Abstract

The plasmonic metamaterials and metasurfaces play a critical role in manipulating lights in the mid-infrared spectral region. Here, we first propose a novel plasmonic chiral structure with the giant optical activity in the mid-infrared spectral region. The chiral structure consists of the moiré patterns, which are formed by stacking double-layer graphene nanoribbons with a relative in-plane rotation angle. It is demonstrated that the graphene-based plasmonic structure with moiré patterns exhibits the strong circular dichroism. The giant chiroptical response can be precisely controlled by changing the rotation angle and Fermi level of graphene. Furthermore, a dielectric interlayer is inserted between two layers of graphene to obtain the stronger circular dichroism. Impressively, the strongest circular dichroism can reach 5.94 deg at 13.6 µm when the thickness of dielectric interlayer is 20 nm. The proposed structure with graphene-based moiré patterns can be superior to conventional graphene chiral metamaterials due to some advantage of rotation-dependent chirality, flexible tunability and cost-effective fabrication. It will advance many essential mid-infrared applications, such as chiral sensors, thermal imaging and chiroptical detectors.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Tunable chiroptical response of graphene achiral metamaterials in mid-infrared regime

Shaoen Zhou, Pengtao Lai, Guohua Dong, Ping Li, Yuxiang Li, Zheng Zhu, Chunying Guan, and Jinhui Shi
Opt. Express 27(11) 15359-15367 (2019)

Tuning of giant 2D-chiroptical response using achiral metasurface integrated with graphene

Tun Cao, Chen-Wei Wei, Li-Bang Mao, and Shuai Wang
Opt. Express 23(14) 18620-18629 (2015)

Numerical study of tunable enhanced chirality in multilayer stack achiral phase-change metamaterials

Tun Cao, Yang Li, Chen-Wei Wei, and Yi-mei Qiu
Opt. Express 25(9) 9911-9925 (2017)

References

  • View by:
  • |
  • |
  • |

  1. V. K. Valev, J. J. Baumberg, C. Sibilia, and T. Verbiest, “Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook,” Adv. Mater. 25(18), 2517–2534 (2013).
    [Crossref]
  2. C. J. Kim, A. Sánchez-Castillo, Z. Ziegler, Y. Ogawa, C. Noguez, and J. Park, “Chiral atomically thin films,” Nat. Nanotechnol. 11(6), 520–524 (2016).
    [Crossref]
  3. Y. Kim, B. J. Yeom, O. Arteaga, S. J. Yoo, S. G. Lee, J. G. Kim, and N. A. Kotov, “Reconfigurable chiroptical nanocomposites with chirality transfer from the macro- to the nanoscale,” Nat. Mater. 15(4), 461–468 (2016).
    [Crossref]
  4. X. T. Kong, R. B. Zhao, Z. M. Wang, and A. O. Govorov, “Mid-infrared plasmonic circular dichroism generated by graphene nanodisk assemblies,” Nano Lett. 17(8), 5099–5105 (2017).
    [Crossref]
  5. C. Gautier and T. Bürgi, “Chiral N-Isobutyryl-cysteine Protected Gold Nanoparticles: Preparation, Size Selection, and Optical Activity in the UV-vis and Infrared,” J. Am. Chem. Soc. 128(34), 11079–11087 (2006).
    [Crossref]
  6. X. L. Ma, W. B. Pan, C. Huang, M. B. Pu, Y. Q. Wang, B. Zhao, J. H. Cui, C. T. Wang, and X. A. Luo, “An active metamaterial for polarization manipulating,” Adv. Opt. Mater. 2(10), 945–949 (2014).
    [Crossref]
  7. Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3(1), 870 (2012).
    [Crossref]
  8. Y. M. Liu and X. Zhang, “Metamaterials: a new frontier of science and technology,” Chem. Soc. Rev. 40(5), 2494–2507 (2011).
    [Crossref]
  9. A. Ben-Moshe, B. M. Maoz, A. O. Govorov, and G. Markovich, “Chirality and chiroptical effects in inorganic nanocrystal systems with plasmon and exciton resonances,” Chem. Soc. Rev. 42(16), 7028–7041 (2013).
    [Crossref]
  10. X. Lan and Q. B. Wang, “Self-assembly of chiral plasmonic nanostructures,” Adv. Mater. 28(47), 10499–10507 (2016).
    [Crossref]
  11. M. K. Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant Optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
    [Crossref]
  12. M. Esposito, V. Tasco, M. Cuscunà, F. Todisco, A. Benedetti, I. Tarantini, M. D. Giorgi, D. Sanvitto, and A. Passaseo, “Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies,” ACS Photonics 2(1), 105–114 (2015).
    [Crossref]
  13. A. Kuzyk, R. Schreiber, Z. Y. Fan, G. Pardatscher, E. M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Lied, “DNA-based self-Assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
    [Crossref]
  14. K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using optical vortex to control the chirality of twisted metal nanostructures,” Nano Lett. 12(7), 3645–3649 (2012).
    [Crossref]
  15. D. Barada, G. Juman, I. Yoshida, K. Miyamoto, S. Kawata, S. Ohno, and T. Omatsu, “Constructive spin-orbital angular momentum coupling can twist materials to create spiral structures in optical vortex illumination,” Appl. Phys. Lett. 108(5), 051108 (2016).
    [Crossref]
  16. S. Vignolini, N. A. Yufa, P. S. Cunha, S. Guldin, I. Rushkin, M. Stefik, K. Hur, U. Wiesner, J. J. Baumberg, and U. Steiner, “A 3D optical metamaterial made by self-assembly,” Adv. Mater. 24(10), OP23–OP27 (2012).
    [Crossref]
  17. Z. L. Wu and Y. B. Zheng, “Moiré chiral metamaterials,” Adv. Opt. Mater. 5(16), 1700034 (2017).
    [Crossref]
  18. Z. L. Wu, X. D. Chen, M. S. Wang, J. W. Dong, and Y. B. Zheng, “High-performance ultrathin active chiral metamaterials,” ACS Nano 12(5), 5030–5041 (2018).
    [Crossref]
  19. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. V. Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
    [Crossref]
  20. S. E. Zhou, P. T. Lai, G. H. Dong, P. Li, Y. X. Li, Z. Zhu, C. Y. Guan, and J. H. Shi, “Tunable chiroptical response of graphene achiral metamaterials in mid-infrared regime,” Opt. Express 27(11), 15359–15367 (2019).
    [Crossref]
  21. C. W. Cao, L. B. Wei, S. Mao, and Wang, “Tuning of giant 2D-chiroptical response using achiral metasurface integrated with graphene,” Opt. Express 23(14), 18620–18629 (2015).
    [Crossref]
  22. T. Cao, C. W. Wei, and Y. Li, “Dual-band strong extrinsic 2D chirality in a highly symmetric metal-dielectric-metal achiral metasurface,” Opt. Mater. Express 6(2), 303–311 (2016).
    [Crossref]
  23. M. R. Querry, Optical constants of minerals and other materials from the millimeter to the ultraviolet (The Department of Commerce International Trade Center Bookstore, 1987).
  24. W. Kaiser, W. G. Spitzer, R. H. Kaiser, and L. E. Howarth, “Infrared Properties of CaF2, SrF2, and BaF2,” Phys. Rev. 127(6), 1950–1954 (1962).
    [Crossref]
  25. G. G. Zheng, Y. Y. Chen, L. B. Bu, L. H. Xu, and W. Su, “Waveguide-coupled surface phonon resonance sensors with super-resolution in the mid-infrared region,” Opt. Lett. 41(7), 1582–1585 (2016).
    [Crossref]
  26. S Adachi, Optical constants of crystalline and amorphous semiconductors (Springer, 1997).
  27. F. H. L. Koppens, D. E. Chang, and F. J. G. de Abajo, “Graphene plasmonics: a platform for strong light–matter interactions,” Nano Lett. 11(8), 3370–3377 (2011).
    [Crossref]
  28. W. L. Gao, J. Shu, C. Y. Qiu, and Q. F. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6(9), 7806–7813 (2012).
    [Crossref]
  29. S. Y. Xiao, T. Wang, T. T. Liu, X. C. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
    [Crossref]
  30. Z. Y. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. L. Ma, Y. M. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7(3), 2388–2395 (2013).
    [Crossref]
  31. X. Y. He, “Tunable terahertz graphene metamaterials,” Carbon 82, 229–237 (2015).
    [Crossref]
  32. R. Hao, Z. W. Ye, X. L. Peng, Y. J. Gu, J. Y. Jiao, H. X. Zhu, W. E. I. Sha, and E. P. Li, “Highly efficient graphene-based optical modulator with edge plasmonic effect,” IEEE Photonics J. 10(3), 1–7 (2018).
    [Crossref]
  33. Z. L. Wu, Y. R. Liu, E. H. Hill, and Y. B. Zheng, “Chiral metamaterials via moiré stacking,” Nanoscale 10(38), 18096–18112 (2018).
    [Crossref]
  34. M. Esposito, V. Tasco, M. Cuscunà, F. Todisco, A. Benedetti, I. Tarantini, M. D. Giorgi, D. Sanvitto, and A. Passaseo, “Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies,” ACS Photonics 2(1), 105–114 (2015).
    [Crossref]
  35. J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. Koppens, and J. G. de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano 6(1), 431–440 (2012).
    [Crossref]
  36. H. S. Chu and C. H. Gan, “Active plasmonic switching at mid-infrared wavelengths with graphene ribbon arrays,” Appl. Phys. Lett. 102(23), 231107 (2013).
    [Crossref]
  37. R. Ortuño, C. García-Meca, F. J. Rodríguez-Fortuño, and J. Martí, “A. Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79(7), 075425 (2009).
    [Crossref]
  38. S. X. Xia, X. Zhai, L. L. Wang, and S. C. Wen, “Plasmonically induced transparency in double-layered graphene nanoribbons,” Photonics Res. 6(7), 692–702 (2018).
    [Crossref]
  39. B. Gallinet and O. J. F. Martin, “Influence of electromagnetic interactions on the line shape of plasmonic Fano resonances,” ACS Nano 5(11), 8999–9008 (2011).
    [Crossref]
  40. D. Rodrigo, A. Tittl, O. Limaj, F. J. G. de Abajo, V. Pruneri, and H. Altug, “Double-layer graphene for enhanced tunable infrared plasmonics,” Light: Sci. Appl. 6(6), e16277 (2017).
    [Crossref]

2019 (1)

2018 (5)

R. Hao, Z. W. Ye, X. L. Peng, Y. J. Gu, J. Y. Jiao, H. X. Zhu, W. E. I. Sha, and E. P. Li, “Highly efficient graphene-based optical modulator with edge plasmonic effect,” IEEE Photonics J. 10(3), 1–7 (2018).
[Crossref]

Z. L. Wu, Y. R. Liu, E. H. Hill, and Y. B. Zheng, “Chiral metamaterials via moiré stacking,” Nanoscale 10(38), 18096–18112 (2018).
[Crossref]

S. Y. Xiao, T. Wang, T. T. Liu, X. C. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

Z. L. Wu, X. D. Chen, M. S. Wang, J. W. Dong, and Y. B. Zheng, “High-performance ultrathin active chiral metamaterials,” ACS Nano 12(5), 5030–5041 (2018).
[Crossref]

S. X. Xia, X. Zhai, L. L. Wang, and S. C. Wen, “Plasmonically induced transparency in double-layered graphene nanoribbons,” Photonics Res. 6(7), 692–702 (2018).
[Crossref]

2017 (3)

D. Rodrigo, A. Tittl, O. Limaj, F. J. G. de Abajo, V. Pruneri, and H. Altug, “Double-layer graphene for enhanced tunable infrared plasmonics,” Light: Sci. Appl. 6(6), e16277 (2017).
[Crossref]

X. T. Kong, R. B. Zhao, Z. M. Wang, and A. O. Govorov, “Mid-infrared plasmonic circular dichroism generated by graphene nanodisk assemblies,” Nano Lett. 17(8), 5099–5105 (2017).
[Crossref]

Z. L. Wu and Y. B. Zheng, “Moiré chiral metamaterials,” Adv. Opt. Mater. 5(16), 1700034 (2017).
[Crossref]

2016 (6)

G. G. Zheng, Y. Y. Chen, L. B. Bu, L. H. Xu, and W. Su, “Waveguide-coupled surface phonon resonance sensors with super-resolution in the mid-infrared region,” Opt. Lett. 41(7), 1582–1585 (2016).
[Crossref]

T. Cao, C. W. Wei, and Y. Li, “Dual-band strong extrinsic 2D chirality in a highly symmetric metal-dielectric-metal achiral metasurface,” Opt. Mater. Express 6(2), 303–311 (2016).
[Crossref]

C. J. Kim, A. Sánchez-Castillo, Z. Ziegler, Y. Ogawa, C. Noguez, and J. Park, “Chiral atomically thin films,” Nat. Nanotechnol. 11(6), 520–524 (2016).
[Crossref]

Y. Kim, B. J. Yeom, O. Arteaga, S. J. Yoo, S. G. Lee, J. G. Kim, and N. A. Kotov, “Reconfigurable chiroptical nanocomposites with chirality transfer from the macro- to the nanoscale,” Nat. Mater. 15(4), 461–468 (2016).
[Crossref]

D. Barada, G. Juman, I. Yoshida, K. Miyamoto, S. Kawata, S. Ohno, and T. Omatsu, “Constructive spin-orbital angular momentum coupling can twist materials to create spiral structures in optical vortex illumination,” Appl. Phys. Lett. 108(5), 051108 (2016).
[Crossref]

X. Lan and Q. B. Wang, “Self-assembly of chiral plasmonic nanostructures,” Adv. Mater. 28(47), 10499–10507 (2016).
[Crossref]

2015 (4)

M. Esposito, V. Tasco, M. Cuscunà, F. Todisco, A. Benedetti, I. Tarantini, M. D. Giorgi, D. Sanvitto, and A. Passaseo, “Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies,” ACS Photonics 2(1), 105–114 (2015).
[Crossref]

C. W. Cao, L. B. Wei, S. Mao, and Wang, “Tuning of giant 2D-chiroptical response using achiral metasurface integrated with graphene,” Opt. Express 23(14), 18620–18629 (2015).
[Crossref]

M. Esposito, V. Tasco, M. Cuscunà, F. Todisco, A. Benedetti, I. Tarantini, M. D. Giorgi, D. Sanvitto, and A. Passaseo, “Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies,” ACS Photonics 2(1), 105–114 (2015).
[Crossref]

X. Y. He, “Tunable terahertz graphene metamaterials,” Carbon 82, 229–237 (2015).
[Crossref]

2014 (1)

X. L. Ma, W. B. Pan, C. Huang, M. B. Pu, Y. Q. Wang, B. Zhao, J. H. Cui, C. T. Wang, and X. A. Luo, “An active metamaterial for polarization manipulating,” Adv. Opt. Mater. 2(10), 945–949 (2014).
[Crossref]

2013 (4)

V. K. Valev, J. J. Baumberg, C. Sibilia, and T. Verbiest, “Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook,” Adv. Mater. 25(18), 2517–2534 (2013).
[Crossref]

A. Ben-Moshe, B. M. Maoz, A. O. Govorov, and G. Markovich, “Chirality and chiroptical effects in inorganic nanocrystal systems with plasmon and exciton resonances,” Chem. Soc. Rev. 42(16), 7028–7041 (2013).
[Crossref]

Z. Y. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. L. Ma, Y. M. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7(3), 2388–2395 (2013).
[Crossref]

H. S. Chu and C. H. Gan, “Active plasmonic switching at mid-infrared wavelengths with graphene ribbon arrays,” Appl. Phys. Lett. 102(23), 231107 (2013).
[Crossref]

2012 (6)

J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. Koppens, and J. G. de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano 6(1), 431–440 (2012).
[Crossref]

W. L. Gao, J. Shu, C. Y. Qiu, and Q. F. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6(9), 7806–7813 (2012).
[Crossref]

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3(1), 870 (2012).
[Crossref]

A. Kuzyk, R. Schreiber, Z. Y. Fan, G. Pardatscher, E. M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Lied, “DNA-based self-Assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[Crossref]

K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using optical vortex to control the chirality of twisted metal nanostructures,” Nano Lett. 12(7), 3645–3649 (2012).
[Crossref]

S. Vignolini, N. A. Yufa, P. S. Cunha, S. Guldin, I. Rushkin, M. Stefik, K. Hur, U. Wiesner, J. J. Baumberg, and U. Steiner, “A 3D optical metamaterial made by self-assembly,” Adv. Mater. 24(10), OP23–OP27 (2012).
[Crossref]

2011 (3)

Y. M. Liu and X. Zhang, “Metamaterials: a new frontier of science and technology,” Chem. Soc. Rev. 40(5), 2494–2507 (2011).
[Crossref]

F. H. L. Koppens, D. E. Chang, and F. J. G. de Abajo, “Graphene plasmonics: a platform for strong light–matter interactions,” Nano Lett. 11(8), 3370–3377 (2011).
[Crossref]

B. Gallinet and O. J. F. Martin, “Influence of electromagnetic interactions on the line shape of plasmonic Fano resonances,” ACS Nano 5(11), 8999–9008 (2011).
[Crossref]

2009 (2)

R. Ortuño, C. García-Meca, F. J. Rodríguez-Fortuño, and J. Martí, “A. Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79(7), 075425 (2009).
[Crossref]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. V. Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref]

2006 (1)

C. Gautier and T. Bürgi, “Chiral N-Isobutyryl-cysteine Protected Gold Nanoparticles: Preparation, Size Selection, and Optical Activity in the UV-vis and Infrared,” J. Am. Chem. Soc. 128(34), 11079–11087 (2006).
[Crossref]

2005 (1)

M. K. Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant Optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
[Crossref]

1962 (1)

W. Kaiser, W. G. Spitzer, R. H. Kaiser, and L. E. Howarth, “Infrared Properties of CaF2, SrF2, and BaF2,” Phys. Rev. 127(6), 1950–1954 (1962).
[Crossref]

Adachi, S

S Adachi, Optical constants of crystalline and amorphous semiconductors (Springer, 1997).

Ajayan, P. M.

Z. Y. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. L. Ma, Y. M. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7(3), 2388–2395 (2013).
[Crossref]

Altug, H.

D. Rodrigo, A. Tittl, O. Limaj, F. J. G. de Abajo, V. Pruneri, and H. Altug, “Double-layer graphene for enhanced tunable infrared plasmonics,” Light: Sci. Appl. 6(6), e16277 (2017).
[Crossref]

Alù, A.

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3(1), 870 (2012).
[Crossref]

Aoki, N.

K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using optical vortex to control the chirality of twisted metal nanostructures,” Nano Lett. 12(7), 3645–3649 (2012).
[Crossref]

Arteaga, O.

Y. Kim, B. J. Yeom, O. Arteaga, S. J. Yoo, S. G. Lee, J. G. Kim, and N. A. Kotov, “Reconfigurable chiroptical nanocomposites with chirality transfer from the macro- to the nanoscale,” Nat. Mater. 15(4), 461–468 (2016).
[Crossref]

Bade, K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. V. Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref]

Barada, D.

D. Barada, G. Juman, I. Yoshida, K. Miyamoto, S. Kawata, S. Ohno, and T. Omatsu, “Constructive spin-orbital angular momentum coupling can twist materials to create spiral structures in optical vortex illumination,” Appl. Phys. Lett. 108(5), 051108 (2016).
[Crossref]

Baumberg, J. J.

V. K. Valev, J. J. Baumberg, C. Sibilia, and T. Verbiest, “Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook,” Adv. Mater. 25(18), 2517–2534 (2013).
[Crossref]

S. Vignolini, N. A. Yufa, P. S. Cunha, S. Guldin, I. Rushkin, M. Stefik, K. Hur, U. Wiesner, J. J. Baumberg, and U. Steiner, “A 3D optical metamaterial made by self-assembly,” Adv. Mater. 24(10), OP23–OP27 (2012).
[Crossref]

Belkin, M. A.

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3(1), 870 (2012).
[Crossref]

Benedetti, A.

M. Esposito, V. Tasco, M. Cuscunà, F. Todisco, A. Benedetti, I. Tarantini, M. D. Giorgi, D. Sanvitto, and A. Passaseo, “Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies,” ACS Photonics 2(1), 105–114 (2015).
[Crossref]

M. Esposito, V. Tasco, M. Cuscunà, F. Todisco, A. Benedetti, I. Tarantini, M. D. Giorgi, D. Sanvitto, and A. Passaseo, “Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies,” ACS Photonics 2(1), 105–114 (2015).
[Crossref]

Ben-Moshe, A.

A. Ben-Moshe, B. M. Maoz, A. O. Govorov, and G. Markovich, “Chirality and chiroptical effects in inorganic nanocrystal systems with plasmon and exciton resonances,” Chem. Soc. Rev. 42(16), 7028–7041 (2013).
[Crossref]

Bu, L. B.

Bürgi, T.

C. Gautier and T. Bürgi, “Chiral N-Isobutyryl-cysteine Protected Gold Nanoparticles: Preparation, Size Selection, and Optical Activity in the UV-vis and Infrared,” J. Am. Chem. Soc. 128(34), 11079–11087 (2006).
[Crossref]

Cao, C. W.

Cao, T.

Chang, D. E.

F. H. L. Koppens, D. E. Chang, and F. J. G. de Abajo, “Graphene plasmonics: a platform for strong light–matter interactions,” Nano Lett. 11(8), 3370–3377 (2011).
[Crossref]

Chen, X. D.

Z. L. Wu, X. D. Chen, M. S. Wang, J. W. Dong, and Y. B. Zheng, “High-performance ultrathin active chiral metamaterials,” ACS Nano 12(5), 5030–5041 (2018).
[Crossref]

Chen, Y. Y.

Christensen, J.

J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. Koppens, and J. G. de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano 6(1), 431–440 (2012).
[Crossref]

Chu, H. S.

H. S. Chu and C. H. Gan, “Active plasmonic switching at mid-infrared wavelengths with graphene ribbon arrays,” Appl. Phys. Lett. 102(23), 231107 (2013).
[Crossref]

Cui, J. H.

X. L. Ma, W. B. Pan, C. Huang, M. B. Pu, Y. Q. Wang, B. Zhao, J. H. Cui, C. T. Wang, and X. A. Luo, “An active metamaterial for polarization manipulating,” Adv. Opt. Mater. 2(10), 945–949 (2014).
[Crossref]

Cunha, P. S.

S. Vignolini, N. A. Yufa, P. S. Cunha, S. Guldin, I. Rushkin, M. Stefik, K. Hur, U. Wiesner, J. J. Baumberg, and U. Steiner, “A 3D optical metamaterial made by self-assembly,” Adv. Mater. 24(10), OP23–OP27 (2012).
[Crossref]

Cuscunà, M.

M. Esposito, V. Tasco, M. Cuscunà, F. Todisco, A. Benedetti, I. Tarantini, M. D. Giorgi, D. Sanvitto, and A. Passaseo, “Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies,” ACS Photonics 2(1), 105–114 (2015).
[Crossref]

M. Esposito, V. Tasco, M. Cuscunà, F. Todisco, A. Benedetti, I. Tarantini, M. D. Giorgi, D. Sanvitto, and A. Passaseo, “Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies,” ACS Photonics 2(1), 105–114 (2015).
[Crossref]

de Abajo, F. J. G.

D. Rodrigo, A. Tittl, O. Limaj, F. J. G. de Abajo, V. Pruneri, and H. Altug, “Double-layer graphene for enhanced tunable infrared plasmonics,” Light: Sci. Appl. 6(6), e16277 (2017).
[Crossref]

F. H. L. Koppens, D. E. Chang, and F. J. G. de Abajo, “Graphene plasmonics: a platform for strong light–matter interactions,” Nano Lett. 11(8), 3370–3377 (2011).
[Crossref]

de Abajo, J. G.

J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. Koppens, and J. G. de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano 6(1), 431–440 (2012).
[Crossref]

Decker, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. V. Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref]

Dong, G. H.

Dong, J. W.

Z. L. Wu, X. D. Chen, M. S. Wang, J. W. Dong, and Y. B. Zheng, “High-performance ultrathin active chiral metamaterials,” ACS Nano 12(5), 5030–5041 (2018).
[Crossref]

Esposito, M.

M. Esposito, V. Tasco, M. Cuscunà, F. Todisco, A. Benedetti, I. Tarantini, M. D. Giorgi, D. Sanvitto, and A. Passaseo, “Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies,” ACS Photonics 2(1), 105–114 (2015).
[Crossref]

M. Esposito, V. Tasco, M. Cuscunà, F. Todisco, A. Benedetti, I. Tarantini, M. D. Giorgi, D. Sanvitto, and A. Passaseo, “Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies,” ACS Photonics 2(1), 105–114 (2015).
[Crossref]

Fan, Z. Y.

A. Kuzyk, R. Schreiber, Z. Y. Fan, G. Pardatscher, E. M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Lied, “DNA-based self-Assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[Crossref]

Fang, Z. Y.

Z. Y. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. L. Ma, Y. M. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7(3), 2388–2395 (2013).
[Crossref]

Freymann, G. V.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. V. Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref]

Gallinet, B.

B. Gallinet and O. J. F. Martin, “Influence of electromagnetic interactions on the line shape of plasmonic Fano resonances,” ACS Nano 5(11), 8999–9008 (2011).
[Crossref]

Gan, C. H.

H. S. Chu and C. H. Gan, “Active plasmonic switching at mid-infrared wavelengths with graphene ribbon arrays,” Appl. Phys. Lett. 102(23), 231107 (2013).
[Crossref]

Gansel, J. K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. V. Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref]

Gao, W. L.

W. L. Gao, J. Shu, C. Y. Qiu, and Q. F. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6(9), 7806–7813 (2012).
[Crossref]

García de Abajo, F. J.

Z. Y. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. L. Ma, Y. M. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7(3), 2388–2395 (2013).
[Crossref]

García-Meca, C.

R. Ortuño, C. García-Meca, F. J. Rodríguez-Fortuño, and J. Martí, “A. Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79(7), 075425 (2009).
[Crossref]

Gautier, C.

C. Gautier and T. Bürgi, “Chiral N-Isobutyryl-cysteine Protected Gold Nanoparticles: Preparation, Size Selection, and Optical Activity in the UV-vis and Infrared,” J. Am. Chem. Soc. 128(34), 11079–11087 (2006).
[Crossref]

Giorgi, M. D.

M. Esposito, V. Tasco, M. Cuscunà, F. Todisco, A. Benedetti, I. Tarantini, M. D. Giorgi, D. Sanvitto, and A. Passaseo, “Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies,” ACS Photonics 2(1), 105–114 (2015).
[Crossref]

M. Esposito, V. Tasco, M. Cuscunà, F. Todisco, A. Benedetti, I. Tarantini, M. D. Giorgi, D. Sanvitto, and A. Passaseo, “Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies,” ACS Photonics 2(1), 105–114 (2015).
[Crossref]

Gonokami, M. K.

M. K. Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant Optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
[Crossref]

Govorov, A. O.

X. T. Kong, R. B. Zhao, Z. M. Wang, and A. O. Govorov, “Mid-infrared plasmonic circular dichroism generated by graphene nanodisk assemblies,” Nano Lett. 17(8), 5099–5105 (2017).
[Crossref]

A. Ben-Moshe, B. M. Maoz, A. O. Govorov, and G. Markovich, “Chirality and chiroptical effects in inorganic nanocrystal systems with plasmon and exciton resonances,” Chem. Soc. Rev. 42(16), 7028–7041 (2013).
[Crossref]

A. Kuzyk, R. Schreiber, Z. Y. Fan, G. Pardatscher, E. M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Lied, “DNA-based self-Assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[Crossref]

Gu, Y. J.

R. Hao, Z. W. Ye, X. L. Peng, Y. J. Gu, J. Y. Jiao, H. X. Zhu, W. E. I. Sha, and E. P. Li, “Highly efficient graphene-based optical modulator with edge plasmonic effect,” IEEE Photonics J. 10(3), 1–7 (2018).
[Crossref]

Guan, C. Y.

Guldin, S.

S. Vignolini, N. A. Yufa, P. S. Cunha, S. Guldin, I. Rushkin, M. Stefik, K. Hur, U. Wiesner, J. J. Baumberg, and U. Steiner, “A 3D optical metamaterial made by self-assembly,” Adv. Mater. 24(10), OP23–OP27 (2012).
[Crossref]

Halas, N. J.

Z. Y. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. L. Ma, Y. M. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7(3), 2388–2395 (2013).
[Crossref]

Hao, R.

R. Hao, Z. W. Ye, X. L. Peng, Y. J. Gu, J. Y. Jiao, H. X. Zhu, W. E. I. Sha, and E. P. Li, “Highly efficient graphene-based optical modulator with edge plasmonic effect,” IEEE Photonics J. 10(3), 1–7 (2018).
[Crossref]

He, X. Y.

X. Y. He, “Tunable terahertz graphene metamaterials,” Carbon 82, 229–237 (2015).
[Crossref]

Hill, E. H.

Z. L. Wu, Y. R. Liu, E. H. Hill, and Y. B. Zheng, “Chiral metamaterials via moiré stacking,” Nanoscale 10(38), 18096–18112 (2018).
[Crossref]

Högele, A.

A. Kuzyk, R. Schreiber, Z. Y. Fan, G. Pardatscher, E. M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Lied, “DNA-based self-Assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[Crossref]

Howarth, L. E.

W. Kaiser, W. G. Spitzer, R. H. Kaiser, and L. E. Howarth, “Infrared Properties of CaF2, SrF2, and BaF2,” Phys. Rev. 127(6), 1950–1954 (1962).
[Crossref]

Huang, C.

X. L. Ma, W. B. Pan, C. Huang, M. B. Pu, Y. Q. Wang, B. Zhao, J. H. Cui, C. T. Wang, and X. A. Luo, “An active metamaterial for polarization manipulating,” Adv. Opt. Mater. 2(10), 945–949 (2014).
[Crossref]

Hur, K.

S. Vignolini, N. A. Yufa, P. S. Cunha, S. Guldin, I. Rushkin, M. Stefik, K. Hur, U. Wiesner, J. J. Baumberg, and U. Steiner, “A 3D optical metamaterial made by self-assembly,” Adv. Mater. 24(10), OP23–OP27 (2012).
[Crossref]

Ino, Y.

M. K. Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant Optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
[Crossref]

Jefimovs, K.

M. K. Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant Optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
[Crossref]

Jiao, J. Y.

R. Hao, Z. W. Ye, X. L. Peng, Y. J. Gu, J. Y. Jiao, H. X. Zhu, W. E. I. Sha, and E. P. Li, “Highly efficient graphene-based optical modulator with edge plasmonic effect,” IEEE Photonics J. 10(3), 1–7 (2018).
[Crossref]

Juman, G.

D. Barada, G. Juman, I. Yoshida, K. Miyamoto, S. Kawata, S. Ohno, and T. Omatsu, “Constructive spin-orbital angular momentum coupling can twist materials to create spiral structures in optical vortex illumination,” Appl. Phys. Lett. 108(5), 051108 (2016).
[Crossref]

Kaiser, R. H.

W. Kaiser, W. G. Spitzer, R. H. Kaiser, and L. E. Howarth, “Infrared Properties of CaF2, SrF2, and BaF2,” Phys. Rev. 127(6), 1950–1954 (1962).
[Crossref]

Kaiser, W.

W. Kaiser, W. G. Spitzer, R. H. Kaiser, and L. E. Howarth, “Infrared Properties of CaF2, SrF2, and BaF2,” Phys. Rev. 127(6), 1950–1954 (1962).
[Crossref]

Kauranen, M.

M. K. Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant Optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
[Crossref]

Kawata, S.

D. Barada, G. Juman, I. Yoshida, K. Miyamoto, S. Kawata, S. Ohno, and T. Omatsu, “Constructive spin-orbital angular momentum coupling can twist materials to create spiral structures in optical vortex illumination,” Appl. Phys. Lett. 108(5), 051108 (2016).
[Crossref]

Kim, C. J.

C. J. Kim, A. Sánchez-Castillo, Z. Ziegler, Y. Ogawa, C. Noguez, and J. Park, “Chiral atomically thin films,” Nat. Nanotechnol. 11(6), 520–524 (2016).
[Crossref]

Kim, J. G.

Y. Kim, B. J. Yeom, O. Arteaga, S. J. Yoo, S. G. Lee, J. G. Kim, and N. A. Kotov, “Reconfigurable chiroptical nanocomposites with chirality transfer from the macro- to the nanoscale,” Nat. Mater. 15(4), 461–468 (2016).
[Crossref]

Kim, Y.

Y. Kim, B. J. Yeom, O. Arteaga, S. J. Yoo, S. G. Lee, J. G. Kim, and N. A. Kotov, “Reconfigurable chiroptical nanocomposites with chirality transfer from the macro- to the nanoscale,” Nat. Mater. 15(4), 461–468 (2016).
[Crossref]

Kong, X. T.

X. T. Kong, R. B. Zhao, Z. M. Wang, and A. O. Govorov, “Mid-infrared plasmonic circular dichroism generated by graphene nanodisk assemblies,” Nano Lett. 17(8), 5099–5105 (2017).
[Crossref]

Koppens, F.

J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. Koppens, and J. G. de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano 6(1), 431–440 (2012).
[Crossref]

Koppens, F. H. L.

F. H. L. Koppens, D. E. Chang, and F. J. G. de Abajo, “Graphene plasmonics: a platform for strong light–matter interactions,” Nano Lett. 11(8), 3370–3377 (2011).
[Crossref]

Kotov, N. A.

Y. Kim, B. J. Yeom, O. Arteaga, S. J. Yoo, S. G. Lee, J. G. Kim, and N. A. Kotov, “Reconfigurable chiroptical nanocomposites with chirality transfer from the macro- to the nanoscale,” Nat. Mater. 15(4), 461–468 (2016).
[Crossref]

Kuzyk, A.

A. Kuzyk, R. Schreiber, Z. Y. Fan, G. Pardatscher, E. M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Lied, “DNA-based self-Assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[Crossref]

Lai, P. T.

Lan, X.

X. Lan and Q. B. Wang, “Self-assembly of chiral plasmonic nanostructures,” Adv. Mater. 28(47), 10499–10507 (2016).
[Crossref]

Lee, S. G.

Y. Kim, B. J. Yeom, O. Arteaga, S. J. Yoo, S. G. Lee, J. G. Kim, and N. A. Kotov, “Reconfigurable chiroptical nanocomposites with chirality transfer from the macro- to the nanoscale,” Nat. Mater. 15(4), 461–468 (2016).
[Crossref]

Li, E. P.

R. Hao, Z. W. Ye, X. L. Peng, Y. J. Gu, J. Y. Jiao, H. X. Zhu, W. E. I. Sha, and E. P. Li, “Highly efficient graphene-based optical modulator with edge plasmonic effect,” IEEE Photonics J. 10(3), 1–7 (2018).
[Crossref]

Li, P.

Li, Y.

Li, Y. X.

Li, Z.

S. Y. Xiao, T. Wang, T. T. Liu, X. C. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

Lied, T.

A. Kuzyk, R. Schreiber, Z. Y. Fan, G. Pardatscher, E. M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Lied, “DNA-based self-Assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[Crossref]

Limaj, O.

D. Rodrigo, A. Tittl, O. Limaj, F. J. G. de Abajo, V. Pruneri, and H. Altug, “Double-layer graphene for enhanced tunable infrared plasmonics,” Light: Sci. Appl. 6(6), e16277 (2017).
[Crossref]

Linden, S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. V. Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref]

Liu, T. T.

S. Y. Xiao, T. Wang, T. T. Liu, X. C. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

Liu, Y. M.

Y. M. Liu and X. Zhang, “Metamaterials: a new frontier of science and technology,” Chem. Soc. Rev. 40(5), 2494–2507 (2011).
[Crossref]

Liu, Y. R.

Z. L. Wu, Y. R. Liu, E. H. Hill, and Y. B. Zheng, “Chiral metamaterials via moiré stacking,” Nanoscale 10(38), 18096–18112 (2018).
[Crossref]

Liu, Z.

Z. Y. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. L. Ma, Y. M. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7(3), 2388–2395 (2013).
[Crossref]

Luo, X. A.

X. L. Ma, W. B. Pan, C. Huang, M. B. Pu, Y. Q. Wang, B. Zhao, J. H. Cui, C. T. Wang, and X. A. Luo, “An active metamaterial for polarization manipulating,” Adv. Opt. Mater. 2(10), 945–949 (2014).
[Crossref]

Ma, L. L.

Z. Y. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. L. Ma, Y. M. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7(3), 2388–2395 (2013).
[Crossref]

Ma, X. L.

X. L. Ma, W. B. Pan, C. Huang, M. B. Pu, Y. Q. Wang, B. Zhao, J. H. Cui, C. T. Wang, and X. A. Luo, “An active metamaterial for polarization manipulating,” Adv. Opt. Mater. 2(10), 945–949 (2014).
[Crossref]

Manjavacas, A.

J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. Koppens, and J. G. de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano 6(1), 431–440 (2012).
[Crossref]

Mao, S.

Maoz, B. M.

A. Ben-Moshe, B. M. Maoz, A. O. Govorov, and G. Markovich, “Chirality and chiroptical effects in inorganic nanocrystal systems with plasmon and exciton resonances,” Chem. Soc. Rev. 42(16), 7028–7041 (2013).
[Crossref]

Markovich, G.

A. Ben-Moshe, B. M. Maoz, A. O. Govorov, and G. Markovich, “Chirality and chiroptical effects in inorganic nanocrystal systems with plasmon and exciton resonances,” Chem. Soc. Rev. 42(16), 7028–7041 (2013).
[Crossref]

Martí, J.

R. Ortuño, C. García-Meca, F. J. Rodríguez-Fortuño, and J. Martí, “A. Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79(7), 075425 (2009).
[Crossref]

Martin, O. J. F.

B. Gallinet and O. J. F. Martin, “Influence of electromagnetic interactions on the line shape of plasmonic Fano resonances,” ACS Nano 5(11), 8999–9008 (2011).
[Crossref]

Miyamoto, K.

D. Barada, G. Juman, I. Yoshida, K. Miyamoto, S. Kawata, S. Ohno, and T. Omatsu, “Constructive spin-orbital angular momentum coupling can twist materials to create spiral structures in optical vortex illumination,” Appl. Phys. Lett. 108(5), 051108 (2016).
[Crossref]

K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using optical vortex to control the chirality of twisted metal nanostructures,” Nano Lett. 12(7), 3645–3649 (2012).
[Crossref]

Morita, R.

K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using optical vortex to control the chirality of twisted metal nanostructures,” Nano Lett. 12(7), 3645–3649 (2012).
[Crossref]

Noguez, C.

C. J. Kim, A. Sánchez-Castillo, Z. Ziegler, Y. Ogawa, C. Noguez, and J. Park, “Chiral atomically thin films,” Nat. Nanotechnol. 11(6), 520–524 (2016).
[Crossref]

Nordlander, P.

Z. Y. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. L. Ma, Y. M. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7(3), 2388–2395 (2013).
[Crossref]

Ogawa, Y.

C. J. Kim, A. Sánchez-Castillo, Z. Ziegler, Y. Ogawa, C. Noguez, and J. Park, “Chiral atomically thin films,” Nat. Nanotechnol. 11(6), 520–524 (2016).
[Crossref]

Ohno, S.

D. Barada, G. Juman, I. Yoshida, K. Miyamoto, S. Kawata, S. Ohno, and T. Omatsu, “Constructive spin-orbital angular momentum coupling can twist materials to create spiral structures in optical vortex illumination,” Appl. Phys. Lett. 108(5), 051108 (2016).
[Crossref]

Omatsu, T.

D. Barada, G. Juman, I. Yoshida, K. Miyamoto, S. Kawata, S. Ohno, and T. Omatsu, “Constructive spin-orbital angular momentum coupling can twist materials to create spiral structures in optical vortex illumination,” Appl. Phys. Lett. 108(5), 051108 (2016).
[Crossref]

K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using optical vortex to control the chirality of twisted metal nanostructures,” Nano Lett. 12(7), 3645–3649 (2012).
[Crossref]

Ortuño, R.

R. Ortuño, C. García-Meca, F. J. Rodríguez-Fortuño, and J. Martí, “A. Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79(7), 075425 (2009).
[Crossref]

Pan, W. B.

X. L. Ma, W. B. Pan, C. Huang, M. B. Pu, Y. Q. Wang, B. Zhao, J. H. Cui, C. T. Wang, and X. A. Luo, “An active metamaterial for polarization manipulating,” Adv. Opt. Mater. 2(10), 945–949 (2014).
[Crossref]

Pardatscher, G.

A. Kuzyk, R. Schreiber, Z. Y. Fan, G. Pardatscher, E. M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Lied, “DNA-based self-Assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[Crossref]

Park, J.

C. J. Kim, A. Sánchez-Castillo, Z. Ziegler, Y. Ogawa, C. Noguez, and J. Park, “Chiral atomically thin films,” Nat. Nanotechnol. 11(6), 520–524 (2016).
[Crossref]

Passaseo, A.

M. Esposito, V. Tasco, M. Cuscunà, F. Todisco, A. Benedetti, I. Tarantini, M. D. Giorgi, D. Sanvitto, and A. Passaseo, “Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies,” ACS Photonics 2(1), 105–114 (2015).
[Crossref]

M. Esposito, V. Tasco, M. Cuscunà, F. Todisco, A. Benedetti, I. Tarantini, M. D. Giorgi, D. Sanvitto, and A. Passaseo, “Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies,” ACS Photonics 2(1), 105–114 (2015).
[Crossref]

Peng, X. L.

R. Hao, Z. W. Ye, X. L. Peng, Y. J. Gu, J. Y. Jiao, H. X. Zhu, W. E. I. Sha, and E. P. Li, “Highly efficient graphene-based optical modulator with edge plasmonic effect,” IEEE Photonics J. 10(3), 1–7 (2018).
[Crossref]

Pruneri, V.

D. Rodrigo, A. Tittl, O. Limaj, F. J. G. de Abajo, V. Pruneri, and H. Altug, “Double-layer graphene for enhanced tunable infrared plasmonics,” Light: Sci. Appl. 6(6), e16277 (2017).
[Crossref]

Pu, M. B.

X. L. Ma, W. B. Pan, C. Huang, M. B. Pu, Y. Q. Wang, B. Zhao, J. H. Cui, C. T. Wang, and X. A. Luo, “An active metamaterial for polarization manipulating,” Adv. Opt. Mater. 2(10), 945–949 (2014).
[Crossref]

Qiu, C. Y.

W. L. Gao, J. Shu, C. Y. Qiu, and Q. F. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6(9), 7806–7813 (2012).
[Crossref]

Querry, M. R.

M. R. Querry, Optical constants of minerals and other materials from the millimeter to the ultraviolet (The Department of Commerce International Trade Center Bookstore, 1987).

Rill, M. S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. V. Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref]

Rodrigo, D.

D. Rodrigo, A. Tittl, O. Limaj, F. J. G. de Abajo, V. Pruneri, and H. Altug, “Double-layer graphene for enhanced tunable infrared plasmonics,” Light: Sci. Appl. 6(6), e16277 (2017).
[Crossref]

Rodríguez-Fortuño, F. J.

R. Ortuño, C. García-Meca, F. J. Rodríguez-Fortuño, and J. Martí, “A. Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79(7), 075425 (2009).
[Crossref]

Roller, E. M.

A. Kuzyk, R. Schreiber, Z. Y. Fan, G. Pardatscher, E. M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Lied, “DNA-based self-Assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[Crossref]

Rushkin, I.

S. Vignolini, N. A. Yufa, P. S. Cunha, S. Guldin, I. Rushkin, M. Stefik, K. Hur, U. Wiesner, J. J. Baumberg, and U. Steiner, “A 3D optical metamaterial made by self-assembly,” Adv. Mater. 24(10), OP23–OP27 (2012).
[Crossref]

Saile, V.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. V. Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref]

Saito, N.

M. K. Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant Optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
[Crossref]

Sánchez-Castillo, A.

C. J. Kim, A. Sánchez-Castillo, Z. Ziegler, Y. Ogawa, C. Noguez, and J. Park, “Chiral atomically thin films,” Nat. Nanotechnol. 11(6), 520–524 (2016).
[Crossref]

Sanvitto, D.

M. Esposito, V. Tasco, M. Cuscunà, F. Todisco, A. Benedetti, I. Tarantini, M. D. Giorgi, D. Sanvitto, and A. Passaseo, “Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies,” ACS Photonics 2(1), 105–114 (2015).
[Crossref]

M. Esposito, V. Tasco, M. Cuscunà, F. Todisco, A. Benedetti, I. Tarantini, M. D. Giorgi, D. Sanvitto, and A. Passaseo, “Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies,” ACS Photonics 2(1), 105–114 (2015).
[Crossref]

Schlather, A.

Z. Y. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. L. Ma, Y. M. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7(3), 2388–2395 (2013).
[Crossref]

Schreiber, R.

A. Kuzyk, R. Schreiber, Z. Y. Fan, G. Pardatscher, E. M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Lied, “DNA-based self-Assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[Crossref]

Sha, W. E. I.

R. Hao, Z. W. Ye, X. L. Peng, Y. J. Gu, J. Y. Jiao, H. X. Zhu, W. E. I. Sha, and E. P. Li, “Highly efficient graphene-based optical modulator with edge plasmonic effect,” IEEE Photonics J. 10(3), 1–7 (2018).
[Crossref]

Shi, J. H.

Shu, J.

W. L. Gao, J. Shu, C. Y. Qiu, and Q. F. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6(9), 7806–7813 (2012).
[Crossref]

Sibilia, C.

V. K. Valev, J. J. Baumberg, C. Sibilia, and T. Verbiest, “Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook,” Adv. Mater. 25(18), 2517–2534 (2013).
[Crossref]

Simmel, F. C.

A. Kuzyk, R. Schreiber, Z. Y. Fan, G. Pardatscher, E. M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Lied, “DNA-based self-Assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[Crossref]

Spitzer, W. G.

W. Kaiser, W. G. Spitzer, R. H. Kaiser, and L. E. Howarth, “Infrared Properties of CaF2, SrF2, and BaF2,” Phys. Rev. 127(6), 1950–1954 (1962).
[Crossref]

Stefik, M.

S. Vignolini, N. A. Yufa, P. S. Cunha, S. Guldin, I. Rushkin, M. Stefik, K. Hur, U. Wiesner, J. J. Baumberg, and U. Steiner, “A 3D optical metamaterial made by self-assembly,” Adv. Mater. 24(10), OP23–OP27 (2012).
[Crossref]

Steiner, U.

S. Vignolini, N. A. Yufa, P. S. Cunha, S. Guldin, I. Rushkin, M. Stefik, K. Hur, U. Wiesner, J. J. Baumberg, and U. Steiner, “A 3D optical metamaterial made by self-assembly,” Adv. Mater. 24(10), OP23–OP27 (2012).
[Crossref]

Su, W.

Svirko, Y.

M. K. Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant Optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
[Crossref]

Tarantini, I.

M. Esposito, V. Tasco, M. Cuscunà, F. Todisco, A. Benedetti, I. Tarantini, M. D. Giorgi, D. Sanvitto, and A. Passaseo, “Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies,” ACS Photonics 2(1), 105–114 (2015).
[Crossref]

M. Esposito, V. Tasco, M. Cuscunà, F. Todisco, A. Benedetti, I. Tarantini, M. D. Giorgi, D. Sanvitto, and A. Passaseo, “Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies,” ACS Photonics 2(1), 105–114 (2015).
[Crossref]

Tasco, V.

M. Esposito, V. Tasco, M. Cuscunà, F. Todisco, A. Benedetti, I. Tarantini, M. D. Giorgi, D. Sanvitto, and A. Passaseo, “Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies,” ACS Photonics 2(1), 105–114 (2015).
[Crossref]

M. Esposito, V. Tasco, M. Cuscunà, F. Todisco, A. Benedetti, I. Tarantini, M. D. Giorgi, D. Sanvitto, and A. Passaseo, “Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies,” ACS Photonics 2(1), 105–114 (2015).
[Crossref]

Thiel, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. V. Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref]

Thongrattanasiri, S.

Z. Y. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. L. Ma, Y. M. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7(3), 2388–2395 (2013).
[Crossref]

J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. Koppens, and J. G. de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano 6(1), 431–440 (2012).
[Crossref]

Tittl, A.

D. Rodrigo, A. Tittl, O. Limaj, F. J. G. de Abajo, V. Pruneri, and H. Altug, “Double-layer graphene for enhanced tunable infrared plasmonics,” Light: Sci. Appl. 6(6), e16277 (2017).
[Crossref]

Todisco, F.

M. Esposito, V. Tasco, M. Cuscunà, F. Todisco, A. Benedetti, I. Tarantini, M. D. Giorgi, D. Sanvitto, and A. Passaseo, “Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies,” ACS Photonics 2(1), 105–114 (2015).
[Crossref]

M. Esposito, V. Tasco, M. Cuscunà, F. Todisco, A. Benedetti, I. Tarantini, M. D. Giorgi, D. Sanvitto, and A. Passaseo, “Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies,” ACS Photonics 2(1), 105–114 (2015).
[Crossref]

Toyoda, K.

K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using optical vortex to control the chirality of twisted metal nanostructures,” Nano Lett. 12(7), 3645–3649 (2012).
[Crossref]

Turunen, J.

M. K. Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant Optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
[Crossref]

Valev, V. K.

V. K. Valev, J. J. Baumberg, C. Sibilia, and T. Verbiest, “Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook,” Adv. Mater. 25(18), 2517–2534 (2013).
[Crossref]

Vallius, T.

M. K. Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant Optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
[Crossref]

Verbiest, T.

V. K. Valev, J. J. Baumberg, C. Sibilia, and T. Verbiest, “Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook,” Adv. Mater. 25(18), 2517–2534 (2013).
[Crossref]

Vignolini, S.

S. Vignolini, N. A. Yufa, P. S. Cunha, S. Guldin, I. Rushkin, M. Stefik, K. Hur, U. Wiesner, J. J. Baumberg, and U. Steiner, “A 3D optical metamaterial made by self-assembly,” Adv. Mater. 24(10), OP23–OP27 (2012).
[Crossref]

Wang,

Wang, C. T.

X. L. Ma, W. B. Pan, C. Huang, M. B. Pu, Y. Q. Wang, B. Zhao, J. H. Cui, C. T. Wang, and X. A. Luo, “An active metamaterial for polarization manipulating,” Adv. Opt. Mater. 2(10), 945–949 (2014).
[Crossref]

Wang, L. L.

S. X. Xia, X. Zhai, L. L. Wang, and S. C. Wen, “Plasmonically induced transparency in double-layered graphene nanoribbons,” Photonics Res. 6(7), 692–702 (2018).
[Crossref]

Wang, M. S.

Z. L. Wu, X. D. Chen, M. S. Wang, J. W. Dong, and Y. B. Zheng, “High-performance ultrathin active chiral metamaterials,” ACS Nano 12(5), 5030–5041 (2018).
[Crossref]

Wang, Q. B.

X. Lan and Q. B. Wang, “Self-assembly of chiral plasmonic nanostructures,” Adv. Mater. 28(47), 10499–10507 (2016).
[Crossref]

Wang, T.

S. Y. Xiao, T. Wang, T. T. Liu, X. C. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

Wang, Y. M.

Z. Y. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. L. Ma, Y. M. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7(3), 2388–2395 (2013).
[Crossref]

Wang, Y. Q.

X. L. Ma, W. B. Pan, C. Huang, M. B. Pu, Y. Q. Wang, B. Zhao, J. H. Cui, C. T. Wang, and X. A. Luo, “An active metamaterial for polarization manipulating,” Adv. Opt. Mater. 2(10), 945–949 (2014).
[Crossref]

Wang, Z. M.

X. T. Kong, R. B. Zhao, Z. M. Wang, and A. O. Govorov, “Mid-infrared plasmonic circular dichroism generated by graphene nanodisk assemblies,” Nano Lett. 17(8), 5099–5105 (2017).
[Crossref]

Wegener, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. V. Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref]

Wei, C. W.

Wei, L. B.

Wen, S. C.

S. X. Xia, X. Zhai, L. L. Wang, and S. C. Wen, “Plasmonically induced transparency in double-layered graphene nanoribbons,” Photonics Res. 6(7), 692–702 (2018).
[Crossref]

Wiesner, U.

S. Vignolini, N. A. Yufa, P. S. Cunha, S. Guldin, I. Rushkin, M. Stefik, K. Hur, U. Wiesner, J. J. Baumberg, and U. Steiner, “A 3D optical metamaterial made by self-assembly,” Adv. Mater. 24(10), OP23–OP27 (2012).
[Crossref]

Wu, Z. L.

Z. L. Wu, X. D. Chen, M. S. Wang, J. W. Dong, and Y. B. Zheng, “High-performance ultrathin active chiral metamaterials,” ACS Nano 12(5), 5030–5041 (2018).
[Crossref]

Z. L. Wu, Y. R. Liu, E. H. Hill, and Y. B. Zheng, “Chiral metamaterials via moiré stacking,” Nanoscale 10(38), 18096–18112 (2018).
[Crossref]

Z. L. Wu and Y. B. Zheng, “Moiré chiral metamaterials,” Adv. Opt. Mater. 5(16), 1700034 (2017).
[Crossref]

Xia, S. X.

S. X. Xia, X. Zhai, L. L. Wang, and S. C. Wen, “Plasmonically induced transparency in double-layered graphene nanoribbons,” Photonics Res. 6(7), 692–702 (2018).
[Crossref]

Xiao, S. Y.

S. Y. Xiao, T. Wang, T. T. Liu, X. C. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

Xu, C.

S. Y. Xiao, T. Wang, T. T. Liu, X. C. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

Xu, L. H.

Xu, Q. F.

W. L. Gao, J. Shu, C. Y. Qiu, and Q. F. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6(9), 7806–7813 (2012).
[Crossref]

Yan, X. C.

S. Y. Xiao, T. Wang, T. T. Liu, X. C. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

Ye, Z. W.

R. Hao, Z. W. Ye, X. L. Peng, Y. J. Gu, J. Y. Jiao, H. X. Zhu, W. E. I. Sha, and E. P. Li, “Highly efficient graphene-based optical modulator with edge plasmonic effect,” IEEE Photonics J. 10(3), 1–7 (2018).
[Crossref]

Yeom, B. J.

Y. Kim, B. J. Yeom, O. Arteaga, S. J. Yoo, S. G. Lee, J. G. Kim, and N. A. Kotov, “Reconfigurable chiroptical nanocomposites with chirality transfer from the macro- to the nanoscale,” Nat. Mater. 15(4), 461–468 (2016).
[Crossref]

Yoo, S. J.

Y. Kim, B. J. Yeom, O. Arteaga, S. J. Yoo, S. G. Lee, J. G. Kim, and N. A. Kotov, “Reconfigurable chiroptical nanocomposites with chirality transfer from the macro- to the nanoscale,” Nat. Mater. 15(4), 461–468 (2016).
[Crossref]

Yoshida, I.

D. Barada, G. Juman, I. Yoshida, K. Miyamoto, S. Kawata, S. Ohno, and T. Omatsu, “Constructive spin-orbital angular momentum coupling can twist materials to create spiral structures in optical vortex illumination,” Appl. Phys. Lett. 108(5), 051108 (2016).
[Crossref]

Yufa, N. A.

S. Vignolini, N. A. Yufa, P. S. Cunha, S. Guldin, I. Rushkin, M. Stefik, K. Hur, U. Wiesner, J. J. Baumberg, and U. Steiner, “A 3D optical metamaterial made by self-assembly,” Adv. Mater. 24(10), OP23–OP27 (2012).
[Crossref]

Zhai, X.

S. X. Xia, X. Zhai, L. L. Wang, and S. C. Wen, “Plasmonically induced transparency in double-layered graphene nanoribbons,” Photonics Res. 6(7), 692–702 (2018).
[Crossref]

Zhang, X.

Y. M. Liu and X. Zhang, “Metamaterials: a new frontier of science and technology,” Chem. Soc. Rev. 40(5), 2494–2507 (2011).
[Crossref]

Zhao, B.

X. L. Ma, W. B. Pan, C. Huang, M. B. Pu, Y. Q. Wang, B. Zhao, J. H. Cui, C. T. Wang, and X. A. Luo, “An active metamaterial for polarization manipulating,” Adv. Opt. Mater. 2(10), 945–949 (2014).
[Crossref]

Zhao, R. B.

X. T. Kong, R. B. Zhao, Z. M. Wang, and A. O. Govorov, “Mid-infrared plasmonic circular dichroism generated by graphene nanodisk assemblies,” Nano Lett. 17(8), 5099–5105 (2017).
[Crossref]

Zhao, Y.

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3(1), 870 (2012).
[Crossref]

Zheng, G. G.

Zheng, Y. B.

Z. L. Wu, X. D. Chen, M. S. Wang, J. W. Dong, and Y. B. Zheng, “High-performance ultrathin active chiral metamaterials,” ACS Nano 12(5), 5030–5041 (2018).
[Crossref]

Z. L. Wu, Y. R. Liu, E. H. Hill, and Y. B. Zheng, “Chiral metamaterials via moiré stacking,” Nanoscale 10(38), 18096–18112 (2018).
[Crossref]

Z. L. Wu and Y. B. Zheng, “Moiré chiral metamaterials,” Adv. Opt. Mater. 5(16), 1700034 (2017).
[Crossref]

Zhou, S. E.

Zhu, H. X.

R. Hao, Z. W. Ye, X. L. Peng, Y. J. Gu, J. Y. Jiao, H. X. Zhu, W. E. I. Sha, and E. P. Li, “Highly efficient graphene-based optical modulator with edge plasmonic effect,” IEEE Photonics J. 10(3), 1–7 (2018).
[Crossref]

Zhu, Z.

Ziegler, Z.

C. J. Kim, A. Sánchez-Castillo, Z. Ziegler, Y. Ogawa, C. Noguez, and J. Park, “Chiral atomically thin films,” Nat. Nanotechnol. 11(6), 520–524 (2016).
[Crossref]

ACS Nano (5)

Z. L. Wu, X. D. Chen, M. S. Wang, J. W. Dong, and Y. B. Zheng, “High-performance ultrathin active chiral metamaterials,” ACS Nano 12(5), 5030–5041 (2018).
[Crossref]

Z. Y. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. L. Ma, Y. M. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7(3), 2388–2395 (2013).
[Crossref]

W. L. Gao, J. Shu, C. Y. Qiu, and Q. F. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6(9), 7806–7813 (2012).
[Crossref]

J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. Koppens, and J. G. de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano 6(1), 431–440 (2012).
[Crossref]

B. Gallinet and O. J. F. Martin, “Influence of electromagnetic interactions on the line shape of plasmonic Fano resonances,” ACS Nano 5(11), 8999–9008 (2011).
[Crossref]

ACS Photonics (2)

M. Esposito, V. Tasco, M. Cuscunà, F. Todisco, A. Benedetti, I. Tarantini, M. D. Giorgi, D. Sanvitto, and A. Passaseo, “Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies,” ACS Photonics 2(1), 105–114 (2015).
[Crossref]

M. Esposito, V. Tasco, M. Cuscunà, F. Todisco, A. Benedetti, I. Tarantini, M. D. Giorgi, D. Sanvitto, and A. Passaseo, “Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies,” ACS Photonics 2(1), 105–114 (2015).
[Crossref]

Adv. Mater. (3)

X. Lan and Q. B. Wang, “Self-assembly of chiral plasmonic nanostructures,” Adv. Mater. 28(47), 10499–10507 (2016).
[Crossref]

S. Vignolini, N. A. Yufa, P. S. Cunha, S. Guldin, I. Rushkin, M. Stefik, K. Hur, U. Wiesner, J. J. Baumberg, and U. Steiner, “A 3D optical metamaterial made by self-assembly,” Adv. Mater. 24(10), OP23–OP27 (2012).
[Crossref]

V. K. Valev, J. J. Baumberg, C. Sibilia, and T. Verbiest, “Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook,” Adv. Mater. 25(18), 2517–2534 (2013).
[Crossref]

Adv. Opt. Mater. (2)

X. L. Ma, W. B. Pan, C. Huang, M. B. Pu, Y. Q. Wang, B. Zhao, J. H. Cui, C. T. Wang, and X. A. Luo, “An active metamaterial for polarization manipulating,” Adv. Opt. Mater. 2(10), 945–949 (2014).
[Crossref]

Z. L. Wu and Y. B. Zheng, “Moiré chiral metamaterials,” Adv. Opt. Mater. 5(16), 1700034 (2017).
[Crossref]

Appl. Phys. Lett. (2)

H. S. Chu and C. H. Gan, “Active plasmonic switching at mid-infrared wavelengths with graphene ribbon arrays,” Appl. Phys. Lett. 102(23), 231107 (2013).
[Crossref]

D. Barada, G. Juman, I. Yoshida, K. Miyamoto, S. Kawata, S. Ohno, and T. Omatsu, “Constructive spin-orbital angular momentum coupling can twist materials to create spiral structures in optical vortex illumination,” Appl. Phys. Lett. 108(5), 051108 (2016).
[Crossref]

Carbon (2)

X. Y. He, “Tunable terahertz graphene metamaterials,” Carbon 82, 229–237 (2015).
[Crossref]

S. Y. Xiao, T. Wang, T. T. Liu, X. C. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

Chem. Soc. Rev. (2)

Y. M. Liu and X. Zhang, “Metamaterials: a new frontier of science and technology,” Chem. Soc. Rev. 40(5), 2494–2507 (2011).
[Crossref]

A. Ben-Moshe, B. M. Maoz, A. O. Govorov, and G. Markovich, “Chirality and chiroptical effects in inorganic nanocrystal systems with plasmon and exciton resonances,” Chem. Soc. Rev. 42(16), 7028–7041 (2013).
[Crossref]

IEEE Photonics J. (1)

R. Hao, Z. W. Ye, X. L. Peng, Y. J. Gu, J. Y. Jiao, H. X. Zhu, W. E. I. Sha, and E. P. Li, “Highly efficient graphene-based optical modulator with edge plasmonic effect,” IEEE Photonics J. 10(3), 1–7 (2018).
[Crossref]

J. Am. Chem. Soc. (1)

C. Gautier and T. Bürgi, “Chiral N-Isobutyryl-cysteine Protected Gold Nanoparticles: Preparation, Size Selection, and Optical Activity in the UV-vis and Infrared,” J. Am. Chem. Soc. 128(34), 11079–11087 (2006).
[Crossref]

Light: Sci. Appl. (1)

D. Rodrigo, A. Tittl, O. Limaj, F. J. G. de Abajo, V. Pruneri, and H. Altug, “Double-layer graphene for enhanced tunable infrared plasmonics,” Light: Sci. Appl. 6(6), e16277 (2017).
[Crossref]

Nano Lett. (3)

F. H. L. Koppens, D. E. Chang, and F. J. G. de Abajo, “Graphene plasmonics: a platform for strong light–matter interactions,” Nano Lett. 11(8), 3370–3377 (2011).
[Crossref]

K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using optical vortex to control the chirality of twisted metal nanostructures,” Nano Lett. 12(7), 3645–3649 (2012).
[Crossref]

X. T. Kong, R. B. Zhao, Z. M. Wang, and A. O. Govorov, “Mid-infrared plasmonic circular dichroism generated by graphene nanodisk assemblies,” Nano Lett. 17(8), 5099–5105 (2017).
[Crossref]

Nanoscale (1)

Z. L. Wu, Y. R. Liu, E. H. Hill, and Y. B. Zheng, “Chiral metamaterials via moiré stacking,” Nanoscale 10(38), 18096–18112 (2018).
[Crossref]

Nat. Commun. (1)

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3(1), 870 (2012).
[Crossref]

Nat. Mater. (1)

Y. Kim, B. J. Yeom, O. Arteaga, S. J. Yoo, S. G. Lee, J. G. Kim, and N. A. Kotov, “Reconfigurable chiroptical nanocomposites with chirality transfer from the macro- to the nanoscale,” Nat. Mater. 15(4), 461–468 (2016).
[Crossref]

Nat. Nanotechnol. (1)

C. J. Kim, A. Sánchez-Castillo, Z. Ziegler, Y. Ogawa, C. Noguez, and J. Park, “Chiral atomically thin films,” Nat. Nanotechnol. 11(6), 520–524 (2016).
[Crossref]

Nature (1)

A. Kuzyk, R. Schreiber, Z. Y. Fan, G. Pardatscher, E. M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Lied, “DNA-based self-Assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Opt. Mater. Express (1)

Photonics Res. (1)

S. X. Xia, X. Zhai, L. L. Wang, and S. C. Wen, “Plasmonically induced transparency in double-layered graphene nanoribbons,” Photonics Res. 6(7), 692–702 (2018).
[Crossref]

Phys. Rev. (1)

W. Kaiser, W. G. Spitzer, R. H. Kaiser, and L. E. Howarth, “Infrared Properties of CaF2, SrF2, and BaF2,” Phys. Rev. 127(6), 1950–1954 (1962).
[Crossref]

Phys. Rev. B (1)

R. Ortuño, C. García-Meca, F. J. Rodríguez-Fortuño, and J. Martí, “A. Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79(7), 075425 (2009).
[Crossref]

Phys. Rev. Lett. (1)

M. K. Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant Optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
[Crossref]

Science (1)

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. V. Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref]

Other (2)

S Adachi, Optical constants of crystalline and amorphous semiconductors (Springer, 1997).

M. R. Querry, Optical constants of minerals and other materials from the millimeter to the ultraviolet (The Department of Commerce International Trade Center Bookstore, 1987).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. (a) Schematic of the plasmonic chiral structure with the moiré patterns. The light perpendicularly illuminates the chiral structure along the z direction. CPL: circularly polarized light. (b) Enlargement of one layer graphene nanoribbons to show the details clearly.
Fig. 2.
Fig. 2. (a) Schematic of the chiral structure with the tunable dielectric spacer between two layers of graphene nanoribbons. The BaF2 spacer is perspective to enable showing the lower-layer graphene clearly. (b) Cross-sectional view of the designed structure. In order to clearly show the dielectric spacer and two layers of graphene, the dimensions of structure are not drawn to scale.
Fig. 3.
Fig. 3. CD spectra of the proposed structure with varying rotation angles from −20°to 20°at an interval of 5°.
Fig. 4.
Fig. 4. (a) CD spectra of the designed structure with the varying width of nanoribbons, from 100 nm to 180 nm with an interval of 20 nm. The Fermi levels of double-layer graphene are both 0.7 eV and the rotation angle is 15° in this simulation. (b) CD spectra of the designed structure under the different Fermi levels of graphene, from 0.5 eV to 0.9 eV with an interval of 0.1 eV. The rotation angle is 15° and the width of nanoribbons is 120 nm in this simulation.
Fig. 5.
Fig. 5. (a, b) Schematics of the electron current distributions on the upper-layer and lower-layer of graphene nanoribbons under RCP illumination at 13.8 µm, respectively. (c, d) Schematics of the electron current distributions on the upper-layer and lower-layer of graphene nanoribbons under LCP illumination at 13.8 µm, respectively. In this simulation, the rotation angle is 15°, the width of nanoribbons is 120 nm and the Fermi levels of double-layer graphene are 0.7 eV.
Fig. 6.
Fig. 6. CD spectra of the proposed structure with a thin dielectric spacer. The thickness ranges from 10 nm to 50 nm. The CD spectrum of the structure without the interlayer is used for the contrast. In simulation, other parameters are the same as that of the designed structure without the interlayer.
Fig. 7.
Fig. 7. (a) Simulated transmission spectra of the graphene-based moiré structure with the dielectric spacer and analytical fitting when the incident light is RCP. (b) Simulated transmission spectra and analytical fitting when the incident light is LCP. The thickness of the dielectric spacer is 20 nm.
Fig. 8.
Fig. 8. (a) X-z cross-sectional view of the simulated electric field E in the designed structure under RCP light illumination; (b) under LCP light illumination. (c) X-z cross-sectional view of the z component of electric fields Ez under RCP light illumination; (d) under LCP light illumination. The wavelength incident light is 13.6 µm in this simulation. The thickness of the dielectric interlayer is 20 nm.

Tables (1)

Tables Icon

Table 1. Parameters for the Fano fittings in Fig. 7

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

σt(ω)=σs(ω)σa(ω).
σs(ω)=a2(ω2ωs22Wsωs)2+1,
σa(ω)=(ω2ωa22Waωa+q)2+b(ω2ωa22Waωa)2+1,

Metrics