Abstract

An ultrasensitive refractive index (RI) sensor based on enhanced Vernier effect is proposed, which consists of two cascaded fiber core-offset pairs. One pair functions as a Mach-Zehnder interferometer (MZI), the other with larger core offset as a low-finesse Fabry-Perot interferometer (FPI). In traditional Vernier-effect based sensors, an interferometer insensitive to environment change is used as sensing reference. Here in the proposed sensor, interference fringes of the MZI and the FPI shift to opposite directions as ambient RI varies, and to the same direction as surrounding temperature changes. Thus, the envelope of superimposed fringe manifests enhanced Vernier effect for RI sensing while reduced Vernier effect for temperature change. As a result, an ultra-high RI sensitivity of -87261.06 nm/RIU is obtained near the RI of 1.33 with good linearity, while the temperature sensitivity is as low as 204.7 pm/ °C. The proposed structure is robust and of low cost. Furthermore, the proposed scheme of enhanced Vernier effect provides a new perspective and idea in other sensing field.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Ultrasensitive strain sensor based on Vernier- effect improved parallel structured fiber-optic Fabry-Perot interferometer

Tong Nan, Bo Liu, Yongfeng Wu, Junfeng Wang, Yaya Mao, Lilong Zhao, Tingting Sun, and Jin Wang
Opt. Express 27(12) 17239-17250 (2019)

Highly sensitive refractive index sensor based on cascaded microfiber knots with Vernier effect

Zhilin Xu, Qizhen Sun, Borui Li, Yiyang Luo, Wengao Lu, Deming Liu, Perry Ping Shum, and Lin Zhang
Opt. Express 23(5) 6662-6672 (2015)

Sensitivity amplification of fiber-optic in-line Mach–Zehnder Interferometer sensors with modified Vernier-effect

Hao Liao, Ping Lu, Xin Fu, Xinyue Jiang, Wenjun Ni, Deming Liu, and Jiangshan Zhang
Opt. Express 25(22) 26898-26909 (2017)

References

  • View by:
  • |
  • |
  • |

  1. Q. Wang, W. Wei, M. Guo, and Y. Zhao, “Optimization of cascaded fiber tapered Mach–Zehnder interferometer and refractive index sensing technology,” Sens. Actuators, B 222, 159–165 (2016).
    [Crossref]
  2. N. Zhang, W. Xu, S. You, C. Yu, C. Yu, B. Dong, and K. Li, “Simultaneous measurement of refractive index, strain and temperature using a tapered structure based on SMF,” Opt. Commun. 410, 70–74 (2018).
    [Crossref]
  3. R. Huang, K. Ni, X. Wu, and Q. Ma, “Refractometer based on Mach–Zehnder interferometer with peanut-shape structure,” Opt. Commun. 353, 27–29 (2015).
    [Crossref]
  4. Z. Tian, S. S. H. Yam, and H. P. Loock, “Single-Mode Fiber Refractive Index Sensor Based on Core-Offset Attenuators,” IEEE Photonics Technol. Lett. 20(16), 1387–1389 (2008).
    [Crossref]
  5. D. W. Duan, Y. J. Rao, L. C. Xu, T. Zhua, D. Wua, and J. Yao, “In-fiber Mach–Zehnder interferometer formed by large lateral offset fusion splicing for gases refractive index measurement with high sensitivity,” Sens. Actuators, B 160(1), 1198–1202 (2011).
    [Crossref]
  6. D. W. Duan, Y. J. Rao, and T. Zhu, “High sensitivity gas refractometer based on all-fiber open-cavity Fabry–Perot interferometer formed by large lateral offset splicing,” J. Opt. Soc. Am. B 29(5), 912–915 (2012).
    [Crossref]
  7. F. Yu, P. Xue, and J. Zheng, “Enhancement of Refractive Index Sensitivity by Bending a Core-Offset In-Line Fiber Mach–Zehnder Interferometer,” IEEE Sens. J. 19(9), 3328–3334 (2019).
    [Crossref]
  8. J. Li, L. P. Sun, S. Gao, Z. Quan, Y. L. Chang, Y. Ran, L. Jin, and B. O. Guan, “Ultrasensitive refractive-index sensors based on rectangular silica microfibers,” Opt. Lett. 36(18), 3593–3595 (2011).
    [Crossref]
  9. H. Luo, Q. Sun, X. Li, Z. Yan, Y. Li, D. Liu, and L. Zhang, “Refractive index sensitivity characteristics near the dispersion turning point of the multimode microfiber-based Mach–Zehnder interferometer,” Opt. Lett. 40(21), 5042–5045 (2015).
    [Crossref]
  10. L. P. Sun, T. Huang, Z. Yuan, W. Lin, P. Xiao, M. Yang, J. Ma, Y. Ran, L. Jin, J. Li, and B. O. Guan, “Ultra-high sensitivity of dual dispersion turning point taper-based Mach-Zehnder interferometer,” Opt. Express 27(16), 23103–23111 (2019).
    [Crossref]
  11. W. Zhou, K. Li, Y. Wei, P. Hao, M. Chi, Y. Liu, and Y. Wu, “Ultrasensitive label-free optical microfiber coupler biosensor for detection of cardiac troponin I based on interference turning point effect,” Biosens. Bioelectron. 106, 99–104 (2018).
    [Crossref]
  12. W. Wang, X. Dong, D. Chu, Y. Hu, X. Sun, and J. A. Duan, “Refractive index and temperature-sensing characteristics of a cladding-etched thin core fiber interferometer,” AIP Adv. 8(5), 055104 (2018).
    [Crossref]
  13. W. W. Li, D. N. Wang, Z. K. Wang, and B. Xu, “Fiber in-line Mach-Zehnder interferometer based on a pair of short sections of waveguide,” Opt. Express 26(9), 11496–11502 (2018).
    [Crossref]
  14. Y. Wang, M. Yang, D. N. Wang, S. Liu, and P. Lu, “Fiber in-line Mach–Zehnder interferometer fabricated by femtosecond laser micromachining for refractive index measurement with high sensitivity,” J. Opt. Soc. Am. B 27(3), 370–374 (2010).
    [Crossref]
  15. X. Y. Sun, D. K. Chu, X. R. Dong, C. Zhou, H. T. Li, L. Zhi, Y. W. Hu, J. Y. Zhou, C. Wang, and J. A. Duan, “Highly sensitive refractive index fiber inline Mach–Zehnder interferometer fabricated by femtosecond laser micromachining and chemical etching,” Opt. Laser Technol. 77, 11–15 (2016).
    [Crossref]
  16. M. Janik, M. Koba, A. Celebanska, W. J. Bock, and M. Smietana, “Sensing properties of micro-cavity in-line Mach-Zehnder interferometer enhanced by reactive ion etching,” Opt. Laser Technol. 103, 260–266 (2018).
    [Crossref]
  17. A. D. Gomes, B. Silveira, S. C. Warren-Smith, M. Becker, M. Rothhardt, and O. Frazão, “Temperature independent refractive index measurement using a fiber Bragg grating on abrupt tapered tip,” Opt. Laser Technol. 101, 227–231 (2018).
    [Crossref]
  18. C. R. Liao, I. E. E. E. Student Member, Y. Wang, D. N. Wang, I. E. E. E. Member, and M. W. Yang, “Fiber In-Line Mach–Zehnder Interferometer Embedded in FBG for Simultaneous Refractive Index and Temperature Measurement,” IEEE Photonics Technol. Lett. 22(22), 1686–1688 (2010).
    [Crossref]
  19. J. Chen, J. Zhou, Q. Zhang, H. Zhang, and M. Y. Chen, “All-Fiber Modal Interferometer Based on a Joint-Taper-Joint Fiber Structure for Refractive Index Sensing With High Sensitivity,” IEEE Sens. J. 13(7), 2780–2785 (2013).
    [Crossref]
  20. M. Quan, J. Tian, and Y. Yao, “Ultra-high sensitivity Fabry-Perot interferometer gas refractive index fiber sensor based on photonic crystal fiber and Vernier effect,” Opt. Lett. 40(21), 4891–4894 (2015).
    [Crossref]
  21. L. Shao, Y. Luo, Z. Zhang, X. Zou, B. Luo, W. Pan, and L. Yan, “Sensitivity-enhanced temperature sensor with cascaded fiber optic Sagnac interferometers based on Vernier-effect,” Opt. Commun. 336, 73–76 (2015).
    [Crossref]
  22. P. Zhang, M. Tang, F. Gao, B. Zhu, Z. Zhao, L. Duan, S. Fu, J. Ouyang, H. Wei, P. P. Shum, and D. Liu, “Simplified hollow-core fiber-based Fabry-Perot interferometer with modified Vernier effect for highly sensitive high-temperature measurement,” IEEE Photonics J. 7(1), 1–10 (2015).
    [Crossref]
  23. Y. Yang, Y. Wang, Y. Zhao, J. Jiang, X. He, W. Yang, Z. Zhu, W. Gao, and L. Li, “Sensitivity-enhanced temperature sensor by hybrid cascaded configuration of a Sagnac loop and a F-P cavity,” Opt. Express 25(26), 33290–33296 (2017).
    [Crossref]
  24. Z. Xu, X. Shu, and H. Fu, “Sensitivity enhanced fiber sensor based on a fiber ring microwave photonic filter with the Vernier effect,” Opt. Express 25(18), 21559–21566 (2017).
    [Crossref]
  25. H. Liao, P. Lu, X. Fu, X. Jiang, W. Ni, D. Liu, and J. Zhang, “Sensitivity amplification of fiber-optic in-line Mach-Zehnder Interferometer sensors with modified Vernier-effect,” Opt. Express 25(22), 26898–26909 (2017).
    [Crossref]
  26. P. Zhang, M. Tang, F. Guo, B. Zhu, S. Fu, J. Ouyang, P. P. Shum, and D. Liu, “Cascaded fiber-optic Fabry-Perot interferometers with Vernier effect for highly sensitive measurement of axial strain and magnetic field,” Opt. Express 22(16), 19581–19588 (2014).
    [Crossref]
  27. J. Zhang, H. Liao, P. Lu, X. Jiang, X. Fu, W. Ni, D. Liu, and J. Zhang, “Ultrasensitive Temperature Sensor with Cascaded Fiber Optic Fabry-Perot Interferometers Based on Vernier Effect,” IEEE Photonics J. 10(5), 1–11 (2018).
    [Crossref]
  28. T. Nan, B. Liu, Y. Wu, J. Wang, Y. Mao, L. Zhao, T. Sun, and J. Wang, “Ultrasensitive strain sensor based on Vernier-effect improved parallel structured fiber-optic Fabry-Perot interferometer,” Opt. Express 27(12), 17239–17250 (2019).
    [Crossref]
  29. Y. Wu, L. Xia, W. Li, and J. Xia, “Highly Sensitive Fabry-Perot Demodulation Based on Coarse Wavelength Sampling and Vernier Effect,” IEEE Photonics Technol. Lett. 31(6), 487–490 (2019).
    [Crossref]
  30. T. Claes, W. Bogaerts, and P. Bienstman, “Experimental characterization of a silicon photonic biosensor consisting of two cascaded ring resonators based on the Vernier-effect and introduction of a curve fitting method for an improved detection limit,” Opt. Express 18(22), 22747–22761 (2010).
    [Crossref]
  31. B. Troia, F. D. Leonardis, and V. M. N. Passaro, “Cascaded ring resonator and Mach-Zehnder interferometer with a Sagnac loop for Vernier-effect refractive index sensing,” Sens. Actuators, B 240, 76–89 (2017).
    [Crossref]
  32. H. H. Zhu, Y. H. Yue, Y. J. Wang, M. Zhang, L. Y. Shao, J. J. He, and M. Y. Li, “High-sensitivity optical sensors based on cascaded reflective MZIs and microring resonators,” Opt. Express 25(23), 28612–28617 (2017).
    [Crossref]
  33. P. Azuelos, P. Girault, N. Lorrain, L. Poffo, M. Guendouz, M. Thual, J. Lemaitre, P. Pirasteh, I. Hardy, and J. Charrier, “High sensitivity optical biosensor based on polymer materials and using the Vernier effect,” Opt. Express 25(24), 30799–30806 (2017).
    [Crossref]
  34. L. Ren, X. Zhang, X. Guo, H. Wang, and X. Wu, “High-Sensitivity Optofluidic Sensor Based on Coupled Liquid-Core Laser,” IEEE Photonics Technol. Lett. 29(8), 639–642 (2017).
    [Crossref]

2019 (4)

F. Yu, P. Xue, and J. Zheng, “Enhancement of Refractive Index Sensitivity by Bending a Core-Offset In-Line Fiber Mach–Zehnder Interferometer,” IEEE Sens. J. 19(9), 3328–3334 (2019).
[Crossref]

L. P. Sun, T. Huang, Z. Yuan, W. Lin, P. Xiao, M. Yang, J. Ma, Y. Ran, L. Jin, J. Li, and B. O. Guan, “Ultra-high sensitivity of dual dispersion turning point taper-based Mach-Zehnder interferometer,” Opt. Express 27(16), 23103–23111 (2019).
[Crossref]

T. Nan, B. Liu, Y. Wu, J. Wang, Y. Mao, L. Zhao, T. Sun, and J. Wang, “Ultrasensitive strain sensor based on Vernier-effect improved parallel structured fiber-optic Fabry-Perot interferometer,” Opt. Express 27(12), 17239–17250 (2019).
[Crossref]

Y. Wu, L. Xia, W. Li, and J. Xia, “Highly Sensitive Fabry-Perot Demodulation Based on Coarse Wavelength Sampling and Vernier Effect,” IEEE Photonics Technol. Lett. 31(6), 487–490 (2019).
[Crossref]

2018 (7)

J. Zhang, H. Liao, P. Lu, X. Jiang, X. Fu, W. Ni, D. Liu, and J. Zhang, “Ultrasensitive Temperature Sensor with Cascaded Fiber Optic Fabry-Perot Interferometers Based on Vernier Effect,” IEEE Photonics J. 10(5), 1–11 (2018).
[Crossref]

W. Zhou, K. Li, Y. Wei, P. Hao, M. Chi, Y. Liu, and Y. Wu, “Ultrasensitive label-free optical microfiber coupler biosensor for detection of cardiac troponin I based on interference turning point effect,” Biosens. Bioelectron. 106, 99–104 (2018).
[Crossref]

W. Wang, X. Dong, D. Chu, Y. Hu, X. Sun, and J. A. Duan, “Refractive index and temperature-sensing characteristics of a cladding-etched thin core fiber interferometer,” AIP Adv. 8(5), 055104 (2018).
[Crossref]

W. W. Li, D. N. Wang, Z. K. Wang, and B. Xu, “Fiber in-line Mach-Zehnder interferometer based on a pair of short sections of waveguide,” Opt. Express 26(9), 11496–11502 (2018).
[Crossref]

M. Janik, M. Koba, A. Celebanska, W. J. Bock, and M. Smietana, “Sensing properties of micro-cavity in-line Mach-Zehnder interferometer enhanced by reactive ion etching,” Opt. Laser Technol. 103, 260–266 (2018).
[Crossref]

A. D. Gomes, B. Silveira, S. C. Warren-Smith, M. Becker, M. Rothhardt, and O. Frazão, “Temperature independent refractive index measurement using a fiber Bragg grating on abrupt tapered tip,” Opt. Laser Technol. 101, 227–231 (2018).
[Crossref]

N. Zhang, W. Xu, S. You, C. Yu, C. Yu, B. Dong, and K. Li, “Simultaneous measurement of refractive index, strain and temperature using a tapered structure based on SMF,” Opt. Commun. 410, 70–74 (2018).
[Crossref]

2017 (7)

B. Troia, F. D. Leonardis, and V. M. N. Passaro, “Cascaded ring resonator and Mach-Zehnder interferometer with a Sagnac loop for Vernier-effect refractive index sensing,” Sens. Actuators, B 240, 76–89 (2017).
[Crossref]

H. H. Zhu, Y. H. Yue, Y. J. Wang, M. Zhang, L. Y. Shao, J. J. He, and M. Y. Li, “High-sensitivity optical sensors based on cascaded reflective MZIs and microring resonators,” Opt. Express 25(23), 28612–28617 (2017).
[Crossref]

P. Azuelos, P. Girault, N. Lorrain, L. Poffo, M. Guendouz, M. Thual, J. Lemaitre, P. Pirasteh, I. Hardy, and J. Charrier, “High sensitivity optical biosensor based on polymer materials and using the Vernier effect,” Opt. Express 25(24), 30799–30806 (2017).
[Crossref]

L. Ren, X. Zhang, X. Guo, H. Wang, and X. Wu, “High-Sensitivity Optofluidic Sensor Based on Coupled Liquid-Core Laser,” IEEE Photonics Technol. Lett. 29(8), 639–642 (2017).
[Crossref]

Y. Yang, Y. Wang, Y. Zhao, J. Jiang, X. He, W. Yang, Z. Zhu, W. Gao, and L. Li, “Sensitivity-enhanced temperature sensor by hybrid cascaded configuration of a Sagnac loop and a F-P cavity,” Opt. Express 25(26), 33290–33296 (2017).
[Crossref]

Z. Xu, X. Shu, and H. Fu, “Sensitivity enhanced fiber sensor based on a fiber ring microwave photonic filter with the Vernier effect,” Opt. Express 25(18), 21559–21566 (2017).
[Crossref]

H. Liao, P. Lu, X. Fu, X. Jiang, W. Ni, D. Liu, and J. Zhang, “Sensitivity amplification of fiber-optic in-line Mach-Zehnder Interferometer sensors with modified Vernier-effect,” Opt. Express 25(22), 26898–26909 (2017).
[Crossref]

2016 (2)

Q. Wang, W. Wei, M. Guo, and Y. Zhao, “Optimization of cascaded fiber tapered Mach–Zehnder interferometer and refractive index sensing technology,” Sens. Actuators, B 222, 159–165 (2016).
[Crossref]

X. Y. Sun, D. K. Chu, X. R. Dong, C. Zhou, H. T. Li, L. Zhi, Y. W. Hu, J. Y. Zhou, C. Wang, and J. A. Duan, “Highly sensitive refractive index fiber inline Mach–Zehnder interferometer fabricated by femtosecond laser micromachining and chemical etching,” Opt. Laser Technol. 77, 11–15 (2016).
[Crossref]

2015 (5)

R. Huang, K. Ni, X. Wu, and Q. Ma, “Refractometer based on Mach–Zehnder interferometer with peanut-shape structure,” Opt. Commun. 353, 27–29 (2015).
[Crossref]

H. Luo, Q. Sun, X. Li, Z. Yan, Y. Li, D. Liu, and L. Zhang, “Refractive index sensitivity characteristics near the dispersion turning point of the multimode microfiber-based Mach–Zehnder interferometer,” Opt. Lett. 40(21), 5042–5045 (2015).
[Crossref]

M. Quan, J. Tian, and Y. Yao, “Ultra-high sensitivity Fabry-Perot interferometer gas refractive index fiber sensor based on photonic crystal fiber and Vernier effect,” Opt. Lett. 40(21), 4891–4894 (2015).
[Crossref]

L. Shao, Y. Luo, Z. Zhang, X. Zou, B. Luo, W. Pan, and L. Yan, “Sensitivity-enhanced temperature sensor with cascaded fiber optic Sagnac interferometers based on Vernier-effect,” Opt. Commun. 336, 73–76 (2015).
[Crossref]

P. Zhang, M. Tang, F. Gao, B. Zhu, Z. Zhao, L. Duan, S. Fu, J. Ouyang, H. Wei, P. P. Shum, and D. Liu, “Simplified hollow-core fiber-based Fabry-Perot interferometer with modified Vernier effect for highly sensitive high-temperature measurement,” IEEE Photonics J. 7(1), 1–10 (2015).
[Crossref]

2014 (1)

2013 (1)

J. Chen, J. Zhou, Q. Zhang, H. Zhang, and M. Y. Chen, “All-Fiber Modal Interferometer Based on a Joint-Taper-Joint Fiber Structure for Refractive Index Sensing With High Sensitivity,” IEEE Sens. J. 13(7), 2780–2785 (2013).
[Crossref]

2012 (1)

2011 (2)

J. Li, L. P. Sun, S. Gao, Z. Quan, Y. L. Chang, Y. Ran, L. Jin, and B. O. Guan, “Ultrasensitive refractive-index sensors based on rectangular silica microfibers,” Opt. Lett. 36(18), 3593–3595 (2011).
[Crossref]

D. W. Duan, Y. J. Rao, L. C. Xu, T. Zhua, D. Wua, and J. Yao, “In-fiber Mach–Zehnder interferometer formed by large lateral offset fusion splicing for gases refractive index measurement with high sensitivity,” Sens. Actuators, B 160(1), 1198–1202 (2011).
[Crossref]

2010 (3)

2008 (1)

Z. Tian, S. S. H. Yam, and H. P. Loock, “Single-Mode Fiber Refractive Index Sensor Based on Core-Offset Attenuators,” IEEE Photonics Technol. Lett. 20(16), 1387–1389 (2008).
[Crossref]

Azuelos, P.

Becker, M.

A. D. Gomes, B. Silveira, S. C. Warren-Smith, M. Becker, M. Rothhardt, and O. Frazão, “Temperature independent refractive index measurement using a fiber Bragg grating on abrupt tapered tip,” Opt. Laser Technol. 101, 227–231 (2018).
[Crossref]

Bienstman, P.

Bock, W. J.

M. Janik, M. Koba, A. Celebanska, W. J. Bock, and M. Smietana, “Sensing properties of micro-cavity in-line Mach-Zehnder interferometer enhanced by reactive ion etching,” Opt. Laser Technol. 103, 260–266 (2018).
[Crossref]

Bogaerts, W.

Celebanska, A.

M. Janik, M. Koba, A. Celebanska, W. J. Bock, and M. Smietana, “Sensing properties of micro-cavity in-line Mach-Zehnder interferometer enhanced by reactive ion etching,” Opt. Laser Technol. 103, 260–266 (2018).
[Crossref]

Chang, Y. L.

Charrier, J.

Chen, J.

J. Chen, J. Zhou, Q. Zhang, H. Zhang, and M. Y. Chen, “All-Fiber Modal Interferometer Based on a Joint-Taper-Joint Fiber Structure for Refractive Index Sensing With High Sensitivity,” IEEE Sens. J. 13(7), 2780–2785 (2013).
[Crossref]

Chen, M. Y.

J. Chen, J. Zhou, Q. Zhang, H. Zhang, and M. Y. Chen, “All-Fiber Modal Interferometer Based on a Joint-Taper-Joint Fiber Structure for Refractive Index Sensing With High Sensitivity,” IEEE Sens. J. 13(7), 2780–2785 (2013).
[Crossref]

Chi, M.

W. Zhou, K. Li, Y. Wei, P. Hao, M. Chi, Y. Liu, and Y. Wu, “Ultrasensitive label-free optical microfiber coupler biosensor for detection of cardiac troponin I based on interference turning point effect,” Biosens. Bioelectron. 106, 99–104 (2018).
[Crossref]

Chu, D.

W. Wang, X. Dong, D. Chu, Y. Hu, X. Sun, and J. A. Duan, “Refractive index and temperature-sensing characteristics of a cladding-etched thin core fiber interferometer,” AIP Adv. 8(5), 055104 (2018).
[Crossref]

Chu, D. K.

X. Y. Sun, D. K. Chu, X. R. Dong, C. Zhou, H. T. Li, L. Zhi, Y. W. Hu, J. Y. Zhou, C. Wang, and J. A. Duan, “Highly sensitive refractive index fiber inline Mach–Zehnder interferometer fabricated by femtosecond laser micromachining and chemical etching,” Opt. Laser Technol. 77, 11–15 (2016).
[Crossref]

Claes, T.

Dong, B.

N. Zhang, W. Xu, S. You, C. Yu, C. Yu, B. Dong, and K. Li, “Simultaneous measurement of refractive index, strain and temperature using a tapered structure based on SMF,” Opt. Commun. 410, 70–74 (2018).
[Crossref]

Dong, X.

W. Wang, X. Dong, D. Chu, Y. Hu, X. Sun, and J. A. Duan, “Refractive index and temperature-sensing characteristics of a cladding-etched thin core fiber interferometer,” AIP Adv. 8(5), 055104 (2018).
[Crossref]

Dong, X. R.

X. Y. Sun, D. K. Chu, X. R. Dong, C. Zhou, H. T. Li, L. Zhi, Y. W. Hu, J. Y. Zhou, C. Wang, and J. A. Duan, “Highly sensitive refractive index fiber inline Mach–Zehnder interferometer fabricated by femtosecond laser micromachining and chemical etching,” Opt. Laser Technol. 77, 11–15 (2016).
[Crossref]

Duan, D. W.

D. W. Duan, Y. J. Rao, and T. Zhu, “High sensitivity gas refractometer based on all-fiber open-cavity Fabry–Perot interferometer formed by large lateral offset splicing,” J. Opt. Soc. Am. B 29(5), 912–915 (2012).
[Crossref]

D. W. Duan, Y. J. Rao, L. C. Xu, T. Zhua, D. Wua, and J. Yao, “In-fiber Mach–Zehnder interferometer formed by large lateral offset fusion splicing for gases refractive index measurement with high sensitivity,” Sens. Actuators, B 160(1), 1198–1202 (2011).
[Crossref]

Duan, J. A.

W. Wang, X. Dong, D. Chu, Y. Hu, X. Sun, and J. A. Duan, “Refractive index and temperature-sensing characteristics of a cladding-etched thin core fiber interferometer,” AIP Adv. 8(5), 055104 (2018).
[Crossref]

X. Y. Sun, D. K. Chu, X. R. Dong, C. Zhou, H. T. Li, L. Zhi, Y. W. Hu, J. Y. Zhou, C. Wang, and J. A. Duan, “Highly sensitive refractive index fiber inline Mach–Zehnder interferometer fabricated by femtosecond laser micromachining and chemical etching,” Opt. Laser Technol. 77, 11–15 (2016).
[Crossref]

Duan, L.

P. Zhang, M. Tang, F. Gao, B. Zhu, Z. Zhao, L. Duan, S. Fu, J. Ouyang, H. Wei, P. P. Shum, and D. Liu, “Simplified hollow-core fiber-based Fabry-Perot interferometer with modified Vernier effect for highly sensitive high-temperature measurement,” IEEE Photonics J. 7(1), 1–10 (2015).
[Crossref]

Frazão, O.

A. D. Gomes, B. Silveira, S. C. Warren-Smith, M. Becker, M. Rothhardt, and O. Frazão, “Temperature independent refractive index measurement using a fiber Bragg grating on abrupt tapered tip,” Opt. Laser Technol. 101, 227–231 (2018).
[Crossref]

Fu, H.

Fu, S.

P. Zhang, M. Tang, F. Gao, B. Zhu, Z. Zhao, L. Duan, S. Fu, J. Ouyang, H. Wei, P. P. Shum, and D. Liu, “Simplified hollow-core fiber-based Fabry-Perot interferometer with modified Vernier effect for highly sensitive high-temperature measurement,” IEEE Photonics J. 7(1), 1–10 (2015).
[Crossref]

P. Zhang, M. Tang, F. Guo, B. Zhu, S. Fu, J. Ouyang, P. P. Shum, and D. Liu, “Cascaded fiber-optic Fabry-Perot interferometers with Vernier effect for highly sensitive measurement of axial strain and magnetic field,” Opt. Express 22(16), 19581–19588 (2014).
[Crossref]

Fu, X.

J. Zhang, H. Liao, P. Lu, X. Jiang, X. Fu, W. Ni, D. Liu, and J. Zhang, “Ultrasensitive Temperature Sensor with Cascaded Fiber Optic Fabry-Perot Interferometers Based on Vernier Effect,” IEEE Photonics J. 10(5), 1–11 (2018).
[Crossref]

H. Liao, P. Lu, X. Fu, X. Jiang, W. Ni, D. Liu, and J. Zhang, “Sensitivity amplification of fiber-optic in-line Mach-Zehnder Interferometer sensors with modified Vernier-effect,” Opt. Express 25(22), 26898–26909 (2017).
[Crossref]

Gao, F.

P. Zhang, M. Tang, F. Gao, B. Zhu, Z. Zhao, L. Duan, S. Fu, J. Ouyang, H. Wei, P. P. Shum, and D. Liu, “Simplified hollow-core fiber-based Fabry-Perot interferometer with modified Vernier effect for highly sensitive high-temperature measurement,” IEEE Photonics J. 7(1), 1–10 (2015).
[Crossref]

Gao, S.

Gao, W.

Girault, P.

Gomes, A. D.

A. D. Gomes, B. Silveira, S. C. Warren-Smith, M. Becker, M. Rothhardt, and O. Frazão, “Temperature independent refractive index measurement using a fiber Bragg grating on abrupt tapered tip,” Opt. Laser Technol. 101, 227–231 (2018).
[Crossref]

Guan, B. O.

Guendouz, M.

Guo, F.

Guo, M.

Q. Wang, W. Wei, M. Guo, and Y. Zhao, “Optimization of cascaded fiber tapered Mach–Zehnder interferometer and refractive index sensing technology,” Sens. Actuators, B 222, 159–165 (2016).
[Crossref]

Guo, X.

L. Ren, X. Zhang, X. Guo, H. Wang, and X. Wu, “High-Sensitivity Optofluidic Sensor Based on Coupled Liquid-Core Laser,” IEEE Photonics Technol. Lett. 29(8), 639–642 (2017).
[Crossref]

Hao, P.

W. Zhou, K. Li, Y. Wei, P. Hao, M. Chi, Y. Liu, and Y. Wu, “Ultrasensitive label-free optical microfiber coupler biosensor for detection of cardiac troponin I based on interference turning point effect,” Biosens. Bioelectron. 106, 99–104 (2018).
[Crossref]

Hardy, I.

He, J. J.

He, X.

Hu, Y.

W. Wang, X. Dong, D. Chu, Y. Hu, X. Sun, and J. A. Duan, “Refractive index and temperature-sensing characteristics of a cladding-etched thin core fiber interferometer,” AIP Adv. 8(5), 055104 (2018).
[Crossref]

Hu, Y. W.

X. Y. Sun, D. K. Chu, X. R. Dong, C. Zhou, H. T. Li, L. Zhi, Y. W. Hu, J. Y. Zhou, C. Wang, and J. A. Duan, “Highly sensitive refractive index fiber inline Mach–Zehnder interferometer fabricated by femtosecond laser micromachining and chemical etching,” Opt. Laser Technol. 77, 11–15 (2016).
[Crossref]

Huang, R.

R. Huang, K. Ni, X. Wu, and Q. Ma, “Refractometer based on Mach–Zehnder interferometer with peanut-shape structure,” Opt. Commun. 353, 27–29 (2015).
[Crossref]

Huang, T.

Janik, M.

M. Janik, M. Koba, A. Celebanska, W. J. Bock, and M. Smietana, “Sensing properties of micro-cavity in-line Mach-Zehnder interferometer enhanced by reactive ion etching,” Opt. Laser Technol. 103, 260–266 (2018).
[Crossref]

Jiang, J.

Jiang, X.

J. Zhang, H. Liao, P. Lu, X. Jiang, X. Fu, W. Ni, D. Liu, and J. Zhang, “Ultrasensitive Temperature Sensor with Cascaded Fiber Optic Fabry-Perot Interferometers Based on Vernier Effect,” IEEE Photonics J. 10(5), 1–11 (2018).
[Crossref]

H. Liao, P. Lu, X. Fu, X. Jiang, W. Ni, D. Liu, and J. Zhang, “Sensitivity amplification of fiber-optic in-line Mach-Zehnder Interferometer sensors with modified Vernier-effect,” Opt. Express 25(22), 26898–26909 (2017).
[Crossref]

Jin, L.

Koba, M.

M. Janik, M. Koba, A. Celebanska, W. J. Bock, and M. Smietana, “Sensing properties of micro-cavity in-line Mach-Zehnder interferometer enhanced by reactive ion etching,” Opt. Laser Technol. 103, 260–266 (2018).
[Crossref]

Lemaitre, J.

Leonardis, F. D.

B. Troia, F. D. Leonardis, and V. M. N. Passaro, “Cascaded ring resonator and Mach-Zehnder interferometer with a Sagnac loop for Vernier-effect refractive index sensing,” Sens. Actuators, B 240, 76–89 (2017).
[Crossref]

Li, H. T.

X. Y. Sun, D. K. Chu, X. R. Dong, C. Zhou, H. T. Li, L. Zhi, Y. W. Hu, J. Y. Zhou, C. Wang, and J. A. Duan, “Highly sensitive refractive index fiber inline Mach–Zehnder interferometer fabricated by femtosecond laser micromachining and chemical etching,” Opt. Laser Technol. 77, 11–15 (2016).
[Crossref]

Li, J.

Li, K.

N. Zhang, W. Xu, S. You, C. Yu, C. Yu, B. Dong, and K. Li, “Simultaneous measurement of refractive index, strain and temperature using a tapered structure based on SMF,” Opt. Commun. 410, 70–74 (2018).
[Crossref]

W. Zhou, K. Li, Y. Wei, P. Hao, M. Chi, Y. Liu, and Y. Wu, “Ultrasensitive label-free optical microfiber coupler biosensor for detection of cardiac troponin I based on interference turning point effect,” Biosens. Bioelectron. 106, 99–104 (2018).
[Crossref]

Li, L.

Li, M. Y.

Li, W.

Y. Wu, L. Xia, W. Li, and J. Xia, “Highly Sensitive Fabry-Perot Demodulation Based on Coarse Wavelength Sampling and Vernier Effect,” IEEE Photonics Technol. Lett. 31(6), 487–490 (2019).
[Crossref]

Li, W. W.

Li, X.

Li, Y.

Liao, C. R.

C. R. Liao, I. E. E. E. Student Member, Y. Wang, D. N. Wang, I. E. E. E. Member, and M. W. Yang, “Fiber In-Line Mach–Zehnder Interferometer Embedded in FBG for Simultaneous Refractive Index and Temperature Measurement,” IEEE Photonics Technol. Lett. 22(22), 1686–1688 (2010).
[Crossref]

Liao, H.

J. Zhang, H. Liao, P. Lu, X. Jiang, X. Fu, W. Ni, D. Liu, and J. Zhang, “Ultrasensitive Temperature Sensor with Cascaded Fiber Optic Fabry-Perot Interferometers Based on Vernier Effect,” IEEE Photonics J. 10(5), 1–11 (2018).
[Crossref]

H. Liao, P. Lu, X. Fu, X. Jiang, W. Ni, D. Liu, and J. Zhang, “Sensitivity amplification of fiber-optic in-line Mach-Zehnder Interferometer sensors with modified Vernier-effect,” Opt. Express 25(22), 26898–26909 (2017).
[Crossref]

Lin, W.

Liu, B.

Liu, D.

Liu, S.

Liu, Y.

W. Zhou, K. Li, Y. Wei, P. Hao, M. Chi, Y. Liu, and Y. Wu, “Ultrasensitive label-free optical microfiber coupler biosensor for detection of cardiac troponin I based on interference turning point effect,” Biosens. Bioelectron. 106, 99–104 (2018).
[Crossref]

Loock, H. P.

Z. Tian, S. S. H. Yam, and H. P. Loock, “Single-Mode Fiber Refractive Index Sensor Based on Core-Offset Attenuators,” IEEE Photonics Technol. Lett. 20(16), 1387–1389 (2008).
[Crossref]

Lorrain, N.

Lu, P.

Luo, B.

L. Shao, Y. Luo, Z. Zhang, X. Zou, B. Luo, W. Pan, and L. Yan, “Sensitivity-enhanced temperature sensor with cascaded fiber optic Sagnac interferometers based on Vernier-effect,” Opt. Commun. 336, 73–76 (2015).
[Crossref]

Luo, H.

Luo, Y.

L. Shao, Y. Luo, Z. Zhang, X. Zou, B. Luo, W. Pan, and L. Yan, “Sensitivity-enhanced temperature sensor with cascaded fiber optic Sagnac interferometers based on Vernier-effect,” Opt. Commun. 336, 73–76 (2015).
[Crossref]

Ma, J.

Ma, Q.

R. Huang, K. Ni, X. Wu, and Q. Ma, “Refractometer based on Mach–Zehnder interferometer with peanut-shape structure,” Opt. Commun. 353, 27–29 (2015).
[Crossref]

Mao, Y.

Member, I. E. E. E.

C. R. Liao, I. E. E. E. Student Member, Y. Wang, D. N. Wang, I. E. E. E. Member, and M. W. Yang, “Fiber In-Line Mach–Zehnder Interferometer Embedded in FBG for Simultaneous Refractive Index and Temperature Measurement,” IEEE Photonics Technol. Lett. 22(22), 1686–1688 (2010).
[Crossref]

Nan, T.

Ni, K.

R. Huang, K. Ni, X. Wu, and Q. Ma, “Refractometer based on Mach–Zehnder interferometer with peanut-shape structure,” Opt. Commun. 353, 27–29 (2015).
[Crossref]

Ni, W.

J. Zhang, H. Liao, P. Lu, X. Jiang, X. Fu, W. Ni, D. Liu, and J. Zhang, “Ultrasensitive Temperature Sensor with Cascaded Fiber Optic Fabry-Perot Interferometers Based on Vernier Effect,” IEEE Photonics J. 10(5), 1–11 (2018).
[Crossref]

H. Liao, P. Lu, X. Fu, X. Jiang, W. Ni, D. Liu, and J. Zhang, “Sensitivity amplification of fiber-optic in-line Mach-Zehnder Interferometer sensors with modified Vernier-effect,” Opt. Express 25(22), 26898–26909 (2017).
[Crossref]

Ouyang, J.

P. Zhang, M. Tang, F. Gao, B. Zhu, Z. Zhao, L. Duan, S. Fu, J. Ouyang, H. Wei, P. P. Shum, and D. Liu, “Simplified hollow-core fiber-based Fabry-Perot interferometer with modified Vernier effect for highly sensitive high-temperature measurement,” IEEE Photonics J. 7(1), 1–10 (2015).
[Crossref]

P. Zhang, M. Tang, F. Guo, B. Zhu, S. Fu, J. Ouyang, P. P. Shum, and D. Liu, “Cascaded fiber-optic Fabry-Perot interferometers with Vernier effect for highly sensitive measurement of axial strain and magnetic field,” Opt. Express 22(16), 19581–19588 (2014).
[Crossref]

Pan, W.

L. Shao, Y. Luo, Z. Zhang, X. Zou, B. Luo, W. Pan, and L. Yan, “Sensitivity-enhanced temperature sensor with cascaded fiber optic Sagnac interferometers based on Vernier-effect,” Opt. Commun. 336, 73–76 (2015).
[Crossref]

Passaro, V. M. N.

B. Troia, F. D. Leonardis, and V. M. N. Passaro, “Cascaded ring resonator and Mach-Zehnder interferometer with a Sagnac loop for Vernier-effect refractive index sensing,” Sens. Actuators, B 240, 76–89 (2017).
[Crossref]

Pirasteh, P.

Poffo, L.

Quan, M.

Quan, Z.

Ran, Y.

Rao, Y. J.

D. W. Duan, Y. J. Rao, and T. Zhu, “High sensitivity gas refractometer based on all-fiber open-cavity Fabry–Perot interferometer formed by large lateral offset splicing,” J. Opt. Soc. Am. B 29(5), 912–915 (2012).
[Crossref]

D. W. Duan, Y. J. Rao, L. C. Xu, T. Zhua, D. Wua, and J. Yao, “In-fiber Mach–Zehnder interferometer formed by large lateral offset fusion splicing for gases refractive index measurement with high sensitivity,” Sens. Actuators, B 160(1), 1198–1202 (2011).
[Crossref]

Ren, L.

L. Ren, X. Zhang, X. Guo, H. Wang, and X. Wu, “High-Sensitivity Optofluidic Sensor Based on Coupled Liquid-Core Laser,” IEEE Photonics Technol. Lett. 29(8), 639–642 (2017).
[Crossref]

Rothhardt, M.

A. D. Gomes, B. Silveira, S. C. Warren-Smith, M. Becker, M. Rothhardt, and O. Frazão, “Temperature independent refractive index measurement using a fiber Bragg grating on abrupt tapered tip,” Opt. Laser Technol. 101, 227–231 (2018).
[Crossref]

Shao, L.

L. Shao, Y. Luo, Z. Zhang, X. Zou, B. Luo, W. Pan, and L. Yan, “Sensitivity-enhanced temperature sensor with cascaded fiber optic Sagnac interferometers based on Vernier-effect,” Opt. Commun. 336, 73–76 (2015).
[Crossref]

Shao, L. Y.

Shu, X.

Shum, P. P.

P. Zhang, M. Tang, F. Gao, B. Zhu, Z. Zhao, L. Duan, S. Fu, J. Ouyang, H. Wei, P. P. Shum, and D. Liu, “Simplified hollow-core fiber-based Fabry-Perot interferometer with modified Vernier effect for highly sensitive high-temperature measurement,” IEEE Photonics J. 7(1), 1–10 (2015).
[Crossref]

P. Zhang, M. Tang, F. Guo, B. Zhu, S. Fu, J. Ouyang, P. P. Shum, and D. Liu, “Cascaded fiber-optic Fabry-Perot interferometers with Vernier effect for highly sensitive measurement of axial strain and magnetic field,” Opt. Express 22(16), 19581–19588 (2014).
[Crossref]

Silveira, B.

A. D. Gomes, B. Silveira, S. C. Warren-Smith, M. Becker, M. Rothhardt, and O. Frazão, “Temperature independent refractive index measurement using a fiber Bragg grating on abrupt tapered tip,” Opt. Laser Technol. 101, 227–231 (2018).
[Crossref]

Smietana, M.

M. Janik, M. Koba, A. Celebanska, W. J. Bock, and M. Smietana, “Sensing properties of micro-cavity in-line Mach-Zehnder interferometer enhanced by reactive ion etching,” Opt. Laser Technol. 103, 260–266 (2018).
[Crossref]

Student Member, I. E. E. E.

C. R. Liao, I. E. E. E. Student Member, Y. Wang, D. N. Wang, I. E. E. E. Member, and M. W. Yang, “Fiber In-Line Mach–Zehnder Interferometer Embedded in FBG for Simultaneous Refractive Index and Temperature Measurement,” IEEE Photonics Technol. Lett. 22(22), 1686–1688 (2010).
[Crossref]

Sun, L. P.

Sun, Q.

Sun, T.

Sun, X.

W. Wang, X. Dong, D. Chu, Y. Hu, X. Sun, and J. A. Duan, “Refractive index and temperature-sensing characteristics of a cladding-etched thin core fiber interferometer,” AIP Adv. 8(5), 055104 (2018).
[Crossref]

Sun, X. Y.

X. Y. Sun, D. K. Chu, X. R. Dong, C. Zhou, H. T. Li, L. Zhi, Y. W. Hu, J. Y. Zhou, C. Wang, and J. A. Duan, “Highly sensitive refractive index fiber inline Mach–Zehnder interferometer fabricated by femtosecond laser micromachining and chemical etching,” Opt. Laser Technol. 77, 11–15 (2016).
[Crossref]

Tang, M.

P. Zhang, M. Tang, F. Gao, B. Zhu, Z. Zhao, L. Duan, S. Fu, J. Ouyang, H. Wei, P. P. Shum, and D. Liu, “Simplified hollow-core fiber-based Fabry-Perot interferometer with modified Vernier effect for highly sensitive high-temperature measurement,” IEEE Photonics J. 7(1), 1–10 (2015).
[Crossref]

P. Zhang, M. Tang, F. Guo, B. Zhu, S. Fu, J. Ouyang, P. P. Shum, and D. Liu, “Cascaded fiber-optic Fabry-Perot interferometers with Vernier effect for highly sensitive measurement of axial strain and magnetic field,” Opt. Express 22(16), 19581–19588 (2014).
[Crossref]

Thual, M.

Tian, J.

Tian, Z.

Z. Tian, S. S. H. Yam, and H. P. Loock, “Single-Mode Fiber Refractive Index Sensor Based on Core-Offset Attenuators,” IEEE Photonics Technol. Lett. 20(16), 1387–1389 (2008).
[Crossref]

Troia, B.

B. Troia, F. D. Leonardis, and V. M. N. Passaro, “Cascaded ring resonator and Mach-Zehnder interferometer with a Sagnac loop for Vernier-effect refractive index sensing,” Sens. Actuators, B 240, 76–89 (2017).
[Crossref]

Wang, C.

X. Y. Sun, D. K. Chu, X. R. Dong, C. Zhou, H. T. Li, L. Zhi, Y. W. Hu, J. Y. Zhou, C. Wang, and J. A. Duan, “Highly sensitive refractive index fiber inline Mach–Zehnder interferometer fabricated by femtosecond laser micromachining and chemical etching,” Opt. Laser Technol. 77, 11–15 (2016).
[Crossref]

Wang, D. N.

Wang, H.

L. Ren, X. Zhang, X. Guo, H. Wang, and X. Wu, “High-Sensitivity Optofluidic Sensor Based on Coupled Liquid-Core Laser,” IEEE Photonics Technol. Lett. 29(8), 639–642 (2017).
[Crossref]

Wang, J.

Wang, Q.

Q. Wang, W. Wei, M. Guo, and Y. Zhao, “Optimization of cascaded fiber tapered Mach–Zehnder interferometer and refractive index sensing technology,” Sens. Actuators, B 222, 159–165 (2016).
[Crossref]

Wang, W.

W. Wang, X. Dong, D. Chu, Y. Hu, X. Sun, and J. A. Duan, “Refractive index and temperature-sensing characteristics of a cladding-etched thin core fiber interferometer,” AIP Adv. 8(5), 055104 (2018).
[Crossref]

Wang, Y.

Wang, Y. J.

Wang, Z. K.

Warren-Smith, S. C.

A. D. Gomes, B. Silveira, S. C. Warren-Smith, M. Becker, M. Rothhardt, and O. Frazão, “Temperature independent refractive index measurement using a fiber Bragg grating on abrupt tapered tip,” Opt. Laser Technol. 101, 227–231 (2018).
[Crossref]

Wei, H.

P. Zhang, M. Tang, F. Gao, B. Zhu, Z. Zhao, L. Duan, S. Fu, J. Ouyang, H. Wei, P. P. Shum, and D. Liu, “Simplified hollow-core fiber-based Fabry-Perot interferometer with modified Vernier effect for highly sensitive high-temperature measurement,” IEEE Photonics J. 7(1), 1–10 (2015).
[Crossref]

Wei, W.

Q. Wang, W. Wei, M. Guo, and Y. Zhao, “Optimization of cascaded fiber tapered Mach–Zehnder interferometer and refractive index sensing technology,” Sens. Actuators, B 222, 159–165 (2016).
[Crossref]

Wei, Y.

W. Zhou, K. Li, Y. Wei, P. Hao, M. Chi, Y. Liu, and Y. Wu, “Ultrasensitive label-free optical microfiber coupler biosensor for detection of cardiac troponin I based on interference turning point effect,” Biosens. Bioelectron. 106, 99–104 (2018).
[Crossref]

Wu, X.

L. Ren, X. Zhang, X. Guo, H. Wang, and X. Wu, “High-Sensitivity Optofluidic Sensor Based on Coupled Liquid-Core Laser,” IEEE Photonics Technol. Lett. 29(8), 639–642 (2017).
[Crossref]

R. Huang, K. Ni, X. Wu, and Q. Ma, “Refractometer based on Mach–Zehnder interferometer with peanut-shape structure,” Opt. Commun. 353, 27–29 (2015).
[Crossref]

Wu, Y.

T. Nan, B. Liu, Y. Wu, J. Wang, Y. Mao, L. Zhao, T. Sun, and J. Wang, “Ultrasensitive strain sensor based on Vernier-effect improved parallel structured fiber-optic Fabry-Perot interferometer,” Opt. Express 27(12), 17239–17250 (2019).
[Crossref]

Y. Wu, L. Xia, W. Li, and J. Xia, “Highly Sensitive Fabry-Perot Demodulation Based on Coarse Wavelength Sampling and Vernier Effect,” IEEE Photonics Technol. Lett. 31(6), 487–490 (2019).
[Crossref]

W. Zhou, K. Li, Y. Wei, P. Hao, M. Chi, Y. Liu, and Y. Wu, “Ultrasensitive label-free optical microfiber coupler biosensor for detection of cardiac troponin I based on interference turning point effect,” Biosens. Bioelectron. 106, 99–104 (2018).
[Crossref]

Wua, D.

D. W. Duan, Y. J. Rao, L. C. Xu, T. Zhua, D. Wua, and J. Yao, “In-fiber Mach–Zehnder interferometer formed by large lateral offset fusion splicing for gases refractive index measurement with high sensitivity,” Sens. Actuators, B 160(1), 1198–1202 (2011).
[Crossref]

Xia, J.

Y. Wu, L. Xia, W. Li, and J. Xia, “Highly Sensitive Fabry-Perot Demodulation Based on Coarse Wavelength Sampling and Vernier Effect,” IEEE Photonics Technol. Lett. 31(6), 487–490 (2019).
[Crossref]

Xia, L.

Y. Wu, L. Xia, W. Li, and J. Xia, “Highly Sensitive Fabry-Perot Demodulation Based on Coarse Wavelength Sampling and Vernier Effect,” IEEE Photonics Technol. Lett. 31(6), 487–490 (2019).
[Crossref]

Xiao, P.

Xu, B.

Xu, L. C.

D. W. Duan, Y. J. Rao, L. C. Xu, T. Zhua, D. Wua, and J. Yao, “In-fiber Mach–Zehnder interferometer formed by large lateral offset fusion splicing for gases refractive index measurement with high sensitivity,” Sens. Actuators, B 160(1), 1198–1202 (2011).
[Crossref]

Xu, W.

N. Zhang, W. Xu, S. You, C. Yu, C. Yu, B. Dong, and K. Li, “Simultaneous measurement of refractive index, strain and temperature using a tapered structure based on SMF,” Opt. Commun. 410, 70–74 (2018).
[Crossref]

Xu, Z.

Xue, P.

F. Yu, P. Xue, and J. Zheng, “Enhancement of Refractive Index Sensitivity by Bending a Core-Offset In-Line Fiber Mach–Zehnder Interferometer,” IEEE Sens. J. 19(9), 3328–3334 (2019).
[Crossref]

Yam, S. S. H.

Z. Tian, S. S. H. Yam, and H. P. Loock, “Single-Mode Fiber Refractive Index Sensor Based on Core-Offset Attenuators,” IEEE Photonics Technol. Lett. 20(16), 1387–1389 (2008).
[Crossref]

Yan, L.

L. Shao, Y. Luo, Z. Zhang, X. Zou, B. Luo, W. Pan, and L. Yan, “Sensitivity-enhanced temperature sensor with cascaded fiber optic Sagnac interferometers based on Vernier-effect,” Opt. Commun. 336, 73–76 (2015).
[Crossref]

Yan, Z.

Yang, M.

Yang, M. W.

C. R. Liao, I. E. E. E. Student Member, Y. Wang, D. N. Wang, I. E. E. E. Member, and M. W. Yang, “Fiber In-Line Mach–Zehnder Interferometer Embedded in FBG for Simultaneous Refractive Index and Temperature Measurement,” IEEE Photonics Technol. Lett. 22(22), 1686–1688 (2010).
[Crossref]

Yang, W.

Yang, Y.

Yao, J.

D. W. Duan, Y. J. Rao, L. C. Xu, T. Zhua, D. Wua, and J. Yao, “In-fiber Mach–Zehnder interferometer formed by large lateral offset fusion splicing for gases refractive index measurement with high sensitivity,” Sens. Actuators, B 160(1), 1198–1202 (2011).
[Crossref]

Yao, Y.

You, S.

N. Zhang, W. Xu, S. You, C. Yu, C. Yu, B. Dong, and K. Li, “Simultaneous measurement of refractive index, strain and temperature using a tapered structure based on SMF,” Opt. Commun. 410, 70–74 (2018).
[Crossref]

Yu, C.

N. Zhang, W. Xu, S. You, C. Yu, C. Yu, B. Dong, and K. Li, “Simultaneous measurement of refractive index, strain and temperature using a tapered structure based on SMF,” Opt. Commun. 410, 70–74 (2018).
[Crossref]

N. Zhang, W. Xu, S. You, C. Yu, C. Yu, B. Dong, and K. Li, “Simultaneous measurement of refractive index, strain and temperature using a tapered structure based on SMF,” Opt. Commun. 410, 70–74 (2018).
[Crossref]

Yu, F.

F. Yu, P. Xue, and J. Zheng, “Enhancement of Refractive Index Sensitivity by Bending a Core-Offset In-Line Fiber Mach–Zehnder Interferometer,” IEEE Sens. J. 19(9), 3328–3334 (2019).
[Crossref]

Yuan, Z.

Yue, Y. H.

Zhang, H.

J. Chen, J. Zhou, Q. Zhang, H. Zhang, and M. Y. Chen, “All-Fiber Modal Interferometer Based on a Joint-Taper-Joint Fiber Structure for Refractive Index Sensing With High Sensitivity,” IEEE Sens. J. 13(7), 2780–2785 (2013).
[Crossref]

Zhang, J.

J. Zhang, H. Liao, P. Lu, X. Jiang, X. Fu, W. Ni, D. Liu, and J. Zhang, “Ultrasensitive Temperature Sensor with Cascaded Fiber Optic Fabry-Perot Interferometers Based on Vernier Effect,” IEEE Photonics J. 10(5), 1–11 (2018).
[Crossref]

J. Zhang, H. Liao, P. Lu, X. Jiang, X. Fu, W. Ni, D. Liu, and J. Zhang, “Ultrasensitive Temperature Sensor with Cascaded Fiber Optic Fabry-Perot Interferometers Based on Vernier Effect,” IEEE Photonics J. 10(5), 1–11 (2018).
[Crossref]

H. Liao, P. Lu, X. Fu, X. Jiang, W. Ni, D. Liu, and J. Zhang, “Sensitivity amplification of fiber-optic in-line Mach-Zehnder Interferometer sensors with modified Vernier-effect,” Opt. Express 25(22), 26898–26909 (2017).
[Crossref]

Zhang, L.

Zhang, M.

Zhang, N.

N. Zhang, W. Xu, S. You, C. Yu, C. Yu, B. Dong, and K. Li, “Simultaneous measurement of refractive index, strain and temperature using a tapered structure based on SMF,” Opt. Commun. 410, 70–74 (2018).
[Crossref]

Zhang, P.

P. Zhang, M. Tang, F. Gao, B. Zhu, Z. Zhao, L. Duan, S. Fu, J. Ouyang, H. Wei, P. P. Shum, and D. Liu, “Simplified hollow-core fiber-based Fabry-Perot interferometer with modified Vernier effect for highly sensitive high-temperature measurement,” IEEE Photonics J. 7(1), 1–10 (2015).
[Crossref]

P. Zhang, M. Tang, F. Guo, B. Zhu, S. Fu, J. Ouyang, P. P. Shum, and D. Liu, “Cascaded fiber-optic Fabry-Perot interferometers with Vernier effect for highly sensitive measurement of axial strain and magnetic field,” Opt. Express 22(16), 19581–19588 (2014).
[Crossref]

Zhang, Q.

J. Chen, J. Zhou, Q. Zhang, H. Zhang, and M. Y. Chen, “All-Fiber Modal Interferometer Based on a Joint-Taper-Joint Fiber Structure for Refractive Index Sensing With High Sensitivity,” IEEE Sens. J. 13(7), 2780–2785 (2013).
[Crossref]

Zhang, X.

L. Ren, X. Zhang, X. Guo, H. Wang, and X. Wu, “High-Sensitivity Optofluidic Sensor Based on Coupled Liquid-Core Laser,” IEEE Photonics Technol. Lett. 29(8), 639–642 (2017).
[Crossref]

Zhang, Z.

L. Shao, Y. Luo, Z. Zhang, X. Zou, B. Luo, W. Pan, and L. Yan, “Sensitivity-enhanced temperature sensor with cascaded fiber optic Sagnac interferometers based on Vernier-effect,” Opt. Commun. 336, 73–76 (2015).
[Crossref]

Zhao, L.

Zhao, Y.

Y. Yang, Y. Wang, Y. Zhao, J. Jiang, X. He, W. Yang, Z. Zhu, W. Gao, and L. Li, “Sensitivity-enhanced temperature sensor by hybrid cascaded configuration of a Sagnac loop and a F-P cavity,” Opt. Express 25(26), 33290–33296 (2017).
[Crossref]

Q. Wang, W. Wei, M. Guo, and Y. Zhao, “Optimization of cascaded fiber tapered Mach–Zehnder interferometer and refractive index sensing technology,” Sens. Actuators, B 222, 159–165 (2016).
[Crossref]

Zhao, Z.

P. Zhang, M. Tang, F. Gao, B. Zhu, Z. Zhao, L. Duan, S. Fu, J. Ouyang, H. Wei, P. P. Shum, and D. Liu, “Simplified hollow-core fiber-based Fabry-Perot interferometer with modified Vernier effect for highly sensitive high-temperature measurement,” IEEE Photonics J. 7(1), 1–10 (2015).
[Crossref]

Zheng, J.

F. Yu, P. Xue, and J. Zheng, “Enhancement of Refractive Index Sensitivity by Bending a Core-Offset In-Line Fiber Mach–Zehnder Interferometer,” IEEE Sens. J. 19(9), 3328–3334 (2019).
[Crossref]

Zhi, L.

X. Y. Sun, D. K. Chu, X. R. Dong, C. Zhou, H. T. Li, L. Zhi, Y. W. Hu, J. Y. Zhou, C. Wang, and J. A. Duan, “Highly sensitive refractive index fiber inline Mach–Zehnder interferometer fabricated by femtosecond laser micromachining and chemical etching,” Opt. Laser Technol. 77, 11–15 (2016).
[Crossref]

Zhou, C.

X. Y. Sun, D. K. Chu, X. R. Dong, C. Zhou, H. T. Li, L. Zhi, Y. W. Hu, J. Y. Zhou, C. Wang, and J. A. Duan, “Highly sensitive refractive index fiber inline Mach–Zehnder interferometer fabricated by femtosecond laser micromachining and chemical etching,” Opt. Laser Technol. 77, 11–15 (2016).
[Crossref]

Zhou, J.

J. Chen, J. Zhou, Q. Zhang, H. Zhang, and M. Y. Chen, “All-Fiber Modal Interferometer Based on a Joint-Taper-Joint Fiber Structure for Refractive Index Sensing With High Sensitivity,” IEEE Sens. J. 13(7), 2780–2785 (2013).
[Crossref]

Zhou, J. Y.

X. Y. Sun, D. K. Chu, X. R. Dong, C. Zhou, H. T. Li, L. Zhi, Y. W. Hu, J. Y. Zhou, C. Wang, and J. A. Duan, “Highly sensitive refractive index fiber inline Mach–Zehnder interferometer fabricated by femtosecond laser micromachining and chemical etching,” Opt. Laser Technol. 77, 11–15 (2016).
[Crossref]

Zhou, W.

W. Zhou, K. Li, Y. Wei, P. Hao, M. Chi, Y. Liu, and Y. Wu, “Ultrasensitive label-free optical microfiber coupler biosensor for detection of cardiac troponin I based on interference turning point effect,” Biosens. Bioelectron. 106, 99–104 (2018).
[Crossref]

Zhu, B.

P. Zhang, M. Tang, F. Gao, B. Zhu, Z. Zhao, L. Duan, S. Fu, J. Ouyang, H. Wei, P. P. Shum, and D. Liu, “Simplified hollow-core fiber-based Fabry-Perot interferometer with modified Vernier effect for highly sensitive high-temperature measurement,” IEEE Photonics J. 7(1), 1–10 (2015).
[Crossref]

P. Zhang, M. Tang, F. Guo, B. Zhu, S. Fu, J. Ouyang, P. P. Shum, and D. Liu, “Cascaded fiber-optic Fabry-Perot interferometers with Vernier effect for highly sensitive measurement of axial strain and magnetic field,” Opt. Express 22(16), 19581–19588 (2014).
[Crossref]

Zhu, H. H.

Zhu, T.

Zhu, Z.

Zhua, T.

D. W. Duan, Y. J. Rao, L. C. Xu, T. Zhua, D. Wua, and J. Yao, “In-fiber Mach–Zehnder interferometer formed by large lateral offset fusion splicing for gases refractive index measurement with high sensitivity,” Sens. Actuators, B 160(1), 1198–1202 (2011).
[Crossref]

Zou, X.

L. Shao, Y. Luo, Z. Zhang, X. Zou, B. Luo, W. Pan, and L. Yan, “Sensitivity-enhanced temperature sensor with cascaded fiber optic Sagnac interferometers based on Vernier-effect,” Opt. Commun. 336, 73–76 (2015).
[Crossref]

AIP Adv. (1)

W. Wang, X. Dong, D. Chu, Y. Hu, X. Sun, and J. A. Duan, “Refractive index and temperature-sensing characteristics of a cladding-etched thin core fiber interferometer,” AIP Adv. 8(5), 055104 (2018).
[Crossref]

Biosens. Bioelectron. (1)

W. Zhou, K. Li, Y. Wei, P. Hao, M. Chi, Y. Liu, and Y. Wu, “Ultrasensitive label-free optical microfiber coupler biosensor for detection of cardiac troponin I based on interference turning point effect,” Biosens. Bioelectron. 106, 99–104 (2018).
[Crossref]

IEEE Photonics J. (2)

P. Zhang, M. Tang, F. Gao, B. Zhu, Z. Zhao, L. Duan, S. Fu, J. Ouyang, H. Wei, P. P. Shum, and D. Liu, “Simplified hollow-core fiber-based Fabry-Perot interferometer with modified Vernier effect for highly sensitive high-temperature measurement,” IEEE Photonics J. 7(1), 1–10 (2015).
[Crossref]

J. Zhang, H. Liao, P. Lu, X. Jiang, X. Fu, W. Ni, D. Liu, and J. Zhang, “Ultrasensitive Temperature Sensor with Cascaded Fiber Optic Fabry-Perot Interferometers Based on Vernier Effect,” IEEE Photonics J. 10(5), 1–11 (2018).
[Crossref]

IEEE Photonics Technol. Lett. (4)

C. R. Liao, I. E. E. E. Student Member, Y. Wang, D. N. Wang, I. E. E. E. Member, and M. W. Yang, “Fiber In-Line Mach–Zehnder Interferometer Embedded in FBG for Simultaneous Refractive Index and Temperature Measurement,” IEEE Photonics Technol. Lett. 22(22), 1686–1688 (2010).
[Crossref]

Y. Wu, L. Xia, W. Li, and J. Xia, “Highly Sensitive Fabry-Perot Demodulation Based on Coarse Wavelength Sampling and Vernier Effect,” IEEE Photonics Technol. Lett. 31(6), 487–490 (2019).
[Crossref]

L. Ren, X. Zhang, X. Guo, H. Wang, and X. Wu, “High-Sensitivity Optofluidic Sensor Based on Coupled Liquid-Core Laser,” IEEE Photonics Technol. Lett. 29(8), 639–642 (2017).
[Crossref]

Z. Tian, S. S. H. Yam, and H. P. Loock, “Single-Mode Fiber Refractive Index Sensor Based on Core-Offset Attenuators,” IEEE Photonics Technol. Lett. 20(16), 1387–1389 (2008).
[Crossref]

IEEE Sens. J. (2)

F. Yu, P. Xue, and J. Zheng, “Enhancement of Refractive Index Sensitivity by Bending a Core-Offset In-Line Fiber Mach–Zehnder Interferometer,” IEEE Sens. J. 19(9), 3328–3334 (2019).
[Crossref]

J. Chen, J. Zhou, Q. Zhang, H. Zhang, and M. Y. Chen, “All-Fiber Modal Interferometer Based on a Joint-Taper-Joint Fiber Structure for Refractive Index Sensing With High Sensitivity,” IEEE Sens. J. 13(7), 2780–2785 (2013).
[Crossref]

J. Opt. Soc. Am. B (2)

Opt. Commun. (3)

N. Zhang, W. Xu, S. You, C. Yu, C. Yu, B. Dong, and K. Li, “Simultaneous measurement of refractive index, strain and temperature using a tapered structure based on SMF,” Opt. Commun. 410, 70–74 (2018).
[Crossref]

R. Huang, K. Ni, X. Wu, and Q. Ma, “Refractometer based on Mach–Zehnder interferometer with peanut-shape structure,” Opt. Commun. 353, 27–29 (2015).
[Crossref]

L. Shao, Y. Luo, Z. Zhang, X. Zou, B. Luo, W. Pan, and L. Yan, “Sensitivity-enhanced temperature sensor with cascaded fiber optic Sagnac interferometers based on Vernier-effect,” Opt. Commun. 336, 73–76 (2015).
[Crossref]

Opt. Express (10)

T. Claes, W. Bogaerts, and P. Bienstman, “Experimental characterization of a silicon photonic biosensor consisting of two cascaded ring resonators based on the Vernier-effect and introduction of a curve fitting method for an improved detection limit,” Opt. Express 18(22), 22747–22761 (2010).
[Crossref]

H. H. Zhu, Y. H. Yue, Y. J. Wang, M. Zhang, L. Y. Shao, J. J. He, and M. Y. Li, “High-sensitivity optical sensors based on cascaded reflective MZIs and microring resonators,” Opt. Express 25(23), 28612–28617 (2017).
[Crossref]

P. Azuelos, P. Girault, N. Lorrain, L. Poffo, M. Guendouz, M. Thual, J. Lemaitre, P. Pirasteh, I. Hardy, and J. Charrier, “High sensitivity optical biosensor based on polymer materials and using the Vernier effect,” Opt. Express 25(24), 30799–30806 (2017).
[Crossref]

T. Nan, B. Liu, Y. Wu, J. Wang, Y. Mao, L. Zhao, T. Sun, and J. Wang, “Ultrasensitive strain sensor based on Vernier-effect improved parallel structured fiber-optic Fabry-Perot interferometer,” Opt. Express 27(12), 17239–17250 (2019).
[Crossref]

Y. Yang, Y. Wang, Y. Zhao, J. Jiang, X. He, W. Yang, Z. Zhu, W. Gao, and L. Li, “Sensitivity-enhanced temperature sensor by hybrid cascaded configuration of a Sagnac loop and a F-P cavity,” Opt. Express 25(26), 33290–33296 (2017).
[Crossref]

Z. Xu, X. Shu, and H. Fu, “Sensitivity enhanced fiber sensor based on a fiber ring microwave photonic filter with the Vernier effect,” Opt. Express 25(18), 21559–21566 (2017).
[Crossref]

H. Liao, P. Lu, X. Fu, X. Jiang, W. Ni, D. Liu, and J. Zhang, “Sensitivity amplification of fiber-optic in-line Mach-Zehnder Interferometer sensors with modified Vernier-effect,” Opt. Express 25(22), 26898–26909 (2017).
[Crossref]

P. Zhang, M. Tang, F. Guo, B. Zhu, S. Fu, J. Ouyang, P. P. Shum, and D. Liu, “Cascaded fiber-optic Fabry-Perot interferometers with Vernier effect for highly sensitive measurement of axial strain and magnetic field,” Opt. Express 22(16), 19581–19588 (2014).
[Crossref]

L. P. Sun, T. Huang, Z. Yuan, W. Lin, P. Xiao, M. Yang, J. Ma, Y. Ran, L. Jin, J. Li, and B. O. Guan, “Ultra-high sensitivity of dual dispersion turning point taper-based Mach-Zehnder interferometer,” Opt. Express 27(16), 23103–23111 (2019).
[Crossref]

W. W. Li, D. N. Wang, Z. K. Wang, and B. Xu, “Fiber in-line Mach-Zehnder interferometer based on a pair of short sections of waveguide,” Opt. Express 26(9), 11496–11502 (2018).
[Crossref]

Opt. Laser Technol. (3)

X. Y. Sun, D. K. Chu, X. R. Dong, C. Zhou, H. T. Li, L. Zhi, Y. W. Hu, J. Y. Zhou, C. Wang, and J. A. Duan, “Highly sensitive refractive index fiber inline Mach–Zehnder interferometer fabricated by femtosecond laser micromachining and chemical etching,” Opt. Laser Technol. 77, 11–15 (2016).
[Crossref]

M. Janik, M. Koba, A. Celebanska, W. J. Bock, and M. Smietana, “Sensing properties of micro-cavity in-line Mach-Zehnder interferometer enhanced by reactive ion etching,” Opt. Laser Technol. 103, 260–266 (2018).
[Crossref]

A. D. Gomes, B. Silveira, S. C. Warren-Smith, M. Becker, M. Rothhardt, and O. Frazão, “Temperature independent refractive index measurement using a fiber Bragg grating on abrupt tapered tip,” Opt. Laser Technol. 101, 227–231 (2018).
[Crossref]

Opt. Lett. (3)

Sens. Actuators, B (3)

B. Troia, F. D. Leonardis, and V. M. N. Passaro, “Cascaded ring resonator and Mach-Zehnder interferometer with a Sagnac loop for Vernier-effect refractive index sensing,” Sens. Actuators, B 240, 76–89 (2017).
[Crossref]

Q. Wang, W. Wei, M. Guo, and Y. Zhao, “Optimization of cascaded fiber tapered Mach–Zehnder interferometer and refractive index sensing technology,” Sens. Actuators, B 222, 159–165 (2016).
[Crossref]

D. W. Duan, Y. J. Rao, L. C. Xu, T. Zhua, D. Wua, and J. Yao, “In-fiber Mach–Zehnder interferometer formed by large lateral offset fusion splicing for gases refractive index measurement with high sensitivity,” Sens. Actuators, B 160(1), 1198–1202 (2011).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. (a)-(b) Fabrication process of a fiber core-offset pair, the fabricated (c) MZI and (d) FPI.
Fig. 2.
Fig. 2. Schematic diagram of the RI sensor utilizing the MZI cascaded with the FPI to enhance Vernier effect (insert, the microscope image of the FPI at the top and the MZI at the bottom).
Fig. 3.
Fig. 3. Working mechanism for (a) traditional, (b) reduced, and (c) enhanced Vernier effect.
Fig. 4.
Fig. 4. (a) Transmission spectrum of the MZI, (c) reflection spectrum of the FPI, (e) output spectrum of the MZI cascaded the FPI; (b), (d) and (f) FFT results corresponding to (a), (c) and (e), respectively.
Fig. 5.
Fig. 5. (a) Extracted superimposed spectrum corresponding to peak 2 and peak 4 in Fig. 4(f), extracted spectra corresponding to (b) peak 2 and (c) peak 4, respectively.
Fig. 6.
Fig. 6. RI responses of the sensor at 25°C. Extracted spectra corresponding to (a) peak 2 and (b) peak 4, and (c) envelopes, under different RIs; (d)-(f), dip wavelength vs RI corresponding to (a)-(c).
Fig. 7.
Fig. 7. Temperature responses of the sensor. Extracted spectra corresponding to (a) peak 2 and (b) peak 4, and (c) envelope, under different temperatures; (d)-(f), dip wavelength vs RI corresponding to (a)-(c).

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

E o u t = E i n ( D 1 e j 2 π n e x t L M λ + D 2 e j 2 π n c l L M λ ) ( D 3 + D 4 e j 2 π n e x t L M λ ) ,
I = A + B cos Δ φ 1 + C cos Δ φ 2 + D [ cos ( Δ φ 1 + Δ φ 2 ) + cos ( Δ φ 1 Δ φ 2 ) ] ,
Δ φ 1 = 2 π ( n c l n e x t ) L M λ ,
Δ φ 2 = 4 π n e x t L F λ ,
λ m = 2 ( n c l n e x t ) L M 2 m + 1 ,
λ n = 4 n e x t L F 2 n + 1 ,
F S R 1 = λ 2 ( n c l n e x t ) L M ,
F S R 2 = λ 2 2 n e x t L F ,
λ l = | 2 ( n c l n e x t ) L M 4 n e x t L F | 2 l + 1 ,
F S R e = F S R 1 F S R 2 | F S R 1 F S R 2 | .
δ λ m = λ m [ ( n c l n e x t ) ( n c l n e x t ) + L M L M ] ,
δ λ n = λ n [ n e x t n e x t + L F L F ] ,
δ λ l = λ l [ ( n c l n e x t ) L M + ( n c l n e x t ) L M ] 2 ( n e x t L F + n e x t L F ) | ( n c l n e x t ) L M 2 n e x t L F | ,
δ λ l = A 1 δ λ m + A 2 δ λ n ,
A 1 = F S R 2 F S R 1 F S R 2 , A 2 = F S R 1 F S R 1 F S R 2 ,

Metrics