Abstract

In this report, we propose a large-area, scalable and reconfigurable single-shot optical fabrication method using phase-controlled interference lithography (PCIL) to realize submicrometer chiral woodpile photonic structures. This proposed technique involves a 3 + 3 double-cone geometry with beams originated from a computed phase mask displayed on a single spatial light modulator. Simulation studies show the filtering response of such structures for linearly polarized plane wave illumination, with structural features tunable through a single parameter of interference angle. Further, these single chiral woodpile structures show dual chirality on illumination with both right circularly and left circularly polarized light through simulation. Experimentally fabricated patterns on photoresist show resemblance to the desired chiral woodpile structures.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Realization of woodpile structure using optical interference holography

Yee Kwong Pang, Jeffrey Chi Wai Lee, Cheuk Ting Ho, and Wing Yim Tam
Opt. Express 14(20) 9113-9119 (2006)

Woodpile-type photonic crystals with orthorhombic or tetragonal symmetry formed through phase mask techniques

Yuankun Lin, David Rivera, and K. P. Chen
Opt. Express 14(2) 887-892 (2006)

References

  • View by:
  • |
  • |
  • |

  1. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic crystals: Molding the flow of light - second edition (Princeton University, 2011).
  2. A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap,” Nat. Photonics 5(2), 91–94 (2011).
    [Crossref]
  3. K. Ishizaki, M. Koumura, K. Suzuki, K. Gondaira, and S. Noda, “Realization of three-dimensional guiding of photons in photonic crystals,” Nat. Photonics 7(2), 133–137 (2013).
    [Crossref]
  4. M. Deubel, G. Von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
    [Crossref]
  5. L. A. Ibbotson, A. Demetriadou, S. Croxall, O. Hess, and J. J. Baumberg, “Optical nano-woodpiles: large-area metallic photonic crystals and metamaterials,” Sci. Rep. 5(1), 8313 (2015).
    [Crossref]
  6. S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289(5479), 604–606 (2000).
    [Crossref]
  7. H.-J. Choi, S. Choi, Y.-E. Yoo, E.-c. Jeon, Y. Yi, S. Park, D.-S. Choi, and H. Kim, “Transmission-type photonic crystal structures for color filters,” Opt. Express 21(15), 18317–18324 (2013).
    [Crossref]
  8. L. Maigyte, V. Purlys, J. Trull, M. Peckus, C. Cojocaru, D. Gailevičius, M. Malinauskas, and K. Staliunas, “Flat lensing in the visible frequency range by woodpile photonic crystals,” Opt. Lett. 38(14), 2376–2378 (2013).
    [Crossref]
  9. M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science 308(5726), 1296–1298 (2005).
    [Crossref]
  10. M. Thiel, G. Von Freymann, and M. Wegener, “Layer-by-layer three-dimensional chiral photonic crystals,” Opt. Lett. 32(17), 2547–2549 (2007).
    [Crossref]
  11. M. Faryad and A. Lakhtakia, “The circular Bragg phenomenon,” Adv. Opt. Photonics 6(2), 225–292 (2014).
    [Crossref]
  12. S. Takahashi, T. Tajiri, Y. Ota, J. Tatebayashi, S. Iwamoto, and Y. Arakawa, “Circular dichroism in a three-dimensional semiconductor chiral photonic crystal,” Appl. Phys. Lett. 105(5), 051107 (2014).
    [Crossref]
  13. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
    [Crossref]
  14. L. V. Poulikakos, P. Thureja, A. Stollmann, E. De Leo, and D. J. Norris, “Chiral light design and detection inspired by optical antenna theory,” Nano Lett. 18(8), 4633–4640 (2018).
    [Crossref]
  15. S. Behera, S. Sarkar, and J. Joseph, “Fabrication of helical photonic structures with submicrometer axial and spatial periodicities following “inverted umbrella” geometry through phase-controlled interference lithography,” Opt. Lett. 43(1), 106–109 (2018).
    [Crossref]
  16. J. A. Dolan, B. D. Wilts, S. Vijgnolini, J. J. Baumberg, U. Steiner, and T. D. Wilkinson, “Optical properties of gyroid structured materials: From photonic crystals to metamaterials,” Adv. Opt. Mater. 3(1), 12–32 (2015).
    [Crossref]
  17. Z. Gan, M. D. Turner, and M. Gu, “Biomimetic gyroid nanostructures exceeding their natural origins,” Sci. Adv. 2(5), e1600084 (2016).
    [Crossref]
  18. S. Takahashi, A. Tandaechanurat, R. Igusa, Y. Ota, J. Tatebayashi, S. Iwamoto, and Y. Arakawa, “Giant optical rotation in a three-dimensional semiconductor chiral photonic crystal,” Opt. Express 21(24), 29905–29913 (2013).
    [Crossref]
  19. J. C. W. Lee and C. Chan, “Circularly polarized thermal radiation from layer-by-layer photonic crystal structures,” Appl. Phys. Lett. 90(5), 051912 (2007).
    [Crossref]
  20. S. Takahashi, S. Oono, S. Iwamoto, Y. Hatsugai, and Y. Arakawa, “Circularly polarized topological edge states derived from optical Weyl points in semiconductor-based chiral woodpile photonic crystals,” J. Phys. Soc. Jpn. 87(12), 123401 (2018).
    [Crossref]
  21. G. Subramania and S. Lin, “Fabrication of three-dimensional photonic crystal with alignment based on electron beam lithography,” Appl. Phys. Lett. 85(21), 5037–5039 (2004).
    [Crossref]
  22. M. Thiel, J. Ott, A. Radke, J. Kaschke, and M. Wegener, “Dip-in depletion optical lithography of three-dimensional chiral polarizers,” Opt. Lett. 38(20), 4252–4255 (2013).
    [Crossref]
  23. K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, “Microassembly of semiconductor three-dimensional photonic crystals,” Nat. Mater. 2(2), 117–121 (2003).
    [Crossref]
  24. Y. K. Pang, J. C. W. Lee, C. T. Ho, and W. Y. Tam, “Realization of woodpile structure using optical interference holography,” Opt. Express 14(20), 9013 (2006).
    [Crossref]
  25. W. Y. Tam, “Woodpile and diamond structures by optical interference holography,” J. Opt. A: Pure Appl. Opt. 9(11), 1076–1081 (2007).
    [Crossref]
  26. X. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84(23), 4780–4782 (2004).
    [Crossref]
  27. S. Behera and J. Joseph, “Design and fabrication of woodpile photonic structures through phase SLM-based interference lithography for omnidirectional optical filters,” Opt. Lett. 42(13), 2607–2610 (2017).
    [Crossref]
  28. Y. Lin, D. Rivera, and K. Chen, “Woodpile-type photonic crystals with orthorhombic or tetragonal symmetry formed through phase mask techniques,” Opt. Express 14(2), 887–892 (2006).
    [Crossref]
  29. MATLAB and Statistics Toolbox Release 2012b, The MathWorks, Inc., Natick, Massachusetts, United States.
  30. “Lumerical inc. https://www.Lumerical.Com/products/.”
  31. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).
  32. S. Sarkar, V. Gupta, M. Kumar, J. Schubert, P. T. Probst, J. Joseph, and T. A. König, “Hybridized Guided-Mode Resonances via Colloidal Plasmonic Self-Assembled Grating,” ACS Appl. Mater. Interfaces 11(14), 13752–13760 (2019).
    [Crossref]
  33. M. Thiel, M. Decker, M. Deubel, M. Wegener, S. Linden, and G. von Freymann, “Polarization Stop Bands in Chiral Polymeric Three-Dimensional Photonic Crystals,” Adv. Mater. 19(2), 207–210 (2007).
    [Crossref]
  34. L.-J. Chen, X.-Z. Dong, Y.-Y. Zhao, Y.-L. Zhang, J. Liu, M.-L. Zheng, X.-M. Duan, and Z.-S. Zhao, “Fabrication and optical transmission characteristics of polymers woodpile photonic crystal structures with different crystal planes,” AOPC 2015: Advances in Laser Technology and Applications, 967127 (2015).
  35. Y. Chen, X. Li, X. Luo, S. A. Maier, and M. Hong, “Tunable near-infrared plasmonic perfect absorber based on phase-change materials,” Photonics Res. 3(3), 54–57 (2015).
    [Crossref]
  36. J. Yang, F. Luo, T. S. Kao, X. Li, G. W. Ho, J. Teng, X. Luo, and M. Hong, “Design and fabrication of broadband ultralow reflectivity black Si surfaces by laser micro/nanoprocessing,” Light: Sci. Appl. 3(7), e185 (2014).
    [Crossref]
  37. T. Yatsui, “Recent improvement of silicon absorption in opto-electric devices,” Opto-Electronic Advances 2(10), 19002301–19002308 (2019).
    [Crossref]
  38. K. Samanta and J. Joseph, “Double-helix array structure using phase controlled interference of 6 + 6 beams,” Opt. Laser Eng. 113, 23–28 (2019).
    [Crossref]

2019 (3)

S. Sarkar, V. Gupta, M. Kumar, J. Schubert, P. T. Probst, J. Joseph, and T. A. König, “Hybridized Guided-Mode Resonances via Colloidal Plasmonic Self-Assembled Grating,” ACS Appl. Mater. Interfaces 11(14), 13752–13760 (2019).
[Crossref]

T. Yatsui, “Recent improvement of silicon absorption in opto-electric devices,” Opto-Electronic Advances 2(10), 19002301–19002308 (2019).
[Crossref]

K. Samanta and J. Joseph, “Double-helix array structure using phase controlled interference of 6 + 6 beams,” Opt. Laser Eng. 113, 23–28 (2019).
[Crossref]

2018 (3)

L. V. Poulikakos, P. Thureja, A. Stollmann, E. De Leo, and D. J. Norris, “Chiral light design and detection inspired by optical antenna theory,” Nano Lett. 18(8), 4633–4640 (2018).
[Crossref]

S. Behera, S. Sarkar, and J. Joseph, “Fabrication of helical photonic structures with submicrometer axial and spatial periodicities following “inverted umbrella” geometry through phase-controlled interference lithography,” Opt. Lett. 43(1), 106–109 (2018).
[Crossref]

S. Takahashi, S. Oono, S. Iwamoto, Y. Hatsugai, and Y. Arakawa, “Circularly polarized topological edge states derived from optical Weyl points in semiconductor-based chiral woodpile photonic crystals,” J. Phys. Soc. Jpn. 87(12), 123401 (2018).
[Crossref]

2017 (1)

2016 (1)

Z. Gan, M. D. Turner, and M. Gu, “Biomimetic gyroid nanostructures exceeding their natural origins,” Sci. Adv. 2(5), e1600084 (2016).
[Crossref]

2015 (3)

J. A. Dolan, B. D. Wilts, S. Vijgnolini, J. J. Baumberg, U. Steiner, and T. D. Wilkinson, “Optical properties of gyroid structured materials: From photonic crystals to metamaterials,” Adv. Opt. Mater. 3(1), 12–32 (2015).
[Crossref]

L. A. Ibbotson, A. Demetriadou, S. Croxall, O. Hess, and J. J. Baumberg, “Optical nano-woodpiles: large-area metallic photonic crystals and metamaterials,” Sci. Rep. 5(1), 8313 (2015).
[Crossref]

Y. Chen, X. Li, X. Luo, S. A. Maier, and M. Hong, “Tunable near-infrared plasmonic perfect absorber based on phase-change materials,” Photonics Res. 3(3), 54–57 (2015).
[Crossref]

2014 (3)

J. Yang, F. Luo, T. S. Kao, X. Li, G. W. Ho, J. Teng, X. Luo, and M. Hong, “Design and fabrication of broadband ultralow reflectivity black Si surfaces by laser micro/nanoprocessing,” Light: Sci. Appl. 3(7), e185 (2014).
[Crossref]

M. Faryad and A. Lakhtakia, “The circular Bragg phenomenon,” Adv. Opt. Photonics 6(2), 225–292 (2014).
[Crossref]

S. Takahashi, T. Tajiri, Y. Ota, J. Tatebayashi, S. Iwamoto, and Y. Arakawa, “Circular dichroism in a three-dimensional semiconductor chiral photonic crystal,” Appl. Phys. Lett. 105(5), 051107 (2014).
[Crossref]

2013 (5)

2011 (1)

A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap,” Nat. Photonics 5(2), 91–94 (2011).
[Crossref]

2009 (1)

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref]

2007 (4)

J. C. W. Lee and C. Chan, “Circularly polarized thermal radiation from layer-by-layer photonic crystal structures,” Appl. Phys. Lett. 90(5), 051912 (2007).
[Crossref]

M. Thiel, G. Von Freymann, and M. Wegener, “Layer-by-layer three-dimensional chiral photonic crystals,” Opt. Lett. 32(17), 2547–2549 (2007).
[Crossref]

W. Y. Tam, “Woodpile and diamond structures by optical interference holography,” J. Opt. A: Pure Appl. Opt. 9(11), 1076–1081 (2007).
[Crossref]

M. Thiel, M. Decker, M. Deubel, M. Wegener, S. Linden, and G. von Freymann, “Polarization Stop Bands in Chiral Polymeric Three-Dimensional Photonic Crystals,” Adv. Mater. 19(2), 207–210 (2007).
[Crossref]

2006 (2)

Y. Lin, D. Rivera, and K. Chen, “Woodpile-type photonic crystals with orthorhombic or tetragonal symmetry formed through phase mask techniques,” Opt. Express 14(2), 887–892 (2006).
[Crossref]

Y. K. Pang, J. C. W. Lee, C. T. Ho, and W. Y. Tam, “Realization of woodpile structure using optical interference holography,” Opt. Express 14(20), 9013 (2006).
[Crossref]

2005 (1)

M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science 308(5726), 1296–1298 (2005).
[Crossref]

2004 (3)

M. Deubel, G. Von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[Crossref]

G. Subramania and S. Lin, “Fabrication of three-dimensional photonic crystal with alignment based on electron beam lithography,” Appl. Phys. Lett. 85(21), 5037–5039 (2004).
[Crossref]

X. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84(23), 4780–4782 (2004).
[Crossref]

2003 (1)

K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, “Microassembly of semiconductor three-dimensional photonic crystals,” Nat. Mater. 2(2), 117–121 (2003).
[Crossref]

2000 (1)

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289(5479), 604–606 (2000).
[Crossref]

Aoki, K.

K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, “Microassembly of semiconductor three-dimensional photonic crystals,” Nat. Mater. 2(2), 117–121 (2003).
[Crossref]

Aoyagi, Y.

K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, “Microassembly of semiconductor three-dimensional photonic crystals,” Nat. Mater. 2(2), 117–121 (2003).
[Crossref]

Arakawa, Y.

S. Takahashi, S. Oono, S. Iwamoto, Y. Hatsugai, and Y. Arakawa, “Circularly polarized topological edge states derived from optical Weyl points in semiconductor-based chiral woodpile photonic crystals,” J. Phys. Soc. Jpn. 87(12), 123401 (2018).
[Crossref]

S. Takahashi, T. Tajiri, Y. Ota, J. Tatebayashi, S. Iwamoto, and Y. Arakawa, “Circular dichroism in a three-dimensional semiconductor chiral photonic crystal,” Appl. Phys. Lett. 105(5), 051107 (2014).
[Crossref]

S. Takahashi, A. Tandaechanurat, R. Igusa, Y. Ota, J. Tatebayashi, S. Iwamoto, and Y. Arakawa, “Giant optical rotation in a three-dimensional semiconductor chiral photonic crystal,” Opt. Express 21(24), 29905–29913 (2013).
[Crossref]

A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap,” Nat. Photonics 5(2), 91–94 (2011).
[Crossref]

Asano, T.

M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science 308(5726), 1296–1298 (2005).
[Crossref]

Baba, T.

K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, “Microassembly of semiconductor three-dimensional photonic crystals,” Nat. Mater. 2(2), 117–121 (2003).
[Crossref]

Bade, K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref]

Baumberg, J. J.

L. A. Ibbotson, A. Demetriadou, S. Croxall, O. Hess, and J. J. Baumberg, “Optical nano-woodpiles: large-area metallic photonic crystals and metamaterials,” Sci. Rep. 5(1), 8313 (2015).
[Crossref]

J. A. Dolan, B. D. Wilts, S. Vijgnolini, J. J. Baumberg, U. Steiner, and T. D. Wilkinson, “Optical properties of gyroid structured materials: From photonic crystals to metamaterials,” Adv. Opt. Mater. 3(1), 12–32 (2015).
[Crossref]

Behera, S.

Busch, K.

M. Deubel, G. Von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[Crossref]

Chan, C.

J. C. W. Lee and C. Chan, “Circularly polarized thermal radiation from layer-by-layer photonic crystal structures,” Appl. Phys. Lett. 90(5), 051912 (2007).
[Crossref]

Chen, K.

Chen, L.-J.

L.-J. Chen, X.-Z. Dong, Y.-Y. Zhao, Y.-L. Zhang, J. Liu, M.-L. Zheng, X.-M. Duan, and Z.-S. Zhao, “Fabrication and optical transmission characteristics of polymers woodpile photonic crystal structures with different crystal planes,” AOPC 2015: Advances in Laser Technology and Applications, 967127 (2015).

Chen, Y.

Y. Chen, X. Li, X. Luo, S. A. Maier, and M. Hong, “Tunable near-infrared plasmonic perfect absorber based on phase-change materials,” Photonics Res. 3(3), 54–57 (2015).
[Crossref]

Choi, D.-S.

Choi, H.-J.

Choi, S.

Chutinan, A.

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289(5479), 604–606 (2000).
[Crossref]

Cojocaru, C.

Croxall, S.

L. A. Ibbotson, A. Demetriadou, S. Croxall, O. Hess, and J. J. Baumberg, “Optical nano-woodpiles: large-area metallic photonic crystals and metamaterials,” Sci. Rep. 5(1), 8313 (2015).
[Crossref]

De Leo, E.

L. V. Poulikakos, P. Thureja, A. Stollmann, E. De Leo, and D. J. Norris, “Chiral light design and detection inspired by optical antenna theory,” Nano Lett. 18(8), 4633–4640 (2018).
[Crossref]

Decker, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref]

M. Thiel, M. Decker, M. Deubel, M. Wegener, S. Linden, and G. von Freymann, “Polarization Stop Bands in Chiral Polymeric Three-Dimensional Photonic Crystals,” Adv. Mater. 19(2), 207–210 (2007).
[Crossref]

Demetriadou, A.

L. A. Ibbotson, A. Demetriadou, S. Croxall, O. Hess, and J. J. Baumberg, “Optical nano-woodpiles: large-area metallic photonic crystals and metamaterials,” Sci. Rep. 5(1), 8313 (2015).
[Crossref]

Deubel, M.

M. Thiel, M. Decker, M. Deubel, M. Wegener, S. Linden, and G. von Freymann, “Polarization Stop Bands in Chiral Polymeric Three-Dimensional Photonic Crystals,” Adv. Mater. 19(2), 207–210 (2007).
[Crossref]

M. Deubel, G. Von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[Crossref]

Dolan, J. A.

J. A. Dolan, B. D. Wilts, S. Vijgnolini, J. J. Baumberg, U. Steiner, and T. D. Wilkinson, “Optical properties of gyroid structured materials: From photonic crystals to metamaterials,” Adv. Opt. Mater. 3(1), 12–32 (2015).
[Crossref]

Dong, X.-Z.

L.-J. Chen, X.-Z. Dong, Y.-Y. Zhao, Y.-L. Zhang, J. Liu, M.-L. Zheng, X.-M. Duan, and Z.-S. Zhao, “Fabrication and optical transmission characteristics of polymers woodpile photonic crystal structures with different crystal planes,” AOPC 2015: Advances in Laser Technology and Applications, 967127 (2015).

Duan, X.-M.

L.-J. Chen, X.-Z. Dong, Y.-Y. Zhao, Y.-L. Zhang, J. Liu, M.-L. Zheng, X.-M. Duan, and Z.-S. Zhao, “Fabrication and optical transmission characteristics of polymers woodpile photonic crystal structures with different crystal planes,” AOPC 2015: Advances in Laser Technology and Applications, 967127 (2015).

Faryad, M.

M. Faryad and A. Lakhtakia, “The circular Bragg phenomenon,” Adv. Opt. Photonics 6(2), 225–292 (2014).
[Crossref]

Fujita, M.

M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science 308(5726), 1296–1298 (2005).
[Crossref]

Gailevicius, D.

Gan, Z.

Z. Gan, M. D. Turner, and M. Gu, “Biomimetic gyroid nanostructures exceeding their natural origins,” Sci. Adv. 2(5), e1600084 (2016).
[Crossref]

Gansel, J. K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref]

Gondaira, K.

K. Ishizaki, M. Koumura, K. Suzuki, K. Gondaira, and S. Noda, “Realization of three-dimensional guiding of photons in photonic crystals,” Nat. Photonics 7(2), 133–137 (2013).
[Crossref]

Gu, M.

Z. Gan, M. D. Turner, and M. Gu, “Biomimetic gyroid nanostructures exceeding their natural origins,” Sci. Adv. 2(5), e1600084 (2016).
[Crossref]

Guimard, D.

A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap,” Nat. Photonics 5(2), 91–94 (2011).
[Crossref]

Gupta, V.

S. Sarkar, V. Gupta, M. Kumar, J. Schubert, P. T. Probst, J. Joseph, and T. A. König, “Hybridized Guided-Mode Resonances via Colloidal Plasmonic Self-Assembled Grating,” ACS Appl. Mater. Interfaces 11(14), 13752–13760 (2019).
[Crossref]

Hatsugai, Y.

S. Takahashi, S. Oono, S. Iwamoto, Y. Hatsugai, and Y. Arakawa, “Circularly polarized topological edge states derived from optical Weyl points in semiconductor-based chiral woodpile photonic crystals,” J. Phys. Soc. Jpn. 87(12), 123401 (2018).
[Crossref]

Hess, O.

L. A. Ibbotson, A. Demetriadou, S. Croxall, O. Hess, and J. J. Baumberg, “Optical nano-woodpiles: large-area metallic photonic crystals and metamaterials,” Sci. Rep. 5(1), 8313 (2015).
[Crossref]

Hirayama, H.

K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, “Microassembly of semiconductor three-dimensional photonic crystals,” Nat. Mater. 2(2), 117–121 (2003).
[Crossref]

Ho, C. T.

Y. K. Pang, J. C. W. Lee, C. T. Ho, and W. Y. Tam, “Realization of woodpile structure using optical interference holography,” Opt. Express 14(20), 9013 (2006).
[Crossref]

Ho, G. W.

J. Yang, F. Luo, T. S. Kao, X. Li, G. W. Ho, J. Teng, X. Luo, and M. Hong, “Design and fabrication of broadband ultralow reflectivity black Si surfaces by laser micro/nanoprocessing,” Light: Sci. Appl. 3(7), e185 (2014).
[Crossref]

Hong, M.

Y. Chen, X. Li, X. Luo, S. A. Maier, and M. Hong, “Tunable near-infrared plasmonic perfect absorber based on phase-change materials,” Photonics Res. 3(3), 54–57 (2015).
[Crossref]

J. Yang, F. Luo, T. S. Kao, X. Li, G. W. Ho, J. Teng, X. Luo, and M. Hong, “Design and fabrication of broadband ultralow reflectivity black Si surfaces by laser micro/nanoprocessing,” Light: Sci. Appl. 3(7), e185 (2014).
[Crossref]

Ibbotson, L. A.

L. A. Ibbotson, A. Demetriadou, S. Croxall, O. Hess, and J. J. Baumberg, “Optical nano-woodpiles: large-area metallic photonic crystals and metamaterials,” Sci. Rep. 5(1), 8313 (2015).
[Crossref]

Igusa, R.

Inoshita, K.

K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, “Microassembly of semiconductor three-dimensional photonic crystals,” Nat. Mater. 2(2), 117–121 (2003).
[Crossref]

Ishida, S.

A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap,” Nat. Photonics 5(2), 91–94 (2011).
[Crossref]

Ishihara, T.

X. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84(23), 4780–4782 (2004).
[Crossref]

Ishizaki, K.

K. Ishizaki, M. Koumura, K. Suzuki, K. Gondaira, and S. Noda, “Realization of three-dimensional guiding of photons in photonic crystals,” Nat. Photonics 7(2), 133–137 (2013).
[Crossref]

Iwamoto, S.

S. Takahashi, S. Oono, S. Iwamoto, Y. Hatsugai, and Y. Arakawa, “Circularly polarized topological edge states derived from optical Weyl points in semiconductor-based chiral woodpile photonic crystals,” J. Phys. Soc. Jpn. 87(12), 123401 (2018).
[Crossref]

S. Takahashi, T. Tajiri, Y. Ota, J. Tatebayashi, S. Iwamoto, and Y. Arakawa, “Circular dichroism in a three-dimensional semiconductor chiral photonic crystal,” Appl. Phys. Lett. 105(5), 051107 (2014).
[Crossref]

S. Takahashi, A. Tandaechanurat, R. Igusa, Y. Ota, J. Tatebayashi, S. Iwamoto, and Y. Arakawa, “Giant optical rotation in a three-dimensional semiconductor chiral photonic crystal,” Opt. Express 21(24), 29905–29913 (2013).
[Crossref]

A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap,” Nat. Photonics 5(2), 91–94 (2011).
[Crossref]

Jeon, E.-c.

Joannopoulos, J. D.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic crystals: Molding the flow of light - second edition (Princeton University, 2011).

Johnson, S. G.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic crystals: Molding the flow of light - second edition (Princeton University, 2011).

Joseph, J.

S. Sarkar, V. Gupta, M. Kumar, J. Schubert, P. T. Probst, J. Joseph, and T. A. König, “Hybridized Guided-Mode Resonances via Colloidal Plasmonic Self-Assembled Grating,” ACS Appl. Mater. Interfaces 11(14), 13752–13760 (2019).
[Crossref]

K. Samanta and J. Joseph, “Double-helix array structure using phase controlled interference of 6 + 6 beams,” Opt. Laser Eng. 113, 23–28 (2019).
[Crossref]

S. Behera, S. Sarkar, and J. Joseph, “Fabrication of helical photonic structures with submicrometer axial and spatial periodicities following “inverted umbrella” geometry through phase-controlled interference lithography,” Opt. Lett. 43(1), 106–109 (2018).
[Crossref]

S. Behera and J. Joseph, “Design and fabrication of woodpile photonic structures through phase SLM-based interference lithography for omnidirectional optical filters,” Opt. Lett. 42(13), 2607–2610 (2017).
[Crossref]

Kao, T. S.

J. Yang, F. Luo, T. S. Kao, X. Li, G. W. Ho, J. Teng, X. Luo, and M. Hong, “Design and fabrication of broadband ultralow reflectivity black Si surfaces by laser micro/nanoprocessing,” Light: Sci. Appl. 3(7), e185 (2014).
[Crossref]

Kaschke, J.

Kim, H.

König, T. A.

S. Sarkar, V. Gupta, M. Kumar, J. Schubert, P. T. Probst, J. Joseph, and T. A. König, “Hybridized Guided-Mode Resonances via Colloidal Plasmonic Self-Assembled Grating,” ACS Appl. Mater. Interfaces 11(14), 13752–13760 (2019).
[Crossref]

Koumura, M.

K. Ishizaki, M. Koumura, K. Suzuki, K. Gondaira, and S. Noda, “Realization of three-dimensional guiding of photons in photonic crystals,” Nat. Photonics 7(2), 133–137 (2013).
[Crossref]

Kumar, M.

S. Sarkar, V. Gupta, M. Kumar, J. Schubert, P. T. Probst, J. Joseph, and T. A. König, “Hybridized Guided-Mode Resonances via Colloidal Plasmonic Self-Assembled Grating,” ACS Appl. Mater. Interfaces 11(14), 13752–13760 (2019).
[Crossref]

Lakhtakia, A.

M. Faryad and A. Lakhtakia, “The circular Bragg phenomenon,” Adv. Opt. Photonics 6(2), 225–292 (2014).
[Crossref]

Lee, J. C. W.

J. C. W. Lee and C. Chan, “Circularly polarized thermal radiation from layer-by-layer photonic crystal structures,” Appl. Phys. Lett. 90(5), 051912 (2007).
[Crossref]

Y. K. Pang, J. C. W. Lee, C. T. Ho, and W. Y. Tam, “Realization of woodpile structure using optical interference holography,” Opt. Express 14(20), 9013 (2006).
[Crossref]

Li, X.

Y. Chen, X. Li, X. Luo, S. A. Maier, and M. Hong, “Tunable near-infrared plasmonic perfect absorber based on phase-change materials,” Photonics Res. 3(3), 54–57 (2015).
[Crossref]

J. Yang, F. Luo, T. S. Kao, X. Li, G. W. Ho, J. Teng, X. Luo, and M. Hong, “Design and fabrication of broadband ultralow reflectivity black Si surfaces by laser micro/nanoprocessing,” Light: Sci. Appl. 3(7), e185 (2014).
[Crossref]

Lin, S.

G. Subramania and S. Lin, “Fabrication of three-dimensional photonic crystal with alignment based on electron beam lithography,” Appl. Phys. Lett. 85(21), 5037–5039 (2004).
[Crossref]

Lin, Y.

Linden, S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref]

M. Thiel, M. Decker, M. Deubel, M. Wegener, S. Linden, and G. von Freymann, “Polarization Stop Bands in Chiral Polymeric Three-Dimensional Photonic Crystals,” Adv. Mater. 19(2), 207–210 (2007).
[Crossref]

Liu, J.

L.-J. Chen, X.-Z. Dong, Y.-Y. Zhao, Y.-L. Zhang, J. Liu, M.-L. Zheng, X.-M. Duan, and Z.-S. Zhao, “Fabrication and optical transmission characteristics of polymers woodpile photonic crystal structures with different crystal planes,” AOPC 2015: Advances in Laser Technology and Applications, 967127 (2015).

Luo, F.

J. Yang, F. Luo, T. S. Kao, X. Li, G. W. Ho, J. Teng, X. Luo, and M. Hong, “Design and fabrication of broadband ultralow reflectivity black Si surfaces by laser micro/nanoprocessing,” Light: Sci. Appl. 3(7), e185 (2014).
[Crossref]

Luo, X.

Y. Chen, X. Li, X. Luo, S. A. Maier, and M. Hong, “Tunable near-infrared plasmonic perfect absorber based on phase-change materials,” Photonics Res. 3(3), 54–57 (2015).
[Crossref]

J. Yang, F. Luo, T. S. Kao, X. Li, G. W. Ho, J. Teng, X. Luo, and M. Hong, “Design and fabrication of broadband ultralow reflectivity black Si surfaces by laser micro/nanoprocessing,” Light: Sci. Appl. 3(7), e185 (2014).
[Crossref]

X. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84(23), 4780–4782 (2004).
[Crossref]

Maier, S. A.

Y. Chen, X. Li, X. Luo, S. A. Maier, and M. Hong, “Tunable near-infrared plasmonic perfect absorber based on phase-change materials,” Photonics Res. 3(3), 54–57 (2015).
[Crossref]

Maigyte, L.

Malinauskas, M.

Meade, R. D.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic crystals: Molding the flow of light - second edition (Princeton University, 2011).

Miyazaki, H. T.

K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, “Microassembly of semiconductor three-dimensional photonic crystals,” Nat. Mater. 2(2), 117–121 (2003).
[Crossref]

Noda, S.

K. Ishizaki, M. Koumura, K. Suzuki, K. Gondaira, and S. Noda, “Realization of three-dimensional guiding of photons in photonic crystals,” Nat. Photonics 7(2), 133–137 (2013).
[Crossref]

M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science 308(5726), 1296–1298 (2005).
[Crossref]

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289(5479), 604–606 (2000).
[Crossref]

Nomura, M.

A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap,” Nat. Photonics 5(2), 91–94 (2011).
[Crossref]

Norris, D. J.

L. V. Poulikakos, P. Thureja, A. Stollmann, E. De Leo, and D. J. Norris, “Chiral light design and detection inspired by optical antenna theory,” Nano Lett. 18(8), 4633–4640 (2018).
[Crossref]

Oono, S.

S. Takahashi, S. Oono, S. Iwamoto, Y. Hatsugai, and Y. Arakawa, “Circularly polarized topological edge states derived from optical Weyl points in semiconductor-based chiral woodpile photonic crystals,” J. Phys. Soc. Jpn. 87(12), 123401 (2018).
[Crossref]

Ota, Y.

S. Takahashi, T. Tajiri, Y. Ota, J. Tatebayashi, S. Iwamoto, and Y. Arakawa, “Circular dichroism in a three-dimensional semiconductor chiral photonic crystal,” Appl. Phys. Lett. 105(5), 051107 (2014).
[Crossref]

S. Takahashi, A. Tandaechanurat, R. Igusa, Y. Ota, J. Tatebayashi, S. Iwamoto, and Y. Arakawa, “Giant optical rotation in a three-dimensional semiconductor chiral photonic crystal,” Opt. Express 21(24), 29905–29913 (2013).
[Crossref]

Ott, J.

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).

Pang, Y. K.

Y. K. Pang, J. C. W. Lee, C. T. Ho, and W. Y. Tam, “Realization of woodpile structure using optical interference holography,” Opt. Express 14(20), 9013 (2006).
[Crossref]

Park, S.

Peckus, M.

Pereira, S.

M. Deubel, G. Von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[Crossref]

Poulikakos, L. V.

L. V. Poulikakos, P. Thureja, A. Stollmann, E. De Leo, and D. J. Norris, “Chiral light design and detection inspired by optical antenna theory,” Nano Lett. 18(8), 4633–4640 (2018).
[Crossref]

Probst, P. T.

S. Sarkar, V. Gupta, M. Kumar, J. Schubert, P. T. Probst, J. Joseph, and T. A. König, “Hybridized Guided-Mode Resonances via Colloidal Plasmonic Self-Assembled Grating,” ACS Appl. Mater. Interfaces 11(14), 13752–13760 (2019).
[Crossref]

Purlys, V.

Radke, A.

Rill, M. S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref]

Rivera, D.

Saile, V.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref]

Sakoda, K.

K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, “Microassembly of semiconductor three-dimensional photonic crystals,” Nat. Mater. 2(2), 117–121 (2003).
[Crossref]

Samanta, K.

K. Samanta and J. Joseph, “Double-helix array structure using phase controlled interference of 6 + 6 beams,” Opt. Laser Eng. 113, 23–28 (2019).
[Crossref]

Sarkar, S.

S. Sarkar, V. Gupta, M. Kumar, J. Schubert, P. T. Probst, J. Joseph, and T. A. König, “Hybridized Guided-Mode Resonances via Colloidal Plasmonic Self-Assembled Grating,” ACS Appl. Mater. Interfaces 11(14), 13752–13760 (2019).
[Crossref]

S. Behera, S. Sarkar, and J. Joseph, “Fabrication of helical photonic structures with submicrometer axial and spatial periodicities following “inverted umbrella” geometry through phase-controlled interference lithography,” Opt. Lett. 43(1), 106–109 (2018).
[Crossref]

Schubert, J.

S. Sarkar, V. Gupta, M. Kumar, J. Schubert, P. T. Probst, J. Joseph, and T. A. König, “Hybridized Guided-Mode Resonances via Colloidal Plasmonic Self-Assembled Grating,” ACS Appl. Mater. Interfaces 11(14), 13752–13760 (2019).
[Crossref]

Shinya, N.

K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, “Microassembly of semiconductor three-dimensional photonic crystals,” Nat. Mater. 2(2), 117–121 (2003).
[Crossref]

Soukoulis, C. M.

M. Deubel, G. Von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[Crossref]

Staliunas, K.

Steiner, U.

J. A. Dolan, B. D. Wilts, S. Vijgnolini, J. J. Baumberg, U. Steiner, and T. D. Wilkinson, “Optical properties of gyroid structured materials: From photonic crystals to metamaterials,” Adv. Opt. Mater. 3(1), 12–32 (2015).
[Crossref]

Stollmann, A.

L. V. Poulikakos, P. Thureja, A. Stollmann, E. De Leo, and D. J. Norris, “Chiral light design and detection inspired by optical antenna theory,” Nano Lett. 18(8), 4633–4640 (2018).
[Crossref]

Subramania, G.

G. Subramania and S. Lin, “Fabrication of three-dimensional photonic crystal with alignment based on electron beam lithography,” Appl. Phys. Lett. 85(21), 5037–5039 (2004).
[Crossref]

Suzuki, K.

K. Ishizaki, M. Koumura, K. Suzuki, K. Gondaira, and S. Noda, “Realization of three-dimensional guiding of photons in photonic crystals,” Nat. Photonics 7(2), 133–137 (2013).
[Crossref]

Tajiri, T.

S. Takahashi, T. Tajiri, Y. Ota, J. Tatebayashi, S. Iwamoto, and Y. Arakawa, “Circular dichroism in a three-dimensional semiconductor chiral photonic crystal,” Appl. Phys. Lett. 105(5), 051107 (2014).
[Crossref]

Takahashi, S.

S. Takahashi, S. Oono, S. Iwamoto, Y. Hatsugai, and Y. Arakawa, “Circularly polarized topological edge states derived from optical Weyl points in semiconductor-based chiral woodpile photonic crystals,” J. Phys. Soc. Jpn. 87(12), 123401 (2018).
[Crossref]

S. Takahashi, T. Tajiri, Y. Ota, J. Tatebayashi, S. Iwamoto, and Y. Arakawa, “Circular dichroism in a three-dimensional semiconductor chiral photonic crystal,” Appl. Phys. Lett. 105(5), 051107 (2014).
[Crossref]

S. Takahashi, A. Tandaechanurat, R. Igusa, Y. Ota, J. Tatebayashi, S. Iwamoto, and Y. Arakawa, “Giant optical rotation in a three-dimensional semiconductor chiral photonic crystal,” Opt. Express 21(24), 29905–29913 (2013).
[Crossref]

M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science 308(5726), 1296–1298 (2005).
[Crossref]

Tam, W. Y.

W. Y. Tam, “Woodpile and diamond structures by optical interference holography,” J. Opt. A: Pure Appl. Opt. 9(11), 1076–1081 (2007).
[Crossref]

Y. K. Pang, J. C. W. Lee, C. T. Ho, and W. Y. Tam, “Realization of woodpile structure using optical interference holography,” Opt. Express 14(20), 9013 (2006).
[Crossref]

Tanaka, Y.

M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science 308(5726), 1296–1298 (2005).
[Crossref]

Tandaechanurat, A.

S. Takahashi, A. Tandaechanurat, R. Igusa, Y. Ota, J. Tatebayashi, S. Iwamoto, and Y. Arakawa, “Giant optical rotation in a three-dimensional semiconductor chiral photonic crystal,” Opt. Express 21(24), 29905–29913 (2013).
[Crossref]

A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap,” Nat. Photonics 5(2), 91–94 (2011).
[Crossref]

Tatebayashi, J.

S. Takahashi, T. Tajiri, Y. Ota, J. Tatebayashi, S. Iwamoto, and Y. Arakawa, “Circular dichroism in a three-dimensional semiconductor chiral photonic crystal,” Appl. Phys. Lett. 105(5), 051107 (2014).
[Crossref]

S. Takahashi, A. Tandaechanurat, R. Igusa, Y. Ota, J. Tatebayashi, S. Iwamoto, and Y. Arakawa, “Giant optical rotation in a three-dimensional semiconductor chiral photonic crystal,” Opt. Express 21(24), 29905–29913 (2013).
[Crossref]

Teng, J.

J. Yang, F. Luo, T. S. Kao, X. Li, G. W. Ho, J. Teng, X. Luo, and M. Hong, “Design and fabrication of broadband ultralow reflectivity black Si surfaces by laser micro/nanoprocessing,” Light: Sci. Appl. 3(7), e185 (2014).
[Crossref]

Thiel, M.

M. Thiel, J. Ott, A. Radke, J. Kaschke, and M. Wegener, “Dip-in depletion optical lithography of three-dimensional chiral polarizers,” Opt. Lett. 38(20), 4252–4255 (2013).
[Crossref]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref]

M. Thiel, G. Von Freymann, and M. Wegener, “Layer-by-layer three-dimensional chiral photonic crystals,” Opt. Lett. 32(17), 2547–2549 (2007).
[Crossref]

M. Thiel, M. Decker, M. Deubel, M. Wegener, S. Linden, and G. von Freymann, “Polarization Stop Bands in Chiral Polymeric Three-Dimensional Photonic Crystals,” Adv. Mater. 19(2), 207–210 (2007).
[Crossref]

Thureja, P.

L. V. Poulikakos, P. Thureja, A. Stollmann, E. De Leo, and D. J. Norris, “Chiral light design and detection inspired by optical antenna theory,” Nano Lett. 18(8), 4633–4640 (2018).
[Crossref]

Tomoda, K.

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289(5479), 604–606 (2000).
[Crossref]

Trull, J.

Turner, M. D.

Z. Gan, M. D. Turner, and M. Gu, “Biomimetic gyroid nanostructures exceeding their natural origins,” Sci. Adv. 2(5), e1600084 (2016).
[Crossref]

Vijgnolini, S.

J. A. Dolan, B. D. Wilts, S. Vijgnolini, J. J. Baumberg, U. Steiner, and T. D. Wilkinson, “Optical properties of gyroid structured materials: From photonic crystals to metamaterials,” Adv. Opt. Mater. 3(1), 12–32 (2015).
[Crossref]

von Freymann, G.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref]

M. Thiel, G. Von Freymann, and M. Wegener, “Layer-by-layer three-dimensional chiral photonic crystals,” Opt. Lett. 32(17), 2547–2549 (2007).
[Crossref]

M. Thiel, M. Decker, M. Deubel, M. Wegener, S. Linden, and G. von Freymann, “Polarization Stop Bands in Chiral Polymeric Three-Dimensional Photonic Crystals,” Adv. Mater. 19(2), 207–210 (2007).
[Crossref]

M. Deubel, G. Von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[Crossref]

Wegener, M.

M. Thiel, J. Ott, A. Radke, J. Kaschke, and M. Wegener, “Dip-in depletion optical lithography of three-dimensional chiral polarizers,” Opt. Lett. 38(20), 4252–4255 (2013).
[Crossref]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref]

M. Thiel, G. Von Freymann, and M. Wegener, “Layer-by-layer three-dimensional chiral photonic crystals,” Opt. Lett. 32(17), 2547–2549 (2007).
[Crossref]

M. Thiel, M. Decker, M. Deubel, M. Wegener, S. Linden, and G. von Freymann, “Polarization Stop Bands in Chiral Polymeric Three-Dimensional Photonic Crystals,” Adv. Mater. 19(2), 207–210 (2007).
[Crossref]

M. Deubel, G. Von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[Crossref]

Wilkinson, T. D.

J. A. Dolan, B. D. Wilts, S. Vijgnolini, J. J. Baumberg, U. Steiner, and T. D. Wilkinson, “Optical properties of gyroid structured materials: From photonic crystals to metamaterials,” Adv. Opt. Mater. 3(1), 12–32 (2015).
[Crossref]

Wilts, B. D.

J. A. Dolan, B. D. Wilts, S. Vijgnolini, J. J. Baumberg, U. Steiner, and T. D. Wilkinson, “Optical properties of gyroid structured materials: From photonic crystals to metamaterials,” Adv. Opt. Mater. 3(1), 12–32 (2015).
[Crossref]

Winn, J. N.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic crystals: Molding the flow of light - second edition (Princeton University, 2011).

Yamamoto, N.

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289(5479), 604–606 (2000).
[Crossref]

Yang, J.

J. Yang, F. Luo, T. S. Kao, X. Li, G. W. Ho, J. Teng, X. Luo, and M. Hong, “Design and fabrication of broadband ultralow reflectivity black Si surfaces by laser micro/nanoprocessing,” Light: Sci. Appl. 3(7), e185 (2014).
[Crossref]

Yatsui, T.

T. Yatsui, “Recent improvement of silicon absorption in opto-electric devices,” Opto-Electronic Advances 2(10), 19002301–19002308 (2019).
[Crossref]

Yi, Y.

Yoo, Y.-E.

Zhang, Y.-L.

L.-J. Chen, X.-Z. Dong, Y.-Y. Zhao, Y.-L. Zhang, J. Liu, M.-L. Zheng, X.-M. Duan, and Z.-S. Zhao, “Fabrication and optical transmission characteristics of polymers woodpile photonic crystal structures with different crystal planes,” AOPC 2015: Advances in Laser Technology and Applications, 967127 (2015).

Zhao, Y.-Y.

L.-J. Chen, X.-Z. Dong, Y.-Y. Zhao, Y.-L. Zhang, J. Liu, M.-L. Zheng, X.-M. Duan, and Z.-S. Zhao, “Fabrication and optical transmission characteristics of polymers woodpile photonic crystal structures with different crystal planes,” AOPC 2015: Advances in Laser Technology and Applications, 967127 (2015).

Zhao, Z.-S.

L.-J. Chen, X.-Z. Dong, Y.-Y. Zhao, Y.-L. Zhang, J. Liu, M.-L. Zheng, X.-M. Duan, and Z.-S. Zhao, “Fabrication and optical transmission characteristics of polymers woodpile photonic crystal structures with different crystal planes,” AOPC 2015: Advances in Laser Technology and Applications, 967127 (2015).

Zheng, M.-L.

L.-J. Chen, X.-Z. Dong, Y.-Y. Zhao, Y.-L. Zhang, J. Liu, M.-L. Zheng, X.-M. Duan, and Z.-S. Zhao, “Fabrication and optical transmission characteristics of polymers woodpile photonic crystal structures with different crystal planes,” AOPC 2015: Advances in Laser Technology and Applications, 967127 (2015).

ACS Appl. Mater. Interfaces (1)

S. Sarkar, V. Gupta, M. Kumar, J. Schubert, P. T. Probst, J. Joseph, and T. A. König, “Hybridized Guided-Mode Resonances via Colloidal Plasmonic Self-Assembled Grating,” ACS Appl. Mater. Interfaces 11(14), 13752–13760 (2019).
[Crossref]

Adv. Mater. (1)

M. Thiel, M. Decker, M. Deubel, M. Wegener, S. Linden, and G. von Freymann, “Polarization Stop Bands in Chiral Polymeric Three-Dimensional Photonic Crystals,” Adv. Mater. 19(2), 207–210 (2007).
[Crossref]

Adv. Opt. Mater. (1)

J. A. Dolan, B. D. Wilts, S. Vijgnolini, J. J. Baumberg, U. Steiner, and T. D. Wilkinson, “Optical properties of gyroid structured materials: From photonic crystals to metamaterials,” Adv. Opt. Mater. 3(1), 12–32 (2015).
[Crossref]

Adv. Opt. Photonics (1)

M. Faryad and A. Lakhtakia, “The circular Bragg phenomenon,” Adv. Opt. Photonics 6(2), 225–292 (2014).
[Crossref]

Appl. Phys. Lett. (4)

S. Takahashi, T. Tajiri, Y. Ota, J. Tatebayashi, S. Iwamoto, and Y. Arakawa, “Circular dichroism in a three-dimensional semiconductor chiral photonic crystal,” Appl. Phys. Lett. 105(5), 051107 (2014).
[Crossref]

J. C. W. Lee and C. Chan, “Circularly polarized thermal radiation from layer-by-layer photonic crystal structures,” Appl. Phys. Lett. 90(5), 051912 (2007).
[Crossref]

G. Subramania and S. Lin, “Fabrication of three-dimensional photonic crystal with alignment based on electron beam lithography,” Appl. Phys. Lett. 85(21), 5037–5039 (2004).
[Crossref]

X. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84(23), 4780–4782 (2004).
[Crossref]

J. Opt. A: Pure Appl. Opt. (1)

W. Y. Tam, “Woodpile and diamond structures by optical interference holography,” J. Opt. A: Pure Appl. Opt. 9(11), 1076–1081 (2007).
[Crossref]

J. Phys. Soc. Jpn. (1)

S. Takahashi, S. Oono, S. Iwamoto, Y. Hatsugai, and Y. Arakawa, “Circularly polarized topological edge states derived from optical Weyl points in semiconductor-based chiral woodpile photonic crystals,” J. Phys. Soc. Jpn. 87(12), 123401 (2018).
[Crossref]

Light: Sci. Appl. (1)

J. Yang, F. Luo, T. S. Kao, X. Li, G. W. Ho, J. Teng, X. Luo, and M. Hong, “Design and fabrication of broadband ultralow reflectivity black Si surfaces by laser micro/nanoprocessing,” Light: Sci. Appl. 3(7), e185 (2014).
[Crossref]

Nano Lett. (1)

L. V. Poulikakos, P. Thureja, A. Stollmann, E. De Leo, and D. J. Norris, “Chiral light design and detection inspired by optical antenna theory,” Nano Lett. 18(8), 4633–4640 (2018).
[Crossref]

Nat. Mater. (2)

M. Deubel, G. Von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[Crossref]

K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, “Microassembly of semiconductor three-dimensional photonic crystals,” Nat. Mater. 2(2), 117–121 (2003).
[Crossref]

Nat. Photonics (2)

A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap,” Nat. Photonics 5(2), 91–94 (2011).
[Crossref]

K. Ishizaki, M. Koumura, K. Suzuki, K. Gondaira, and S. Noda, “Realization of three-dimensional guiding of photons in photonic crystals,” Nat. Photonics 7(2), 133–137 (2013).
[Crossref]

Opt. Express (4)

Opt. Laser Eng. (1)

K. Samanta and J. Joseph, “Double-helix array structure using phase controlled interference of 6 + 6 beams,” Opt. Laser Eng. 113, 23–28 (2019).
[Crossref]

Opt. Lett. (5)

Opto-Electronic Advances (1)

T. Yatsui, “Recent improvement of silicon absorption in opto-electric devices,” Opto-Electronic Advances 2(10), 19002301–19002308 (2019).
[Crossref]

Photonics Res. (1)

Y. Chen, X. Li, X. Luo, S. A. Maier, and M. Hong, “Tunable near-infrared plasmonic perfect absorber based on phase-change materials,” Photonics Res. 3(3), 54–57 (2015).
[Crossref]

Sci. Adv. (1)

Z. Gan, M. D. Turner, and M. Gu, “Biomimetic gyroid nanostructures exceeding their natural origins,” Sci. Adv. 2(5), e1600084 (2016).
[Crossref]

Sci. Rep. (1)

L. A. Ibbotson, A. Demetriadou, S. Croxall, O. Hess, and J. J. Baumberg, “Optical nano-woodpiles: large-area metallic photonic crystals and metamaterials,” Sci. Rep. 5(1), 8313 (2015).
[Crossref]

Science (3)

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289(5479), 604–606 (2000).
[Crossref]

M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science 308(5726), 1296–1298 (2005).
[Crossref]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref]

Other (5)

MATLAB and Statistics Toolbox Release 2012b, The MathWorks, Inc., Natick, Massachusetts, United States.

“Lumerical inc. https://www.Lumerical.Com/products/.”

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic crystals: Molding the flow of light - second edition (Princeton University, 2011).

L.-J. Chen, X.-Z. Dong, Y.-Y. Zhao, Y.-L. Zhang, J. Liu, M.-L. Zheng, X.-M. Duan, and Z.-S. Zhao, “Fabrication and optical transmission characteristics of polymers woodpile photonic crystal structures with different crystal planes,” AOPC 2015: Advances in Laser Technology and Applications, 967127 (2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. (a) Beam configuration in a 3 + 3 double-cone geometry for the realization of chiral woodpile structure using phase-controlled beams. XY projections of the beams show their orientation for defining the associated k vectors. (b, i) Actual chiral woodpile interference pattern produced in MATLAB. (ii) Chiral woodpile structure used for FDTD simulation.
Fig. 2.
Fig. 2. FDTD based comparison of plane-wave filtering response of the chiral woodpile layered structures fabricated with different interference angles. (i)-(iii) shows the effects of increment in the number of pitches from 3 to 9 for structures with materials like (a)photoresist, (b) titanium dioxide and (c) crystalline silicon.
Fig. 3.
Fig. 3. (a) Schematic of beam orientation for omnidirectional filtering properties of the chiral woodpile structure studied with both (b) in-plane and (c) out of plane polarization. Different cases of (i) rotation of the plane of incidence for fixed normal incidence and (ii)-(iii) rotation of angle of incidence for fixed planes of incidence can give an idea about the omnidirectionality of the stop-band.
Fig. 4.
Fig. 4. Schematic showing dual chirality in the chiral-woodpile structure. An RCP unit cell (a) can be considered consisting of 6 layers (a) whereas an LCP unit cell (b) constructed from only 3 layers.
Fig. 5.
Fig. 5. Transmittance and reflectance from chiral woodpile structure on the incidence of circularly polarized light. The effects are studied on structures made out of two different materials, (a) Titanium dioxide and (b) Gallium arsenide. Structures fabricable with different interference angles (i-iii) are also studied to realize the possibility of tuning the range of circular dichroism.
Fig. 6.
Fig. 6. (a) Experimental setup towards the realization of a chiral woodpile structure involving a dual-cone geometry. The beams diffracted in umbrella geometry from the SLM (provided with computed phase-mask) are represented with pseudo colors; each color represents a particular phase associated with the individual beams. (b) A magnified version of arrangement to convert six diffracted beams into 3 + 3 dual cone geometry using mount 1 and mount 2. (c) Actual experimental counterpart of (b) with the irradiated plane of interference. (d) Interference angle in terms of distance along the Z-axis in dual cone geometry considering beams 1 and 2. (e) Pattern recording process in positive photoresist showing the complementary structure after development. (f) fabricated positive photoresist sample with complementary chiral structure showing different diffracted colors in different observing directions.
Fig. 7.
Fig. 7. (a) A 2D SEM image of the fabricated complementary chiral woodpile on the positive photoresist AZ 1505. Inset shows a simulated structure identical to the fabricated sample in terms of the orientation of the rods with the top layer (blue) rotated at ${30^\textrm{o}}$ with respect to X-axis. (b) Similar structure with different photoresist thickness revealing the second layer(green) as top layer rotated at ${150^\textrm{o}}$ with respect to X-axis. Measured values disclose 2a = 763 nm and 3Λsp = 1295 nm. (c) & (d) 2D and 3D view of the samples over a large area showing the capability of PCIL.
Fig. 8.
Fig. 8. (a) Experimental setup to study filtering response of the fabricated structure using a broad white light source. (b)-(i)Transmittance of the fabricated complementary structure realized in positive photoresist (PPR). (ii) Simulated transmittance of a negative photoresist (NPR) structure (black curve) and its complementary structure out of positive photoresist (PPR) with 3 pitches. Inset in (b-ii) shows the two structures in NPR and PPR showing complementarity.

Tables (1)

Tables Icon

Table 1. Parameters of chiral woodpile structure used in FDTD simulation

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I ( r ) = μ = 1 6 | E μ | 2 + μ = 1 6 ν = 1 μ ν 6 E μ E ν exp [ i ( k μ k ν ) r + i ( ψ μ ψ ν ) ]
ψ 1 = ( 2 π / 6 ) 1 ,   k 1 = k 0 [ sin θ int cos ( 4 π 3 ) ,   sin θ int sin ( 4 π 3 ) , cos θ int ] ψ 2 = ( 2 π / 6 ) 2 ,   k 2 = k 0 [ sin θ int cos ( 4 π 3 ) ,   sin θ int sin ( 4 π 3 ) ,   cos θ int ] ψ 3 = ( 2 π / 6 ) 3 ,   k 3 = k 0 [ sin θ int cos ( 2 π ) ,   sin θ int sin ( 2 π ) , cos θ int ]   ψ 4 = ( 2 π / 6 ) 4   k 4 = k 0 [ sin θ int cos ( 2 π 3 ) ,   sin θ int sin ( 2 π 3 ) ,   cos θ int ] ψ 5 = ( 2 π / 6 ) 5   k 5 = k 0 [ sin θ int cos ( 2 π 3 ) ,   sin θ int sin ( 2 π 3 ) , cos θ int ] ψ 6 = ( 2 π / 6 ) 6 ,   k 6 = k 0 [ sin θ int cos ( 2 π ) ,   sin θ int sin ( 2 π ) ,   cos θ int ] }
k m = k e f f [ sin θ d i f f cos ( 2 π m 6 ) ,   sin θ d i f f sin ( 2 π m 6 ) ,   cos θ d i f f ] ;     ψ m = ( 2 π m 6 )  
r 1 = r 2 [ ( tan θ int tan θ d i f f ) / ( tan θ int + tan θ d i f f ) ] z 1 = [ r 1 / tan θ d i f f ] z 3 = [ r 2 / tan θ d i f f ] z 2 = z 1 + [ r 1 / tan θ int ] }  

Metrics