huang, Z. Yao, F. Hu, C. Liu, L. Yu, Y. Jin, and X. Xu, “Tunable circular polarization conversion and asymmetric transmission of planar chiral graphene-metamaterial in terahertz region,” Carbon 119, 305–313 (2017).
[Crossref]

Yan, X.

Z. Zhang, X. Yan, L. Liang, D. Wei, M. Wang, Y. Wang, and J. Yao, “The novel hybrid metal-graphene metasurfaces for broadband focusing and beam-steering in farfield at the terahertz frequencies,” Carbon 132, 529–538 (2018).
[Crossref]

S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

Yang, C.

Yang, H.

X. Wang, Y. Li, Q. Zheng, and H. Yang, “Tunable dual-frequency cross polarization converters based on graphene metasurface in infrared range,” Phys. Scr. 94(10), 105503 (2019).
[Crossref]

E. O. Owiti, H. Yang, P. Liu, C. F. Ominde, and X. Sun, “Polarization converter with controllable birefringence based on hybrid all-dielectric-graphene metasurface,” Nanoscale Res. Lett. 13(1), 38–39 (2018).
[Crossref]

Yang, R.

A. Zhang and R. Yang, “Manipulating polarizations and reflecting angles of electromagnetic fields simultaneously from conformal meta-mirrors,” Appl. Phys. Lett. 113(9), 091603 (2018).
[Crossref]

Yang, W.

Yao, J.

Z. Zhang, X. Yan, L. Liang, D. Wei, M. Wang, Y. Wang, and J. Yao, “The novel hybrid metal-graphene metasurfaces for broadband focusing and beam-steering in farfield at the terahertz frequencies,” Carbon 132, 529–538 (2018).
[Crossref]

Yao, Z.

Yu, A.

S. Luo, B. Li, A. Yu, J. Gao, X. Wang, and D. Zuo, “Broadband tunable terahertz polarization converter based on graphene metamaterial,” Opt. Commun. 413, 184–189 (2018).
[Crossref]

Yu, L.

Y. Huang, Z. Yao, F. Hu, C. Liu, L. Yu, Y. Jin, and X. Xu, “Tunable circular polarization conversion and asymmetric transmission of planar chiral graphene-metamaterial in terahertz region,” Carbon 119, 305–313 (2017).
[Crossref]

Yu, P.

J. Li, P. Yu, H. Cheng, W. Liu, Z. Li, B. Xie, S. Chen, and J. Tian, “Optical polarization encoding using graphene-loaded plasmonic metasurfaces,” Adv. Opt. Mater. 4(1), 91–98 (2016).
[Crossref]

Yu, X.

Yuan, Y.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref]

Yvind, K.

Zanotto, S.

S. Zanotto, C. Lange, T. Maag, A. Pitanti, V. Miseikis, C. Coletti, R. Degl’Innocenti, L. Baldacci, R. Huber, and A. Tredicucci, “Magneto-optic transmittance modulation observed in a hybrid graphene-split ring resonator terahertz metasurface,” Appl. Phys. Lett. 107(12), 121104 (2015).
[Crossref]

Zeng, B.

S.-F. Shi, B. Zeng, H.-L. Han, X. Hong, H.-Z. Tsai, H. S. Jung, A. Zettl, M. F. Crommie, and F. Wang, “Optimizing broadband terahertz modulation with hybrid graphene/metasurface structures,” Nano Lett. 15(1), 372–377 (2015).
[Crossref]

Zeng, Y.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref]

Zettl, A.

S.-F. Shi, B. Zeng, H.-L. Han, X. Hong, H.-Z. Tsai, H. S. Jung, A. Zettl, M. F. Crommie, and F. Wang, “Optimizing broadband terahertz modulation with hybrid graphene/metasurface structures,” Nano Lett. 15(1), 372–377 (2015).
[Crossref]

Zhai, X.

Zhang, A.

A. Zhang and R. Yang, “Manipulating polarizations and reflecting angles of electromagnetic fields simultaneously from conformal meta-mirrors,” Appl. Phys. Lett. 113(9), 091603 (2018).
[Crossref]

Zhang, C.

Zhang, L.

Zhang, S.

Q. Li, Z. Tian, X. Zhang, N. Xu, R. Singh, J. Gu, P. Lv, L.-B. Luo, S. Zhang, J. Han, and W. Zhang, “Dual control of active graphene-silicon hybrid metamaterial devices,” Carbon 90, 146–153 (2015).
[Crossref]

Zhang, W.

Q. Li, Z. Tian, X. Zhang, N. Xu, R. Singh, J. Gu, P. Lv, L.-B. Luo, S. Zhang, J. Han, and W. Zhang, “Dual control of active graphene-silicon hybrid metamaterial devices,” Carbon 90, 146–153 (2015).
[Crossref]

Zhang, X.

Q. Li, Z. Tian, X. Zhang, N. Xu, R. Singh, J. Gu, P. Lv, L.-B. Luo, S. Zhang, J. Han, and W. Zhang, “Dual control of active graphene-silicon hybrid metamaterial devices,” Carbon 90, 146–153 (2015).
[Crossref]

Zhang, Y.

Z. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, Y. Zhang, and L. Zhou, “Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces,” Phys. Rev. X 5(4), 041027 (2015).
[Crossref]

Zhang, Z.

Z. Zhang, X. Yan, L. Liang, D. Wei, M. Wang, Y. Wang, and J. Yao, “The novel hybrid metal-graphene metasurfaces for broadband focusing and beam-steering in farfield at the terahertz frequencies,” Carbon 132, 529–538 (2018).
[Crossref]

Zhao, C.-J.

Zhao, W.

Zheng, Q.

X. Wang, Y. Li, Q. Zheng, and H. Yang, “Tunable dual-frequency cross polarization converters based on graphene metasurface in infrared range,” Phys. Scr. 94(10), 105503 (2019).
[Crossref]

Zhou, L.

Z. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, Y. Zhang, and L. Zhou, “Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces,” Phys. Rev. X 5(4), 041027 (2015).
[Crossref]

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref]

Zhu, W.

W. Zhu, V. Perebeinos, M. Freitag, and P. Avouris, “Carrier scattering, mobilities, and electrostatic potential in monolayer, bilayer, and trilayer graphene,” Phys. Rev. B 80(23), 235402 (2009).
[Crossref]

Zuo, D.

S. Luo, B. Li, A. Yu, J. Gao, X. Wang, and D. Zuo, “Broadband tunable terahertz polarization converter based on graphene metamaterial,” Opt. Commun. 413, 184–189 (2018).
[Crossref]

ACS Nano (1)

T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano 8(2), 1086–1101 (2014).
[Crossref]

ACS Photonics (1)

Y. Fan, N.-H. Shen, T. Koschny, and C. M. Soukoulis, “Tunable terahertz meta-surface with graphene cut-wires,” ACS Photonics 2(1), 151–156 (2015).
[Crossref]

Adv. Opt. Mater. (1)

J. Li, P. Yu, H. Cheng, W. Liu, Z. Li, B. Xie, S. Chen, and J. Tian, “Optical polarization encoding using graphene-loaded plasmonic metasurfaces,” Adv. Opt. Mater. 4(1), 91–98 (2016).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

A. Zhang and R. Yang, “Manipulating polarizations and reflecting angles of electromagnetic fields simultaneously from conformal meta-mirrors,” Appl. Phys. Lett. 113(9), 091603 (2018).
[Crossref]

E. Carrasco, M. Tamagnone, and J. Perruisseau-Carrier, “Tunable graphene reflective cells for thz reflectarrays and generalized law of reflection,” Appl. Phys. Lett. 102(10), 104103 (2013).
[Crossref]

S. Zanotto, C. Lange, T. Maag, A. Pitanti, V. Miseikis, C. Coletti, R. Degl’Innocenti, L. Baldacci, R. Huber, and A. Tredicucci, “Magneto-optic transmittance modulation observed in a hybrid graphene-split ring resonator terahertz metasurface,” Appl. Phys. Lett. 107(12), 121104 (2015).
[Crossref]

Carbon (5)

S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

Q. Li, Z. Tian, X. Zhang, N. Xu, R. Singh, J. Gu, P. Lv, L.-B. Luo, S. Zhang, J. Han, and W. Zhang, “Dual control of active graphene-silicon hybrid metamaterial devices,” Carbon 90, 146–153 (2015).
[Crossref]

C. Soldano, A. Mahmood, and E. Dujardin, “Production, properties and potential of graphene,” Carbon 48(8), 2127–2150 (2010).
[Crossref]

Z. Zhang, X. Yan, L. Liang, D. Wei, M. Wang, Y. Wang, and J. Yao, “The novel hybrid metal-graphene metasurfaces for broadband focusing and beam-steering in farfield at the terahertz frequencies,” Carbon 132, 529–538 (2018).
[Crossref]

Y. Huang, Z. Yao, F. Hu, C. Liu, L. Yu, Y. Jin, and X. Xu, “Tunable circular polarization conversion and asymmetric transmission of planar chiral graphene-metamaterial in terahertz region,” Carbon 119, 305–313 (2017).
[Crossref]

IEEE Trans. Antennas Propag. (1)

G. W. Hanson, “Dyadic green’s functions for an anisotropic, non-local model of biased graphene,” IEEE Trans. Antennas Propag. 56(3), 747–757 (2008).
[Crossref]

J. Appl. Phys. (1)

G. W. Hanson, “Dyadic gree’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

J. Opt. Soc. Am. B (1)

Nano Lett. (6)

N. Dabidian, S. Dutta-Gupta, I. Kholmanov, K. Lai, F. Lu, J. Lee, M. Jin, S. Trendafilov, A. Khanikaev, B. Fallahazad, E. Tutuc, M. A. Belkin, and G. Shvets, “Experimental demonstration of phase modulation and motion sensing using graphene-integrated metasurfaces,” Nano Lett. 16(6), 3607–3615 (2016).
[Crossref]

M. C. Sherrott, P. W. C. Hon, K. T. Fountaine, J. C. Garcia, S. M. Ponti, V. W. Brar, L. A. Sweatlock, and H. A. Atwater, “Experimental demonstration of > 230 degrees phase modulation in gate-tunable graphene-gold reconfigurable mid-infrared metasurfaces,” Nano Lett. 17(5), 3027–3034 (2017).
[Crossref]

S. H. Mousavi, I. Kholmanov, K. B. Alici, D. Purtseladze, N. Arju, K. Tatar, D. Y. Fozdar, J. W. Suk, Y. Hao, A. B. Khanikaev, R. S. Ruoff, and G. Shvets, “Inductive tuning of fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared,” Nano Lett. 13(3), 1111–1117 (2013).
[Crossref]

N. K. Emani, T.-F. Chung, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Electrical modulation of fano resonance in plasmonic nanostructures using graphene,” Nano Lett. 14(1), 78–82 (2014).
[Crossref]

S.-F. Shi, B. Zeng, H.-L. Han, X. Hong, H.-Z. Tsai, H. S. Jung, A. Zettl, M. F. Crommie, and F. Wang, “Optimizing broadband terahertz modulation with hybrid graphene/metasurface structures,” Nano Lett. 15(1), 372–377 (2015).
[Crossref]

M. M. Jadidi, A. B. Sushkov, R. L. Myers-Ward, A. K. Boyd, K. M. Daniels, D. K. Gaskill, M. S. Fuhrer, H. D. Drew, and T. E. Murphy, “Tunable terahertz hybrid metal-graphene plasmons,” Nano Lett. 15(10), 7099–7104 (2015).
[Crossref]

Nanoscale Res. Lett. (1)

E. O. Owiti, H. Yang, P. Liu, C. F. Ominde, and X. Sun, “Polarization converter with controllable birefringence based on hybrid all-dielectric-graphene metasurface,” Nanoscale Res. Lett. 13(1), 38–39 (2018).
[Crossref]

Opt. Commun. (1)

S. Luo, B. Li, A. Yu, J. Gao, X. Wang, and D. Zuo, “Broadband tunable terahertz polarization converter based on graphene metamaterial,” Opt. Commun. 413, 184–189 (2018).
[Crossref]

Opt. Express (5)

Opt. Lett. (2)

Opt. Mater. Express (1)

Phys. Rev. B (2)

W. Zhu, V. Perebeinos, M. Freitag, and P. Avouris, “Carrier scattering, mobilities, and electrostatic potential in monolayer, bilayer, and trilayer graphene,” Phys. Rev. B 80(23), 235402 (2009).
[Crossref]

L. A. Falkovsky and S. S. Pershoguba, “Optical far-infrared properties of a graphene monolayer and multilayer,” Phys. Rev. B 76(15), 153410 (2007).
[Crossref]

Phys. Rev. Lett. (1)

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref]

Phys. Rev. X (1)

Z. Miao, Q. Wu, X. Li, Q. He, K. Ding, Z. An, Y. Zhang, and L. Zhou, “Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces,” Phys. Rev. X 5(4), 041027 (2015).
[Crossref]

Phys. Scr. (1)

X. Wang, Y. Li, Q. Zheng, and H. Yang, “Tunable dual-frequency cross polarization converters based on graphene metasurface in infrared range,” Phys. Scr. 94(10), 105503 (2019).
[Crossref]

Plasmonics (1)

M. Chen, W. Sun, J. Cai, L. Chang, and X. Xiao, “Frequency-tunable mid-infrared cross polarization converters based on graphene metasurface,” Plasmonics 12(3), 699–705 (2017).
[Crossref]

Science (2)

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref]

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Schematic view of hybrid skew-ring-resonator-graphene meta-surfaces. The ring array on the top and the ground at the bottom are assumed as perfect electric conductors with zero thickness. The mono-layer of graphene is integrated in the middle of the dielectric spacer made of PTFE with $\varepsilon _s = 2.65$. The embedded picture refers to the geometric dimensions of the skew-ring structure of meta-surface.
Fig. 2.
Fig. 2. The polarization conversion performances from the hybrid skew-ring-resonator-graphene meta-surfaces. The Stokes parameters $S_1$ (a) and $S_3$ (b) versus frequency when the graphene sheet is imposed with different Fermi energies. The amplitude of the reflection coefficient $R_{xx/yx}$ and phase difference $\Delta \Phi$ versus the frequency when the graphene sheet is having the Fermi energy of (c) 0.0 eV and (d)1.0 eV. The $z$-component of the electic fields on the top layer of the hybrid skew-ring-resonator-graphene meta-surfaces at the resonance frequencies of (e) 2.3 THz and (g) 2.68 THz. The electric fields are normaliez by $2\times 10^6\ \rm V/m$. The streamlines refer to the corresponding flow directions of the electric fields.
Fig. 3.
Fig. 3. Dynamically tuning the polarizations of electromagnetic fields by the hybrid skew-ring-resonator-graphene meta-surfaces. (a) Normalized Stokes parameters versus the Fermi energy. (b) The demonstration of the corresponding polarization states of the reflections on the Poincare sphere.
Fig. 4.
Fig. 4. The general signal flows of the hybrid skew-ring-resonator-graphene meta-surfaces.
Fig. 5.
Fig. 5. Electromagnetic responses of each layer of the hybrid skew-ring-resonator-graphene meta-surfaces over the frequency range from 2 to 3 THz. The amplitudes (a) and phase (b) of co-reflection/transmission coefficient $\tilde R_{co}^{I1}/\tilde T_{co}^{I1}$ and cross-reflection/transmission coefficient $\tilde R_{cr}^{I1}/\tilde T_{cr}^{I1}$. The amplitudes (c) and phase (d) of co-reflection/transmission coefficient $\tilde R_{co}^{I2}/\tilde T_{co}^{I2}$ and cross-reflection/transmission coefficient $\tilde R_{cr}^{I2}/\tilde T_{cr}^{I2}$. The amplitude and the phase of the reflection/transmission coefficient ${\tilde R^G}/{\tilde T^G}$ with (e) 0.0 eV and (f) 1.0 eV Fermi energy imposed on the graphene sheet. The analytical results of the reflectance ${R_{xx/yx}}$ and $\Delta \Phi$ with (g) 0.0 eV and (h)1.0 eV Fermi energy imposed on the graphene sheet.
Fig. 6.
Fig. 6. Polarization conversions from the hybrid skew-bar-resonator-graphene meta-surfaces. (a) The configuration of the hybrid skew-bar-resonator-graphene meta-surfaces by removing the two short bars (the red dashed rectangular region) from the hybrid skew-ring-resonator-graphene meta-surfaces. The Stokes parameters $S_1$ (b) and $S_3$ (c) versus frequency when the graphene sheet is imposed with different Fermi energies. (d) and (e) The theoretical and numerical results of the reflectance and $\Delta \Phi$ versus the frequency at Fermi energy of 0.2 eV. (f) and (g) The theoretical and numerical results of the reflectance and $\Delta \Phi$ versus the frequency at Fermi energy of 1.0 eV. The $z$-component of the electric fields on the top layer of the hybrid skew-bar-resonator-graphene meta-surfaces at (h) 1.41 THz, (i) 2 THz, and (j) 2.75 THz when the grapheme sheet is imposed with 0.2 eV Fermi energy. The electric fields are normalized by $4.5\times 10^6\ \rm V/m$, $1\times 10^6\ \rm V/m$ and $2\times 10^6\ \rm V/m$ respectively. The streamlines refer to the corresponding flow directions of the electric fields.
Fig. 7.
Fig. 7. Dynamically tuning the polarizations of electromagnetic fields by the hybrid skew-bar-resonator-graphene meta-surfaces. (a) Normalized Stokes parameters versus the Fermi energy. (b) The demonstration of the corresponding polarization states of the reflections on the Poincare sphere.
Fig. 8.
Fig. 8. The polarization conversion performances of the hybrid skew-resonator-graphene meta-surfaces under the illumination of LCP electromagnetic fields. (a) Normalized Stokes parameters versus the frequency of the hybrid skew-ring-resonator-graphene meta-surfaces. (b) The polarization states of the reflections from the hybrid skew-ring-resonator-graphene meta-surfaces on the Poincare sphere. (c) Normalized Stokes parameters versus the frequency of the hybrid skew-bar-resonator-graphene meta-surfaces. (d) The demonstration of the corresponding polarization states of the reflections of the hybrid skew-bar-resonator-graphene meta-surfaces on the Poincare sphere.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

R i n [ R ~ x x R ~ x y R ~ y x R ~ y y ] = S 11 I + S 12 I ( S 11 I I + S 12 I I Γ I I I ( I S 22 I I Γ I I I ) 1 S 21 I I ) ( I S 22 I ( S 11 I I + S 12 I I Γ I I I ( I S 22 I I Γ I I I ) 1 S 21 I I ) ) 1 S 21 I
{ S 11 I = [ R ~ c o I 1 R ~ c r I 1 R ~ c r I 1 R ~ c o I 1 ] S 12 I = [ T ~ c o I 2 T ~ c r I 2 T ~ c r I 2 T ~ c o I 2 ] S 21 I = [ T ~ c o I 1 T ~ c r I 1 T ~ c r I 1 T ~ c o I 1 ] S 22 I = [ R ~ c o I 2 R ~ c r I 2 R ~ c r I 2 R ~ c o I 2 ]
σ ( ω , μ c , Γ , T ) = σ x x = σ y y = j e 2 ( ω j 2 Γ ) π 2 [ 1 ( ω j 2 Γ ) 2 0 E ( f d ( E ) E f d ( E ) E ) d E 0 f d ( E ) f d ( E ) ( ω j 2 Γ ) 2 4 ( E / ) 2 d E ]
{ S 11 I I = S 22 I I = [ R ~ G R ~ G ] S 21 I I = S 12 I I = [ T ~ G T ~ G ]
R ~ = σ μ 0 / ( ε r ε 0 ) / 2 1 + σ μ 0 / ( ε r ε 0 ) / 2
T ~ = 1 1 + σ μ 0 / ( ε r ε 0 ) / 2
Γ I I I = [ 1 2 1 + i tan ( ε s k 0 h / 2 ) ] [ 1 1 ]

Metrics