Abstract

As 3D printers become more widely available, researchers are able to rapidly produce components that may have previously taken weeks to have machined. The resulting plastic components, having high surface roughness, are often not suitable for high-precision optomechanics. However, by playing to the strengths of 3D printing—namely the ability to print complex internal geometries—it is possible to design monolithic mechanisms that do not rely on tight integration of high-precision parts. Here we present a motorised monolithic 3D-printed plastic flexure stage with sub-100 nm resolution that can perform automated optical fibre alignment.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Robotic microscopy for everyone: the OpenFlexure microscope

Joel T. Collins, Joe Knapper, Julian Stirling, Joram Mduda, Catherine Mkindi, Valeriana Mayagaya, Grace A. Mwakajinga, Paul T. Nyakyi, Valerian L. Sanga, Dave Carbery, Leah White, Sara Dale, Zhen Jieh Lim, Jeremy J. Baumberg, Pietro Cicuta, Samuel McDermott, Boyko Vodenicharski, and Richard Bowman
Biomed. Opt. Express 11(5) 2447-2460 (2020)

Tunable narrow-linewidth laser at 2 μm wavelength for gravitational wave detector research

D. P. Kapasi, J. Eichholz, T. McRae, R. L. Ward, B. J. J. Slagmolen, S. Legge, K. S. Hardman, P. A. Altin, and D. E. McClelland
Opt. Express 28(3) 3280-3288 (2020)

Curvature sensing with a D-shaped multicore fibre and Brillouin optical time-domain reflectometry

Angeliki Zafeiropoulou, Ali Masoudi, Apostolos Zdagkas, Laurence Cooper, and Gilberto Brambilla
Opt. Express 28(2) 1291-1299 (2020)

References

  • View by:
  • |
  • |
  • |

  1. A. Silver, “Five innovative ways to use 3d printing in the laboratory,” Nature 565(7737), 123–124 (2019).
    [Crossref]
  2. R. Jones, P. Haufe, E. Sells, P. Iravani, V. Olliver, C. Palmer, and A. Bowyer, “Reprap – the replicating rapid prototyper,” Robotica 29(1), 177–191 (2011).
    [Crossref]
  3. S. Kamthai and R. Magaraphan, “Thermal and mechanical properties of polylactic acid (pla) and bagasse carboxymethyl cellulose (cmcb) composite by adding isosorbide diesters,” in AIP Conference Proceedings (AIP Publishing, 2015), vol. 1664, 060006.
  4. J. R. Rumble, ed., CRC Handbook of Chemistry and Physics, 100th Edition (CRC Press/Taylor & Francis, 2019), chap. 12.
  5. M. Riddell, G. Koo, and J. O’Toole, “Fatigue mechanisms of thermoplastics,” Polym. Eng. Sci. 6, 363–368 (1966).
    [Crossref]
  6. GitLab repository of the OpenFlexure Block Stage https://gitlab.com/openflexure/openflexure-block-stage .
  7. J. P. Sharkey, D. C. Foo, A. Kabla, J. J. Baumberg, and R. W. Bowman, “A one-piece 3d printed flexure translation stage for open-source microscopy,” Rev. Sci. Instrum. 87(2), 025104 (2016).
    [Crossref]
  8. J. T. Collins, J. Knapper, J. Stirling, J. Mduda, C. Mkindi, G. A. Mwakajinga, P. T. Nyakyi, V. L. Sanga, D. Carbery, L. White, S. Dale, Z. J. Lim, J. J. Baumberg, P. Cicuta, S. McDermott, B. Vodenicharski, and R. Bowman, “Robotic microscopy for everyone: the OpenFlexure Microscope,” Biomed. Opt. Express, submitted 2019.
  9. L. M. Galantucci, I. Bodi, J. Kacani, and F. Lavecchia, “Analysis of dimensional performance for a 3d open-source printer based on fused deposition modeling technique,” Procedia CIRP 28, 82–87 (2015).
    [Crossref]
  10. Newport Corporation, “NanoPZTM User Manual, 90043104 Rev. A.”
  11. GitHub repository of Motor controller hardware, firmware and software https://github.com/rwb27/openflexure_nano_motor_controller . A version of this repository is archived with the dataset for this paper.
  12. H. Wu, X. Zhang, J. Gan, H. Li, and P. Ge, “Displacement measurement system for inverters using computer micro-vision,” Opt. Lasers Eng. 81, 113–118 (2016).
    [Crossref]
  13. Newport Corporation, “Application Note: ULTRAlignTM Precision Fiber Optic Positioning System https://www.newport.com/n/ultralign-precision-fiber-optic-positioning-system .
  14. Q. Meng, K. Harrington, J. Stirling, and R. Bowman. Dataset for “The OpenFlexure Block Stage: Sub-100 nm fibre alignment with a monolithic plastic flexure stage.” Bath: University of Bath Research Data Archive. https://doi.org/10.15125/BATH-00737 .

2019 (1)

A. Silver, “Five innovative ways to use 3d printing in the laboratory,” Nature 565(7737), 123–124 (2019).
[Crossref]

2016 (2)

J. P. Sharkey, D. C. Foo, A. Kabla, J. J. Baumberg, and R. W. Bowman, “A one-piece 3d printed flexure translation stage for open-source microscopy,” Rev. Sci. Instrum. 87(2), 025104 (2016).
[Crossref]

H. Wu, X. Zhang, J. Gan, H. Li, and P. Ge, “Displacement measurement system for inverters using computer micro-vision,” Opt. Lasers Eng. 81, 113–118 (2016).
[Crossref]

2015 (1)

L. M. Galantucci, I. Bodi, J. Kacani, and F. Lavecchia, “Analysis of dimensional performance for a 3d open-source printer based on fused deposition modeling technique,” Procedia CIRP 28, 82–87 (2015).
[Crossref]

2011 (1)

R. Jones, P. Haufe, E. Sells, P. Iravani, V. Olliver, C. Palmer, and A. Bowyer, “Reprap – the replicating rapid prototyper,” Robotica 29(1), 177–191 (2011).
[Crossref]

1966 (1)

M. Riddell, G. Koo, and J. O’Toole, “Fatigue mechanisms of thermoplastics,” Polym. Eng. Sci. 6, 363–368 (1966).
[Crossref]

Baumberg, J. J.

J. P. Sharkey, D. C. Foo, A. Kabla, J. J. Baumberg, and R. W. Bowman, “A one-piece 3d printed flexure translation stage for open-source microscopy,” Rev. Sci. Instrum. 87(2), 025104 (2016).
[Crossref]

J. T. Collins, J. Knapper, J. Stirling, J. Mduda, C. Mkindi, G. A. Mwakajinga, P. T. Nyakyi, V. L. Sanga, D. Carbery, L. White, S. Dale, Z. J. Lim, J. J. Baumberg, P. Cicuta, S. McDermott, B. Vodenicharski, and R. Bowman, “Robotic microscopy for everyone: the OpenFlexure Microscope,” Biomed. Opt. Express, submitted 2019.

Bodi, I.

L. M. Galantucci, I. Bodi, J. Kacani, and F. Lavecchia, “Analysis of dimensional performance for a 3d open-source printer based on fused deposition modeling technique,” Procedia CIRP 28, 82–87 (2015).
[Crossref]

Bowman, R.

J. T. Collins, J. Knapper, J. Stirling, J. Mduda, C. Mkindi, G. A. Mwakajinga, P. T. Nyakyi, V. L. Sanga, D. Carbery, L. White, S. Dale, Z. J. Lim, J. J. Baumberg, P. Cicuta, S. McDermott, B. Vodenicharski, and R. Bowman, “Robotic microscopy for everyone: the OpenFlexure Microscope,” Biomed. Opt. Express, submitted 2019.

Q. Meng, K. Harrington, J. Stirling, and R. Bowman. Dataset for “The OpenFlexure Block Stage: Sub-100 nm fibre alignment with a monolithic plastic flexure stage.” Bath: University of Bath Research Data Archive. https://doi.org/10.15125/BATH-00737 .

Bowman, R. W.

J. P. Sharkey, D. C. Foo, A. Kabla, J. J. Baumberg, and R. W. Bowman, “A one-piece 3d printed flexure translation stage for open-source microscopy,” Rev. Sci. Instrum. 87(2), 025104 (2016).
[Crossref]

Bowyer, A.

R. Jones, P. Haufe, E. Sells, P. Iravani, V. Olliver, C. Palmer, and A. Bowyer, “Reprap – the replicating rapid prototyper,” Robotica 29(1), 177–191 (2011).
[Crossref]

Carbery, D.

J. T. Collins, J. Knapper, J. Stirling, J. Mduda, C. Mkindi, G. A. Mwakajinga, P. T. Nyakyi, V. L. Sanga, D. Carbery, L. White, S. Dale, Z. J. Lim, J. J. Baumberg, P. Cicuta, S. McDermott, B. Vodenicharski, and R. Bowman, “Robotic microscopy for everyone: the OpenFlexure Microscope,” Biomed. Opt. Express, submitted 2019.

Cicuta, P.

J. T. Collins, J. Knapper, J. Stirling, J. Mduda, C. Mkindi, G. A. Mwakajinga, P. T. Nyakyi, V. L. Sanga, D. Carbery, L. White, S. Dale, Z. J. Lim, J. J. Baumberg, P. Cicuta, S. McDermott, B. Vodenicharski, and R. Bowman, “Robotic microscopy for everyone: the OpenFlexure Microscope,” Biomed. Opt. Express, submitted 2019.

Collins, J. T.

J. T. Collins, J. Knapper, J. Stirling, J. Mduda, C. Mkindi, G. A. Mwakajinga, P. T. Nyakyi, V. L. Sanga, D. Carbery, L. White, S. Dale, Z. J. Lim, J. J. Baumberg, P. Cicuta, S. McDermott, B. Vodenicharski, and R. Bowman, “Robotic microscopy for everyone: the OpenFlexure Microscope,” Biomed. Opt. Express, submitted 2019.

Dale, S.

J. T. Collins, J. Knapper, J. Stirling, J. Mduda, C. Mkindi, G. A. Mwakajinga, P. T. Nyakyi, V. L. Sanga, D. Carbery, L. White, S. Dale, Z. J. Lim, J. J. Baumberg, P. Cicuta, S. McDermott, B. Vodenicharski, and R. Bowman, “Robotic microscopy for everyone: the OpenFlexure Microscope,” Biomed. Opt. Express, submitted 2019.

Foo, D. C.

J. P. Sharkey, D. C. Foo, A. Kabla, J. J. Baumberg, and R. W. Bowman, “A one-piece 3d printed flexure translation stage for open-source microscopy,” Rev. Sci. Instrum. 87(2), 025104 (2016).
[Crossref]

Galantucci, L. M.

L. M. Galantucci, I. Bodi, J. Kacani, and F. Lavecchia, “Analysis of dimensional performance for a 3d open-source printer based on fused deposition modeling technique,” Procedia CIRP 28, 82–87 (2015).
[Crossref]

Gan, J.

H. Wu, X. Zhang, J. Gan, H. Li, and P. Ge, “Displacement measurement system for inverters using computer micro-vision,” Opt. Lasers Eng. 81, 113–118 (2016).
[Crossref]

Ge, P.

H. Wu, X. Zhang, J. Gan, H. Li, and P. Ge, “Displacement measurement system for inverters using computer micro-vision,” Opt. Lasers Eng. 81, 113–118 (2016).
[Crossref]

Harrington, K.

Q. Meng, K. Harrington, J. Stirling, and R. Bowman. Dataset for “The OpenFlexure Block Stage: Sub-100 nm fibre alignment with a monolithic plastic flexure stage.” Bath: University of Bath Research Data Archive. https://doi.org/10.15125/BATH-00737 .

Haufe, P.

R. Jones, P. Haufe, E. Sells, P. Iravani, V. Olliver, C. Palmer, and A. Bowyer, “Reprap – the replicating rapid prototyper,” Robotica 29(1), 177–191 (2011).
[Crossref]

Iravani, P.

R. Jones, P. Haufe, E. Sells, P. Iravani, V. Olliver, C. Palmer, and A. Bowyer, “Reprap – the replicating rapid prototyper,” Robotica 29(1), 177–191 (2011).
[Crossref]

Jones, R.

R. Jones, P. Haufe, E. Sells, P. Iravani, V. Olliver, C. Palmer, and A. Bowyer, “Reprap – the replicating rapid prototyper,” Robotica 29(1), 177–191 (2011).
[Crossref]

Kabla, A.

J. P. Sharkey, D. C. Foo, A. Kabla, J. J. Baumberg, and R. W. Bowman, “A one-piece 3d printed flexure translation stage for open-source microscopy,” Rev. Sci. Instrum. 87(2), 025104 (2016).
[Crossref]

Kacani, J.

L. M. Galantucci, I. Bodi, J. Kacani, and F. Lavecchia, “Analysis of dimensional performance for a 3d open-source printer based on fused deposition modeling technique,” Procedia CIRP 28, 82–87 (2015).
[Crossref]

Kamthai, S.

S. Kamthai and R. Magaraphan, “Thermal and mechanical properties of polylactic acid (pla) and bagasse carboxymethyl cellulose (cmcb) composite by adding isosorbide diesters,” in AIP Conference Proceedings (AIP Publishing, 2015), vol. 1664, 060006.

Knapper, J.

J. T. Collins, J. Knapper, J. Stirling, J. Mduda, C. Mkindi, G. A. Mwakajinga, P. T. Nyakyi, V. L. Sanga, D. Carbery, L. White, S. Dale, Z. J. Lim, J. J. Baumberg, P. Cicuta, S. McDermott, B. Vodenicharski, and R. Bowman, “Robotic microscopy for everyone: the OpenFlexure Microscope,” Biomed. Opt. Express, submitted 2019.

Koo, G.

M. Riddell, G. Koo, and J. O’Toole, “Fatigue mechanisms of thermoplastics,” Polym. Eng. Sci. 6, 363–368 (1966).
[Crossref]

Lavecchia, F.

L. M. Galantucci, I. Bodi, J. Kacani, and F. Lavecchia, “Analysis of dimensional performance for a 3d open-source printer based on fused deposition modeling technique,” Procedia CIRP 28, 82–87 (2015).
[Crossref]

Li, H.

H. Wu, X. Zhang, J. Gan, H. Li, and P. Ge, “Displacement measurement system for inverters using computer micro-vision,” Opt. Lasers Eng. 81, 113–118 (2016).
[Crossref]

Lim, Z. J.

J. T. Collins, J. Knapper, J. Stirling, J. Mduda, C. Mkindi, G. A. Mwakajinga, P. T. Nyakyi, V. L. Sanga, D. Carbery, L. White, S. Dale, Z. J. Lim, J. J. Baumberg, P. Cicuta, S. McDermott, B. Vodenicharski, and R. Bowman, “Robotic microscopy for everyone: the OpenFlexure Microscope,” Biomed. Opt. Express, submitted 2019.

Magaraphan, R.

S. Kamthai and R. Magaraphan, “Thermal and mechanical properties of polylactic acid (pla) and bagasse carboxymethyl cellulose (cmcb) composite by adding isosorbide diesters,” in AIP Conference Proceedings (AIP Publishing, 2015), vol. 1664, 060006.

McDermott, S.

J. T. Collins, J. Knapper, J. Stirling, J. Mduda, C. Mkindi, G. A. Mwakajinga, P. T. Nyakyi, V. L. Sanga, D. Carbery, L. White, S. Dale, Z. J. Lim, J. J. Baumberg, P. Cicuta, S. McDermott, B. Vodenicharski, and R. Bowman, “Robotic microscopy for everyone: the OpenFlexure Microscope,” Biomed. Opt. Express, submitted 2019.

Mduda, J.

J. T. Collins, J. Knapper, J. Stirling, J. Mduda, C. Mkindi, G. A. Mwakajinga, P. T. Nyakyi, V. L. Sanga, D. Carbery, L. White, S. Dale, Z. J. Lim, J. J. Baumberg, P. Cicuta, S. McDermott, B. Vodenicharski, and R. Bowman, “Robotic microscopy for everyone: the OpenFlexure Microscope,” Biomed. Opt. Express, submitted 2019.

Meng, Q.

Q. Meng, K. Harrington, J. Stirling, and R. Bowman. Dataset for “The OpenFlexure Block Stage: Sub-100 nm fibre alignment with a monolithic plastic flexure stage.” Bath: University of Bath Research Data Archive. https://doi.org/10.15125/BATH-00737 .

Mkindi, C.

J. T. Collins, J. Knapper, J. Stirling, J. Mduda, C. Mkindi, G. A. Mwakajinga, P. T. Nyakyi, V. L. Sanga, D. Carbery, L. White, S. Dale, Z. J. Lim, J. J. Baumberg, P. Cicuta, S. McDermott, B. Vodenicharski, and R. Bowman, “Robotic microscopy for everyone: the OpenFlexure Microscope,” Biomed. Opt. Express, submitted 2019.

Mwakajinga, G. A.

J. T. Collins, J. Knapper, J. Stirling, J. Mduda, C. Mkindi, G. A. Mwakajinga, P. T. Nyakyi, V. L. Sanga, D. Carbery, L. White, S. Dale, Z. J. Lim, J. J. Baumberg, P. Cicuta, S. McDermott, B. Vodenicharski, and R. Bowman, “Robotic microscopy for everyone: the OpenFlexure Microscope,” Biomed. Opt. Express, submitted 2019.

Nyakyi, P. T.

J. T. Collins, J. Knapper, J. Stirling, J. Mduda, C. Mkindi, G. A. Mwakajinga, P. T. Nyakyi, V. L. Sanga, D. Carbery, L. White, S. Dale, Z. J. Lim, J. J. Baumberg, P. Cicuta, S. McDermott, B. Vodenicharski, and R. Bowman, “Robotic microscopy for everyone: the OpenFlexure Microscope,” Biomed. Opt. Express, submitted 2019.

O’Toole, J.

M. Riddell, G. Koo, and J. O’Toole, “Fatigue mechanisms of thermoplastics,” Polym. Eng. Sci. 6, 363–368 (1966).
[Crossref]

Olliver, V.

R. Jones, P. Haufe, E. Sells, P. Iravani, V. Olliver, C. Palmer, and A. Bowyer, “Reprap – the replicating rapid prototyper,” Robotica 29(1), 177–191 (2011).
[Crossref]

Palmer, C.

R. Jones, P. Haufe, E. Sells, P. Iravani, V. Olliver, C. Palmer, and A. Bowyer, “Reprap – the replicating rapid prototyper,” Robotica 29(1), 177–191 (2011).
[Crossref]

Riddell, M.

M. Riddell, G. Koo, and J. O’Toole, “Fatigue mechanisms of thermoplastics,” Polym. Eng. Sci. 6, 363–368 (1966).
[Crossref]

Sanga, V. L.

J. T. Collins, J. Knapper, J. Stirling, J. Mduda, C. Mkindi, G. A. Mwakajinga, P. T. Nyakyi, V. L. Sanga, D. Carbery, L. White, S. Dale, Z. J. Lim, J. J. Baumberg, P. Cicuta, S. McDermott, B. Vodenicharski, and R. Bowman, “Robotic microscopy for everyone: the OpenFlexure Microscope,” Biomed. Opt. Express, submitted 2019.

Sells, E.

R. Jones, P. Haufe, E. Sells, P. Iravani, V. Olliver, C. Palmer, and A. Bowyer, “Reprap – the replicating rapid prototyper,” Robotica 29(1), 177–191 (2011).
[Crossref]

Sharkey, J. P.

J. P. Sharkey, D. C. Foo, A. Kabla, J. J. Baumberg, and R. W. Bowman, “A one-piece 3d printed flexure translation stage for open-source microscopy,” Rev. Sci. Instrum. 87(2), 025104 (2016).
[Crossref]

Silver, A.

A. Silver, “Five innovative ways to use 3d printing in the laboratory,” Nature 565(7737), 123–124 (2019).
[Crossref]

Stirling, J.

J. T. Collins, J. Knapper, J. Stirling, J. Mduda, C. Mkindi, G. A. Mwakajinga, P. T. Nyakyi, V. L. Sanga, D. Carbery, L. White, S. Dale, Z. J. Lim, J. J. Baumberg, P. Cicuta, S. McDermott, B. Vodenicharski, and R. Bowman, “Robotic microscopy for everyone: the OpenFlexure Microscope,” Biomed. Opt. Express, submitted 2019.

Q. Meng, K. Harrington, J. Stirling, and R. Bowman. Dataset for “The OpenFlexure Block Stage: Sub-100 nm fibre alignment with a monolithic plastic flexure stage.” Bath: University of Bath Research Data Archive. https://doi.org/10.15125/BATH-00737 .

Vodenicharski, B.

J. T. Collins, J. Knapper, J. Stirling, J. Mduda, C. Mkindi, G. A. Mwakajinga, P. T. Nyakyi, V. L. Sanga, D. Carbery, L. White, S. Dale, Z. J. Lim, J. J. Baumberg, P. Cicuta, S. McDermott, B. Vodenicharski, and R. Bowman, “Robotic microscopy for everyone: the OpenFlexure Microscope,” Biomed. Opt. Express, submitted 2019.

White, L.

J. T. Collins, J. Knapper, J. Stirling, J. Mduda, C. Mkindi, G. A. Mwakajinga, P. T. Nyakyi, V. L. Sanga, D. Carbery, L. White, S. Dale, Z. J. Lim, J. J. Baumberg, P. Cicuta, S. McDermott, B. Vodenicharski, and R. Bowman, “Robotic microscopy for everyone: the OpenFlexure Microscope,” Biomed. Opt. Express, submitted 2019.

Wu, H.

H. Wu, X. Zhang, J. Gan, H. Li, and P. Ge, “Displacement measurement system for inverters using computer micro-vision,” Opt. Lasers Eng. 81, 113–118 (2016).
[Crossref]

Zhang, X.

H. Wu, X. Zhang, J. Gan, H. Li, and P. Ge, “Displacement measurement system for inverters using computer micro-vision,” Opt. Lasers Eng. 81, 113–118 (2016).
[Crossref]

Nature (1)

A. Silver, “Five innovative ways to use 3d printing in the laboratory,” Nature 565(7737), 123–124 (2019).
[Crossref]

Opt. Lasers Eng. (1)

H. Wu, X. Zhang, J. Gan, H. Li, and P. Ge, “Displacement measurement system for inverters using computer micro-vision,” Opt. Lasers Eng. 81, 113–118 (2016).
[Crossref]

Polym. Eng. Sci. (1)

M. Riddell, G. Koo, and J. O’Toole, “Fatigue mechanisms of thermoplastics,” Polym. Eng. Sci. 6, 363–368 (1966).
[Crossref]

Procedia CIRP (1)

L. M. Galantucci, I. Bodi, J. Kacani, and F. Lavecchia, “Analysis of dimensional performance for a 3d open-source printer based on fused deposition modeling technique,” Procedia CIRP 28, 82–87 (2015).
[Crossref]

Rev. Sci. Instrum. (1)

J. P. Sharkey, D. C. Foo, A. Kabla, J. J. Baumberg, and R. W. Bowman, “A one-piece 3d printed flexure translation stage for open-source microscopy,” Rev. Sci. Instrum. 87(2), 025104 (2016).
[Crossref]

Robotica (1)

R. Jones, P. Haufe, E. Sells, P. Iravani, V. Olliver, C. Palmer, and A. Bowyer, “Reprap – the replicating rapid prototyper,” Robotica 29(1), 177–191 (2011).
[Crossref]

Other (8)

S. Kamthai and R. Magaraphan, “Thermal and mechanical properties of polylactic acid (pla) and bagasse carboxymethyl cellulose (cmcb) composite by adding isosorbide diesters,” in AIP Conference Proceedings (AIP Publishing, 2015), vol. 1664, 060006.

J. R. Rumble, ed., CRC Handbook of Chemistry and Physics, 100th Edition (CRC Press/Taylor & Francis, 2019), chap. 12.

J. T. Collins, J. Knapper, J. Stirling, J. Mduda, C. Mkindi, G. A. Mwakajinga, P. T. Nyakyi, V. L. Sanga, D. Carbery, L. White, S. Dale, Z. J. Lim, J. J. Baumberg, P. Cicuta, S. McDermott, B. Vodenicharski, and R. Bowman, “Robotic microscopy for everyone: the OpenFlexure Microscope,” Biomed. Opt. Express, submitted 2019.

GitLab repository of the OpenFlexure Block Stage https://gitlab.com/openflexure/openflexure-block-stage .

Newport Corporation, “NanoPZTM User Manual, 90043104 Rev. A.”

GitHub repository of Motor controller hardware, firmware and software https://github.com/rwb27/openflexure_nano_motor_controller . A version of this repository is archived with the dataset for this paper.

Newport Corporation, “Application Note: ULTRAlignTM Precision Fiber Optic Positioning System https://www.newport.com/n/ultralign-precision-fiber-optic-positioning-system .

Q. Meng, K. Harrington, J. Stirling, and R. Bowman. Dataset for “The OpenFlexure Block Stage: Sub-100 nm fibre alignment with a monolithic plastic flexure stage.” Bath: University of Bath Research Data Archive. https://doi.org/10.15125/BATH-00737 .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Rendering of the OpenFlexure Block Stage. The mechanism is a single 3D printed part (grey), other parts (pink) such as the the base and moving platform are printed separately. The each axis of the stage is actuated by an M3 lead screw driven by a gear (pink). These gears can be driven by a smaller 3D printed gear (not shown) attached to a 28BYJ-48 stepper motors that can be mounted to the casing of the stage. Full documentation on building a stage is available from Ref. [6].
Fig. 2.
Fig. 2. Top left: schematic of the $x$ and $y$-mechanisms of the OpenFlexure Block Stage. Red dots represent the position of flexure hinges, and black hatches represent attachment to the fixed casing of the stage. The green hatched portion represents the central shelf that is fixed during $xy$-motion but moves during $z$-travel. Top right: schematic of $z$ mechanism of the OpenFlexure Block Stage. Bottom left and right: cutaways of only the $xy$-mechanism and the $z$-mechanism respectively. The central shelf (labelled) is common to both cutaways.
Fig. 3.
Fig. 3. Schematic of the set-up used to track the position of the stage during mechanical characterisation experiments. A diffused LED illuminates a sample mounted on the moving platform. The motion of the sample is tracked by imaging the sample with a microscope optics. Both the LED and the microscope optics are mounted to stationary platforms that form part of the casing of the stage.
Fig. 4.
Fig. 4. a) Drift of the stage over 25 days in ambient conditions. The position of the stage in the $xz$-plane was measured by tracking the position of a scratched microscope slide on the moving platform. b) The Allan deviation of the same data.
Fig. 5.
Fig. 5. The minimum resolvable movement of the stage in the $x$-direction (a) and $z$-direction (b). We plot an 11-point running average of the data collected, raw data is available in the data archive [14]. Vertical grey lines note the time when steps were taken. a) and b) are characteristic examples of the data collected for $x$ and $z$ motion, with measured step sizes of 62 nm (5 steps) and 57 nm (8 steps) respectively.
Fig. 6.
Fig. 6. Each point represents the mean absolute displacement after twenty bidirectional movements in random directions in the $xz$-plane.
Fig. 7.
Fig. 7. a) Parasitic tilt of the moving platform as it is moved in the $xy$-plane. The direction of the arrow notes the direction of the axis of rotation. b) Tilt of the stage in reaction to different torques applied, and the residuals of a linear fit.
Fig. 8.
Fig. 8. An example fibre alignment run performed with our gradient ascent algorithm, showing the sequential alignments increasing the transmitted power. Note that some measurements saturated the power sensor and had to be repeated with a lower gain.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

x ¯ i = ( i 1 ) τ i τ x ( t ) d t .
σ A ( τ ) = 1 2 ( M 1 ) i = 1 M 1 ( x ¯ i + 1 x ¯ i ) 2 .

Metrics