Abstract

The combination of temporal chirp with a simple chromatic aberration known as longitudinal chromatism leads to extensive control over the velocity of laser intensity in the focal region of an ultrashort laser beam. We present the first implementation of this effect on a femtosecond laser. We demonstrate that by using a specially designed and characterized lens doublet to induce longitudinal chromatism, this velocity control can be implemented independent of the parameters of the focusing optic, thus allowing for great flexibility in experimental applications. Finally, we explain and demonstrate how this spatiotemporal phenomenon evolves when imaging the ultrashort pulse focus with a magnification different from unity.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Controlling the velocity of ultrashort light pulses in vacuum through spatio-temporal couplings

A. Sainte-Marie, O. Gobert, and F. Quéré
Optica 4(10) 1298-1304 (2017)

Pulse front tilt control using non-collimated beams in a single pass grating compressor

Gonçalo Figueira, Luís Braga, Sajidah Ahmed, Alexis Boyle, Marco Galimberti, Mario Galletti, and Pedro Oliveira
Opt. Express 28(5) 7678-7690 (2020)

Description of spatio-temporal couplings from heat-induced compressor grating deformation

Vincent Leroux, Timo Eichner, and Andreas R. Maier
Opt. Express 28(6) 8257-8265 (2020)

References

  • View by:
  • |
  • |
  • |

  1. G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating airy beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
    [Crossref]
  2. N. K. Efremidis, Z. Chen, M. Segev, and D. N. Christodoulides, “Airy beams and accelerating waves: an overview of recent advances,” Optica 6(5), 686–701 (2019).
    [Crossref]
  3. J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
    [Crossref]
  4. D. McGloin and K. Dholakia, “Bessel beams: diffraction in a new light,” Contemp. Phys. 46(1), 15–28 (2005).
    [Crossref]
  5. S. Akturk, X. Gu, P. Bowlan, and R. Trebino, “Spatio-temporal couplings in ultrashort laser pulses,” J. Opt. 12(9), 093001 (2010).
    [Crossref]
  6. G. Zhu, J. van Howe, M. Durst, W. Zipfel, and C. Xu, “Simultaneous spatial and temporal focusing of femtosecond pulses,” Opt. Express 13(6), 2153–2159 (2005).
    [Crossref]
  7. H. Vincenti and F. Quéré, “Attosecond lighthouses: How to use spatiotemporally coupled light fields to generate isolated attosecond pulses,” Phys. Rev. Lett. 108(11), 113904 (2012).
    [Crossref]
  8. M. Yessenov, B. Bhaduri, H. E. Kondakci, and A. F. Abouraddy, “Classification of propagation-invariant space-time wave packets in free space: Theory and experiments,” Phys. Rev. A 99(2), 023856 (2019).
    [Crossref]
  9. A. Sainte-Marie, O. Gobert, and F. Quéré, “Controlling the velocity of ultrashort light pulses in vacuum through spatio-temporal couplings,” Optica 4(10), 1298–1304 (2017).
    [Crossref]
  10. D. H. Froula, D. Turnbull, A. S. Davies, T. J. Kessler, D. Haberberger, J. P. Palastro, S.-W. Bahk, I. A. Begishev, R. Boni, S. Bucht, J. Katz, and J. L. Shaw, “Spatiotemporal control of laser intensity,” Nat. Photonics 12(5), 262–265 (2018).
    [Crossref]
  11. J. P. Palastro, D. Turnbull, S.-W. Bahk, R. K. Follett, J. L. Shaw, D. Haberberger, J. Bromage, and D. H. Froula, “Ionization waves of arbitrary velocity driven by a flying focus,” Phys. Rev. A 97(3), 033835 (2018).
    [Crossref]
  12. D. Turnbull, P. Franke, J. Katz, J. P. Palastro, I. A. Begishev, R. Boni, J. Bromage, A. L. Milder, J. L. Shaw, and D. H. Froula, “Ionization waves of arbitrary velocity,” Phys. Rev. Lett. 120(22), 225001 (2018).
    [Crossref]
  13. P. Franke, D. Turnbull, J. Katz, J. P. Palastro, I. A. Begishev, J. Bromage, J. L. Shaw, R. Boni, and D. H. Froula, “Measurement and control of large diameter ionization waves of arbitrary velocity,” Opt. Express 27(22), 31978–31988 (2019).
    [Crossref]
  14. D. Turnbull, S. Bucht, A. Davies, D. Haberberger, T. Kessler, J. L. Shaw, and D. H. Froula, “Raman amplification with a flying focus,” Phys. Rev. Lett. 120(2), 024801 (2018).
    [Crossref]
  15. S. W. Jolly, “Influence of longitudinal chromatism on vacuum acceleration by intense radially polarized laser beams,” Opt. Lett. 44(7), 1833–1836 (2019).
    [Crossref]
  16. A. J. Howard, D. Turnbull, A. S. Davies, P. Franke, D. H. Froula, and J. P. Palastro, “Photon acceleration in a flying focus,” Phys. Rev. Lett. 123(12), 124801 (2019).
    [Crossref]
  17. H. E. Kondakci and A. F. Abouraddy, “Diffraction-free space-time light sheets,” Nat. Photonics 11(11), 733–740 (2017).
    [Crossref]
  18. B. Bhaduri, M. Yessenov, and A. F. Abouraddy, “Space-time wave packets that travel in optical materials at the speed of light in vacuum,” Optica 6(2), 139–146 (2019).
    [Crossref]
  19. H. E. Kondakci and A. F. Abouraddy, “Optical space-time wave packets having arbitrary group velocities in free space,” Nat. Commun. 10(1), 929 (2019).
    [Crossref]
  20. B. Bhaduri, M. Yessenov, and A. F. Abouraddy, “Meters-long propagation of diffraction-free space-time light-sheets,” Opt. Express 26(16), 20111–20121 (2018).
    [Crossref]
  21. B. Bhaduri, M. Yessenov, D. Reyes, J. Pena, M. Meem, S. R. Fairchild, R. Menon, M. Richardson, and A. F. Abouraddy, “Broadband space-time wave packets propagating 70 m,” Opt. Lett. 44(8), 2073–2076 (2019).
    [Crossref]
  22. Z. Bor, “Distortion of femtosecond laser pulses in lenses,” Opt. Lett. 14(2), 119–121 (1989).
    [Crossref]
  23. A. Borot and F. Quéré, “Spatio-spectral metrology at focus of ultrashort lasers: a phase-retrieval approach,” Opt. Express 26(20), 26444–26461 (2018).
    [Crossref]
  24. L. Lepetit, G. Chériaux, and M. Joffre, “Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy,” J. Opt. Soc. Am. B 12(12), 2467–2474 (1995).
    [Crossref]

2019 (8)

N. K. Efremidis, Z. Chen, M. Segev, and D. N. Christodoulides, “Airy beams and accelerating waves: an overview of recent advances,” Optica 6(5), 686–701 (2019).
[Crossref]

M. Yessenov, B. Bhaduri, H. E. Kondakci, and A. F. Abouraddy, “Classification of propagation-invariant space-time wave packets in free space: Theory and experiments,” Phys. Rev. A 99(2), 023856 (2019).
[Crossref]

P. Franke, D. Turnbull, J. Katz, J. P. Palastro, I. A. Begishev, J. Bromage, J. L. Shaw, R. Boni, and D. H. Froula, “Measurement and control of large diameter ionization waves of arbitrary velocity,” Opt. Express 27(22), 31978–31988 (2019).
[Crossref]

S. W. Jolly, “Influence of longitudinal chromatism on vacuum acceleration by intense radially polarized laser beams,” Opt. Lett. 44(7), 1833–1836 (2019).
[Crossref]

A. J. Howard, D. Turnbull, A. S. Davies, P. Franke, D. H. Froula, and J. P. Palastro, “Photon acceleration in a flying focus,” Phys. Rev. Lett. 123(12), 124801 (2019).
[Crossref]

B. Bhaduri, M. Yessenov, and A. F. Abouraddy, “Space-time wave packets that travel in optical materials at the speed of light in vacuum,” Optica 6(2), 139–146 (2019).
[Crossref]

H. E. Kondakci and A. F. Abouraddy, “Optical space-time wave packets having arbitrary group velocities in free space,” Nat. Commun. 10(1), 929 (2019).
[Crossref]

B. Bhaduri, M. Yessenov, D. Reyes, J. Pena, M. Meem, S. R. Fairchild, R. Menon, M. Richardson, and A. F. Abouraddy, “Broadband space-time wave packets propagating 70 m,” Opt. Lett. 44(8), 2073–2076 (2019).
[Crossref]

2018 (6)

A. Borot and F. Quéré, “Spatio-spectral metrology at focus of ultrashort lasers: a phase-retrieval approach,” Opt. Express 26(20), 26444–26461 (2018).
[Crossref]

B. Bhaduri, M. Yessenov, and A. F. Abouraddy, “Meters-long propagation of diffraction-free space-time light-sheets,” Opt. Express 26(16), 20111–20121 (2018).
[Crossref]

D. Turnbull, S. Bucht, A. Davies, D. Haberberger, T. Kessler, J. L. Shaw, and D. H. Froula, “Raman amplification with a flying focus,” Phys. Rev. Lett. 120(2), 024801 (2018).
[Crossref]

D. H. Froula, D. Turnbull, A. S. Davies, T. J. Kessler, D. Haberberger, J. P. Palastro, S.-W. Bahk, I. A. Begishev, R. Boni, S. Bucht, J. Katz, and J. L. Shaw, “Spatiotemporal control of laser intensity,” Nat. Photonics 12(5), 262–265 (2018).
[Crossref]

J. P. Palastro, D. Turnbull, S.-W. Bahk, R. K. Follett, J. L. Shaw, D. Haberberger, J. Bromage, and D. H. Froula, “Ionization waves of arbitrary velocity driven by a flying focus,” Phys. Rev. A 97(3), 033835 (2018).
[Crossref]

D. Turnbull, P. Franke, J. Katz, J. P. Palastro, I. A. Begishev, R. Boni, J. Bromage, A. L. Milder, J. L. Shaw, and D. H. Froula, “Ionization waves of arbitrary velocity,” Phys. Rev. Lett. 120(22), 225001 (2018).
[Crossref]

2017 (2)

2012 (1)

H. Vincenti and F. Quéré, “Attosecond lighthouses: How to use spatiotemporally coupled light fields to generate isolated attosecond pulses,” Phys. Rev. Lett. 108(11), 113904 (2012).
[Crossref]

2010 (1)

S. Akturk, X. Gu, P. Bowlan, and R. Trebino, “Spatio-temporal couplings in ultrashort laser pulses,” J. Opt. 12(9), 093001 (2010).
[Crossref]

2007 (1)

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating airy beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
[Crossref]

2005 (2)

1995 (1)

1989 (1)

1987 (1)

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
[Crossref]

Abouraddy, A. F.

M. Yessenov, B. Bhaduri, H. E. Kondakci, and A. F. Abouraddy, “Classification of propagation-invariant space-time wave packets in free space: Theory and experiments,” Phys. Rev. A 99(2), 023856 (2019).
[Crossref]

B. Bhaduri, M. Yessenov, and A. F. Abouraddy, “Space-time wave packets that travel in optical materials at the speed of light in vacuum,” Optica 6(2), 139–146 (2019).
[Crossref]

H. E. Kondakci and A. F. Abouraddy, “Optical space-time wave packets having arbitrary group velocities in free space,” Nat. Commun. 10(1), 929 (2019).
[Crossref]

B. Bhaduri, M. Yessenov, D. Reyes, J. Pena, M. Meem, S. R. Fairchild, R. Menon, M. Richardson, and A. F. Abouraddy, “Broadband space-time wave packets propagating 70 m,” Opt. Lett. 44(8), 2073–2076 (2019).
[Crossref]

B. Bhaduri, M. Yessenov, and A. F. Abouraddy, “Meters-long propagation of diffraction-free space-time light-sheets,” Opt. Express 26(16), 20111–20121 (2018).
[Crossref]

H. E. Kondakci and A. F. Abouraddy, “Diffraction-free space-time light sheets,” Nat. Photonics 11(11), 733–740 (2017).
[Crossref]

Akturk, S.

S. Akturk, X. Gu, P. Bowlan, and R. Trebino, “Spatio-temporal couplings in ultrashort laser pulses,” J. Opt. 12(9), 093001 (2010).
[Crossref]

Bahk, S.-W.

D. H. Froula, D. Turnbull, A. S. Davies, T. J. Kessler, D. Haberberger, J. P. Palastro, S.-W. Bahk, I. A. Begishev, R. Boni, S. Bucht, J. Katz, and J. L. Shaw, “Spatiotemporal control of laser intensity,” Nat. Photonics 12(5), 262–265 (2018).
[Crossref]

J. P. Palastro, D. Turnbull, S.-W. Bahk, R. K. Follett, J. L. Shaw, D. Haberberger, J. Bromage, and D. H. Froula, “Ionization waves of arbitrary velocity driven by a flying focus,” Phys. Rev. A 97(3), 033835 (2018).
[Crossref]

Begishev, I. A.

P. Franke, D. Turnbull, J. Katz, J. P. Palastro, I. A. Begishev, J. Bromage, J. L. Shaw, R. Boni, and D. H. Froula, “Measurement and control of large diameter ionization waves of arbitrary velocity,” Opt. Express 27(22), 31978–31988 (2019).
[Crossref]

D. Turnbull, P. Franke, J. Katz, J. P. Palastro, I. A. Begishev, R. Boni, J. Bromage, A. L. Milder, J. L. Shaw, and D. H. Froula, “Ionization waves of arbitrary velocity,” Phys. Rev. Lett. 120(22), 225001 (2018).
[Crossref]

D. H. Froula, D. Turnbull, A. S. Davies, T. J. Kessler, D. Haberberger, J. P. Palastro, S.-W. Bahk, I. A. Begishev, R. Boni, S. Bucht, J. Katz, and J. L. Shaw, “Spatiotemporal control of laser intensity,” Nat. Photonics 12(5), 262–265 (2018).
[Crossref]

Bhaduri, B.

Boni, R.

P. Franke, D. Turnbull, J. Katz, J. P. Palastro, I. A. Begishev, J. Bromage, J. L. Shaw, R. Boni, and D. H. Froula, “Measurement and control of large diameter ionization waves of arbitrary velocity,” Opt. Express 27(22), 31978–31988 (2019).
[Crossref]

D. Turnbull, P. Franke, J. Katz, J. P. Palastro, I. A. Begishev, R. Boni, J. Bromage, A. L. Milder, J. L. Shaw, and D. H. Froula, “Ionization waves of arbitrary velocity,” Phys. Rev. Lett. 120(22), 225001 (2018).
[Crossref]

D. H. Froula, D. Turnbull, A. S. Davies, T. J. Kessler, D. Haberberger, J. P. Palastro, S.-W. Bahk, I. A. Begishev, R. Boni, S. Bucht, J. Katz, and J. L. Shaw, “Spatiotemporal control of laser intensity,” Nat. Photonics 12(5), 262–265 (2018).
[Crossref]

Bor, Z.

Borot, A.

Bowlan, P.

S. Akturk, X. Gu, P. Bowlan, and R. Trebino, “Spatio-temporal couplings in ultrashort laser pulses,” J. Opt. 12(9), 093001 (2010).
[Crossref]

Broky, J.

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating airy beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
[Crossref]

Bromage, J.

P. Franke, D. Turnbull, J. Katz, J. P. Palastro, I. A. Begishev, J. Bromage, J. L. Shaw, R. Boni, and D. H. Froula, “Measurement and control of large diameter ionization waves of arbitrary velocity,” Opt. Express 27(22), 31978–31988 (2019).
[Crossref]

D. Turnbull, P. Franke, J. Katz, J. P. Palastro, I. A. Begishev, R. Boni, J. Bromage, A. L. Milder, J. L. Shaw, and D. H. Froula, “Ionization waves of arbitrary velocity,” Phys. Rev. Lett. 120(22), 225001 (2018).
[Crossref]

J. P. Palastro, D. Turnbull, S.-W. Bahk, R. K. Follett, J. L. Shaw, D. Haberberger, J. Bromage, and D. H. Froula, “Ionization waves of arbitrary velocity driven by a flying focus,” Phys. Rev. A 97(3), 033835 (2018).
[Crossref]

Bucht, S.

D. H. Froula, D. Turnbull, A. S. Davies, T. J. Kessler, D. Haberberger, J. P. Palastro, S.-W. Bahk, I. A. Begishev, R. Boni, S. Bucht, J. Katz, and J. L. Shaw, “Spatiotemporal control of laser intensity,” Nat. Photonics 12(5), 262–265 (2018).
[Crossref]

D. Turnbull, S. Bucht, A. Davies, D. Haberberger, T. Kessler, J. L. Shaw, and D. H. Froula, “Raman amplification with a flying focus,” Phys. Rev. Lett. 120(2), 024801 (2018).
[Crossref]

Chen, Z.

Chériaux, G.

Christodoulides, D. N.

N. K. Efremidis, Z. Chen, M. Segev, and D. N. Christodoulides, “Airy beams and accelerating waves: an overview of recent advances,” Optica 6(5), 686–701 (2019).
[Crossref]

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating airy beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
[Crossref]

Davies, A.

D. Turnbull, S. Bucht, A. Davies, D. Haberberger, T. Kessler, J. L. Shaw, and D. H. Froula, “Raman amplification with a flying focus,” Phys. Rev. Lett. 120(2), 024801 (2018).
[Crossref]

Davies, A. S.

A. J. Howard, D. Turnbull, A. S. Davies, P. Franke, D. H. Froula, and J. P. Palastro, “Photon acceleration in a flying focus,” Phys. Rev. Lett. 123(12), 124801 (2019).
[Crossref]

D. H. Froula, D. Turnbull, A. S. Davies, T. J. Kessler, D. Haberberger, J. P. Palastro, S.-W. Bahk, I. A. Begishev, R. Boni, S. Bucht, J. Katz, and J. L. Shaw, “Spatiotemporal control of laser intensity,” Nat. Photonics 12(5), 262–265 (2018).
[Crossref]

Dholakia, K.

D. McGloin and K. Dholakia, “Bessel beams: diffraction in a new light,” Contemp. Phys. 46(1), 15–28 (2005).
[Crossref]

Dogariu, A.

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating airy beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
[Crossref]

Durnin, J.

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
[Crossref]

Durst, M.

Eberly, J. H.

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
[Crossref]

Efremidis, N. K.

Fairchild, S. R.

Follett, R. K.

J. P. Palastro, D. Turnbull, S.-W. Bahk, R. K. Follett, J. L. Shaw, D. Haberberger, J. Bromage, and D. H. Froula, “Ionization waves of arbitrary velocity driven by a flying focus,” Phys. Rev. A 97(3), 033835 (2018).
[Crossref]

Franke, P.

P. Franke, D. Turnbull, J. Katz, J. P. Palastro, I. A. Begishev, J. Bromage, J. L. Shaw, R. Boni, and D. H. Froula, “Measurement and control of large diameter ionization waves of arbitrary velocity,” Opt. Express 27(22), 31978–31988 (2019).
[Crossref]

A. J. Howard, D. Turnbull, A. S. Davies, P. Franke, D. H. Froula, and J. P. Palastro, “Photon acceleration in a flying focus,” Phys. Rev. Lett. 123(12), 124801 (2019).
[Crossref]

D. Turnbull, P. Franke, J. Katz, J. P. Palastro, I. A. Begishev, R. Boni, J. Bromage, A. L. Milder, J. L. Shaw, and D. H. Froula, “Ionization waves of arbitrary velocity,” Phys. Rev. Lett. 120(22), 225001 (2018).
[Crossref]

Froula, D. H.

P. Franke, D. Turnbull, J. Katz, J. P. Palastro, I. A. Begishev, J. Bromage, J. L. Shaw, R. Boni, and D. H. Froula, “Measurement and control of large diameter ionization waves of arbitrary velocity,” Opt. Express 27(22), 31978–31988 (2019).
[Crossref]

A. J. Howard, D. Turnbull, A. S. Davies, P. Franke, D. H. Froula, and J. P. Palastro, “Photon acceleration in a flying focus,” Phys. Rev. Lett. 123(12), 124801 (2019).
[Crossref]

D. Turnbull, S. Bucht, A. Davies, D. Haberberger, T. Kessler, J. L. Shaw, and D. H. Froula, “Raman amplification with a flying focus,” Phys. Rev. Lett. 120(2), 024801 (2018).
[Crossref]

D. Turnbull, P. Franke, J. Katz, J. P. Palastro, I. A. Begishev, R. Boni, J. Bromage, A. L. Milder, J. L. Shaw, and D. H. Froula, “Ionization waves of arbitrary velocity,” Phys. Rev. Lett. 120(22), 225001 (2018).
[Crossref]

J. P. Palastro, D. Turnbull, S.-W. Bahk, R. K. Follett, J. L. Shaw, D. Haberberger, J. Bromage, and D. H. Froula, “Ionization waves of arbitrary velocity driven by a flying focus,” Phys. Rev. A 97(3), 033835 (2018).
[Crossref]

D. H. Froula, D. Turnbull, A. S. Davies, T. J. Kessler, D. Haberberger, J. P. Palastro, S.-W. Bahk, I. A. Begishev, R. Boni, S. Bucht, J. Katz, and J. L. Shaw, “Spatiotemporal control of laser intensity,” Nat. Photonics 12(5), 262–265 (2018).
[Crossref]

Gobert, O.

Gu, X.

S. Akturk, X. Gu, P. Bowlan, and R. Trebino, “Spatio-temporal couplings in ultrashort laser pulses,” J. Opt. 12(9), 093001 (2010).
[Crossref]

Haberberger, D.

J. P. Palastro, D. Turnbull, S.-W. Bahk, R. K. Follett, J. L. Shaw, D. Haberberger, J. Bromage, and D. H. Froula, “Ionization waves of arbitrary velocity driven by a flying focus,” Phys. Rev. A 97(3), 033835 (2018).
[Crossref]

D. H. Froula, D. Turnbull, A. S. Davies, T. J. Kessler, D. Haberberger, J. P. Palastro, S.-W. Bahk, I. A. Begishev, R. Boni, S. Bucht, J. Katz, and J. L. Shaw, “Spatiotemporal control of laser intensity,” Nat. Photonics 12(5), 262–265 (2018).
[Crossref]

D. Turnbull, S. Bucht, A. Davies, D. Haberberger, T. Kessler, J. L. Shaw, and D. H. Froula, “Raman amplification with a flying focus,” Phys. Rev. Lett. 120(2), 024801 (2018).
[Crossref]

Howard, A. J.

A. J. Howard, D. Turnbull, A. S. Davies, P. Franke, D. H. Froula, and J. P. Palastro, “Photon acceleration in a flying focus,” Phys. Rev. Lett. 123(12), 124801 (2019).
[Crossref]

Joffre, M.

Jolly, S. W.

Katz, J.

P. Franke, D. Turnbull, J. Katz, J. P. Palastro, I. A. Begishev, J. Bromage, J. L. Shaw, R. Boni, and D. H. Froula, “Measurement and control of large diameter ionization waves of arbitrary velocity,” Opt. Express 27(22), 31978–31988 (2019).
[Crossref]

D. H. Froula, D. Turnbull, A. S. Davies, T. J. Kessler, D. Haberberger, J. P. Palastro, S.-W. Bahk, I. A. Begishev, R. Boni, S. Bucht, J. Katz, and J. L. Shaw, “Spatiotemporal control of laser intensity,” Nat. Photonics 12(5), 262–265 (2018).
[Crossref]

D. Turnbull, P. Franke, J. Katz, J. P. Palastro, I. A. Begishev, R. Boni, J. Bromage, A. L. Milder, J. L. Shaw, and D. H. Froula, “Ionization waves of arbitrary velocity,” Phys. Rev. Lett. 120(22), 225001 (2018).
[Crossref]

Kessler, T.

D. Turnbull, S. Bucht, A. Davies, D. Haberberger, T. Kessler, J. L. Shaw, and D. H. Froula, “Raman amplification with a flying focus,” Phys. Rev. Lett. 120(2), 024801 (2018).
[Crossref]

Kessler, T. J.

D. H. Froula, D. Turnbull, A. S. Davies, T. J. Kessler, D. Haberberger, J. P. Palastro, S.-W. Bahk, I. A. Begishev, R. Boni, S. Bucht, J. Katz, and J. L. Shaw, “Spatiotemporal control of laser intensity,” Nat. Photonics 12(5), 262–265 (2018).
[Crossref]

Kondakci, H. E.

M. Yessenov, B. Bhaduri, H. E. Kondakci, and A. F. Abouraddy, “Classification of propagation-invariant space-time wave packets in free space: Theory and experiments,” Phys. Rev. A 99(2), 023856 (2019).
[Crossref]

H. E. Kondakci and A. F. Abouraddy, “Optical space-time wave packets having arbitrary group velocities in free space,” Nat. Commun. 10(1), 929 (2019).
[Crossref]

H. E. Kondakci and A. F. Abouraddy, “Diffraction-free space-time light sheets,” Nat. Photonics 11(11), 733–740 (2017).
[Crossref]

Lepetit, L.

McGloin, D.

D. McGloin and K. Dholakia, “Bessel beams: diffraction in a new light,” Contemp. Phys. 46(1), 15–28 (2005).
[Crossref]

Meem, M.

Menon, R.

Miceli, J. J.

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
[Crossref]

Milder, A. L.

D. Turnbull, P. Franke, J. Katz, J. P. Palastro, I. A. Begishev, R. Boni, J. Bromage, A. L. Milder, J. L. Shaw, and D. H. Froula, “Ionization waves of arbitrary velocity,” Phys. Rev. Lett. 120(22), 225001 (2018).
[Crossref]

Palastro, J. P.

P. Franke, D. Turnbull, J. Katz, J. P. Palastro, I. A. Begishev, J. Bromage, J. L. Shaw, R. Boni, and D. H. Froula, “Measurement and control of large diameter ionization waves of arbitrary velocity,” Opt. Express 27(22), 31978–31988 (2019).
[Crossref]

A. J. Howard, D. Turnbull, A. S. Davies, P. Franke, D. H. Froula, and J. P. Palastro, “Photon acceleration in a flying focus,” Phys. Rev. Lett. 123(12), 124801 (2019).
[Crossref]

D. Turnbull, P. Franke, J. Katz, J. P. Palastro, I. A. Begishev, R. Boni, J. Bromage, A. L. Milder, J. L. Shaw, and D. H. Froula, “Ionization waves of arbitrary velocity,” Phys. Rev. Lett. 120(22), 225001 (2018).
[Crossref]

D. H. Froula, D. Turnbull, A. S. Davies, T. J. Kessler, D. Haberberger, J. P. Palastro, S.-W. Bahk, I. A. Begishev, R. Boni, S. Bucht, J. Katz, and J. L. Shaw, “Spatiotemporal control of laser intensity,” Nat. Photonics 12(5), 262–265 (2018).
[Crossref]

J. P. Palastro, D. Turnbull, S.-W. Bahk, R. K. Follett, J. L. Shaw, D. Haberberger, J. Bromage, and D. H. Froula, “Ionization waves of arbitrary velocity driven by a flying focus,” Phys. Rev. A 97(3), 033835 (2018).
[Crossref]

Pena, J.

Quéré, F.

Reyes, D.

Richardson, M.

Sainte-Marie, A.

Segev, M.

Shaw, J. L.

P. Franke, D. Turnbull, J. Katz, J. P. Palastro, I. A. Begishev, J. Bromage, J. L. Shaw, R. Boni, and D. H. Froula, “Measurement and control of large diameter ionization waves of arbitrary velocity,” Opt. Express 27(22), 31978–31988 (2019).
[Crossref]

D. Turnbull, S. Bucht, A. Davies, D. Haberberger, T. Kessler, J. L. Shaw, and D. H. Froula, “Raman amplification with a flying focus,” Phys. Rev. Lett. 120(2), 024801 (2018).
[Crossref]

D. Turnbull, P. Franke, J. Katz, J. P. Palastro, I. A. Begishev, R. Boni, J. Bromage, A. L. Milder, J. L. Shaw, and D. H. Froula, “Ionization waves of arbitrary velocity,” Phys. Rev. Lett. 120(22), 225001 (2018).
[Crossref]

D. H. Froula, D. Turnbull, A. S. Davies, T. J. Kessler, D. Haberberger, J. P. Palastro, S.-W. Bahk, I. A. Begishev, R. Boni, S. Bucht, J. Katz, and J. L. Shaw, “Spatiotemporal control of laser intensity,” Nat. Photonics 12(5), 262–265 (2018).
[Crossref]

J. P. Palastro, D. Turnbull, S.-W. Bahk, R. K. Follett, J. L. Shaw, D. Haberberger, J. Bromage, and D. H. Froula, “Ionization waves of arbitrary velocity driven by a flying focus,” Phys. Rev. A 97(3), 033835 (2018).
[Crossref]

Siviloglou, G. A.

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating airy beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
[Crossref]

Trebino, R.

S. Akturk, X. Gu, P. Bowlan, and R. Trebino, “Spatio-temporal couplings in ultrashort laser pulses,” J. Opt. 12(9), 093001 (2010).
[Crossref]

Turnbull, D.

P. Franke, D. Turnbull, J. Katz, J. P. Palastro, I. A. Begishev, J. Bromage, J. L. Shaw, R. Boni, and D. H. Froula, “Measurement and control of large diameter ionization waves of arbitrary velocity,” Opt. Express 27(22), 31978–31988 (2019).
[Crossref]

A. J. Howard, D. Turnbull, A. S. Davies, P. Franke, D. H. Froula, and J. P. Palastro, “Photon acceleration in a flying focus,” Phys. Rev. Lett. 123(12), 124801 (2019).
[Crossref]

D. Turnbull, S. Bucht, A. Davies, D. Haberberger, T. Kessler, J. L. Shaw, and D. H. Froula, “Raman amplification with a flying focus,” Phys. Rev. Lett. 120(2), 024801 (2018).
[Crossref]

D. Turnbull, P. Franke, J. Katz, J. P. Palastro, I. A. Begishev, R. Boni, J. Bromage, A. L. Milder, J. L. Shaw, and D. H. Froula, “Ionization waves of arbitrary velocity,” Phys. Rev. Lett. 120(22), 225001 (2018).
[Crossref]

J. P. Palastro, D. Turnbull, S.-W. Bahk, R. K. Follett, J. L. Shaw, D. Haberberger, J. Bromage, and D. H. Froula, “Ionization waves of arbitrary velocity driven by a flying focus,” Phys. Rev. A 97(3), 033835 (2018).
[Crossref]

D. H. Froula, D. Turnbull, A. S. Davies, T. J. Kessler, D. Haberberger, J. P. Palastro, S.-W. Bahk, I. A. Begishev, R. Boni, S. Bucht, J. Katz, and J. L. Shaw, “Spatiotemporal control of laser intensity,” Nat. Photonics 12(5), 262–265 (2018).
[Crossref]

van Howe, J.

Vincenti, H.

H. Vincenti and F. Quéré, “Attosecond lighthouses: How to use spatiotemporally coupled light fields to generate isolated attosecond pulses,” Phys. Rev. Lett. 108(11), 113904 (2012).
[Crossref]

Xu, C.

Yessenov, M.

Zhu, G.

Zipfel, W.

Contemp. Phys. (1)

D. McGloin and K. Dholakia, “Bessel beams: diffraction in a new light,” Contemp. Phys. 46(1), 15–28 (2005).
[Crossref]

J. Opt. (1)

S. Akturk, X. Gu, P. Bowlan, and R. Trebino, “Spatio-temporal couplings in ultrashort laser pulses,” J. Opt. 12(9), 093001 (2010).
[Crossref]

J. Opt. Soc. Am. B (1)

Nat. Commun. (1)

H. E. Kondakci and A. F. Abouraddy, “Optical space-time wave packets having arbitrary group velocities in free space,” Nat. Commun. 10(1), 929 (2019).
[Crossref]

Nat. Photonics (2)

D. H. Froula, D. Turnbull, A. S. Davies, T. J. Kessler, D. Haberberger, J. P. Palastro, S.-W. Bahk, I. A. Begishev, R. Boni, S. Bucht, J. Katz, and J. L. Shaw, “Spatiotemporal control of laser intensity,” Nat. Photonics 12(5), 262–265 (2018).
[Crossref]

H. E. Kondakci and A. F. Abouraddy, “Diffraction-free space-time light sheets,” Nat. Photonics 11(11), 733–740 (2017).
[Crossref]

Opt. Express (4)

Opt. Lett. (3)

Optica (3)

Phys. Rev. A (2)

M. Yessenov, B. Bhaduri, H. E. Kondakci, and A. F. Abouraddy, “Classification of propagation-invariant space-time wave packets in free space: Theory and experiments,” Phys. Rev. A 99(2), 023856 (2019).
[Crossref]

J. P. Palastro, D. Turnbull, S.-W. Bahk, R. K. Follett, J. L. Shaw, D. Haberberger, J. Bromage, and D. H. Froula, “Ionization waves of arbitrary velocity driven by a flying focus,” Phys. Rev. A 97(3), 033835 (2018).
[Crossref]

Phys. Rev. Lett. (6)

D. Turnbull, P. Franke, J. Katz, J. P. Palastro, I. A. Begishev, R. Boni, J. Bromage, A. L. Milder, J. L. Shaw, and D. H. Froula, “Ionization waves of arbitrary velocity,” Phys. Rev. Lett. 120(22), 225001 (2018).
[Crossref]

D. Turnbull, S. Bucht, A. Davies, D. Haberberger, T. Kessler, J. L. Shaw, and D. H. Froula, “Raman amplification with a flying focus,” Phys. Rev. Lett. 120(2), 024801 (2018).
[Crossref]

A. J. Howard, D. Turnbull, A. S. Davies, P. Franke, D. H. Froula, and J. P. Palastro, “Photon acceleration in a flying focus,” Phys. Rev. Lett. 123(12), 124801 (2019).
[Crossref]

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating airy beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
[Crossref]

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
[Crossref]

H. Vincenti and F. Quéré, “Attosecond lighthouses: How to use spatiotemporally coupled light fields to generate isolated attosecond pulses,” Phys. Rev. Lett. 108(11), 113904 (2012).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Conceptual explanation of the flying focus effect. (a) Temporal intensity profile of an ultrashort beam with temporal chirp only, at three positions around the focus. The color code indicates the instantaneous frequency of the pulse, and the brightness its instantaneous intensity. (b) Same representation, now for a beam with both LC and temporal chirp. The velocity of the intensity peak formed by this beam around focus is indicated by the slope of the solid arrow, and is in this case lower than the speed of light (indicated by the slope of the dashed arrow). When the chirp is reversed (c) the flying focus velocity is larger than $c$.
Fig. 2.
Fig. 2. Production of LC is possible by focusing with a diffractive lens (a), where the spatio-temporal coupling and focal length are related, or by combining an optic that induces PFC on a collimated beam with an achromatic focusing optic (b). In this second case, the induced LC/PFC can be tuned independently from the focal length of the focusing optic. Using a diffractive optic and re-focusing with a different focal length (c) can change the parameters, but restrictions still persist.
Fig. 3.
Fig. 3. Creation of PFC on a collimated beam using a chromatic afocal system of lenses made with different glasses, shown in (a). The PFC is characterized using an INSIGHT device, with the measured spatial phase profiles at two frequencies at the edge of the laser bandwidth (frequencies marked in red in (b)) shown in (c–d). The relationship of wavefront curvature to frequency is approximately linear corresponding to a PFC parameter $\alpha$ of 5.9 fs/cm$^2$, shown in (e).
Fig. 4.
Fig. 4. Experimental setup to induce and measure the flying focus effect (a), drawn with $f_1=f_2$, with more details in the text, and insets (b) showing the increase in the focal spot size with the doublet installed (left inset: only central wavelength using a bandpass filter, right inset: full bandwidth). The test and probe have a time delay, shown left in (c) along with the format on the spectrometer slit (center) of the two beams and the position of the fringes when dispersed within the spectrometer (right). The analysis procedure involves taking the spectral fringes and Fourier transforming to time. Experimental spectral fringes at three different positions of the last lens are shown on the left in (d), with the insets emphasizing the different fringe spacing, along with the data Fourier transformed to time on the right, showing a velocity different than $c$. The important measured quantities $dt$, $dz$, and $\tau$ are shown on the right in panel (d), with $dz$ according to the positions in each subpanel.
Fig. 5.
Fig. 5. Results of velocity (a) and pulse duration (b) measurements as a function of chirp, for two different magnifications of the imaging system (see text), $M=1$ and $M=3$. The analytic relationships from Eqs.(1)–(2) are shown as lines for each case in (a). The lines in (b) are based on the bandwidth corresponding to $\tau _F=24$ fs (solid) and the corresponding bandwidth reduced by a factor of 2.6 (dashed).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

v ff = c 1 + ϕ 2 ω 0 2 α f 2 ,
v ff = c 1 + c ϕ 2 z R τ p .
S ^ ( ω ) = | E ^ probe ( ω ) + E ^ test ( ω ) e i ( ω Δ t ) | 2 .
S ( t ) = { F ω t [ S ^ ( ω ) ] } + Δ t E probe ( t ) E test ( t Δ t ) .
v ff = c 1 + c d t d z .

Metrics