Abstract

Superconducting nanowire single photon detectors are typically biased using a constant current source and shunted in a conductance that is over an order of magnitude larger than the peak normal domain conductance of the detector. While this design choice is required to ensure quenching of the normal domain, the use of a small load resistor limits the pulse amplitude, rising-edge slew rate, and recovery time of the detector. Here, we explore the possibility of actively quenching the normal domain, thereby removing the need to shunt the detector in a small resistance. We first consider the theoretical performance of an actively quenched superconducting nanowire single photon detector and, in comparison to a passively quenched device, we predict roughly an order of magnitude improvement in the slew rate and peak voltage achieved in this configuration. The experimental performance of actively and passively quenched superconducting nanowire single photon detectors are then compared. It is shown that, in comparison to a passively quenched device, the actively quenched detectors simultaneously exhibited improved count rates, dark count rates, and timing jitter.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Gated mode superconducting nanowire single photon detectors

Mohsen K. Akhlaghi and A. Hamed Majedi
Opt. Express 20(2) 1608-1616 (2012)

High-speed and high-efficiency superconducting nanowire single photon detector array

D. Rosenberg, A. J. Kerman, R. J. Molnar, and E. A. Dauler
Opt. Express 21(2) 1440-1447 (2013)

Single-channel electronic readout of a multipixel superconducting nanowire single photon detector

Johannes Tiedau, Timon Schapeler, Vikas Anant, Helmut Fedder, Christine Silberhorn, and Tim J. Bartley
Opt. Express 28(4) 5528-5537 (2020)

References

  • View by:
  • |
  • |
  • |

  1. F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
    [Crossref]
  2. O. Kahl, S. Ferrari, V. Kovalyuk, G. N. Goltsman, A. Korneev, and W. H. P. Pernice, “Waveguide integrated superconducting single-photon detectors with high internal quantum efficiency at telecom wavelengths,” Sci. Rep. 5(1), 10941 (2015). Article.
    [Crossref]
  3. V. B. Verma, B. Korzh, F. Bussières, R. D. Horansky, S. D. Dyer, A. E. Lita, I. Vayshenker, F. Marsili, M. D. Shaw, H. Zbinden, R. P. Mirin, and S. W. Nam, “High-efficiency superconducting nanowire single-photon detectors fabricated from MoSi thin-films,” Opt. Express 23(26), 33792–33801 (2015).
    [Crossref]
  4. D. Rosenberg, A. Kerman, R. Molnar, and E. Dauler, “High-speed and high-efficiency superconducting nanowire single photon detector array,” Opt. Express 21(2), 1440–1447 (2013).
    [Crossref]
  5. B. S. Robinson, A. J. Kerman, E. A. Dauler, R. J. Barron, D. O. Caplan, M. L. Stevens, J. J. Carney, S. A. Hamilton, J. K. Yang, and K. K. Berggren, “781 Mbit/s photon-counting optical communications using a superconducting nanowire detector,” Opt. Lett. 31(4), 444–446 (2006).
    [Crossref]
  6. I. Esmaeil Zadeh, J. W. N. Los, R. B. M. Gourgues, V. Steinmetz, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, and S. N. Dorenbos, “Single-photon detectors combining high efficiency, high detection rates, and ultra-high timing resolution,” APL Photonics 2(11), 111301 (2017).
    [Crossref]
  7. I. E. Zadeh, J. W. Los, R. Gourgues, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, and S. N. Dorenbos, “A single-photon detector with high efficiency and sub-10ps time resolution,” arXiv preprint arXiv:1801.06574 (2018).
  8. M. Caloz, M. Perrenoud, C. Autebert, B. Korzh, M. Weiss, C. Schönenberger, R. J. Warburton, H. Zbinden, and F. Bussières, “High-detection efficiency and low-timing jitter with amorphous superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 112(6), 061103 (2018).
    [Crossref]
  9. B. A. Korzh, Q.-Y. Zhao, S. Frasca, J. P. Allmaras, T. M. Autry, E. A. Bersin, M. Colangelo, G. M. Crouch, A. E. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J. D. Rezac, M. J. Stevens, E. E. Wollman, D. Zhu, P. D. Hale, K. L. Silverman, R. P. Mirin, S. W. Nam, M. D. Shaw, and K. K. Berggren, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” https://arxiv.org/pdf/1804.06839 (2018).
  10. C. Schuck, W. H. Pernice, and H. X. Tang, “Waveguide integrated low noise NbTiN nanowire single-photon detectors with milli-Hz dark count rate,” Sci. Rep. 3(1), 1893 (2013).
    [Crossref]
  11. E. E. Wollman, V. B. Verma, A. D. Beyer, R. M. Briggs, B. Korzh, J. P. Allmaras, F. Marsili, A. E. Lita, R. P. Mirin, S. W. Nam, and M. D. Shaw, “UV superconducting nanowire single-photon detectors with high efficiency, low noise, and 4 k operating temperature,” Opt. Express 25(22), 26792–26801 (2017).
    [Crossref]
  12. A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. 88(11), 111116 (2006).
    [Crossref]
  13. J. K. W. Yang, A. J. Kerman, E. A. Dauler, V. Anant, K. M. Rosfjord, and K. K. Berggren, “Modeling the electrical and thermal response of superconducting nanowire single-photon detectors,” IEEE Trans. Appl. Supercond. 17(2), 581–585 (2007).
    [Crossref]
  14. A. J. Kerman, J. K. W. Yang, R. J. Molnar, E. A. Dauler, and K. K. Berggren, “Electrothermal feedback in superconducting nanowire single-photon detectors,” Phys. Rev. B 79(10), 100509 (2009).
    [Crossref]
  15. A. J. Kerman, D. Rosenberg, R. J. Molnar, and E. A. Dauler, “Readout of superconducting nanowire single-photon detectors at high count rates,” J. Appl. Phys. 113(14), 144511 (2013).
    [Crossref]
  16. L. X. You and X. F. Shen, “Shaping the response pulse of superconducting nanowire single photon detection with a snubber,” Appl. Phys. Lett. 95(15), 152514 (2009).
    [Crossref]
  17. Q. Zhao, T. Jia, M. Gu, C. Wan, L. Zhang, W. Xu, L. Kang, J. Chen, and P. Wu, “Counting rate enhancements in superconducting nanowire single-photon detectors with improved readout circuits,” Opt. Lett. 39(7), 1869–1872 (2014).
    [Crossref]
  18. M. K. Akhlaghi and A. H. Majedi, “Gated mode superconducting nanowire single photon detectors,” Opt. Express 20(2), 1608–1616 (2012).
    [Crossref]
  19. K. K. Berggren, Q.-Y. Zhao, N. S. Abebe, M. Chen, P. Ravindran, A. N. McCaughan, and J. Bardin, “A superconducting nanowire can be modeled by using SPICE,” Supercond. Sci. Technol. 31(5), 055010 (2018).
    [Crossref]
  20. A. V. Gurevich and R. G. Mints, “Self-heating in normal metals and superconductors,” Rev. Mod. Phys. 59(4), 941–999 (1987).
    [Crossref]
  21. J. R. Clem and V. Kogan, “Kinetic impedance and depairing in thin and narrow superconducting films,” Phys. Rev. B 86(17), 174521 (2012).
    [Crossref]
  22. D. F. Santavicca, J. K. Adams, L. E. Grant, A. N. McCaughan, and K. K. Berggren, “Microwave dynamics of high aspect ratio superconducting nanowires studied using self-resonance,” J. Appl. Phys. 119(23), 234302 (2016).
    [Crossref]
  23. B. Orner, Q. Liu, B. Rainey, A. Stricker, P. Geiss, P. Gray, M. Zierak, M. Gordon, D. Collins, V. Ramachandran, W. Hodge, C. Willets, A. Joseph, J. Dunn, J.-S. Rieh, S.-J. Jeng, E. Eld, G. Freeman, and D. Ahlgren, “A 0.13 µm BiCMOS technology featuring a 200/280 GHz (fT/fmax) SiGe HBT,” in Proceedings of the 2003 BIPOLAR/BICMOS Circuits and Technology Meeting, (2003).
  24. R. Cheng, X. Guo, X. Ma, L. Fan, K. Y. Fong, M. Poot, and H. X. Tang, “Self-aligned multi-channel superconducting nanowire single-photon detectors,” Opt. Express 24(24), 27070–27076 (2016).
    [Crossref]
  25. OriginLab, “The integrate gadget,” https://www.originlab.com/doc/Origin-Help/Gadget-Integration. Accessed 01/4/2020.
  26. N. Calandri, Q.-Y. Zhao, D. Zhu, A. Dane, and K. K. Berggren, “Superconducting nanowire detector jitter limited by detector geometry,” Appl. Phys. Lett. 109(15), 152601 (2016).
    [Crossref]
  27. F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6(1), 5873 (2015).
    [Crossref]
  28. A. J. Miller, A. E. Lita, B. Calkins, I. Vayshenker, S. M. Gruber, and S. W. Nam, “Compact cryogenic self-aligning fiber-to-detector coupling with losses below one percent,” Opt. Express 19(10), 9102–9110 (2011).
    [Crossref]
  29. H. Duan, D. Winston, J. K. Yang, B. M. Cord, V. R. Manfrinato, and K. K. Berggren, “Sub-10-nm half-pitch electron-beam lithography by using poly (methyl methacrylate) as a negative resist,” J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 28(6), C6C58–C6C62 (2010).
    [Crossref]

2018 (2)

M. Caloz, M. Perrenoud, C. Autebert, B. Korzh, M. Weiss, C. Schönenberger, R. J. Warburton, H. Zbinden, and F. Bussières, “High-detection efficiency and low-timing jitter with amorphous superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 112(6), 061103 (2018).
[Crossref]

K. K. Berggren, Q.-Y. Zhao, N. S. Abebe, M. Chen, P. Ravindran, A. N. McCaughan, and J. Bardin, “A superconducting nanowire can be modeled by using SPICE,” Supercond. Sci. Technol. 31(5), 055010 (2018).
[Crossref]

2017 (2)

I. Esmaeil Zadeh, J. W. N. Los, R. B. M. Gourgues, V. Steinmetz, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, and S. N. Dorenbos, “Single-photon detectors combining high efficiency, high detection rates, and ultra-high timing resolution,” APL Photonics 2(11), 111301 (2017).
[Crossref]

E. E. Wollman, V. B. Verma, A. D. Beyer, R. M. Briggs, B. Korzh, J. P. Allmaras, F. Marsili, A. E. Lita, R. P. Mirin, S. W. Nam, and M. D. Shaw, “UV superconducting nanowire single-photon detectors with high efficiency, low noise, and 4 k operating temperature,” Opt. Express 25(22), 26792–26801 (2017).
[Crossref]

2016 (3)

D. F. Santavicca, J. K. Adams, L. E. Grant, A. N. McCaughan, and K. K. Berggren, “Microwave dynamics of high aspect ratio superconducting nanowires studied using self-resonance,” J. Appl. Phys. 119(23), 234302 (2016).
[Crossref]

R. Cheng, X. Guo, X. Ma, L. Fan, K. Y. Fong, M. Poot, and H. X. Tang, “Self-aligned multi-channel superconducting nanowire single-photon detectors,” Opt. Express 24(24), 27070–27076 (2016).
[Crossref]

N. Calandri, Q.-Y. Zhao, D. Zhu, A. Dane, and K. K. Berggren, “Superconducting nanowire detector jitter limited by detector geometry,” Appl. Phys. Lett. 109(15), 152601 (2016).
[Crossref]

2015 (3)

F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6(1), 5873 (2015).
[Crossref]

O. Kahl, S. Ferrari, V. Kovalyuk, G. N. Goltsman, A. Korneev, and W. H. P. Pernice, “Waveguide integrated superconducting single-photon detectors with high internal quantum efficiency at telecom wavelengths,” Sci. Rep. 5(1), 10941 (2015). Article.
[Crossref]

V. B. Verma, B. Korzh, F. Bussières, R. D. Horansky, S. D. Dyer, A. E. Lita, I. Vayshenker, F. Marsili, M. D. Shaw, H. Zbinden, R. P. Mirin, and S. W. Nam, “High-efficiency superconducting nanowire single-photon detectors fabricated from MoSi thin-films,” Opt. Express 23(26), 33792–33801 (2015).
[Crossref]

2014 (1)

2013 (4)

A. J. Kerman, D. Rosenberg, R. J. Molnar, and E. A. Dauler, “Readout of superconducting nanowire single-photon detectors at high count rates,” J. Appl. Phys. 113(14), 144511 (2013).
[Crossref]

D. Rosenberg, A. Kerman, R. Molnar, and E. Dauler, “High-speed and high-efficiency superconducting nanowire single photon detector array,” Opt. Express 21(2), 1440–1447 (2013).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

C. Schuck, W. H. Pernice, and H. X. Tang, “Waveguide integrated low noise NbTiN nanowire single-photon detectors with milli-Hz dark count rate,” Sci. Rep. 3(1), 1893 (2013).
[Crossref]

2012 (2)

M. K. Akhlaghi and A. H. Majedi, “Gated mode superconducting nanowire single photon detectors,” Opt. Express 20(2), 1608–1616 (2012).
[Crossref]

J. R. Clem and V. Kogan, “Kinetic impedance and depairing in thin and narrow superconducting films,” Phys. Rev. B 86(17), 174521 (2012).
[Crossref]

2011 (1)

2010 (1)

H. Duan, D. Winston, J. K. Yang, B. M. Cord, V. R. Manfrinato, and K. K. Berggren, “Sub-10-nm half-pitch electron-beam lithography by using poly (methyl methacrylate) as a negative resist,” J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 28(6), C6C58–C6C62 (2010).
[Crossref]

2009 (2)

L. X. You and X. F. Shen, “Shaping the response pulse of superconducting nanowire single photon detection with a snubber,” Appl. Phys. Lett. 95(15), 152514 (2009).
[Crossref]

A. J. Kerman, J. K. W. Yang, R. J. Molnar, E. A. Dauler, and K. K. Berggren, “Electrothermal feedback in superconducting nanowire single-photon detectors,” Phys. Rev. B 79(10), 100509 (2009).
[Crossref]

2007 (1)

J. K. W. Yang, A. J. Kerman, E. A. Dauler, V. Anant, K. M. Rosfjord, and K. K. Berggren, “Modeling the electrical and thermal response of superconducting nanowire single-photon detectors,” IEEE Trans. Appl. Supercond. 17(2), 581–585 (2007).
[Crossref]

2006 (2)

A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. 88(11), 111116 (2006).
[Crossref]

B. S. Robinson, A. J. Kerman, E. A. Dauler, R. J. Barron, D. O. Caplan, M. L. Stevens, J. J. Carney, S. A. Hamilton, J. K. Yang, and K. K. Berggren, “781 Mbit/s photon-counting optical communications using a superconducting nanowire detector,” Opt. Lett. 31(4), 444–446 (2006).
[Crossref]

1987 (1)

A. V. Gurevich and R. G. Mints, “Self-heating in normal metals and superconductors,” Rev. Mod. Phys. 59(4), 941–999 (1987).
[Crossref]

Abebe, N. S.

K. K. Berggren, Q.-Y. Zhao, N. S. Abebe, M. Chen, P. Ravindran, A. N. McCaughan, and J. Bardin, “A superconducting nanowire can be modeled by using SPICE,” Supercond. Sci. Technol. 31(5), 055010 (2018).
[Crossref]

Adams, J. K.

D. F. Santavicca, J. K. Adams, L. E. Grant, A. N. McCaughan, and K. K. Berggren, “Microwave dynamics of high aspect ratio superconducting nanowires studied using self-resonance,” J. Appl. Phys. 119(23), 234302 (2016).
[Crossref]

Ahlgren, D.

B. Orner, Q. Liu, B. Rainey, A. Stricker, P. Geiss, P. Gray, M. Zierak, M. Gordon, D. Collins, V. Ramachandran, W. Hodge, C. Willets, A. Joseph, J. Dunn, J.-S. Rieh, S.-J. Jeng, E. Eld, G. Freeman, and D. Ahlgren, “A 0.13 µm BiCMOS technology featuring a 200/280 GHz (fT/fmax) SiGe HBT,” in Proceedings of the 2003 BIPOLAR/BICMOS Circuits and Technology Meeting, (2003).

Akhlaghi, M. K.

Allmaras, J. P.

E. E. Wollman, V. B. Verma, A. D. Beyer, R. M. Briggs, B. Korzh, J. P. Allmaras, F. Marsili, A. E. Lita, R. P. Mirin, S. W. Nam, and M. D. Shaw, “UV superconducting nanowire single-photon detectors with high efficiency, low noise, and 4 k operating temperature,” Opt. Express 25(22), 26792–26801 (2017).
[Crossref]

B. A. Korzh, Q.-Y. Zhao, S. Frasca, J. P. Allmaras, T. M. Autry, E. A. Bersin, M. Colangelo, G. M. Crouch, A. E. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J. D. Rezac, M. J. Stevens, E. E. Wollman, D. Zhu, P. D. Hale, K. L. Silverman, R. P. Mirin, S. W. Nam, M. D. Shaw, and K. K. Berggren, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” https://arxiv.org/pdf/1804.06839 (2018).

Anant, V.

J. K. W. Yang, A. J. Kerman, E. A. Dauler, V. Anant, K. M. Rosfjord, and K. K. Berggren, “Modeling the electrical and thermal response of superconducting nanowire single-photon detectors,” IEEE Trans. Appl. Supercond. 17(2), 581–585 (2007).
[Crossref]

Assefa, S.

F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6(1), 5873 (2015).
[Crossref]

Autebert, C.

M. Caloz, M. Perrenoud, C. Autebert, B. Korzh, M. Weiss, C. Schönenberger, R. J. Warburton, H. Zbinden, and F. Bussières, “High-detection efficiency and low-timing jitter with amorphous superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 112(6), 061103 (2018).
[Crossref]

Autry, T. M.

B. A. Korzh, Q.-Y. Zhao, S. Frasca, J. P. Allmaras, T. M. Autry, E. A. Bersin, M. Colangelo, G. M. Crouch, A. E. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J. D. Rezac, M. J. Stevens, E. E. Wollman, D. Zhu, P. D. Hale, K. L. Silverman, R. P. Mirin, S. W. Nam, M. D. Shaw, and K. K. Berggren, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” https://arxiv.org/pdf/1804.06839 (2018).

Baek, B.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Bardin, J.

K. K. Berggren, Q.-Y. Zhao, N. S. Abebe, M. Chen, P. Ravindran, A. N. McCaughan, and J. Bardin, “A superconducting nanowire can be modeled by using SPICE,” Supercond. Sci. Technol. 31(5), 055010 (2018).
[Crossref]

Barron, R. J.

Bellei, F.

F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6(1), 5873 (2015).
[Crossref]

Berggren, K. K.

K. K. Berggren, Q.-Y. Zhao, N. S. Abebe, M. Chen, P. Ravindran, A. N. McCaughan, and J. Bardin, “A superconducting nanowire can be modeled by using SPICE,” Supercond. Sci. Technol. 31(5), 055010 (2018).
[Crossref]

N. Calandri, Q.-Y. Zhao, D. Zhu, A. Dane, and K. K. Berggren, “Superconducting nanowire detector jitter limited by detector geometry,” Appl. Phys. Lett. 109(15), 152601 (2016).
[Crossref]

D. F. Santavicca, J. K. Adams, L. E. Grant, A. N. McCaughan, and K. K. Berggren, “Microwave dynamics of high aspect ratio superconducting nanowires studied using self-resonance,” J. Appl. Phys. 119(23), 234302 (2016).
[Crossref]

F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6(1), 5873 (2015).
[Crossref]

H. Duan, D. Winston, J. K. Yang, B. M. Cord, V. R. Manfrinato, and K. K. Berggren, “Sub-10-nm half-pitch electron-beam lithography by using poly (methyl methacrylate) as a negative resist,” J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 28(6), C6C58–C6C62 (2010).
[Crossref]

A. J. Kerman, J. K. W. Yang, R. J. Molnar, E. A. Dauler, and K. K. Berggren, “Electrothermal feedback in superconducting nanowire single-photon detectors,” Phys. Rev. B 79(10), 100509 (2009).
[Crossref]

J. K. W. Yang, A. J. Kerman, E. A. Dauler, V. Anant, K. M. Rosfjord, and K. K. Berggren, “Modeling the electrical and thermal response of superconducting nanowire single-photon detectors,” IEEE Trans. Appl. Supercond. 17(2), 581–585 (2007).
[Crossref]

B. S. Robinson, A. J. Kerman, E. A. Dauler, R. J. Barron, D. O. Caplan, M. L. Stevens, J. J. Carney, S. A. Hamilton, J. K. Yang, and K. K. Berggren, “781 Mbit/s photon-counting optical communications using a superconducting nanowire detector,” Opt. Lett. 31(4), 444–446 (2006).
[Crossref]

A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. 88(11), 111116 (2006).
[Crossref]

B. A. Korzh, Q.-Y. Zhao, S. Frasca, J. P. Allmaras, T. M. Autry, E. A. Bersin, M. Colangelo, G. M. Crouch, A. E. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J. D. Rezac, M. J. Stevens, E. E. Wollman, D. Zhu, P. D. Hale, K. L. Silverman, R. P. Mirin, S. W. Nam, M. D. Shaw, and K. K. Berggren, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” https://arxiv.org/pdf/1804.06839 (2018).

Bersin, E. A.

B. A. Korzh, Q.-Y. Zhao, S. Frasca, J. P. Allmaras, T. M. Autry, E. A. Bersin, M. Colangelo, G. M. Crouch, A. E. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J. D. Rezac, M. J. Stevens, E. E. Wollman, D. Zhu, P. D. Hale, K. L. Silverman, R. P. Mirin, S. W. Nam, M. D. Shaw, and K. K. Berggren, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” https://arxiv.org/pdf/1804.06839 (2018).

Beyer, A. D.

Briggs, R. M.

Bulgarini, G.

I. Esmaeil Zadeh, J. W. N. Los, R. B. M. Gourgues, V. Steinmetz, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, and S. N. Dorenbos, “Single-photon detectors combining high efficiency, high detection rates, and ultra-high timing resolution,” APL Photonics 2(11), 111301 (2017).
[Crossref]

I. E. Zadeh, J. W. Los, R. Gourgues, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, and S. N. Dorenbos, “A single-photon detector with high efficiency and sub-10ps time resolution,” arXiv preprint arXiv:1801.06574 (2018).

Bussières, F.

M. Caloz, M. Perrenoud, C. Autebert, B. Korzh, M. Weiss, C. Schönenberger, R. J. Warburton, H. Zbinden, and F. Bussières, “High-detection efficiency and low-timing jitter with amorphous superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 112(6), 061103 (2018).
[Crossref]

V. B. Verma, B. Korzh, F. Bussières, R. D. Horansky, S. D. Dyer, A. E. Lita, I. Vayshenker, F. Marsili, M. D. Shaw, H. Zbinden, R. P. Mirin, and S. W. Nam, “High-efficiency superconducting nanowire single-photon detectors fabricated from MoSi thin-films,” Opt. Express 23(26), 33792–33801 (2015).
[Crossref]

Calandri, N.

N. Calandri, Q.-Y. Zhao, D. Zhu, A. Dane, and K. K. Berggren, “Superconducting nanowire detector jitter limited by detector geometry,” Appl. Phys. Lett. 109(15), 152601 (2016).
[Crossref]

Calkins, B.

Caloz, M.

M. Caloz, M. Perrenoud, C. Autebert, B. Korzh, M. Weiss, C. Schönenberger, R. J. Warburton, H. Zbinden, and F. Bussières, “High-detection efficiency and low-timing jitter with amorphous superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 112(6), 061103 (2018).
[Crossref]

Caplan, D. O.

Carney, J. J.

Chen, J.

Chen, M.

K. K. Berggren, Q.-Y. Zhao, N. S. Abebe, M. Chen, P. Ravindran, A. N. McCaughan, and J. Bardin, “A superconducting nanowire can be modeled by using SPICE,” Supercond. Sci. Technol. 31(5), 055010 (2018).
[Crossref]

Cheng, R.

Clem, J. R.

J. R. Clem and V. Kogan, “Kinetic impedance and depairing in thin and narrow superconducting films,” Phys. Rev. B 86(17), 174521 (2012).
[Crossref]

Colangelo, M.

B. A. Korzh, Q.-Y. Zhao, S. Frasca, J. P. Allmaras, T. M. Autry, E. A. Bersin, M. Colangelo, G. M. Crouch, A. E. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J. D. Rezac, M. J. Stevens, E. E. Wollman, D. Zhu, P. D. Hale, K. L. Silverman, R. P. Mirin, S. W. Nam, M. D. Shaw, and K. K. Berggren, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” https://arxiv.org/pdf/1804.06839 (2018).

Collins, D.

B. Orner, Q. Liu, B. Rainey, A. Stricker, P. Geiss, P. Gray, M. Zierak, M. Gordon, D. Collins, V. Ramachandran, W. Hodge, C. Willets, A. Joseph, J. Dunn, J.-S. Rieh, S.-J. Jeng, E. Eld, G. Freeman, and D. Ahlgren, “A 0.13 µm BiCMOS technology featuring a 200/280 GHz (fT/fmax) SiGe HBT,” in Proceedings of the 2003 BIPOLAR/BICMOS Circuits and Technology Meeting, (2003).

Cord, B. M.

H. Duan, D. Winston, J. K. Yang, B. M. Cord, V. R. Manfrinato, and K. K. Berggren, “Sub-10-nm half-pitch electron-beam lithography by using poly (methyl methacrylate) as a negative resist,” J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 28(6), C6C58–C6C62 (2010).
[Crossref]

Crouch, G. M.

B. A. Korzh, Q.-Y. Zhao, S. Frasca, J. P. Allmaras, T. M. Autry, E. A. Bersin, M. Colangelo, G. M. Crouch, A. E. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J. D. Rezac, M. J. Stevens, E. E. Wollman, D. Zhu, P. D. Hale, K. L. Silverman, R. P. Mirin, S. W. Nam, M. D. Shaw, and K. K. Berggren, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” https://arxiv.org/pdf/1804.06839 (2018).

Dane, A.

N. Calandri, Q.-Y. Zhao, D. Zhu, A. Dane, and K. K. Berggren, “Superconducting nanowire detector jitter limited by detector geometry,” Appl. Phys. Lett. 109(15), 152601 (2016).
[Crossref]

F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6(1), 5873 (2015).
[Crossref]

Dane, A. E.

B. A. Korzh, Q.-Y. Zhao, S. Frasca, J. P. Allmaras, T. M. Autry, E. A. Bersin, M. Colangelo, G. M. Crouch, A. E. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J. D. Rezac, M. J. Stevens, E. E. Wollman, D. Zhu, P. D. Hale, K. L. Silverman, R. P. Mirin, S. W. Nam, M. D. Shaw, and K. K. Berggren, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” https://arxiv.org/pdf/1804.06839 (2018).

Dauler, E.

Dauler, E. A.

A. J. Kerman, D. Rosenberg, R. J. Molnar, and E. A. Dauler, “Readout of superconducting nanowire single-photon detectors at high count rates,” J. Appl. Phys. 113(14), 144511 (2013).
[Crossref]

A. J. Kerman, J. K. W. Yang, R. J. Molnar, E. A. Dauler, and K. K. Berggren, “Electrothermal feedback in superconducting nanowire single-photon detectors,” Phys. Rev. B 79(10), 100509 (2009).
[Crossref]

J. K. W. Yang, A. J. Kerman, E. A. Dauler, V. Anant, K. M. Rosfjord, and K. K. Berggren, “Modeling the electrical and thermal response of superconducting nanowire single-photon detectors,” IEEE Trans. Appl. Supercond. 17(2), 581–585 (2007).
[Crossref]

B. S. Robinson, A. J. Kerman, E. A. Dauler, R. J. Barron, D. O. Caplan, M. L. Stevens, J. J. Carney, S. A. Hamilton, J. K. Yang, and K. K. Berggren, “781 Mbit/s photon-counting optical communications using a superconducting nanowire detector,” Opt. Lett. 31(4), 444–446 (2006).
[Crossref]

A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. 88(11), 111116 (2006).
[Crossref]

Dobrovolskiy, S. M.

I. Esmaeil Zadeh, J. W. N. Los, R. B. M. Gourgues, V. Steinmetz, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, and S. N. Dorenbos, “Single-photon detectors combining high efficiency, high detection rates, and ultra-high timing resolution,” APL Photonics 2(11), 111301 (2017).
[Crossref]

I. E. Zadeh, J. W. Los, R. Gourgues, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, and S. N. Dorenbos, “A single-photon detector with high efficiency and sub-10ps time resolution,” arXiv preprint arXiv:1801.06574 (2018).

Dorenbos, S. N.

I. Esmaeil Zadeh, J. W. N. Los, R. B. M. Gourgues, V. Steinmetz, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, and S. N. Dorenbos, “Single-photon detectors combining high efficiency, high detection rates, and ultra-high timing resolution,” APL Photonics 2(11), 111301 (2017).
[Crossref]

I. E. Zadeh, J. W. Los, R. Gourgues, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, and S. N. Dorenbos, “A single-photon detector with high efficiency and sub-10ps time resolution,” arXiv preprint arXiv:1801.06574 (2018).

Duan, H.

H. Duan, D. Winston, J. K. Yang, B. M. Cord, V. R. Manfrinato, and K. K. Berggren, “Sub-10-nm half-pitch electron-beam lithography by using poly (methyl methacrylate) as a negative resist,” J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 28(6), C6C58–C6C62 (2010).
[Crossref]

Dunn, J.

B. Orner, Q. Liu, B. Rainey, A. Stricker, P. Geiss, P. Gray, M. Zierak, M. Gordon, D. Collins, V. Ramachandran, W. Hodge, C. Willets, A. Joseph, J. Dunn, J.-S. Rieh, S.-J. Jeng, E. Eld, G. Freeman, and D. Ahlgren, “A 0.13 µm BiCMOS technology featuring a 200/280 GHz (fT/fmax) SiGe HBT,” in Proceedings of the 2003 BIPOLAR/BICMOS Circuits and Technology Meeting, (2003).

Dyer, S. D.

Eld, E.

B. Orner, Q. Liu, B. Rainey, A. Stricker, P. Geiss, P. Gray, M. Zierak, M. Gordon, D. Collins, V. Ramachandran, W. Hodge, C. Willets, A. Joseph, J. Dunn, J.-S. Rieh, S.-J. Jeng, E. Eld, G. Freeman, and D. Ahlgren, “A 0.13 µm BiCMOS technology featuring a 200/280 GHz (fT/fmax) SiGe HBT,” in Proceedings of the 2003 BIPOLAR/BICMOS Circuits and Technology Meeting, (2003).

Englund, D.

F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6(1), 5873 (2015).
[Crossref]

Esmaeil Zadeh, I.

I. Esmaeil Zadeh, J. W. N. Los, R. B. M. Gourgues, V. Steinmetz, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, and S. N. Dorenbos, “Single-photon detectors combining high efficiency, high detection rates, and ultra-high timing resolution,” APL Photonics 2(11), 111301 (2017).
[Crossref]

Fan, L.

Ferrari, S.

O. Kahl, S. Ferrari, V. Kovalyuk, G. N. Goltsman, A. Korneev, and W. H. P. Pernice, “Waveguide integrated superconducting single-photon detectors with high internal quantum efficiency at telecom wavelengths,” Sci. Rep. 5(1), 10941 (2015). Article.
[Crossref]

Fong, K. Y.

Frasca, S.

B. A. Korzh, Q.-Y. Zhao, S. Frasca, J. P. Allmaras, T. M. Autry, E. A. Bersin, M. Colangelo, G. M. Crouch, A. E. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J. D. Rezac, M. J. Stevens, E. E. Wollman, D. Zhu, P. D. Hale, K. L. Silverman, R. P. Mirin, S. W. Nam, M. D. Shaw, and K. K. Berggren, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” https://arxiv.org/pdf/1804.06839 (2018).

Freeman, G.

B. Orner, Q. Liu, B. Rainey, A. Stricker, P. Geiss, P. Gray, M. Zierak, M. Gordon, D. Collins, V. Ramachandran, W. Hodge, C. Willets, A. Joseph, J. Dunn, J.-S. Rieh, S.-J. Jeng, E. Eld, G. Freeman, and D. Ahlgren, “A 0.13 µm BiCMOS technology featuring a 200/280 GHz (fT/fmax) SiGe HBT,” in Proceedings of the 2003 BIPOLAR/BICMOS Circuits and Technology Meeting, (2003).

Geiss, P.

B. Orner, Q. Liu, B. Rainey, A. Stricker, P. Geiss, P. Gray, M. Zierak, M. Gordon, D. Collins, V. Ramachandran, W. Hodge, C. Willets, A. Joseph, J. Dunn, J.-S. Rieh, S.-J. Jeng, E. Eld, G. Freeman, and D. Ahlgren, “A 0.13 µm BiCMOS technology featuring a 200/280 GHz (fT/fmax) SiGe HBT,” in Proceedings of the 2003 BIPOLAR/BICMOS Circuits and Technology Meeting, (2003).

Gerrits, T.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

B. A. Korzh, Q.-Y. Zhao, S. Frasca, J. P. Allmaras, T. M. Autry, E. A. Bersin, M. Colangelo, G. M. Crouch, A. E. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J. D. Rezac, M. J. Stevens, E. E. Wollman, D. Zhu, P. D. Hale, K. L. Silverman, R. P. Mirin, S. W. Nam, M. D. Shaw, and K. K. Berggren, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” https://arxiv.org/pdf/1804.06839 (2018).

Gol’tsman, G.

A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. 88(11), 111116 (2006).
[Crossref]

Goltsman, G. N.

O. Kahl, S. Ferrari, V. Kovalyuk, G. N. Goltsman, A. Korneev, and W. H. P. Pernice, “Waveguide integrated superconducting single-photon detectors with high internal quantum efficiency at telecom wavelengths,” Sci. Rep. 5(1), 10941 (2015). Article.
[Crossref]

Gordon, M.

B. Orner, Q. Liu, B. Rainey, A. Stricker, P. Geiss, P. Gray, M. Zierak, M. Gordon, D. Collins, V. Ramachandran, W. Hodge, C. Willets, A. Joseph, J. Dunn, J.-S. Rieh, S.-J. Jeng, E. Eld, G. Freeman, and D. Ahlgren, “A 0.13 µm BiCMOS technology featuring a 200/280 GHz (fT/fmax) SiGe HBT,” in Proceedings of the 2003 BIPOLAR/BICMOS Circuits and Technology Meeting, (2003).

Gourgues, R.

I. E. Zadeh, J. W. Los, R. Gourgues, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, and S. N. Dorenbos, “A single-photon detector with high efficiency and sub-10ps time resolution,” arXiv preprint arXiv:1801.06574 (2018).

Gourgues, R. B. M.

I. Esmaeil Zadeh, J. W. N. Los, R. B. M. Gourgues, V. Steinmetz, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, and S. N. Dorenbos, “Single-photon detectors combining high efficiency, high detection rates, and ultra-high timing resolution,” APL Photonics 2(11), 111301 (2017).
[Crossref]

Grant, L. E.

D. F. Santavicca, J. K. Adams, L. E. Grant, A. N. McCaughan, and K. K. Berggren, “Microwave dynamics of high aspect ratio superconducting nanowires studied using self-resonance,” J. Appl. Phys. 119(23), 234302 (2016).
[Crossref]

Gray, P.

B. Orner, Q. Liu, B. Rainey, A. Stricker, P. Geiss, P. Gray, M. Zierak, M. Gordon, D. Collins, V. Ramachandran, W. Hodge, C. Willets, A. Joseph, J. Dunn, J.-S. Rieh, S.-J. Jeng, E. Eld, G. Freeman, and D. Ahlgren, “A 0.13 µm BiCMOS technology featuring a 200/280 GHz (fT/fmax) SiGe HBT,” in Proceedings of the 2003 BIPOLAR/BICMOS Circuits and Technology Meeting, (2003).

Gruber, S. M.

Gu, M.

Guo, X.

Gurevich, A. V.

A. V. Gurevich and R. G. Mints, “Self-heating in normal metals and superconductors,” Rev. Mod. Phys. 59(4), 941–999 (1987).
[Crossref]

Hale, P. D.

B. A. Korzh, Q.-Y. Zhao, S. Frasca, J. P. Allmaras, T. M. Autry, E. A. Bersin, M. Colangelo, G. M. Crouch, A. E. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J. D. Rezac, M. J. Stevens, E. E. Wollman, D. Zhu, P. D. Hale, K. L. Silverman, R. P. Mirin, S. W. Nam, M. D. Shaw, and K. K. Berggren, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” https://arxiv.org/pdf/1804.06839 (2018).

Hamilton, S. A.

Harrington, S.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Harris, N. C.

F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6(1), 5873 (2015).
[Crossref]

Hodge, W.

B. Orner, Q. Liu, B. Rainey, A. Stricker, P. Geiss, P. Gray, M. Zierak, M. Gordon, D. Collins, V. Ramachandran, W. Hodge, C. Willets, A. Joseph, J. Dunn, J.-S. Rieh, S.-J. Jeng, E. Eld, G. Freeman, and D. Ahlgren, “A 0.13 µm BiCMOS technology featuring a 200/280 GHz (fT/fmax) SiGe HBT,” in Proceedings of the 2003 BIPOLAR/BICMOS Circuits and Technology Meeting, (2003).

Horansky, R. D.

Hu, X.

F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6(1), 5873 (2015).
[Crossref]

Jeng, S.-J.

B. Orner, Q. Liu, B. Rainey, A. Stricker, P. Geiss, P. Gray, M. Zierak, M. Gordon, D. Collins, V. Ramachandran, W. Hodge, C. Willets, A. Joseph, J. Dunn, J.-S. Rieh, S.-J. Jeng, E. Eld, G. Freeman, and D. Ahlgren, “A 0.13 µm BiCMOS technology featuring a 200/280 GHz (fT/fmax) SiGe HBT,” in Proceedings of the 2003 BIPOLAR/BICMOS Circuits and Technology Meeting, (2003).

Jia, T.

Joseph, A.

B. Orner, Q. Liu, B. Rainey, A. Stricker, P. Geiss, P. Gray, M. Zierak, M. Gordon, D. Collins, V. Ramachandran, W. Hodge, C. Willets, A. Joseph, J. Dunn, J.-S. Rieh, S.-J. Jeng, E. Eld, G. Freeman, and D. Ahlgren, “A 0.13 µm BiCMOS technology featuring a 200/280 GHz (fT/fmax) SiGe HBT,” in Proceedings of the 2003 BIPOLAR/BICMOS Circuits and Technology Meeting, (2003).

Kahl, O.

O. Kahl, S. Ferrari, V. Kovalyuk, G. N. Goltsman, A. Korneev, and W. H. P. Pernice, “Waveguide integrated superconducting single-photon detectors with high internal quantum efficiency at telecom wavelengths,” Sci. Rep. 5(1), 10941 (2015). Article.
[Crossref]

Kang, L.

Keicher, W. E.

A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. 88(11), 111116 (2006).
[Crossref]

Kerman, A.

Kerman, A. J.

A. J. Kerman, D. Rosenberg, R. J. Molnar, and E. A. Dauler, “Readout of superconducting nanowire single-photon detectors at high count rates,” J. Appl. Phys. 113(14), 144511 (2013).
[Crossref]

A. J. Kerman, J. K. W. Yang, R. J. Molnar, E. A. Dauler, and K. K. Berggren, “Electrothermal feedback in superconducting nanowire single-photon detectors,” Phys. Rev. B 79(10), 100509 (2009).
[Crossref]

J. K. W. Yang, A. J. Kerman, E. A. Dauler, V. Anant, K. M. Rosfjord, and K. K. Berggren, “Modeling the electrical and thermal response of superconducting nanowire single-photon detectors,” IEEE Trans. Appl. Supercond. 17(2), 581–585 (2007).
[Crossref]

B. S. Robinson, A. J. Kerman, E. A. Dauler, R. J. Barron, D. O. Caplan, M. L. Stevens, J. J. Carney, S. A. Hamilton, J. K. Yang, and K. K. Berggren, “781 Mbit/s photon-counting optical communications using a superconducting nanowire detector,” Opt. Lett. 31(4), 444–446 (2006).
[Crossref]

A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. 88(11), 111116 (2006).
[Crossref]

Kharel, P.

F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6(1), 5873 (2015).
[Crossref]

Kogan, V.

J. R. Clem and V. Kogan, “Kinetic impedance and depairing in thin and narrow superconducting films,” Phys. Rev. B 86(17), 174521 (2012).
[Crossref]

Korneev, A.

O. Kahl, S. Ferrari, V. Kovalyuk, G. N. Goltsman, A. Korneev, and W. H. P. Pernice, “Waveguide integrated superconducting single-photon detectors with high internal quantum efficiency at telecom wavelengths,” Sci. Rep. 5(1), 10941 (2015). Article.
[Crossref]

Korzh, B.

Korzh, B. A.

B. A. Korzh, Q.-Y. Zhao, S. Frasca, J. P. Allmaras, T. M. Autry, E. A. Bersin, M. Colangelo, G. M. Crouch, A. E. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J. D. Rezac, M. J. Stevens, E. E. Wollman, D. Zhu, P. D. Hale, K. L. Silverman, R. P. Mirin, S. W. Nam, M. D. Shaw, and K. K. Berggren, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” https://arxiv.org/pdf/1804.06839 (2018).

Kovalyuk, V.

O. Kahl, S. Ferrari, V. Kovalyuk, G. N. Goltsman, A. Korneev, and W. H. P. Pernice, “Waveguide integrated superconducting single-photon detectors with high internal quantum efficiency at telecom wavelengths,” Sci. Rep. 5(1), 10941 (2015). Article.
[Crossref]

Lee, C.

F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6(1), 5873 (2015).
[Crossref]

Lita, A. E.

Liu, Q.

B. Orner, Q. Liu, B. Rainey, A. Stricker, P. Geiss, P. Gray, M. Zierak, M. Gordon, D. Collins, V. Ramachandran, W. Hodge, C. Willets, A. Joseph, J. Dunn, J.-S. Rieh, S.-J. Jeng, E. Eld, G. Freeman, and D. Ahlgren, “A 0.13 µm BiCMOS technology featuring a 200/280 GHz (fT/fmax) SiGe HBT,” in Proceedings of the 2003 BIPOLAR/BICMOS Circuits and Technology Meeting, (2003).

Los, J. W.

I. E. Zadeh, J. W. Los, R. Gourgues, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, and S. N. Dorenbos, “A single-photon detector with high efficiency and sub-10ps time resolution,” arXiv preprint arXiv:1801.06574 (2018).

Los, J. W. N.

I. Esmaeil Zadeh, J. W. N. Los, R. B. M. Gourgues, V. Steinmetz, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, and S. N. Dorenbos, “Single-photon detectors combining high efficiency, high detection rates, and ultra-high timing resolution,” APL Photonics 2(11), 111301 (2017).
[Crossref]

Ma, X.

Majedi, A. H.

Manfrinato, V. R.

H. Duan, D. Winston, J. K. Yang, B. M. Cord, V. R. Manfrinato, and K. K. Berggren, “Sub-10-nm half-pitch electron-beam lithography by using poly (methyl methacrylate) as a negative resist,” J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 28(6), C6C58–C6C62 (2010).
[Crossref]

Marsili, F.

E. E. Wollman, V. B. Verma, A. D. Beyer, R. M. Briggs, B. Korzh, J. P. Allmaras, F. Marsili, A. E. Lita, R. P. Mirin, S. W. Nam, and M. D. Shaw, “UV superconducting nanowire single-photon detectors with high efficiency, low noise, and 4 k operating temperature,” Opt. Express 25(22), 26792–26801 (2017).
[Crossref]

F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6(1), 5873 (2015).
[Crossref]

V. B. Verma, B. Korzh, F. Bussières, R. D. Horansky, S. D. Dyer, A. E. Lita, I. Vayshenker, F. Marsili, M. D. Shaw, H. Zbinden, R. P. Mirin, and S. W. Nam, “High-efficiency superconducting nanowire single-photon detectors fabricated from MoSi thin-films,” Opt. Express 23(26), 33792–33801 (2015).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

B. A. Korzh, Q.-Y. Zhao, S. Frasca, J. P. Allmaras, T. M. Autry, E. A. Bersin, M. Colangelo, G. M. Crouch, A. E. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J. D. Rezac, M. J. Stevens, E. E. Wollman, D. Zhu, P. D. Hale, K. L. Silverman, R. P. Mirin, S. W. Nam, M. D. Shaw, and K. K. Berggren, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” https://arxiv.org/pdf/1804.06839 (2018).

McCaughan, A. N.

K. K. Berggren, Q.-Y. Zhao, N. S. Abebe, M. Chen, P. Ravindran, A. N. McCaughan, and J. Bardin, “A superconducting nanowire can be modeled by using SPICE,” Supercond. Sci. Technol. 31(5), 055010 (2018).
[Crossref]

D. F. Santavicca, J. K. Adams, L. E. Grant, A. N. McCaughan, and K. K. Berggren, “Microwave dynamics of high aspect ratio superconducting nanowires studied using self-resonance,” J. Appl. Phys. 119(23), 234302 (2016).
[Crossref]

Miller, A. J.

Mints, R. G.

A. V. Gurevich and R. G. Mints, “Self-heating in normal metals and superconductors,” Rev. Mod. Phys. 59(4), 941–999 (1987).
[Crossref]

Mirin, R. P.

E. E. Wollman, V. B. Verma, A. D. Beyer, R. M. Briggs, B. Korzh, J. P. Allmaras, F. Marsili, A. E. Lita, R. P. Mirin, S. W. Nam, and M. D. Shaw, “UV superconducting nanowire single-photon detectors with high efficiency, low noise, and 4 k operating temperature,” Opt. Express 25(22), 26792–26801 (2017).
[Crossref]

V. B. Verma, B. Korzh, F. Bussières, R. D. Horansky, S. D. Dyer, A. E. Lita, I. Vayshenker, F. Marsili, M. D. Shaw, H. Zbinden, R. P. Mirin, and S. W. Nam, “High-efficiency superconducting nanowire single-photon detectors fabricated from MoSi thin-films,” Opt. Express 23(26), 33792–33801 (2015).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

B. A. Korzh, Q.-Y. Zhao, S. Frasca, J. P. Allmaras, T. M. Autry, E. A. Bersin, M. Colangelo, G. M. Crouch, A. E. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J. D. Rezac, M. J. Stevens, E. E. Wollman, D. Zhu, P. D. Hale, K. L. Silverman, R. P. Mirin, S. W. Nam, M. D. Shaw, and K. K. Berggren, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” https://arxiv.org/pdf/1804.06839 (2018).

Molnar, R.

Molnar, R. J.

A. J. Kerman, D. Rosenberg, R. J. Molnar, and E. A. Dauler, “Readout of superconducting nanowire single-photon detectors at high count rates,” J. Appl. Phys. 113(14), 144511 (2013).
[Crossref]

A. J. Kerman, J. K. W. Yang, R. J. Molnar, E. A. Dauler, and K. K. Berggren, “Electrothermal feedback in superconducting nanowire single-photon detectors,” Phys. Rev. B 79(10), 100509 (2009).
[Crossref]

Moody, G.

B. A. Korzh, Q.-Y. Zhao, S. Frasca, J. P. Allmaras, T. M. Autry, E. A. Bersin, M. Colangelo, G. M. Crouch, A. E. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J. D. Rezac, M. J. Stevens, E. E. Wollman, D. Zhu, P. D. Hale, K. L. Silverman, R. P. Mirin, S. W. Nam, M. D. Shaw, and K. K. Berggren, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” https://arxiv.org/pdf/1804.06839 (2018).

Mower, J.

F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6(1), 5873 (2015).
[Crossref]

Najafi, F.

F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6(1), 5873 (2015).
[Crossref]

Nam, S. W.

E. E. Wollman, V. B. Verma, A. D. Beyer, R. M. Briggs, B. Korzh, J. P. Allmaras, F. Marsili, A. E. Lita, R. P. Mirin, S. W. Nam, and M. D. Shaw, “UV superconducting nanowire single-photon detectors with high efficiency, low noise, and 4 k operating temperature,” Opt. Express 25(22), 26792–26801 (2017).
[Crossref]

V. B. Verma, B. Korzh, F. Bussières, R. D. Horansky, S. D. Dyer, A. E. Lita, I. Vayshenker, F. Marsili, M. D. Shaw, H. Zbinden, R. P. Mirin, and S. W. Nam, “High-efficiency superconducting nanowire single-photon detectors fabricated from MoSi thin-films,” Opt. Express 23(26), 33792–33801 (2015).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

A. J. Miller, A. E. Lita, B. Calkins, I. Vayshenker, S. M. Gruber, and S. W. Nam, “Compact cryogenic self-aligning fiber-to-detector coupling with losses below one percent,” Opt. Express 19(10), 9102–9110 (2011).
[Crossref]

B. A. Korzh, Q.-Y. Zhao, S. Frasca, J. P. Allmaras, T. M. Autry, E. A. Bersin, M. Colangelo, G. M. Crouch, A. E. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J. D. Rezac, M. J. Stevens, E. E. Wollman, D. Zhu, P. D. Hale, K. L. Silverman, R. P. Mirin, S. W. Nam, M. D. Shaw, and K. K. Berggren, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” https://arxiv.org/pdf/1804.06839 (2018).

Orner, B.

B. Orner, Q. Liu, B. Rainey, A. Stricker, P. Geiss, P. Gray, M. Zierak, M. Gordon, D. Collins, V. Ramachandran, W. Hodge, C. Willets, A. Joseph, J. Dunn, J.-S. Rieh, S.-J. Jeng, E. Eld, G. Freeman, and D. Ahlgren, “A 0.13 µm BiCMOS technology featuring a 200/280 GHz (fT/fmax) SiGe HBT,” in Proceedings of the 2003 BIPOLAR/BICMOS Circuits and Technology Meeting, (2003).

Pernice, W. H.

C. Schuck, W. H. Pernice, and H. X. Tang, “Waveguide integrated low noise NbTiN nanowire single-photon detectors with milli-Hz dark count rate,” Sci. Rep. 3(1), 1893 (2013).
[Crossref]

Pernice, W. H. P.

O. Kahl, S. Ferrari, V. Kovalyuk, G. N. Goltsman, A. Korneev, and W. H. P. Pernice, “Waveguide integrated superconducting single-photon detectors with high internal quantum efficiency at telecom wavelengths,” Sci. Rep. 5(1), 10941 (2015). Article.
[Crossref]

Perrenoud, M.

M. Caloz, M. Perrenoud, C. Autebert, B. Korzh, M. Weiss, C. Schönenberger, R. J. Warburton, H. Zbinden, and F. Bussières, “High-detection efficiency and low-timing jitter with amorphous superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 112(6), 061103 (2018).
[Crossref]

Poot, M.

Rainey, B.

B. Orner, Q. Liu, B. Rainey, A. Stricker, P. Geiss, P. Gray, M. Zierak, M. Gordon, D. Collins, V. Ramachandran, W. Hodge, C. Willets, A. Joseph, J. Dunn, J.-S. Rieh, S.-J. Jeng, E. Eld, G. Freeman, and D. Ahlgren, “A 0.13 µm BiCMOS technology featuring a 200/280 GHz (fT/fmax) SiGe HBT,” in Proceedings of the 2003 BIPOLAR/BICMOS Circuits and Technology Meeting, (2003).

Ramachandran, V.

B. Orner, Q. Liu, B. Rainey, A. Stricker, P. Geiss, P. Gray, M. Zierak, M. Gordon, D. Collins, V. Ramachandran, W. Hodge, C. Willets, A. Joseph, J. Dunn, J.-S. Rieh, S.-J. Jeng, E. Eld, G. Freeman, and D. Ahlgren, “A 0.13 µm BiCMOS technology featuring a 200/280 GHz (fT/fmax) SiGe HBT,” in Proceedings of the 2003 BIPOLAR/BICMOS Circuits and Technology Meeting, (2003).

Ramirez, E.

B. A. Korzh, Q.-Y. Zhao, S. Frasca, J. P. Allmaras, T. M. Autry, E. A. Bersin, M. Colangelo, G. M. Crouch, A. E. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J. D. Rezac, M. J. Stevens, E. E. Wollman, D. Zhu, P. D. Hale, K. L. Silverman, R. P. Mirin, S. W. Nam, M. D. Shaw, and K. K. Berggren, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” https://arxiv.org/pdf/1804.06839 (2018).

Ravindran, P.

K. K. Berggren, Q.-Y. Zhao, N. S. Abebe, M. Chen, P. Ravindran, A. N. McCaughan, and J. Bardin, “A superconducting nanowire can be modeled by using SPICE,” Supercond. Sci. Technol. 31(5), 055010 (2018).
[Crossref]

Rezac, J. D.

B. A. Korzh, Q.-Y. Zhao, S. Frasca, J. P. Allmaras, T. M. Autry, E. A. Bersin, M. Colangelo, G. M. Crouch, A. E. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J. D. Rezac, M. J. Stevens, E. E. Wollman, D. Zhu, P. D. Hale, K. L. Silverman, R. P. Mirin, S. W. Nam, M. D. Shaw, and K. K. Berggren, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” https://arxiv.org/pdf/1804.06839 (2018).

Rieh, J.-S.

B. Orner, Q. Liu, B. Rainey, A. Stricker, P. Geiss, P. Gray, M. Zierak, M. Gordon, D. Collins, V. Ramachandran, W. Hodge, C. Willets, A. Joseph, J. Dunn, J.-S. Rieh, S.-J. Jeng, E. Eld, G. Freeman, and D. Ahlgren, “A 0.13 µm BiCMOS technology featuring a 200/280 GHz (fT/fmax) SiGe HBT,” in Proceedings of the 2003 BIPOLAR/BICMOS Circuits and Technology Meeting, (2003).

Robinson, B. S.

Rosenberg, D.

A. J. Kerman, D. Rosenberg, R. J. Molnar, and E. A. Dauler, “Readout of superconducting nanowire single-photon detectors at high count rates,” J. Appl. Phys. 113(14), 144511 (2013).
[Crossref]

D. Rosenberg, A. Kerman, R. Molnar, and E. Dauler, “High-speed and high-efficiency superconducting nanowire single photon detector array,” Opt. Express 21(2), 1440–1447 (2013).
[Crossref]

Rosfjord, K. M.

J. K. W. Yang, A. J. Kerman, E. A. Dauler, V. Anant, K. M. Rosfjord, and K. K. Berggren, “Modeling the electrical and thermal response of superconducting nanowire single-photon detectors,” IEEE Trans. Appl. Supercond. 17(2), 581–585 (2007).
[Crossref]

Santavicca, D. F.

D. F. Santavicca, J. K. Adams, L. E. Grant, A. N. McCaughan, and K. K. Berggren, “Microwave dynamics of high aspect ratio superconducting nanowires studied using self-resonance,” J. Appl. Phys. 119(23), 234302 (2016).
[Crossref]

Schönenberger, C.

M. Caloz, M. Perrenoud, C. Autebert, B. Korzh, M. Weiss, C. Schönenberger, R. J. Warburton, H. Zbinden, and F. Bussières, “High-detection efficiency and low-timing jitter with amorphous superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 112(6), 061103 (2018).
[Crossref]

Schuck, C.

C. Schuck, W. H. Pernice, and H. X. Tang, “Waveguide integrated low noise NbTiN nanowire single-photon detectors with milli-Hz dark count rate,” Sci. Rep. 3(1), 1893 (2013).
[Crossref]

Shaw, M. D.

E. E. Wollman, V. B. Verma, A. D. Beyer, R. M. Briggs, B. Korzh, J. P. Allmaras, F. Marsili, A. E. Lita, R. P. Mirin, S. W. Nam, and M. D. Shaw, “UV superconducting nanowire single-photon detectors with high efficiency, low noise, and 4 k operating temperature,” Opt. Express 25(22), 26792–26801 (2017).
[Crossref]

V. B. Verma, B. Korzh, F. Bussières, R. D. Horansky, S. D. Dyer, A. E. Lita, I. Vayshenker, F. Marsili, M. D. Shaw, H. Zbinden, R. P. Mirin, and S. W. Nam, “High-efficiency superconducting nanowire single-photon detectors fabricated from MoSi thin-films,” Opt. Express 23(26), 33792–33801 (2015).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

B. A. Korzh, Q.-Y. Zhao, S. Frasca, J. P. Allmaras, T. M. Autry, E. A. Bersin, M. Colangelo, G. M. Crouch, A. E. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J. D. Rezac, M. J. Stevens, E. E. Wollman, D. Zhu, P. D. Hale, K. L. Silverman, R. P. Mirin, S. W. Nam, M. D. Shaw, and K. K. Berggren, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” https://arxiv.org/pdf/1804.06839 (2018).

Shen, X. F.

L. X. You and X. F. Shen, “Shaping the response pulse of superconducting nanowire single photon detection with a snubber,” Appl. Phys. Lett. 95(15), 152514 (2009).
[Crossref]

Silverman, K. L.

B. A. Korzh, Q.-Y. Zhao, S. Frasca, J. P. Allmaras, T. M. Autry, E. A. Bersin, M. Colangelo, G. M. Crouch, A. E. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J. D. Rezac, M. J. Stevens, E. E. Wollman, D. Zhu, P. D. Hale, K. L. Silverman, R. P. Mirin, S. W. Nam, M. D. Shaw, and K. K. Berggren, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” https://arxiv.org/pdf/1804.06839 (2018).

Steinmetz, V.

I. Esmaeil Zadeh, J. W. N. Los, R. B. M. Gourgues, V. Steinmetz, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, and S. N. Dorenbos, “Single-photon detectors combining high efficiency, high detection rates, and ultra-high timing resolution,” APL Photonics 2(11), 111301 (2017).
[Crossref]

Stern, J. A.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Stevens, M. J.

B. A. Korzh, Q.-Y. Zhao, S. Frasca, J. P. Allmaras, T. M. Autry, E. A. Bersin, M. Colangelo, G. M. Crouch, A. E. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J. D. Rezac, M. J. Stevens, E. E. Wollman, D. Zhu, P. D. Hale, K. L. Silverman, R. P. Mirin, S. W. Nam, M. D. Shaw, and K. K. Berggren, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” https://arxiv.org/pdf/1804.06839 (2018).

Stevens, M. L.

Stricker, A.

B. Orner, Q. Liu, B. Rainey, A. Stricker, P. Geiss, P. Gray, M. Zierak, M. Gordon, D. Collins, V. Ramachandran, W. Hodge, C. Willets, A. Joseph, J. Dunn, J.-S. Rieh, S.-J. Jeng, E. Eld, G. Freeman, and D. Ahlgren, “A 0.13 µm BiCMOS technology featuring a 200/280 GHz (fT/fmax) SiGe HBT,” in Proceedings of the 2003 BIPOLAR/BICMOS Circuits and Technology Meeting, (2003).

Tang, H. X.

R. Cheng, X. Guo, X. Ma, L. Fan, K. Y. Fong, M. Poot, and H. X. Tang, “Self-aligned multi-channel superconducting nanowire single-photon detectors,” Opt. Express 24(24), 27070–27076 (2016).
[Crossref]

C. Schuck, W. H. Pernice, and H. X. Tang, “Waveguide integrated low noise NbTiN nanowire single-photon detectors with milli-Hz dark count rate,” Sci. Rep. 3(1), 1893 (2013).
[Crossref]

Vayshenker, I.

Verma, V. B.

Voronov, B.

A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. 88(11), 111116 (2006).
[Crossref]

Wan, C.

Warburton, R. J.

M. Caloz, M. Perrenoud, C. Autebert, B. Korzh, M. Weiss, C. Schönenberger, R. J. Warburton, H. Zbinden, and F. Bussières, “High-detection efficiency and low-timing jitter with amorphous superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 112(6), 061103 (2018).
[Crossref]

Weiss, M.

M. Caloz, M. Perrenoud, C. Autebert, B. Korzh, M. Weiss, C. Schönenberger, R. J. Warburton, H. Zbinden, and F. Bussières, “High-detection efficiency and low-timing jitter with amorphous superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 112(6), 061103 (2018).
[Crossref]

Willets, C.

B. Orner, Q. Liu, B. Rainey, A. Stricker, P. Geiss, P. Gray, M. Zierak, M. Gordon, D. Collins, V. Ramachandran, W. Hodge, C. Willets, A. Joseph, J. Dunn, J.-S. Rieh, S.-J. Jeng, E. Eld, G. Freeman, and D. Ahlgren, “A 0.13 µm BiCMOS technology featuring a 200/280 GHz (fT/fmax) SiGe HBT,” in Proceedings of the 2003 BIPOLAR/BICMOS Circuits and Technology Meeting, (2003).

Winston, D.

H. Duan, D. Winston, J. K. Yang, B. M. Cord, V. R. Manfrinato, and K. K. Berggren, “Sub-10-nm half-pitch electron-beam lithography by using poly (methyl methacrylate) as a negative resist,” J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 28(6), C6C58–C6C62 (2010).
[Crossref]

Wollman, E. E.

E. E. Wollman, V. B. Verma, A. D. Beyer, R. M. Briggs, B. Korzh, J. P. Allmaras, F. Marsili, A. E. Lita, R. P. Mirin, S. W. Nam, and M. D. Shaw, “UV superconducting nanowire single-photon detectors with high efficiency, low noise, and 4 k operating temperature,” Opt. Express 25(22), 26792–26801 (2017).
[Crossref]

B. A. Korzh, Q.-Y. Zhao, S. Frasca, J. P. Allmaras, T. M. Autry, E. A. Bersin, M. Colangelo, G. M. Crouch, A. E. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J. D. Rezac, M. J. Stevens, E. E. Wollman, D. Zhu, P. D. Hale, K. L. Silverman, R. P. Mirin, S. W. Nam, M. D. Shaw, and K. K. Berggren, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” https://arxiv.org/pdf/1804.06839 (2018).

Wu, P.

Xu, W.

Yang, J. K.

H. Duan, D. Winston, J. K. Yang, B. M. Cord, V. R. Manfrinato, and K. K. Berggren, “Sub-10-nm half-pitch electron-beam lithography by using poly (methyl methacrylate) as a negative resist,” J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 28(6), C6C58–C6C62 (2010).
[Crossref]

B. S. Robinson, A. J. Kerman, E. A. Dauler, R. J. Barron, D. O. Caplan, M. L. Stevens, J. J. Carney, S. A. Hamilton, J. K. Yang, and K. K. Berggren, “781 Mbit/s photon-counting optical communications using a superconducting nanowire detector,” Opt. Lett. 31(4), 444–446 (2006).
[Crossref]

A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. 88(11), 111116 (2006).
[Crossref]

Yang, J. K. W.

A. J. Kerman, J. K. W. Yang, R. J. Molnar, E. A. Dauler, and K. K. Berggren, “Electrothermal feedback in superconducting nanowire single-photon detectors,” Phys. Rev. B 79(10), 100509 (2009).
[Crossref]

J. K. W. Yang, A. J. Kerman, E. A. Dauler, V. Anant, K. M. Rosfjord, and K. K. Berggren, “Modeling the electrical and thermal response of superconducting nanowire single-photon detectors,” IEEE Trans. Appl. Supercond. 17(2), 581–585 (2007).
[Crossref]

You, L. X.

L. X. You and X. F. Shen, “Shaping the response pulse of superconducting nanowire single photon detection with a snubber,” Appl. Phys. Lett. 95(15), 152514 (2009).
[Crossref]

Zadeh, I. E.

I. E. Zadeh, J. W. Los, R. Gourgues, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, and S. N. Dorenbos, “A single-photon detector with high efficiency and sub-10ps time resolution,” arXiv preprint arXiv:1801.06574 (2018).

Zbinden, H.

M. Caloz, M. Perrenoud, C. Autebert, B. Korzh, M. Weiss, C. Schönenberger, R. J. Warburton, H. Zbinden, and F. Bussières, “High-detection efficiency and low-timing jitter with amorphous superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 112(6), 061103 (2018).
[Crossref]

V. B. Verma, B. Korzh, F. Bussières, R. D. Horansky, S. D. Dyer, A. E. Lita, I. Vayshenker, F. Marsili, M. D. Shaw, H. Zbinden, R. P. Mirin, and S. W. Nam, “High-efficiency superconducting nanowire single-photon detectors fabricated from MoSi thin-films,” Opt. Express 23(26), 33792–33801 (2015).
[Crossref]

Zhang, L.

Zhao, Q.

Zhao, Q.-Y.

K. K. Berggren, Q.-Y. Zhao, N. S. Abebe, M. Chen, P. Ravindran, A. N. McCaughan, and J. Bardin, “A superconducting nanowire can be modeled by using SPICE,” Supercond. Sci. Technol. 31(5), 055010 (2018).
[Crossref]

N. Calandri, Q.-Y. Zhao, D. Zhu, A. Dane, and K. K. Berggren, “Superconducting nanowire detector jitter limited by detector geometry,” Appl. Phys. Lett. 109(15), 152601 (2016).
[Crossref]

B. A. Korzh, Q.-Y. Zhao, S. Frasca, J. P. Allmaras, T. M. Autry, E. A. Bersin, M. Colangelo, G. M. Crouch, A. E. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J. D. Rezac, M. J. Stevens, E. E. Wollman, D. Zhu, P. D. Hale, K. L. Silverman, R. P. Mirin, S. W. Nam, M. D. Shaw, and K. K. Berggren, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” https://arxiv.org/pdf/1804.06839 (2018).

Zhu, D.

N. Calandri, Q.-Y. Zhao, D. Zhu, A. Dane, and K. K. Berggren, “Superconducting nanowire detector jitter limited by detector geometry,” Appl. Phys. Lett. 109(15), 152601 (2016).
[Crossref]

B. A. Korzh, Q.-Y. Zhao, S. Frasca, J. P. Allmaras, T. M. Autry, E. A. Bersin, M. Colangelo, G. M. Crouch, A. E. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J. D. Rezac, M. J. Stevens, E. E. Wollman, D. Zhu, P. D. Hale, K. L. Silverman, R. P. Mirin, S. W. Nam, M. D. Shaw, and K. K. Berggren, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” https://arxiv.org/pdf/1804.06839 (2018).

Zierak, M.

B. Orner, Q. Liu, B. Rainey, A. Stricker, P. Geiss, P. Gray, M. Zierak, M. Gordon, D. Collins, V. Ramachandran, W. Hodge, C. Willets, A. Joseph, J. Dunn, J.-S. Rieh, S.-J. Jeng, E. Eld, G. Freeman, and D. Ahlgren, “A 0.13 µm BiCMOS technology featuring a 200/280 GHz (fT/fmax) SiGe HBT,” in Proceedings of the 2003 BIPOLAR/BICMOS Circuits and Technology Meeting, (2003).

Zwiller, V.

I. Esmaeil Zadeh, J. W. N. Los, R. B. M. Gourgues, V. Steinmetz, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, and S. N. Dorenbos, “Single-photon detectors combining high efficiency, high detection rates, and ultra-high timing resolution,” APL Photonics 2(11), 111301 (2017).
[Crossref]

I. E. Zadeh, J. W. Los, R. Gourgues, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, and S. N. Dorenbos, “A single-photon detector with high efficiency and sub-10ps time resolution,” arXiv preprint arXiv:1801.06574 (2018).

APL Photonics (1)

I. Esmaeil Zadeh, J. W. N. Los, R. B. M. Gourgues, V. Steinmetz, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, and S. N. Dorenbos, “Single-photon detectors combining high efficiency, high detection rates, and ultra-high timing resolution,” APL Photonics 2(11), 111301 (2017).
[Crossref]

Appl. Phys. Lett. (4)

M. Caloz, M. Perrenoud, C. Autebert, B. Korzh, M. Weiss, C. Schönenberger, R. J. Warburton, H. Zbinden, and F. Bussières, “High-detection efficiency and low-timing jitter with amorphous superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 112(6), 061103 (2018).
[Crossref]

A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. 88(11), 111116 (2006).
[Crossref]

L. X. You and X. F. Shen, “Shaping the response pulse of superconducting nanowire single photon detection with a snubber,” Appl. Phys. Lett. 95(15), 152514 (2009).
[Crossref]

N. Calandri, Q.-Y. Zhao, D. Zhu, A. Dane, and K. K. Berggren, “Superconducting nanowire detector jitter limited by detector geometry,” Appl. Phys. Lett. 109(15), 152601 (2016).
[Crossref]

IEEE Trans. Appl. Supercond. (1)

J. K. W. Yang, A. J. Kerman, E. A. Dauler, V. Anant, K. M. Rosfjord, and K. K. Berggren, “Modeling the electrical and thermal response of superconducting nanowire single-photon detectors,” IEEE Trans. Appl. Supercond. 17(2), 581–585 (2007).
[Crossref]

J. Appl. Phys. (2)

A. J. Kerman, D. Rosenberg, R. J. Molnar, and E. A. Dauler, “Readout of superconducting nanowire single-photon detectors at high count rates,” J. Appl. Phys. 113(14), 144511 (2013).
[Crossref]

D. F. Santavicca, J. K. Adams, L. E. Grant, A. N. McCaughan, and K. K. Berggren, “Microwave dynamics of high aspect ratio superconducting nanowires studied using self-resonance,” J. Appl. Phys. 119(23), 234302 (2016).
[Crossref]

J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. (1)

H. Duan, D. Winston, J. K. Yang, B. M. Cord, V. R. Manfrinato, and K. K. Berggren, “Sub-10-nm half-pitch electron-beam lithography by using poly (methyl methacrylate) as a negative resist,” J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 28(6), C6C58–C6C62 (2010).
[Crossref]

Nat. Commun. (1)

F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6(1), 5873 (2015).
[Crossref]

Nat. Photonics (1)

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Opt. Express (6)

Opt. Lett. (2)

Phys. Rev. B (2)

A. J. Kerman, J. K. W. Yang, R. J. Molnar, E. A. Dauler, and K. K. Berggren, “Electrothermal feedback in superconducting nanowire single-photon detectors,” Phys. Rev. B 79(10), 100509 (2009).
[Crossref]

J. R. Clem and V. Kogan, “Kinetic impedance and depairing in thin and narrow superconducting films,” Phys. Rev. B 86(17), 174521 (2012).
[Crossref]

Rev. Mod. Phys. (1)

A. V. Gurevich and R. G. Mints, “Self-heating in normal metals and superconductors,” Rev. Mod. Phys. 59(4), 941–999 (1987).
[Crossref]

Sci. Rep. (2)

C. Schuck, W. H. Pernice, and H. X. Tang, “Waveguide integrated low noise NbTiN nanowire single-photon detectors with milli-Hz dark count rate,” Sci. Rep. 3(1), 1893 (2013).
[Crossref]

O. Kahl, S. Ferrari, V. Kovalyuk, G. N. Goltsman, A. Korneev, and W. H. P. Pernice, “Waveguide integrated superconducting single-photon detectors with high internal quantum efficiency at telecom wavelengths,” Sci. Rep. 5(1), 10941 (2015). Article.
[Crossref]

Supercond. Sci. Technol. (1)

K. K. Berggren, Q.-Y. Zhao, N. S. Abebe, M. Chen, P. Ravindran, A. N. McCaughan, and J. Bardin, “A superconducting nanowire can be modeled by using SPICE,” Supercond. Sci. Technol. 31(5), 055010 (2018).
[Crossref]

Other (4)

B. Orner, Q. Liu, B. Rainey, A. Stricker, P. Geiss, P. Gray, M. Zierak, M. Gordon, D. Collins, V. Ramachandran, W. Hodge, C. Willets, A. Joseph, J. Dunn, J.-S. Rieh, S.-J. Jeng, E. Eld, G. Freeman, and D. Ahlgren, “A 0.13 µm BiCMOS technology featuring a 200/280 GHz (fT/fmax) SiGe HBT,” in Proceedings of the 2003 BIPOLAR/BICMOS Circuits and Technology Meeting, (2003).

OriginLab, “The integrate gadget,” https://www.originlab.com/doc/Origin-Help/Gadget-Integration. Accessed 01/4/2020.

I. E. Zadeh, J. W. Los, R. Gourgues, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, and S. N. Dorenbos, “A single-photon detector with high efficiency and sub-10ps time resolution,” arXiv preprint arXiv:1801.06574 (2018).

B. A. Korzh, Q.-Y. Zhao, S. Frasca, J. P. Allmaras, T. M. Autry, E. A. Bersin, M. Colangelo, G. M. Crouch, A. E. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J. D. Rezac, M. J. Stevens, E. E. Wollman, D. Zhu, P. D. Hale, K. L. Silverman, R. P. Mirin, S. W. Nam, M. D. Shaw, and K. K. Berggren, “Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector,” https://arxiv.org/pdf/1804.06839 (2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. Conceptual block diagram of active quenching architecture and key waveforms describing its operation. The current source is enabled whenever the control signal at the terminal labeled “$\overline {\mathrm {EN}}$” is low.
Fig. 2.
Fig. 2. Equivalent circuit of an (a) actively quenched and (b) passive quenched SNSPD. For the purpose of the analysis described in this work, we consider an SNSPD as a lumped device and neglect the non-linearity of the kinetic inductance [21]. While this is valid for short SNSPDs, a distributed model might be used when studying devices with large kinetic inductance [22]. However, based on measurement results, we believe our simplified models are sufficient to predict performance, even when considering larger devices.
Fig. 3.
Fig. 3. Device developed for demonstration of active quenching. (a) Simplified block diagram of SiGe IC. (b) Die photograph of fabricated SiGe IC. The chip dimensions are $1\,\mathrm {mm}\times {}0.46$ mm. (c) False color SEM photograph of example NbTiN detector with active area diameter of 15 $\mu$m. The nanowire width is 50 nm and the fill factor is 33%. (d) Photograph of hybrid assembly. The interconnection between the terminals of the SNSPD were directly bonded to the integrated circuit. Scale bars in (b)–(d) are approximate.
Fig. 4.
Fig. 4. Test setup for characterization of the detectors in the (a) active and (b) passive quenching configurations.
Fig. 5.
Fig. 5. Results: (a) Time domain waveforms for the 1 $\mu$H detector. (b) Count rate for actively quenched 250 nH SNSPD at bias currents of 8.0, 8.5, 9.0, 9.5, 10.0, 11.0, and 11.4 $\mu$A. The count rate was found to increase monotonically with bias current. The dashed lines are guide lines with a slope of one. Count rates for (c) 250 nH and (d) 1 $\mu$H detectors in the active and passive quenching configurations at four different signal intensities (3 dB increment). Dark count rates are also shown as dashed lines for each configuration.
Fig. 6.
Fig. 6. Interphoton arrival statistics. Example interphoton arrival statistics for (a) 250 nH and (b) 1 $\mu$H detectors at a bias current of 11 $\mu$A. Deadtime as a function of bias current for (c) 250 nH and (d) 1 $\mu$H detectors. The solid red and dashed blue lines correspond to data acquired using active and passive quenching, respectively. Curves (a)–(d) were acquired with rebias delays of 4 ns and 6 ns for the 250 nH and 1 $\mu$H detectors, respectively. Dead time as a function of rebias delay at a bias of 11 $\mu$A for (e) 250 nH and (f) 1 $\mu$H detectors. The solid red and black dashed lines correspond to experimental data and the simple model of dead time on delay dependence, as described in the text.
Fig. 7.
Fig. 7. Timing jitter as a function of bias current for the (a) 250 nH and (b) 1 $\mu$H devices. These values were obtained from interarrival time histograms using the integrate function provided in OriginLab [25]. Example histograms are provided in Appendix D. Improved timing jitter was observed when active quenching was employed.
Fig. 8.
Fig. 8. Verification of Eqs. (1) and (2). Ratio of slew rate for active quenching to that of passive quenching as a function of (a) kinetic inductance, (b) load capacitance, and (c) bias current. Ratio of peak voltage achieved with active quenching to that of passive quenching as a function of (d) kinetic inductance, (e) load capacitance, and (f) bias current. The simulations were carried out using the model described in [19].
Fig. 9.
Fig. 9. Dark count after-pulsing observed for the passively quenched devices. (a) Time domain waveform for an example dark count and (b) comparison of dark counts for the same detector in the passive and active quenching configurations.
Fig. 10.
Fig. 10. Example histograms used to determine FWHM jitter. (a) 250 nH detector biased at 10.5 $\mu$A. (b) 1 $\mu$H detector biased at 6 $\mu$A. Similar curves were acquired for each of the bias points shown in Fig. 7.

Tables (1)

Tables Icon

Table 1. Parameters used for verification of Eqs. (1) and (2), (From [14,29]).

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

S R AQ S R PQ 2 2 L K C eff { I B0 } R L ( C eff + C L )
v PK,AQ v PK,PQ 2.2 I SLEW I B0 L K / R L R L ( C eff + C L ) ,
S R AQ I B0 / ( C eff + C L ) .
v PK,AQ R NPK,AQ I SLEW ,
R NPK,AQ S R AQ t rise,AQ I SLEW .
t rise,AQ 2.2 I SLEW I B0 L K ( C eff + C L )
v PK,AQ 2.2 L K I B0 I SLEW C eff + C L .
i D,PQ I B0 exp { 2.2 t t rise,PQ }
R N,PQ R NPK,PQ ( 1 exp { 2.2 t t rise,PQ } ) ,
S R N,PQ ( t ) 2.2 R NPK,PQ I B0 t rise,PQ ( 2 exp { 4.4 t t rise,PQ } exp { 2.2 t t rise,PQ } ) .
t rise,PQ 2.2 R NPK,PQ C eff { I B0 } .
R N,PQ ( t ) R NPK,PQ t rise,PQ 0 t rise,PQ ( 1 exp { 2.2 t / t rise,PQ } ) d t .
R NPK,PQ 5 3 L K C eff { I B0 } ,
t rise,PQ 2 2 L K C eff { I B0 } ,
v PK,PQ I B0 R L ,
S R PQ I B0 R L 2 2 L K C eff { I B0 } .
S R AQ S R PQ 2 2 L K C eff { I B0 } R L ( C eff + C L ) ,
t rise,AQ t rise,PQ 1 2 1.1 I SLEW I B0 C eff + C L C eff { I B0 } ,
v pk,AQ v pk,PQ 2.2 I SLEW I BO L K / R L R L ( C eff + C L )

Metrics