Abstract

We report on measurements of high-order dispersion maps of an optical fiber, showing how the ratio between the third and fourth-order dispersion (β3/β4) and the zero-dispersion wavelength (λ0) vary along the length of the fiber. Our method is based on Four-Wave Mixing between short pulses derived from an incoherent pump and a weak laser. We find that the variations in the ratio β3/β4 are correlated to those in λ0. We present also numerical calculations to illustrate the limits on the spatial resolution of the method. Due to the good accuracy in measuring λ0 and β3/β4 (10 -3% and 5% relative error, respectively), and its simplicity, the method can be used to identify fiber segments of good uniformity, suitable to build nonlinear optical devices such as parametric amplifiers and frequency comb generators.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Simple four-wave-mixing-based method for measuring the ratio between the third- and fourth-order dispersion in optical fibers

J. M. Chávez Boggio and H. L. Fragnito
J. Opt. Soc. Am. B 24(9) 2046-2054 (2007)

High-resolution zero-dispersion wavelength mapping in single-mode fiber

I. Brener, P. P. Mitra, D. D. Lee, D. J. Thomson, and D. L. Philen
Opt. Lett. 23(19) 1520-1522 (1998)

Shift of zero-dispersion wavelength in bent optical fibers

A. Gil-Molina, A. Perez-Ramirez, J. C. Ramirez, L. H. Gabrielli, and H. L. Fragnito
Opt. Express 26(6) 6700-6714 (2018)

References

  • View by:
  • |
  • |
  • |

  1. N. Kuwaki and M. Ohashi, “Evaluation of longitudinal chromatic dispersion,” J. Lightwave Technol. 8(10), 1476–1481 (1990).
    [Crossref]
  2. M. Hirano, T. Nakanishi, T. Okuno, and M. Onishi, “Silica-based highly nonlinear fibers and their application,” IEEE J. Sel. Top. Quantum Electron. 15(1), 103–113 (2009).
    [Crossref]
  3. M. Karlsson, “Four-wave mixing in fibers with randomly varying zero-dispersion wavelength,” J. Opt. Soc. Am. B 15(8), 2269–2275 (1998).
    [Crossref]
  4. F. Yaman, Q. Lin, S. Radic, and G. P. Agrawal, “Impact of dispersion fluctuations on dual-pump fiber-optic parametric amplifiers,” IEEE Photonics Technol. Lett. 16(5), 1292–1294 (2004).
    [Crossref]
  5. F. Mitra and M. Sterke, “Parametric amplification in presence of dispersion fluctuations,” Opt. Express 12(1), 136–142 (2004).
    [Crossref]
  6. J. S. Y. Chen, S. G. Murdoch, R. Leonhardt, and J. D. Harvey, “Effect of dispersion fluctuations on widely tunable optical parametric amplification in photonic crystal fibers,” Opt. Express 14(20), 9491–9501 (2006).
    [Crossref]
  7. M. E. Marhic, N. Kagi, T. K. Chiang, and L. G. Kazovsky, “Broadband fiber optical parametric amplifiers,” Opt. Lett. 21(8), 573–575 (1996).
    [Crossref]
  8. J. M. Chavez Boggio, S. Tenenbaum, and H. L. Fragnito, “Amplification of broadband noise pumped by two lasers in optical fibers,” J. Opt. Soc. Am. B 18(10), 1428–1435 (2001).
    [Crossref]
  9. C. Floridia, M. L. Sundheimer, L. S. Menezes, and A. S. L. Gomes, “Optimization of spectrally flat and broadband single-pump fiber optic parametric amplifiers,” Opt. Commun. 223(4-6), 381–388 (2003).
    [Crossref]
  10. J. M. Chavez Boggio, J. D. Marconi, and H. L. Fragnito, “Double-pumped fiber optical parametric amplifier with flat gain over 47-nm bandwidth using a conventional dispersion-shifted fiber,” IEEE Photonics Technol. Lett. 17(9), 1842–1844 (2005).
    [Crossref]
  11. P. Dainese, G. S. Wiederhecker, A. A. Rieznik, H. L. Fragnito, and H. E. Hernandez-Figueroa, “Designing fiber dispersion for broadband parametric amplifiers,” IEEE-SBMO, International Microwave and Optoelectronics Conference (IMOC), 2005, pp. 1–3.
  12. J. M. Chavez Boggio, J. D. Marconi, S. R. Bickham, and H. L. Fragnito, “Spectrally flat and broadband double- pumped fiber optical parametric amplifiers,” Opt. Express 15(9), 5288–5309 (2007).
    [Crossref]
  13. S. Pitois and G. Millot, “Experimental observation of a new modulational instability spectral window induced by fourth-order dispersion in a normally dispersive single-mode optical fiber,” Opt. Commun. 226(1-6), 415–422 (2003).
    [Crossref]
  14. J. Harvey, R. Leonhardt, S. Coen, G. Wong, J. Knight, W. Wadsworth, and P. S. J. Russell, “Scalar modulation instability in the normal dispersion regime by use of a photonic crystal fiber,” Opt. Lett. 28(22), 2225–2227 (2003).
    [Crossref]
  15. M. E. Marhic, K. K.-Y. Wong, and L. G. Kazovsky, “Wide-band tuning of the gain spectra of one-pump fiber optical parametric amplifiers,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1133–1141 (2004).
    [Crossref]
  16. A. Y. H. Chen, G. K. L. Wong, S. G. Murdoch, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Widely tunable optical parametric generation in a photonic crystal fiber,” Opt. Lett. 30(7), 762–764 (2005).
    [Crossref]
  17. W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. S. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, “Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres,” Nature 424(6948), 511–515 (2003).
    [Crossref]
  18. P. K. A. Wai, C. R. Menyuk, H. H. Chen, and Y. C. Lee, “Soliton at the zero-group-dispersion wavelength of a single-mode fiber,” Opt. Lett. 12(8), 628–630 (1987).
    [Crossref]
  19. N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51(3), 2602–2607 (1995).
    [Crossref]
  20. G. P. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic, 2013).
  21. J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge University, 2010).
  22. A. Blanco-Redondo, C. M. de Sterke, J. E. Sipe, T. F. Krauss, B. J. Eggleton, and C. Husko, “Pure-quartic solitons,” Nat. Commun. 7(1), 10427 (2016).
    [Crossref]
  23. M. Nakazawa, T. Yamamoto, and K. R. Tamura, “1.28 Tbit/s-70 km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator,” Electron. Lett. 36(24), 2027–2029 (2000).
    [Crossref]
  24. J. Capmany, D. Pastor, S. Sales, and B. Ortega, “Effects of fourth-order dispersion in very high-speed optical time-division multiplexed transmission,” Opt. Lett. 27(11), 960–962 (2002).
    [Crossref]
  25. L. Zong, F. Luo, Y. Wang, and X. Cao, “Dispersion compensation module for 100 Gbit/s optical system and beyond,” Opt. Fiber Technol. 17(3), 227–232 (2011).
    [Crossref]
  26. C. Mazzali, D. F. Grosz, and H. L. Fragnito, “Simple method for measuring dispersion and nonlinear coefficient near the zero-dispersion wavelength of optical fibers,” IEEE Photonics Technol. Lett. 11(2), 251–253 (1999).
    [Crossref]
  27. H. Chen, “Simultaneous measurements of non-linear coefficient, zero-dispersion wavelength and chromatic dispersion in dispersion-shifted fibers by four-wave mixing,” Opt. Commun. 220(4-6), 331–335 (2003).
    [Crossref]
  28. G. K. L. Wong, A. Chen, S. Ha, R. Kruhlak, S. Murdoch, R. Leonhardt, J. Harvey, and N. Joly, “Characterization of chromatic dispersion in photonic crystal fibers using scalar modulation instability,” Opt. Express 13(21), 8662–8670 (2005).
    [Crossref]
  29. J. Fatome, S. Pitois, and G. Millot, “Measurement of nonlinear and chromatic dispersion parameters of optical fibers using modulation instability,” Opt. Fiber Technol. 12(3), 243–250 (2006).
    [Crossref]
  30. B. Auguie, A. Mussot, A. Boucon, E. Lantz, and T. Sylvestre, “Ultralow chromatic dispersion measurement of optical fibers with a tunable fiber laser,” IEEE Photonics Technol. Lett. 18(17), 1825–1827 (2006).
    [Crossref]
  31. J. M. C. Boggio and H. L. Fragnito, “Simple four-wave-mixing-based method for measuring the ratio between the third- and fourth-order dispersion in optical fibers,” J. Opt. Soc. Am. B 24(9), 2046–2054 (2007).
    [Crossref]
  32. A. Gil-Molina, A. Perez-Ramirez, J. C. Ramirez, L. H. Gabrielli, and H. L. Fragnito, “Shift of zero-dispersion wavelength in bent optical fibers,” Opt. Express 26(6), 6700–6714 (2018).
    [Crossref]
  33. M. Droques, B. Barviau, A. Kudlinski, G. Bouwmans, and A. Mussot, “Simple method for measuring the zero-dispersion wavelength in optical fibers,” IEEE Photonics Technol. Lett. 23(10), 609–611 (2011).
    [Crossref]
  34. H. Onaka, K. Otsuka, H. Miyata, and T. Chikama, “Measuring the longitudinal distribuition of four-wave-mixing efficiency in dispersion-shifted fibers,” IEEE Photonics Technol. Lett. 6(12), 1454–1456 (1994).
    [Crossref]
  35. I. Brener, P. P. Mitra, D. D. Lee, and D. J. Thomson, “High-resolution zero-dispersion wavelength mapping in single-mode fiber,” Opt. Lett. 23(19), 1520–1522 (1998).
    [Crossref]
  36. M. Gonzalez-Herráez, P. Corredera, M. L. Hernanz, and J. A. Méndez, “Retrieval of the zero-dispersion wavelength map of an optical fiber from measurement of its continuous wave four-wave mixing efficiency,” Opt. Lett. 27(17), 1546–1548 (2002).
    [Crossref]
  37. A. Mussot, E. Lantz, A. Durecu-Legrand, C. Simonneau, D. Bayart, T. Sylvestre, and H. Maillotte, “Zero-dispersion wavelength mapping in short single-mode optical fibers using parametric amplification,” IEEE Photonics Technol. Lett. 18(1), 22–24 (2006).
    [Crossref]
  38. R. M. Jopson, M. Eiselt, R. H. Stolen, R. M. Derosier, A. M. Vengsarkar, and U. Koren, “Non-destructive dispersion-zero measurements along an optical fibre,” Electron. Lett. 31(24), 2115–2117 (1995).
    [Crossref]
  39. M. Eiselt, R. M. Jopson, and R. H. Stolen, “‘‘Nondestructive position-resolved measurement of the zero-dipersion wavelength in an optical fiber,’,” J. Lightwave Technol. 15(1), 135–143 (1997).
    [Crossref]
  40. S. Nishi and M. Saruwatari, “‘‘Technique for measuring the distributed zero dispersion wavelength of optical fibers using pulse amplification caused by modulation instability,’,” Electron. Lett. 31(3), 225–226 (1995).
    [Crossref]
  41. L. F. Mollenauer, P. V. Mamyshev, and M. J. Neubelt, “Method for facile and accurate measurement of optical fiber dispersion maps,” Opt. Lett. 21(21), 1724–1726 (1996).
    [Crossref]
  42. K.-Y. Song, M. González Herráez, and L. Thévenaz, “Mapping of chromatic-dispersion distribution along optical fibers with 20-m spatial resolution,” J. Lightwave Technol. 23(12), 4140–4146 (2005).
    [Crossref]
  43. E. Myslivets, N. Alic, J. R. Windmiller, and S. Radic, “A new class of high-resolution measurements of arbitrary-dispersion fibers: localization of four-photon mixing process,” J. Lightwave Technol. 27(3), 364–375 (2009).
    [Crossref]
  44. J. M. C. Boggio, S. Tenenbaum, J.D. Marconi, and H.L. Fragnito, “A novel method for measuring longitudinal variations of the zero dispersion wavelength in optical fibers,” in Proc. European Conference on Optical Communication (ECOC), September 2006, Cannes, France, paper Th1.5.2.
  45. L. H. Gabrielli, H. E. Hernández-Figueroa, and H. L. Fragnito, “Robustness optimization of fiber index profiles for optical parametric amplifiers,” J. Lightwave Technol. 27(24), 5571–5579 (2009).
    [Crossref]
  46. J. W. Goodman, Statistical Optics, 2nd ed. (John Wiley & Sons, 2015).
  47. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics, (Cambridge University, 1995).
  48. A. Gil-Molina, I. A. Aldaya, and H. L. Fragnito, “Characterization of Fast Dispersion Fluctuations in Optical Fibers Using Incoherently Pumped Four-Wave Mixing,” Latin America Optics and Photonics Conference (LAOP), 2016, LTh3B-5.
  49. K. C. Byron, M. A. Bedgood, A. Finney, C. McGauran, S. Savory, and I. Watson, “Shifts in zero dispersion wavelength due to pressure, temperature and strain in dispersion shifted singlemode fibres,” Electron. Lett. 28(18), 1712–1714 (1992).
    [Crossref]
  50. A. A. Rieznik, T. Tolisano, F. A. Callegari, D. F. Grosz, and H. L. Fragnito, “Uncertainty relation for the optimization of optical-fiber transmission systems simulations,” Opt. Express 13(10), 3822–3834 (2005).
    [Crossref]
  51. J. W. Fleming, “Dispersion in GeO2-SiO2 glasses,” Appl. Opt. 23(24), 4486–4496 (1984).
    [Crossref]
  52. S. H. Wemple, D. A. Pinnow, T. C. Rich, R. E. Jaeger, and L. G. Van Uitert, “Binary SiO2-B2O3 glass system: Refractive index behavior and energy gap considerations,” J. Appl. Phys. 44(12), 5432–5437 (1973).
    [Crossref]
  53. B. P.-P. Kuo, J. M. Fini, L. Grüner-Nielsen, and S. Radic, “Dispersion-stabilized highly-nonlinear fiber for wide band parametric mixer synthesis,” Opt. Express 20(17), 18611–18619 (2012).
    [Crossref]
  54. A. Mussot, A. Kudlinski, R. Habert, I. Dahman, G. Mlin, L. Galkovsky, A. Fleureau, S. Lempereur, L. Lago, D. Bigourd, T. Sylvestre, M. W. Lee, and E. Hugonnot, “20 THz-bandwidth continuous-wave fiber optical parametric amplifier operating at 1 µm using a dispersion-stabilized photonic crystal fiber,” Opt. Express 20(27), 28906–28911 (2012).
    [Crossref]

2018 (1)

2016 (1)

A. Blanco-Redondo, C. M. de Sterke, J. E. Sipe, T. F. Krauss, B. J. Eggleton, and C. Husko, “Pure-quartic solitons,” Nat. Commun. 7(1), 10427 (2016).
[Crossref]

2012 (2)

2011 (2)

L. Zong, F. Luo, Y. Wang, and X. Cao, “Dispersion compensation module for 100 Gbit/s optical system and beyond,” Opt. Fiber Technol. 17(3), 227–232 (2011).
[Crossref]

M. Droques, B. Barviau, A. Kudlinski, G. Bouwmans, and A. Mussot, “Simple method for measuring the zero-dispersion wavelength in optical fibers,” IEEE Photonics Technol. Lett. 23(10), 609–611 (2011).
[Crossref]

2009 (3)

2007 (2)

2006 (4)

A. Mussot, E. Lantz, A. Durecu-Legrand, C. Simonneau, D. Bayart, T. Sylvestre, and H. Maillotte, “Zero-dispersion wavelength mapping in short single-mode optical fibers using parametric amplification,” IEEE Photonics Technol. Lett. 18(1), 22–24 (2006).
[Crossref]

J. Fatome, S. Pitois, and G. Millot, “Measurement of nonlinear and chromatic dispersion parameters of optical fibers using modulation instability,” Opt. Fiber Technol. 12(3), 243–250 (2006).
[Crossref]

B. Auguie, A. Mussot, A. Boucon, E. Lantz, and T. Sylvestre, “Ultralow chromatic dispersion measurement of optical fibers with a tunable fiber laser,” IEEE Photonics Technol. Lett. 18(17), 1825–1827 (2006).
[Crossref]

J. S. Y. Chen, S. G. Murdoch, R. Leonhardt, and J. D. Harvey, “Effect of dispersion fluctuations on widely tunable optical parametric amplification in photonic crystal fibers,” Opt. Express 14(20), 9491–9501 (2006).
[Crossref]

2005 (5)

2004 (3)

M. E. Marhic, K. K.-Y. Wong, and L. G. Kazovsky, “Wide-band tuning of the gain spectra of one-pump fiber optical parametric amplifiers,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1133–1141 (2004).
[Crossref]

F. Yaman, Q. Lin, S. Radic, and G. P. Agrawal, “Impact of dispersion fluctuations on dual-pump fiber-optic parametric amplifiers,” IEEE Photonics Technol. Lett. 16(5), 1292–1294 (2004).
[Crossref]

F. Mitra and M. Sterke, “Parametric amplification in presence of dispersion fluctuations,” Opt. Express 12(1), 136–142 (2004).
[Crossref]

2003 (5)

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. S. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, “Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres,” Nature 424(6948), 511–515 (2003).
[Crossref]

C. Floridia, M. L. Sundheimer, L. S. Menezes, and A. S. L. Gomes, “Optimization of spectrally flat and broadband single-pump fiber optic parametric amplifiers,” Opt. Commun. 223(4-6), 381–388 (2003).
[Crossref]

S. Pitois and G. Millot, “Experimental observation of a new modulational instability spectral window induced by fourth-order dispersion in a normally dispersive single-mode optical fiber,” Opt. Commun. 226(1-6), 415–422 (2003).
[Crossref]

J. Harvey, R. Leonhardt, S. Coen, G. Wong, J. Knight, W. Wadsworth, and P. S. J. Russell, “Scalar modulation instability in the normal dispersion regime by use of a photonic crystal fiber,” Opt. Lett. 28(22), 2225–2227 (2003).
[Crossref]

H. Chen, “Simultaneous measurements of non-linear coefficient, zero-dispersion wavelength and chromatic dispersion in dispersion-shifted fibers by four-wave mixing,” Opt. Commun. 220(4-6), 331–335 (2003).
[Crossref]

2002 (2)

2001 (1)

2000 (1)

M. Nakazawa, T. Yamamoto, and K. R. Tamura, “1.28 Tbit/s-70 km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator,” Electron. Lett. 36(24), 2027–2029 (2000).
[Crossref]

1999 (1)

C. Mazzali, D. F. Grosz, and H. L. Fragnito, “Simple method for measuring dispersion and nonlinear coefficient near the zero-dispersion wavelength of optical fibers,” IEEE Photonics Technol. Lett. 11(2), 251–253 (1999).
[Crossref]

1998 (2)

1997 (1)

M. Eiselt, R. M. Jopson, and R. H. Stolen, “‘‘Nondestructive position-resolved measurement of the zero-dipersion wavelength in an optical fiber,’,” J. Lightwave Technol. 15(1), 135–143 (1997).
[Crossref]

1996 (2)

1995 (3)

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51(3), 2602–2607 (1995).
[Crossref]

R. M. Jopson, M. Eiselt, R. H. Stolen, R. M. Derosier, A. M. Vengsarkar, and U. Koren, “Non-destructive dispersion-zero measurements along an optical fibre,” Electron. Lett. 31(24), 2115–2117 (1995).
[Crossref]

S. Nishi and M. Saruwatari, “‘‘Technique for measuring the distributed zero dispersion wavelength of optical fibers using pulse amplification caused by modulation instability,’,” Electron. Lett. 31(3), 225–226 (1995).
[Crossref]

1994 (1)

H. Onaka, K. Otsuka, H. Miyata, and T. Chikama, “Measuring the longitudinal distribuition of four-wave-mixing efficiency in dispersion-shifted fibers,” IEEE Photonics Technol. Lett. 6(12), 1454–1456 (1994).
[Crossref]

1992 (1)

K. C. Byron, M. A. Bedgood, A. Finney, C. McGauran, S. Savory, and I. Watson, “Shifts in zero dispersion wavelength due to pressure, temperature and strain in dispersion shifted singlemode fibres,” Electron. Lett. 28(18), 1712–1714 (1992).
[Crossref]

1990 (1)

N. Kuwaki and M. Ohashi, “Evaluation of longitudinal chromatic dispersion,” J. Lightwave Technol. 8(10), 1476–1481 (1990).
[Crossref]

1987 (1)

1984 (1)

1973 (1)

S. H. Wemple, D. A. Pinnow, T. C. Rich, R. E. Jaeger, and L. G. Van Uitert, “Binary SiO2-B2O3 glass system: Refractive index behavior and energy gap considerations,” J. Appl. Phys. 44(12), 5432–5437 (1973).
[Crossref]

Agrawal, G. P.

F. Yaman, Q. Lin, S. Radic, and G. P. Agrawal, “Impact of dispersion fluctuations on dual-pump fiber-optic parametric amplifiers,” IEEE Photonics Technol. Lett. 16(5), 1292–1294 (2004).
[Crossref]

G. P. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic, 2013).

Akhmediev, N.

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51(3), 2602–2607 (1995).
[Crossref]

Aldaya, I. A.

A. Gil-Molina, I. A. Aldaya, and H. L. Fragnito, “Characterization of Fast Dispersion Fluctuations in Optical Fibers Using Incoherently Pumped Four-Wave Mixing,” Latin America Optics and Photonics Conference (LAOP), 2016, LTh3B-5.

Alic, N.

Auguie, B.

B. Auguie, A. Mussot, A. Boucon, E. Lantz, and T. Sylvestre, “Ultralow chromatic dispersion measurement of optical fibers with a tunable fiber laser,” IEEE Photonics Technol. Lett. 18(17), 1825–1827 (2006).
[Crossref]

Barviau, B.

M. Droques, B. Barviau, A. Kudlinski, G. Bouwmans, and A. Mussot, “Simple method for measuring the zero-dispersion wavelength in optical fibers,” IEEE Photonics Technol. Lett. 23(10), 609–611 (2011).
[Crossref]

Bayart, D.

A. Mussot, E. Lantz, A. Durecu-Legrand, C. Simonneau, D. Bayart, T. Sylvestre, and H. Maillotte, “Zero-dispersion wavelength mapping in short single-mode optical fibers using parametric amplification,” IEEE Photonics Technol. Lett. 18(1), 22–24 (2006).
[Crossref]

Bedgood, M. A.

K. C. Byron, M. A. Bedgood, A. Finney, C. McGauran, S. Savory, and I. Watson, “Shifts in zero dispersion wavelength due to pressure, temperature and strain in dispersion shifted singlemode fibres,” Electron. Lett. 28(18), 1712–1714 (1992).
[Crossref]

Biancalana, F.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. S. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, “Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres,” Nature 424(6948), 511–515 (2003).
[Crossref]

Bickham, S. R.

Bigourd, D.

Blanco-Redondo, A.

A. Blanco-Redondo, C. M. de Sterke, J. E. Sipe, T. F. Krauss, B. J. Eggleton, and C. Husko, “Pure-quartic solitons,” Nat. Commun. 7(1), 10427 (2016).
[Crossref]

Boggio, J. M. C.

J. M. C. Boggio and H. L. Fragnito, “Simple four-wave-mixing-based method for measuring the ratio between the third- and fourth-order dispersion in optical fibers,” J. Opt. Soc. Am. B 24(9), 2046–2054 (2007).
[Crossref]

J. M. C. Boggio, S. Tenenbaum, J.D. Marconi, and H.L. Fragnito, “A novel method for measuring longitudinal variations of the zero dispersion wavelength in optical fibers,” in Proc. European Conference on Optical Communication (ECOC), September 2006, Cannes, France, paper Th1.5.2.

Boucon, A.

B. Auguie, A. Mussot, A. Boucon, E. Lantz, and T. Sylvestre, “Ultralow chromatic dispersion measurement of optical fibers with a tunable fiber laser,” IEEE Photonics Technol. Lett. 18(17), 1825–1827 (2006).
[Crossref]

Bouwmans, G.

M. Droques, B. Barviau, A. Kudlinski, G. Bouwmans, and A. Mussot, “Simple method for measuring the zero-dispersion wavelength in optical fibers,” IEEE Photonics Technol. Lett. 23(10), 609–611 (2011).
[Crossref]

Brener, I.

Byron, K. C.

K. C. Byron, M. A. Bedgood, A. Finney, C. McGauran, S. Savory, and I. Watson, “Shifts in zero dispersion wavelength due to pressure, temperature and strain in dispersion shifted singlemode fibres,” Electron. Lett. 28(18), 1712–1714 (1992).
[Crossref]

Callegari, F. A.

Cao, X.

L. Zong, F. Luo, Y. Wang, and X. Cao, “Dispersion compensation module for 100 Gbit/s optical system and beyond,” Opt. Fiber Technol. 17(3), 227–232 (2011).
[Crossref]

Capmany, J.

Chavez Boggio, J. M.

Chen, A.

Chen, A. Y. H.

Chen, H.

H. Chen, “Simultaneous measurements of non-linear coefficient, zero-dispersion wavelength and chromatic dispersion in dispersion-shifted fibers by four-wave mixing,” Opt. Commun. 220(4-6), 331–335 (2003).
[Crossref]

Chen, H. H.

Chen, J. S. Y.

Chiang, T. K.

Chikama, T.

H. Onaka, K. Otsuka, H. Miyata, and T. Chikama, “Measuring the longitudinal distribuition of four-wave-mixing efficiency in dispersion-shifted fibers,” IEEE Photonics Technol. Lett. 6(12), 1454–1456 (1994).
[Crossref]

Coen, S.

Corredera, P.

Dahman, I.

Dainese, P.

P. Dainese, G. S. Wiederhecker, A. A. Rieznik, H. L. Fragnito, and H. E. Hernandez-Figueroa, “Designing fiber dispersion for broadband parametric amplifiers,” IEEE-SBMO, International Microwave and Optoelectronics Conference (IMOC), 2005, pp. 1–3.

de Sterke, C. M.

A. Blanco-Redondo, C. M. de Sterke, J. E. Sipe, T. F. Krauss, B. J. Eggleton, and C. Husko, “Pure-quartic solitons,” Nat. Commun. 7(1), 10427 (2016).
[Crossref]

Derosier, R. M.

R. M. Jopson, M. Eiselt, R. H. Stolen, R. M. Derosier, A. M. Vengsarkar, and U. Koren, “Non-destructive dispersion-zero measurements along an optical fibre,” Electron. Lett. 31(24), 2115–2117 (1995).
[Crossref]

Droques, M.

M. Droques, B. Barviau, A. Kudlinski, G. Bouwmans, and A. Mussot, “Simple method for measuring the zero-dispersion wavelength in optical fibers,” IEEE Photonics Technol. Lett. 23(10), 609–611 (2011).
[Crossref]

Dudley, J. M.

J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge University, 2010).

Durecu-Legrand, A.

A. Mussot, E. Lantz, A. Durecu-Legrand, C. Simonneau, D. Bayart, T. Sylvestre, and H. Maillotte, “Zero-dispersion wavelength mapping in short single-mode optical fibers using parametric amplification,” IEEE Photonics Technol. Lett. 18(1), 22–24 (2006).
[Crossref]

Efimov, A.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. S. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, “Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres,” Nature 424(6948), 511–515 (2003).
[Crossref]

Eggleton, B. J.

A. Blanco-Redondo, C. M. de Sterke, J. E. Sipe, T. F. Krauss, B. J. Eggleton, and C. Husko, “Pure-quartic solitons,” Nat. Commun. 7(1), 10427 (2016).
[Crossref]

Eiselt, M.

M. Eiselt, R. M. Jopson, and R. H. Stolen, “‘‘Nondestructive position-resolved measurement of the zero-dipersion wavelength in an optical fiber,’,” J. Lightwave Technol. 15(1), 135–143 (1997).
[Crossref]

R. M. Jopson, M. Eiselt, R. H. Stolen, R. M. Derosier, A. M. Vengsarkar, and U. Koren, “Non-destructive dispersion-zero measurements along an optical fibre,” Electron. Lett. 31(24), 2115–2117 (1995).
[Crossref]

Fatome, J.

J. Fatome, S. Pitois, and G. Millot, “Measurement of nonlinear and chromatic dispersion parameters of optical fibers using modulation instability,” Opt. Fiber Technol. 12(3), 243–250 (2006).
[Crossref]

Fini, J. M.

Finney, A.

K. C. Byron, M. A. Bedgood, A. Finney, C. McGauran, S. Savory, and I. Watson, “Shifts in zero dispersion wavelength due to pressure, temperature and strain in dispersion shifted singlemode fibres,” Electron. Lett. 28(18), 1712–1714 (1992).
[Crossref]

Fleming, J. W.

Fleureau, A.

Floridia, C.

C. Floridia, M. L. Sundheimer, L. S. Menezes, and A. S. L. Gomes, “Optimization of spectrally flat and broadband single-pump fiber optic parametric amplifiers,” Opt. Commun. 223(4-6), 381–388 (2003).
[Crossref]

Fragnito, H. L.

A. Gil-Molina, A. Perez-Ramirez, J. C. Ramirez, L. H. Gabrielli, and H. L. Fragnito, “Shift of zero-dispersion wavelength in bent optical fibers,” Opt. Express 26(6), 6700–6714 (2018).
[Crossref]

L. H. Gabrielli, H. E. Hernández-Figueroa, and H. L. Fragnito, “Robustness optimization of fiber index profiles for optical parametric amplifiers,” J. Lightwave Technol. 27(24), 5571–5579 (2009).
[Crossref]

J. M. C. Boggio and H. L. Fragnito, “Simple four-wave-mixing-based method for measuring the ratio between the third- and fourth-order dispersion in optical fibers,” J. Opt. Soc. Am. B 24(9), 2046–2054 (2007).
[Crossref]

J. M. Chavez Boggio, J. D. Marconi, S. R. Bickham, and H. L. Fragnito, “Spectrally flat and broadband double- pumped fiber optical parametric amplifiers,” Opt. Express 15(9), 5288–5309 (2007).
[Crossref]

J. M. Chavez Boggio, J. D. Marconi, and H. L. Fragnito, “Double-pumped fiber optical parametric amplifier with flat gain over 47-nm bandwidth using a conventional dispersion-shifted fiber,” IEEE Photonics Technol. Lett. 17(9), 1842–1844 (2005).
[Crossref]

A. A. Rieznik, T. Tolisano, F. A. Callegari, D. F. Grosz, and H. L. Fragnito, “Uncertainty relation for the optimization of optical-fiber transmission systems simulations,” Opt. Express 13(10), 3822–3834 (2005).
[Crossref]

J. M. Chavez Boggio, S. Tenenbaum, and H. L. Fragnito, “Amplification of broadband noise pumped by two lasers in optical fibers,” J. Opt. Soc. Am. B 18(10), 1428–1435 (2001).
[Crossref]

C. Mazzali, D. F. Grosz, and H. L. Fragnito, “Simple method for measuring dispersion and nonlinear coefficient near the zero-dispersion wavelength of optical fibers,” IEEE Photonics Technol. Lett. 11(2), 251–253 (1999).
[Crossref]

P. Dainese, G. S. Wiederhecker, A. A. Rieznik, H. L. Fragnito, and H. E. Hernandez-Figueroa, “Designing fiber dispersion for broadband parametric amplifiers,” IEEE-SBMO, International Microwave and Optoelectronics Conference (IMOC), 2005, pp. 1–3.

A. Gil-Molina, I. A. Aldaya, and H. L. Fragnito, “Characterization of Fast Dispersion Fluctuations in Optical Fibers Using Incoherently Pumped Four-Wave Mixing,” Latin America Optics and Photonics Conference (LAOP), 2016, LTh3B-5.

Fragnito, H.L.

J. M. C. Boggio, S. Tenenbaum, J.D. Marconi, and H.L. Fragnito, “A novel method for measuring longitudinal variations of the zero dispersion wavelength in optical fibers,” in Proc. European Conference on Optical Communication (ECOC), September 2006, Cannes, France, paper Th1.5.2.

Gabrielli, L. H.

Galkovsky, L.

Gil-Molina, A.

A. Gil-Molina, A. Perez-Ramirez, J. C. Ramirez, L. H. Gabrielli, and H. L. Fragnito, “Shift of zero-dispersion wavelength in bent optical fibers,” Opt. Express 26(6), 6700–6714 (2018).
[Crossref]

A. Gil-Molina, I. A. Aldaya, and H. L. Fragnito, “Characterization of Fast Dispersion Fluctuations in Optical Fibers Using Incoherently Pumped Four-Wave Mixing,” Latin America Optics and Photonics Conference (LAOP), 2016, LTh3B-5.

Gomes, A. S. L.

C. Floridia, M. L. Sundheimer, L. S. Menezes, and A. S. L. Gomes, “Optimization of spectrally flat and broadband single-pump fiber optic parametric amplifiers,” Opt. Commun. 223(4-6), 381–388 (2003).
[Crossref]

González Herráez, M.

Gonzalez-Herráez, M.

Goodman, J. W.

J. W. Goodman, Statistical Optics, 2nd ed. (John Wiley & Sons, 2015).

Grosz, D. F.

A. A. Rieznik, T. Tolisano, F. A. Callegari, D. F. Grosz, and H. L. Fragnito, “Uncertainty relation for the optimization of optical-fiber transmission systems simulations,” Opt. Express 13(10), 3822–3834 (2005).
[Crossref]

C. Mazzali, D. F. Grosz, and H. L. Fragnito, “Simple method for measuring dispersion and nonlinear coefficient near the zero-dispersion wavelength of optical fibers,” IEEE Photonics Technol. Lett. 11(2), 251–253 (1999).
[Crossref]

Grüner-Nielsen, L.

Ha, S.

Habert, R.

Harvey, J.

Harvey, J. D.

Hernandez-Figueroa, H. E.

P. Dainese, G. S. Wiederhecker, A. A. Rieznik, H. L. Fragnito, and H. E. Hernandez-Figueroa, “Designing fiber dispersion for broadband parametric amplifiers,” IEEE-SBMO, International Microwave and Optoelectronics Conference (IMOC), 2005, pp. 1–3.

Hernández-Figueroa, H. E.

Hernanz, M. L.

Hirano, M.

M. Hirano, T. Nakanishi, T. Okuno, and M. Onishi, “Silica-based highly nonlinear fibers and their application,” IEEE J. Sel. Top. Quantum Electron. 15(1), 103–113 (2009).
[Crossref]

Hugonnot, E.

Husko, C.

A. Blanco-Redondo, C. M. de Sterke, J. E. Sipe, T. F. Krauss, B. J. Eggleton, and C. Husko, “Pure-quartic solitons,” Nat. Commun. 7(1), 10427 (2016).
[Crossref]

Jaeger, R. E.

S. H. Wemple, D. A. Pinnow, T. C. Rich, R. E. Jaeger, and L. G. Van Uitert, “Binary SiO2-B2O3 glass system: Refractive index behavior and energy gap considerations,” J. Appl. Phys. 44(12), 5432–5437 (1973).
[Crossref]

Joly, N.

Jopson, R. M.

M. Eiselt, R. M. Jopson, and R. H. Stolen, “‘‘Nondestructive position-resolved measurement of the zero-dipersion wavelength in an optical fiber,’,” J. Lightwave Technol. 15(1), 135–143 (1997).
[Crossref]

R. M. Jopson, M. Eiselt, R. H. Stolen, R. M. Derosier, A. M. Vengsarkar, and U. Koren, “Non-destructive dispersion-zero measurements along an optical fibre,” Electron. Lett. 31(24), 2115–2117 (1995).
[Crossref]

Kagi, N.

Karlsson, M.

M. Karlsson, “Four-wave mixing in fibers with randomly varying zero-dispersion wavelength,” J. Opt. Soc. Am. B 15(8), 2269–2275 (1998).
[Crossref]

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51(3), 2602–2607 (1995).
[Crossref]

Kazovsky, L. G.

M. E. Marhic, K. K.-Y. Wong, and L. G. Kazovsky, “Wide-band tuning of the gain spectra of one-pump fiber optical parametric amplifiers,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1133–1141 (2004).
[Crossref]

M. E. Marhic, N. Kagi, T. K. Chiang, and L. G. Kazovsky, “Broadband fiber optical parametric amplifiers,” Opt. Lett. 21(8), 573–575 (1996).
[Crossref]

Knight, J.

Knight, J. C.

A. Y. H. Chen, G. K. L. Wong, S. G. Murdoch, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Widely tunable optical parametric generation in a photonic crystal fiber,” Opt. Lett. 30(7), 762–764 (2005).
[Crossref]

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. S. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, “Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres,” Nature 424(6948), 511–515 (2003).
[Crossref]

Koren, U.

R. M. Jopson, M. Eiselt, R. H. Stolen, R. M. Derosier, A. M. Vengsarkar, and U. Koren, “Non-destructive dispersion-zero measurements along an optical fibre,” Electron. Lett. 31(24), 2115–2117 (1995).
[Crossref]

Krauss, T. F.

A. Blanco-Redondo, C. M. de Sterke, J. E. Sipe, T. F. Krauss, B. J. Eggleton, and C. Husko, “Pure-quartic solitons,” Nat. Commun. 7(1), 10427 (2016).
[Crossref]

Kruhlak, R.

Kudlinski, A.

Kuo, B. P.-P.

Kuwaki, N.

N. Kuwaki and M. Ohashi, “Evaluation of longitudinal chromatic dispersion,” J. Lightwave Technol. 8(10), 1476–1481 (1990).
[Crossref]

Lago, L.

Lantz, E.

A. Mussot, E. Lantz, A. Durecu-Legrand, C. Simonneau, D. Bayart, T. Sylvestre, and H. Maillotte, “Zero-dispersion wavelength mapping in short single-mode optical fibers using parametric amplification,” IEEE Photonics Technol. Lett. 18(1), 22–24 (2006).
[Crossref]

B. Auguie, A. Mussot, A. Boucon, E. Lantz, and T. Sylvestre, “Ultralow chromatic dispersion measurement of optical fibers with a tunable fiber laser,” IEEE Photonics Technol. Lett. 18(17), 1825–1827 (2006).
[Crossref]

Lee, D. D.

Lee, M. W.

Lee, Y. C.

Lempereur, S.

Leonhardt, R.

Lin, Q.

F. Yaman, Q. Lin, S. Radic, and G. P. Agrawal, “Impact of dispersion fluctuations on dual-pump fiber-optic parametric amplifiers,” IEEE Photonics Technol. Lett. 16(5), 1292–1294 (2004).
[Crossref]

Luo, F.

L. Zong, F. Luo, Y. Wang, and X. Cao, “Dispersion compensation module for 100 Gbit/s optical system and beyond,” Opt. Fiber Technol. 17(3), 227–232 (2011).
[Crossref]

Maillotte, H.

A. Mussot, E. Lantz, A. Durecu-Legrand, C. Simonneau, D. Bayart, T. Sylvestre, and H. Maillotte, “Zero-dispersion wavelength mapping in short single-mode optical fibers using parametric amplification,” IEEE Photonics Technol. Lett. 18(1), 22–24 (2006).
[Crossref]

Mamyshev, P. V.

Mandel, L.

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics, (Cambridge University, 1995).

Marconi, J. D.

J. M. Chavez Boggio, J. D. Marconi, S. R. Bickham, and H. L. Fragnito, “Spectrally flat and broadband double- pumped fiber optical parametric amplifiers,” Opt. Express 15(9), 5288–5309 (2007).
[Crossref]

J. M. Chavez Boggio, J. D. Marconi, and H. L. Fragnito, “Double-pumped fiber optical parametric amplifier with flat gain over 47-nm bandwidth using a conventional dispersion-shifted fiber,” IEEE Photonics Technol. Lett. 17(9), 1842–1844 (2005).
[Crossref]

Marconi, J.D.

J. M. C. Boggio, S. Tenenbaum, J.D. Marconi, and H.L. Fragnito, “A novel method for measuring longitudinal variations of the zero dispersion wavelength in optical fibers,” in Proc. European Conference on Optical Communication (ECOC), September 2006, Cannes, France, paper Th1.5.2.

Marhic, M. E.

M. E. Marhic, K. K.-Y. Wong, and L. G. Kazovsky, “Wide-band tuning of the gain spectra of one-pump fiber optical parametric amplifiers,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1133–1141 (2004).
[Crossref]

M. E. Marhic, N. Kagi, T. K. Chiang, and L. G. Kazovsky, “Broadband fiber optical parametric amplifiers,” Opt. Lett. 21(8), 573–575 (1996).
[Crossref]

Mazzali, C.

C. Mazzali, D. F. Grosz, and H. L. Fragnito, “Simple method for measuring dispersion and nonlinear coefficient near the zero-dispersion wavelength of optical fibers,” IEEE Photonics Technol. Lett. 11(2), 251–253 (1999).
[Crossref]

McGauran, C.

K. C. Byron, M. A. Bedgood, A. Finney, C. McGauran, S. Savory, and I. Watson, “Shifts in zero dispersion wavelength due to pressure, temperature and strain in dispersion shifted singlemode fibres,” Electron. Lett. 28(18), 1712–1714 (1992).
[Crossref]

Méndez, J. A.

Menezes, L. S.

C. Floridia, M. L. Sundheimer, L. S. Menezes, and A. S. L. Gomes, “Optimization of spectrally flat and broadband single-pump fiber optic parametric amplifiers,” Opt. Commun. 223(4-6), 381–388 (2003).
[Crossref]

Menyuk, C. R.

Millot, G.

J. Fatome, S. Pitois, and G. Millot, “Measurement of nonlinear and chromatic dispersion parameters of optical fibers using modulation instability,” Opt. Fiber Technol. 12(3), 243–250 (2006).
[Crossref]

S. Pitois and G. Millot, “Experimental observation of a new modulational instability spectral window induced by fourth-order dispersion in a normally dispersive single-mode optical fiber,” Opt. Commun. 226(1-6), 415–422 (2003).
[Crossref]

Mitra, F.

Mitra, P. P.

Miyata, H.

H. Onaka, K. Otsuka, H. Miyata, and T. Chikama, “Measuring the longitudinal distribuition of four-wave-mixing efficiency in dispersion-shifted fibers,” IEEE Photonics Technol. Lett. 6(12), 1454–1456 (1994).
[Crossref]

Mlin, G.

Mollenauer, L. F.

Murdoch, S.

Murdoch, S. G.

Mussot, A.

A. Mussot, A. Kudlinski, R. Habert, I. Dahman, G. Mlin, L. Galkovsky, A. Fleureau, S. Lempereur, L. Lago, D. Bigourd, T. Sylvestre, M. W. Lee, and E. Hugonnot, “20 THz-bandwidth continuous-wave fiber optical parametric amplifier operating at 1 µm using a dispersion-stabilized photonic crystal fiber,” Opt. Express 20(27), 28906–28911 (2012).
[Crossref]

M. Droques, B. Barviau, A. Kudlinski, G. Bouwmans, and A. Mussot, “Simple method for measuring the zero-dispersion wavelength in optical fibers,” IEEE Photonics Technol. Lett. 23(10), 609–611 (2011).
[Crossref]

A. Mussot, E. Lantz, A. Durecu-Legrand, C. Simonneau, D. Bayart, T. Sylvestre, and H. Maillotte, “Zero-dispersion wavelength mapping in short single-mode optical fibers using parametric amplification,” IEEE Photonics Technol. Lett. 18(1), 22–24 (2006).
[Crossref]

B. Auguie, A. Mussot, A. Boucon, E. Lantz, and T. Sylvestre, “Ultralow chromatic dispersion measurement of optical fibers with a tunable fiber laser,” IEEE Photonics Technol. Lett. 18(17), 1825–1827 (2006).
[Crossref]

Myslivets, E.

Nakanishi, T.

M. Hirano, T. Nakanishi, T. Okuno, and M. Onishi, “Silica-based highly nonlinear fibers and their application,” IEEE J. Sel. Top. Quantum Electron. 15(1), 103–113 (2009).
[Crossref]

Nakazawa, M.

M. Nakazawa, T. Yamamoto, and K. R. Tamura, “1.28 Tbit/s-70 km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator,” Electron. Lett. 36(24), 2027–2029 (2000).
[Crossref]

Neubelt, M. J.

Nishi, S.

S. Nishi and M. Saruwatari, “‘‘Technique for measuring the distributed zero dispersion wavelength of optical fibers using pulse amplification caused by modulation instability,’,” Electron. Lett. 31(3), 225–226 (1995).
[Crossref]

Ohashi, M.

N. Kuwaki and M. Ohashi, “Evaluation of longitudinal chromatic dispersion,” J. Lightwave Technol. 8(10), 1476–1481 (1990).
[Crossref]

Okuno, T.

M. Hirano, T. Nakanishi, T. Okuno, and M. Onishi, “Silica-based highly nonlinear fibers and their application,” IEEE J. Sel. Top. Quantum Electron. 15(1), 103–113 (2009).
[Crossref]

Omenetto, F. G.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. S. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, “Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres,” Nature 424(6948), 511–515 (2003).
[Crossref]

Onaka, H.

H. Onaka, K. Otsuka, H. Miyata, and T. Chikama, “Measuring the longitudinal distribuition of four-wave-mixing efficiency in dispersion-shifted fibers,” IEEE Photonics Technol. Lett. 6(12), 1454–1456 (1994).
[Crossref]

Onishi, M.

M. Hirano, T. Nakanishi, T. Okuno, and M. Onishi, “Silica-based highly nonlinear fibers and their application,” IEEE J. Sel. Top. Quantum Electron. 15(1), 103–113 (2009).
[Crossref]

Ortega, B.

Otsuka, K.

H. Onaka, K. Otsuka, H. Miyata, and T. Chikama, “Measuring the longitudinal distribuition of four-wave-mixing efficiency in dispersion-shifted fibers,” IEEE Photonics Technol. Lett. 6(12), 1454–1456 (1994).
[Crossref]

Pastor, D.

Perez-Ramirez, A.

Pinnow, D. A.

S. H. Wemple, D. A. Pinnow, T. C. Rich, R. E. Jaeger, and L. G. Van Uitert, “Binary SiO2-B2O3 glass system: Refractive index behavior and energy gap considerations,” J. Appl. Phys. 44(12), 5432–5437 (1973).
[Crossref]

Pitois, S.

J. Fatome, S. Pitois, and G. Millot, “Measurement of nonlinear and chromatic dispersion parameters of optical fibers using modulation instability,” Opt. Fiber Technol. 12(3), 243–250 (2006).
[Crossref]

S. Pitois and G. Millot, “Experimental observation of a new modulational instability spectral window induced by fourth-order dispersion in a normally dispersive single-mode optical fiber,” Opt. Commun. 226(1-6), 415–422 (2003).
[Crossref]

Radic, S.

Ramirez, J. C.

Reeves, W. H.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. S. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, “Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres,” Nature 424(6948), 511–515 (2003).
[Crossref]

Rich, T. C.

S. H. Wemple, D. A. Pinnow, T. C. Rich, R. E. Jaeger, and L. G. Van Uitert, “Binary SiO2-B2O3 glass system: Refractive index behavior and energy gap considerations,” J. Appl. Phys. 44(12), 5432–5437 (1973).
[Crossref]

Rieznik, A. A.

A. A. Rieznik, T. Tolisano, F. A. Callegari, D. F. Grosz, and H. L. Fragnito, “Uncertainty relation for the optimization of optical-fiber transmission systems simulations,” Opt. Express 13(10), 3822–3834 (2005).
[Crossref]

P. Dainese, G. S. Wiederhecker, A. A. Rieznik, H. L. Fragnito, and H. E. Hernandez-Figueroa, “Designing fiber dispersion for broadband parametric amplifiers,” IEEE-SBMO, International Microwave and Optoelectronics Conference (IMOC), 2005, pp. 1–3.

Russell, P. S. J.

Sales, S.

Saruwatari, M.

S. Nishi and M. Saruwatari, “‘‘Technique for measuring the distributed zero dispersion wavelength of optical fibers using pulse amplification caused by modulation instability,’,” Electron. Lett. 31(3), 225–226 (1995).
[Crossref]

Savory, S.

K. C. Byron, M. A. Bedgood, A. Finney, C. McGauran, S. Savory, and I. Watson, “Shifts in zero dispersion wavelength due to pressure, temperature and strain in dispersion shifted singlemode fibres,” Electron. Lett. 28(18), 1712–1714 (1992).
[Crossref]

Simonneau, C.

A. Mussot, E. Lantz, A. Durecu-Legrand, C. Simonneau, D. Bayart, T. Sylvestre, and H. Maillotte, “Zero-dispersion wavelength mapping in short single-mode optical fibers using parametric amplification,” IEEE Photonics Technol. Lett. 18(1), 22–24 (2006).
[Crossref]

Sipe, J. E.

A. Blanco-Redondo, C. M. de Sterke, J. E. Sipe, T. F. Krauss, B. J. Eggleton, and C. Husko, “Pure-quartic solitons,” Nat. Commun. 7(1), 10427 (2016).
[Crossref]

Skryabin, D. V.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. S. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, “Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres,” Nature 424(6948), 511–515 (2003).
[Crossref]

Song, K.-Y.

Sterke, M.

Stolen, R. H.

M. Eiselt, R. M. Jopson, and R. H. Stolen, “‘‘Nondestructive position-resolved measurement of the zero-dipersion wavelength in an optical fiber,’,” J. Lightwave Technol. 15(1), 135–143 (1997).
[Crossref]

R. M. Jopson, M. Eiselt, R. H. Stolen, R. M. Derosier, A. M. Vengsarkar, and U. Koren, “Non-destructive dispersion-zero measurements along an optical fibre,” Electron. Lett. 31(24), 2115–2117 (1995).
[Crossref]

Sundheimer, M. L.

C. Floridia, M. L. Sundheimer, L. S. Menezes, and A. S. L. Gomes, “Optimization of spectrally flat and broadband single-pump fiber optic parametric amplifiers,” Opt. Commun. 223(4-6), 381–388 (2003).
[Crossref]

Sylvestre, T.

A. Mussot, A. Kudlinski, R. Habert, I. Dahman, G. Mlin, L. Galkovsky, A. Fleureau, S. Lempereur, L. Lago, D. Bigourd, T. Sylvestre, M. W. Lee, and E. Hugonnot, “20 THz-bandwidth continuous-wave fiber optical parametric amplifier operating at 1 µm using a dispersion-stabilized photonic crystal fiber,” Opt. Express 20(27), 28906–28911 (2012).
[Crossref]

A. Mussot, E. Lantz, A. Durecu-Legrand, C. Simonneau, D. Bayart, T. Sylvestre, and H. Maillotte, “Zero-dispersion wavelength mapping in short single-mode optical fibers using parametric amplification,” IEEE Photonics Technol. Lett. 18(1), 22–24 (2006).
[Crossref]

B. Auguie, A. Mussot, A. Boucon, E. Lantz, and T. Sylvestre, “Ultralow chromatic dispersion measurement of optical fibers with a tunable fiber laser,” IEEE Photonics Technol. Lett. 18(17), 1825–1827 (2006).
[Crossref]

Tamura, K. R.

M. Nakazawa, T. Yamamoto, and K. R. Tamura, “1.28 Tbit/s-70 km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator,” Electron. Lett. 36(24), 2027–2029 (2000).
[Crossref]

Taylor, A. J.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. S. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, “Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres,” Nature 424(6948), 511–515 (2003).
[Crossref]

Taylor, J. R.

J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge University, 2010).

Tenenbaum, S.

J. M. Chavez Boggio, S. Tenenbaum, and H. L. Fragnito, “Amplification of broadband noise pumped by two lasers in optical fibers,” J. Opt. Soc. Am. B 18(10), 1428–1435 (2001).
[Crossref]

J. M. C. Boggio, S. Tenenbaum, J.D. Marconi, and H.L. Fragnito, “A novel method for measuring longitudinal variations of the zero dispersion wavelength in optical fibers,” in Proc. European Conference on Optical Communication (ECOC), September 2006, Cannes, France, paper Th1.5.2.

Thévenaz, L.

Thomson, D. J.

Tolisano, T.

Van Uitert, L. G.

S. H. Wemple, D. A. Pinnow, T. C. Rich, R. E. Jaeger, and L. G. Van Uitert, “Binary SiO2-B2O3 glass system: Refractive index behavior and energy gap considerations,” J. Appl. Phys. 44(12), 5432–5437 (1973).
[Crossref]

Vengsarkar, A. M.

R. M. Jopson, M. Eiselt, R. H. Stolen, R. M. Derosier, A. M. Vengsarkar, and U. Koren, “Non-destructive dispersion-zero measurements along an optical fibre,” Electron. Lett. 31(24), 2115–2117 (1995).
[Crossref]

Wadsworth, W.

Wadsworth, W. J.

Wai, P. K. A.

Wang, Y.

L. Zong, F. Luo, Y. Wang, and X. Cao, “Dispersion compensation module for 100 Gbit/s optical system and beyond,” Opt. Fiber Technol. 17(3), 227–232 (2011).
[Crossref]

Watson, I.

K. C. Byron, M. A. Bedgood, A. Finney, C. McGauran, S. Savory, and I. Watson, “Shifts in zero dispersion wavelength due to pressure, temperature and strain in dispersion shifted singlemode fibres,” Electron. Lett. 28(18), 1712–1714 (1992).
[Crossref]

Wemple, S. H.

S. H. Wemple, D. A. Pinnow, T. C. Rich, R. E. Jaeger, and L. G. Van Uitert, “Binary SiO2-B2O3 glass system: Refractive index behavior and energy gap considerations,” J. Appl. Phys. 44(12), 5432–5437 (1973).
[Crossref]

Wiederhecker, G. S.

P. Dainese, G. S. Wiederhecker, A. A. Rieznik, H. L. Fragnito, and H. E. Hernandez-Figueroa, “Designing fiber dispersion for broadband parametric amplifiers,” IEEE-SBMO, International Microwave and Optoelectronics Conference (IMOC), 2005, pp. 1–3.

Windmiller, J. R.

Wolf, E.

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics, (Cambridge University, 1995).

Wong, G.

Wong, G. K. L.

Wong, K. K.-Y.

M. E. Marhic, K. K.-Y. Wong, and L. G. Kazovsky, “Wide-band tuning of the gain spectra of one-pump fiber optical parametric amplifiers,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1133–1141 (2004).
[Crossref]

Yamamoto, T.

M. Nakazawa, T. Yamamoto, and K. R. Tamura, “1.28 Tbit/s-70 km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator,” Electron. Lett. 36(24), 2027–2029 (2000).
[Crossref]

Yaman, F.

F. Yaman, Q. Lin, S. Radic, and G. P. Agrawal, “Impact of dispersion fluctuations on dual-pump fiber-optic parametric amplifiers,” IEEE Photonics Technol. Lett. 16(5), 1292–1294 (2004).
[Crossref]

Zong, L.

L. Zong, F. Luo, Y. Wang, and X. Cao, “Dispersion compensation module for 100 Gbit/s optical system and beyond,” Opt. Fiber Technol. 17(3), 227–232 (2011).
[Crossref]

Appl. Opt. (1)

Electron. Lett. (4)

K. C. Byron, M. A. Bedgood, A. Finney, C. McGauran, S. Savory, and I. Watson, “Shifts in zero dispersion wavelength due to pressure, temperature and strain in dispersion shifted singlemode fibres,” Electron. Lett. 28(18), 1712–1714 (1992).
[Crossref]

R. M. Jopson, M. Eiselt, R. H. Stolen, R. M. Derosier, A. M. Vengsarkar, and U. Koren, “Non-destructive dispersion-zero measurements along an optical fibre,” Electron. Lett. 31(24), 2115–2117 (1995).
[Crossref]

S. Nishi and M. Saruwatari, “‘‘Technique for measuring the distributed zero dispersion wavelength of optical fibers using pulse amplification caused by modulation instability,’,” Electron. Lett. 31(3), 225–226 (1995).
[Crossref]

M. Nakazawa, T. Yamamoto, and K. R. Tamura, “1.28 Tbit/s-70 km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator,” Electron. Lett. 36(24), 2027–2029 (2000).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

M. Hirano, T. Nakanishi, T. Okuno, and M. Onishi, “Silica-based highly nonlinear fibers and their application,” IEEE J. Sel. Top. Quantum Electron. 15(1), 103–113 (2009).
[Crossref]

M. E. Marhic, K. K.-Y. Wong, and L. G. Kazovsky, “Wide-band tuning of the gain spectra of one-pump fiber optical parametric amplifiers,” IEEE J. Sel. Top. Quantum Electron. 10(5), 1133–1141 (2004).
[Crossref]

IEEE Photonics Technol. Lett. (7)

F. Yaman, Q. Lin, S. Radic, and G. P. Agrawal, “Impact of dispersion fluctuations on dual-pump fiber-optic parametric amplifiers,” IEEE Photonics Technol. Lett. 16(5), 1292–1294 (2004).
[Crossref]

J. M. Chavez Boggio, J. D. Marconi, and H. L. Fragnito, “Double-pumped fiber optical parametric amplifier with flat gain over 47-nm bandwidth using a conventional dispersion-shifted fiber,” IEEE Photonics Technol. Lett. 17(9), 1842–1844 (2005).
[Crossref]

B. Auguie, A. Mussot, A. Boucon, E. Lantz, and T. Sylvestre, “Ultralow chromatic dispersion measurement of optical fibers with a tunable fiber laser,” IEEE Photonics Technol. Lett. 18(17), 1825–1827 (2006).
[Crossref]

M. Droques, B. Barviau, A. Kudlinski, G. Bouwmans, and A. Mussot, “Simple method for measuring the zero-dispersion wavelength in optical fibers,” IEEE Photonics Technol. Lett. 23(10), 609–611 (2011).
[Crossref]

H. Onaka, K. Otsuka, H. Miyata, and T. Chikama, “Measuring the longitudinal distribuition of four-wave-mixing efficiency in dispersion-shifted fibers,” IEEE Photonics Technol. Lett. 6(12), 1454–1456 (1994).
[Crossref]

A. Mussot, E. Lantz, A. Durecu-Legrand, C. Simonneau, D. Bayart, T. Sylvestre, and H. Maillotte, “Zero-dispersion wavelength mapping in short single-mode optical fibers using parametric amplification,” IEEE Photonics Technol. Lett. 18(1), 22–24 (2006).
[Crossref]

C. Mazzali, D. F. Grosz, and H. L. Fragnito, “Simple method for measuring dispersion and nonlinear coefficient near the zero-dispersion wavelength of optical fibers,” IEEE Photonics Technol. Lett. 11(2), 251–253 (1999).
[Crossref]

J. Appl. Phys. (1)

S. H. Wemple, D. A. Pinnow, T. C. Rich, R. E. Jaeger, and L. G. Van Uitert, “Binary SiO2-B2O3 glass system: Refractive index behavior and energy gap considerations,” J. Appl. Phys. 44(12), 5432–5437 (1973).
[Crossref]

J. Lightwave Technol. (5)

J. Opt. Soc. Am. B (3)

Nat. Commun. (1)

A. Blanco-Redondo, C. M. de Sterke, J. E. Sipe, T. F. Krauss, B. J. Eggleton, and C. Husko, “Pure-quartic solitons,” Nat. Commun. 7(1), 10427 (2016).
[Crossref]

Nature (1)

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. S. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, “Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres,” Nature 424(6948), 511–515 (2003).
[Crossref]

Opt. Commun. (3)

C. Floridia, M. L. Sundheimer, L. S. Menezes, and A. S. L. Gomes, “Optimization of spectrally flat and broadband single-pump fiber optic parametric amplifiers,” Opt. Commun. 223(4-6), 381–388 (2003).
[Crossref]

S. Pitois and G. Millot, “Experimental observation of a new modulational instability spectral window induced by fourth-order dispersion in a normally dispersive single-mode optical fiber,” Opt. Commun. 226(1-6), 415–422 (2003).
[Crossref]

H. Chen, “Simultaneous measurements of non-linear coefficient, zero-dispersion wavelength and chromatic dispersion in dispersion-shifted fibers by four-wave mixing,” Opt. Commun. 220(4-6), 331–335 (2003).
[Crossref]

Opt. Express (8)

J. S. Y. Chen, S. G. Murdoch, R. Leonhardt, and J. D. Harvey, “Effect of dispersion fluctuations on widely tunable optical parametric amplification in photonic crystal fibers,” Opt. Express 14(20), 9491–9501 (2006).
[Crossref]

J. M. Chavez Boggio, J. D. Marconi, S. R. Bickham, and H. L. Fragnito, “Spectrally flat and broadband double- pumped fiber optical parametric amplifiers,” Opt. Express 15(9), 5288–5309 (2007).
[Crossref]

B. P.-P. Kuo, J. M. Fini, L. Grüner-Nielsen, and S. Radic, “Dispersion-stabilized highly-nonlinear fiber for wide band parametric mixer synthesis,” Opt. Express 20(17), 18611–18619 (2012).
[Crossref]

A. Mussot, A. Kudlinski, R. Habert, I. Dahman, G. Mlin, L. Galkovsky, A. Fleureau, S. Lempereur, L. Lago, D. Bigourd, T. Sylvestre, M. W. Lee, and E. Hugonnot, “20 THz-bandwidth continuous-wave fiber optical parametric amplifier operating at 1 µm using a dispersion-stabilized photonic crystal fiber,” Opt. Express 20(27), 28906–28911 (2012).
[Crossref]

A. Gil-Molina, A. Perez-Ramirez, J. C. Ramirez, L. H. Gabrielli, and H. L. Fragnito, “Shift of zero-dispersion wavelength in bent optical fibers,” Opt. Express 26(6), 6700–6714 (2018).
[Crossref]

F. Mitra and M. Sterke, “Parametric amplification in presence of dispersion fluctuations,” Opt. Express 12(1), 136–142 (2004).
[Crossref]

A. A. Rieznik, T. Tolisano, F. A. Callegari, D. F. Grosz, and H. L. Fragnito, “Uncertainty relation for the optimization of optical-fiber transmission systems simulations,” Opt. Express 13(10), 3822–3834 (2005).
[Crossref]

G. K. L. Wong, A. Chen, S. Ha, R. Kruhlak, S. Murdoch, R. Leonhardt, J. Harvey, and N. Joly, “Characterization of chromatic dispersion in photonic crystal fibers using scalar modulation instability,” Opt. Express 13(21), 8662–8670 (2005).
[Crossref]

Opt. Fiber Technol. (2)

J. Fatome, S. Pitois, and G. Millot, “Measurement of nonlinear and chromatic dispersion parameters of optical fibers using modulation instability,” Opt. Fiber Technol. 12(3), 243–250 (2006).
[Crossref]

L. Zong, F. Luo, Y. Wang, and X. Cao, “Dispersion compensation module for 100 Gbit/s optical system and beyond,” Opt. Fiber Technol. 17(3), 227–232 (2011).
[Crossref]

Opt. Lett. (8)

I. Brener, P. P. Mitra, D. D. Lee, and D. J. Thomson, “High-resolution zero-dispersion wavelength mapping in single-mode fiber,” Opt. Lett. 23(19), 1520–1522 (1998).
[Crossref]

M. E. Marhic, N. Kagi, T. K. Chiang, and L. G. Kazovsky, “Broadband fiber optical parametric amplifiers,” Opt. Lett. 21(8), 573–575 (1996).
[Crossref]

L. F. Mollenauer, P. V. Mamyshev, and M. J. Neubelt, “Method for facile and accurate measurement of optical fiber dispersion maps,” Opt. Lett. 21(21), 1724–1726 (1996).
[Crossref]

P. K. A. Wai, C. R. Menyuk, H. H. Chen, and Y. C. Lee, “Soliton at the zero-group-dispersion wavelength of a single-mode fiber,” Opt. Lett. 12(8), 628–630 (1987).
[Crossref]

A. Y. H. Chen, G. K. L. Wong, S. G. Murdoch, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Widely tunable optical parametric generation in a photonic crystal fiber,” Opt. Lett. 30(7), 762–764 (2005).
[Crossref]

J. Capmany, D. Pastor, S. Sales, and B. Ortega, “Effects of fourth-order dispersion in very high-speed optical time-division multiplexed transmission,” Opt. Lett. 27(11), 960–962 (2002).
[Crossref]

M. Gonzalez-Herráez, P. Corredera, M. L. Hernanz, and J. A. Méndez, “Retrieval of the zero-dispersion wavelength map of an optical fiber from measurement of its continuous wave four-wave mixing efficiency,” Opt. Lett. 27(17), 1546–1548 (2002).
[Crossref]

J. Harvey, R. Leonhardt, S. Coen, G. Wong, J. Knight, W. Wadsworth, and P. S. J. Russell, “Scalar modulation instability in the normal dispersion regime by use of a photonic crystal fiber,” Opt. Lett. 28(22), 2225–2227 (2003).
[Crossref]

Phys. Rev. A (1)

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51(3), 2602–2607 (1995).
[Crossref]

Other (7)

G. P. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic, 2013).

J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge University, 2010).

P. Dainese, G. S. Wiederhecker, A. A. Rieznik, H. L. Fragnito, and H. E. Hernandez-Figueroa, “Designing fiber dispersion for broadband parametric amplifiers,” IEEE-SBMO, International Microwave and Optoelectronics Conference (IMOC), 2005, pp. 1–3.

J. M. C. Boggio, S. Tenenbaum, J.D. Marconi, and H.L. Fragnito, “A novel method for measuring longitudinal variations of the zero dispersion wavelength in optical fibers,” in Proc. European Conference on Optical Communication (ECOC), September 2006, Cannes, France, paper Th1.5.2.

J. W. Goodman, Statistical Optics, 2nd ed. (John Wiley & Sons, 2015).

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics, (Cambridge University, 1995).

A. Gil-Molina, I. A. Aldaya, and H. L. Fragnito, “Characterization of Fast Dispersion Fluctuations in Optical Fibers Using Incoherently Pumped Four-Wave Mixing,” Latin America Optics and Photonics Conference (LAOP), 2016, LTh3B-5.

Supplementary Material (1)

NameDescription
» Visualization 1       Visualization 1

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Dispersion-mapping experimental setup: EDFA, erbium-doped fiber amplifier; MZM, Mach-Zehnder modulator; PPG, pulse pattern generator; PC, polarization controller; TDL, time delay line; HNLF, highly-nonlinear fiber; BPF, optical bandpass filter; WDM, wavelength division multiplexer; DSF, dispersion shifted fiber; HPF, optical high-pass filter; LPF, optical low-pass filter; OSA, optical spectrum analyzer.
Fig. 2.
Fig. 2. Temporal and spectral characteristics of the experiments: (a) Pump and (b) laser pulses at the input of the FUT (measured by an oscilloscope with a 28 GHz built-in detector). (c) Optical spectrum at the input of the FUT and at the output, after the high-pass optical filter. Both spectra were measured with ${\lambda _\ell } = $ 1627.56 nm and a resolution bandwidth of 100 pm.
Fig. 3.
Fig. 3. Normalized FWM power spectra generated by an incoherent pump and a comparatively weak laser (at ${\lambda _\ell } = $ 1632.54 nm): (a) CW sources; (b) pulsed sources with a relative delay adjusted to superimpose the pulses at four different segments of the same fiber. All spectra were measured with a resolution bandwidth of 10 pm.
Fig. 4.
Fig. 4. Maps for (a) ${\lambda _0}$ and (b) ${\beta _3}/{\beta _4}$. The symbols (squares and triangles) represent the measured mean values and the measured standard deviations are represented by the shadowed areas.
Fig. 5.
Fig. 5. Normalized FWM power spectrum along the fiber length with ${\lambda _\ell } = $ 1632.54 nm. (a) Measured spectra with a resolution bandwidth of 10 pm. (b) Simulated spectra using the generalized NLSE (each spectrum is averaged over 100 realizations).
Fig. 6.
Fig. 6. Simulation scenario of two consecutive fibers with different ${\lambda _0}$ (1550.55 and 1550.45 nm), same HOD parameters (${\beta _3} = $ 0.123 ps3/km and ${\beta _4} = $ –5.6×10-4 ps4/km) and ${\lambda _\ell } = $ 1627.6 nm. (a) calculated FWM power spectrum along the fibers in steps of ${\varDelta }L \approx $ 45 m. (b) Power transition between FWM peaks in steps of ${\varDelta }L \approx $ 2.25 m. Visualization 1 in Supplementary Material shows an animation of the pulses propagation and the evolution of the FWM power spectrum.
Fig. 7.
Fig. 7. Simulation scenario of three consecutive fibers. (a) The first and third fibers are identical, with ${\lambda _0} = $ 1550.65 nm, and the second fiber has ${\lambda _0} = $ 1550.35 nm (HOD parameters ${\beta _3} = $ 0.123 ps3/km and ${\beta _4} = $ –5.6×10-4 ps4/km were kept constant in all fibers). (b) Calculated FWM power spectrum (with ${\lambda _\ell } = $ 1627.6 nm) for different values of ${L_2}$.
Fig. 8.
Fig. 8. (a) Measured and modeled refractive index profile at 1550 nm. (b) Calculated ${\lambda _0}$ (left axis) and ${\beta _3}/{\beta _4}$ (right axis) as a function of the relative change in fiber geometry.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

A F W M ( ν ) = i γ E A 1 A 2 f ( ν , ν 1 ) d ν 1 ,
f ( ν , ν 1 ) = z 1 z 2 e i Δ β ¯ z d z .
A ( v ) A ( v ) = S ( v ) δ ( v v ) , and
A 1 A 2 A 1 A 2 = A 1 A 1 A 2 A 2 + A 1 A 2 A 2 A 1
S F W M ( ν ) = 2 γ 2 P S ( ν 1 ) S ( ν 2 ) | f ( ν , ν 1 ) | 2 d ν 1 ,
β 4 12 ( ω c ω ) 2 = [ β 3 ( ω c ω 0 ) + β 4 2 ( ω c ω 0 ) 2 ] ,
S F W M ( ν ) = 2 γ 2 P | f ( ν , ν c ) | 2 S ( ν 1 ) S ( ν + ν ν 1 ) d ν 1 .
f ( ν , ν c ) = 0 L g ( z ) e i Δ β ¯ z d z

Metrics