Abstract

We present a photoconductive terahertz detector operating at the 1 µm wavelength range at which high-power and compact Ytterbium-doped femtosecond fiber lasers are available. The detector utilizes an array of plasmonic nanoantennas to provide sub-picosecond transit time for the majority of photo-generated carriers to enable high-sensitivity terahertz detection without using a short-carrier-lifetime substrate. By using a high-mobility semiconductor substrate and preventing photocarrier recombination, the presented detector offers significantly higher sensitivity levels compared with previously demonstrated broadband photoconductive terahertz detectors operating at the 1 µm wavelength range. We demonstrate pulsed terahertz detection over a 4 THz bandwidth with a record-high signal-to-noise ratio of 95 dB at an average terahertz radiation power of 6.8 µW, when using an optical pump power of 30 mW.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Impact of substrate characteristics on performance of large area plasmonic photoconductive emitters

Nezih T. Yardimci, Rodolfo Salas, Erica M. Krivoy, Hari P. Nair, Seth R. Bank, and Mona Jarrahi
Opt. Express 23(25) 32035-32043 (2015)

Terahertz photoconductive antenna with metal nanoislands

Sang-Gil Park, Yongje Choi, Young-Jae Oh, and Ki-Hun Jeong
Opt. Express 20(23) 25530-25535 (2012)

References

  • View by:
  • |
  • |
  • |

  1. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
    [Crossref]
  2. W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70(8), 1325–1379 (2007).
    [Crossref]
  3. J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications - explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
    [Crossref]
  4. T. Bowman, T. Chavez, K. Khan, J. Wu, A. Chakraborty, N. Rajaram, K. Bailey, and M. El-Shenawee, “Pulsed terahertz imaging of breast cancer in freshly excised murine tumors,” J. Biomed. Opt. 23(02), 1 (2018).
    [Crossref]
  5. A. Redo-Sanchez, A. Aghasi, S. Naqvi, M. Zhang, J. Romberg, R. Raskar, B. Heshmat, A. Aghasi, S. Naqvi, M. Zhang, J. Romberg, and R. Raskar, “Terahertz time-gated spectral imaging for content extraction through layered structures,” Nat. Commun. 7(1), 12665 (2016).
    [Crossref]
  6. K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, “Non-destructive terahertz imaging of illicit drugs using spectral fingerprints,” Opt. Express 11(20), 2549 (2003).
    [Crossref]
  7. R. M. Woodward, V. P. Wallace, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulsed imaging of skin cancer in the time and frequency domain,” J. Biol. Phys. 29(2/3), 257–259 (2003).
    [Crossref]
  8. M. Kato, S. R. Tripathi, K. Murate, K. Imayama, and K. Kawase, “Non-destructive drug inspection in covering materials using a terahertz spectral imaging system with injection-seeded terahertz parametric generation and detection,” Opt. Express 24(6), 6425–6432 (2016).
    [Crossref]
  9. T. C. Bowman, M. El-Shenawee, and L. K. Campbell, “Terahertz Imaging of Excised Breast Tumor Tissue on Paraffin Sections,” IEEE Trans. Antennas Propag. 63(5), 2088–2097 (2015).
    [Crossref]
  10. U. Nandi, J. C. Norman, A. C. Gossard, H. Lu, and S. Preu, “1550-nm Driven ErAs:In(Al)GaAs Photoconductor-Based Terahertz Time Domain System with 6.5 THz Bandwidth,” J. Infrared, Millimeter, Terahertz Waves 39(4), 340–348 (2018).
    [Crossref]
  11. R. J. B. B. Dietz, B. Globisch, M. Gerhard, A. Velauthapillai, D. Stanze, H. Roehle, M. Koch, T. Göbel, and M. Schell, “64 µW pulsed terahertz emission from growth optimized InGaAs/InAlAs heterostructures with separated photoconductive and trapping regions,” Appl. Phys. Lett. 103(6), 061103 (2013).
    [Crossref]
  12. R. J. B. B. Dietz, B. Globisch, H. Roehle, D. Stanze, T. Göbel, and M. Schell, “Influence and adjustment of carrier lifetimes in InGaAs/InAlAs photoconductive pulsed terahertz detectors: 6 THz bandwidth and 90 dB dynamic range,” Opt. Express 22(16), 19411 (2014).
    [Crossref]
  13. P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging - Modern techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
    [Crossref]
  14. P. U. Jepsen, R. H. Jacobsen, and S. R. Keiding, “Generation and detection of terahertz pulses from biased semiconductor antennas,” J. Opt. Soc. Am. B 13(11), 2424 (1996).
    [Crossref]
  15. E. Castro-Camus, L. Fu, J. Lloyd-Hughes, H. H. Tan, C. Jagadish, and M. B. Johnston, “Photoconductive response correction for detectors of terahertz radiation,” J. Appl. Phys. 104(5), 053113 (2008).
    [Crossref]
  16. X. C. Zhang, P. U. Jepsen, R. H. Jacobsen, and S. R. Keiding, “Generation and detection of terahertz pulses from biased semiconductor antennas,” J. Opt. Soc. Am. B 13(11), 2424 (1996).
    [Crossref]
  17. S. Kono, M. Tani, P. Gu, and K. Sakai, “Detection of up to 20 THz with a low-temperature-grown GaAs photoconductive antenna gated with 15 fs light pulses,” Appl. Phys. Lett. 77(25), 4104–4106 (2000).
    [Crossref]
  18. X. Liu, A. Prasad, J. Nishio, E. R. Weber, Z. Liliental-Weber, and W. Walukiewicz, “Native point defects in low-temperature- grown GaAs,” Appl. Phys. Lett. 67(2), 279–281 (1995).
    [Crossref]
  19. C. Baker, I. S. Gregory, W. R. Tribe, I. V. Bradley, M. J. Evans, M. Withers, P. F. Taday, V. P. Wallace, E. H. Linfield, A. G. Davies, and M. Missous, “Terahertz pulsed imaging with 1.06 µm laser excitation,” Appl. Phys. Lett. 83(20), 4113–4115 (2003).
    [Crossref]
  20. A. Takazato, M. Kamakura, T. Matsui, J. Kitagawa, and Y. Kadoya, “Detection of terahertz waves using low-temperature-grown InGaAs with 1.56 µm pulse excitation,” Appl. Phys. Lett. 90(10), 101119 (2007).
    [Crossref]
  21. R. Salas, S. Guchhait, S. D. Sifferman, K. M. McNicholas, V. D. Dasika, E. M. Krivoy, D. Jung, M. L. Lee, and S. R. Bank, “Growth and properties of rare-earth arsenide InGaAs nanocomposites for terahertz generation,” Appl. Phys. Lett. 106(8), 081103 (2015).
    [Crossref]
  22. S. Preu, M. Mittendorff, H. Lu, H. B. Weber, S. Winnerl, and A. C. Gossard, “2012 nm ErAs:In(Al)GaAs large area photoconductive emitters,” Appl. Phys. Lett. 101(10), 101105 (2012).
    [Crossref]
  23. C. D. Wood, O. Hatem, J. E. Cunningham, E. H. Linfield, A. G. Davies, P. J. Cannard, M. J. Robertson, and D. G. Moodie, “Terahertz emission from metal-organic chemical vapor deposition grown Fe:InGaAs using 830 nm to 1.55 µm excitation,” Appl. Phys. Lett. 96(19), 194104 (2010).
    [Crossref]
  24. M. Suzuki and M. Tonouchi, “Fe-implanted InGaAs terahertz emitters for 1.56 µm wavelength excitation,” Appl. Phys. Lett. 86(5), 051104 (2005).
    [Crossref]
  25. N. T. Yardimci, D. Turan, S. Cakmakyapan, and M. Jarrahi, “A high-responsivity and broadband photoconductive terahertz detector based on a plasmonic nanocavity,” Appl. Phys. Lett. 113(25), 251102 (2018).
    [Crossref]
  26. G. Matthäus, T. Schreiber, J. Limpert, S. Nolte, G. Torsoyan, R. Beigang, S. Riehemann, G. Notni, and A. Tünnermann, “Surface-emitted THz generation using a compact ultrashort pulse fiber amplifier at 1060 nm,” Opt. Commun. 261(1), 114–117 (2006).
    [Crossref]
  27. V. Pačebutas, A. Bičiũnas, S. Balakauskas, A. Krotkus, G. Andriukaitis, D. Lorenc, A. Pugžlys, and A. Baltuška, “Terahertz time-domain-spectroscopy system based on femtosecond Yb:fiber laser and GaBiAs photoconducting components,” Appl. Phys. Lett. 97(3), 031111 (2010).
    [Crossref]
  28. V. Pačebutas, A. Bičiũnas, K. Bertulis, and A. Krotkus, “Optoelectronic terahertz radiation system based on femtosecond 1um laser pulses and GaBiAs detector,” Electron. Lett. 44(19), 1154 (2008).
    [Crossref]
  29. M. S. Kong, J. S. Kim, S. P. Han, N. Kim, K. Moon, K. Hyun, and M. Y. Jeon, “Terahertz radiation using log-spiral-based low- temperature-grown InGaAs photoconductive antenna pumped by mode-locked Yb-doped fiber laser,” Opt. Express 24(7), 7037–7045 (2016).
    [Crossref]
  30. G. Matthäus, B. Ortaç, J. Limpert, S. Nolte, R. Hohmuth, M. Voitsch, B. Pradarutti, and A. Tünnermann, “Intracavity terahertz generation inside a high-energy ultrafast soliton fiber laser,” Appl. Phys. Lett. 93(26), 261105 (2008).
    [Crossref]
  31. R. J. B. Dietz, A. Brahm, A. Velauthapillai, A. Wilms, C. Lammers, B. Globisch, M. Koch, G. Notni, A. Tünnermann, T. Göbel, and M. Schell, “Low temperature grown photoconductive antennas for pulsed 1060 nm excitation: Influence of excess energy on the electron relaxation,” J. Infrared, Millimeter, Terahertz Waves 36(1), 60–71 (2015).
    [Crossref]
  32. R. J. B. Dietz, R. Wilk, B. Globisch, H. Roehle, D. Stanze, S. Ullrich, S. Schumann, N. Born, M. Koch, B. Sartorius, and M. Schell, “Low temperature grown Be-doped InGaAs/InAlAs photoconductive antennas excited at 1030 nm,” J. Infrared, Millimeter, Terahertz Waves 34(3-4), 231–237 (2013).
    [Crossref]
  33. R. E. Nahory, M. A. Pollack, W. D. Johnston, and R. L. Barns, “Band gap versus composition and demonstration of Vegard’s law for In 1-xGaxAsyP1-y lattice matched to InP,” Appl. Phys. Lett. 33(7), 659–661 (1978).
    [Crossref]
  34. N. T. Yardimci and M. Jarrahi, “High Sensitivity Terahertz Detection through Large-Area Plasmonic Nano-Antenna Arrays,” Sci. Rep. 7(1), 42667 (2017).
    [Crossref]
  35. B. Y. Hsieh and M. Jarrahi, “Analysis of periodic metallic nano-slits for efficient interaction of terahertz and optical waves at nano-scale dimensions,” J. Appl. Phys. 109(8), 084326 (2011).
    [Crossref]
  36. N. T. Yardimci, S. H. Yang, C. W. Berry, and M. Jarrahi, “High-power terahertz generation using large-area plasmonic photoconductive emitters,” IEEE Trans. Terahertz Sci. Technol. 5(2), 223–229 (2015).
    [Crossref]
  37. N. T. Yardimci, H. Lu, and M. Jarrahi, “High power telecommunication-compatible photoconductive terahertz emitters based on plasmonic nano-antenna arrays,” Appl. Phys. Lett. 109(19), 191103 (2016).
    [Crossref]
  38. N. T. Yardimci, R. Salas, E. M. Krivoy, H. P. Nair, S. R. Bank, and M. Jarrahi, “Impact of substrate characteristics on performance of large area plasmonic photoconductive emitters,” Opt. Express 23(25), 32035–32043 (2015).
    [Crossref]
  39. C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun. 4(1), 1622 (2013).
    [Crossref]
  40. N. T. Yardimci and M. Jarrahi, “Nanostructure-Enhanced Photoconductive Terahertz Emission and Detection,” Small 14(44), 1802437 (2018).
    [Crossref]
  41. M. Jarrahi, “Advanced Photoconductive Terahertz Optoelectronics Based on Nano-Antennas and Nano-Plasmonic Light Concentrators,” IEEE Trans. Terahertz Sci. Technol. 5(3), 391–397 (2015).
    [Crossref]
  42. S. H. Yang, M. R. Hashemi, C. W. Berry, and M. Jarrahi, “7.5% Optical-to-terahertz conversion efficiency offered by photoconductive emitters with three-dimensional plasmonic contact electrodes,” IEEE Trans. Terahertz Sci. Technol. 4(5), 575–581 (2014).
    [Crossref]
  43. C. W. Berry, M. R. Hashemi, and M. Jarrahi, “Generation of high power pulsed terahertz radiation using a plasmonic photoconductive emitter array with logarithmic spiral antennas,” Appl. Phys. Lett. 104(8), 081122 (2014).
    [Crossref]
  44. C. W. Berry and M. Jarrahi, “Terahertz generation using plasmonic photoconductive gratings,” New J. Phys. 14(10), 105029 (2012).
    [Crossref]
  45. N. Wang and M. Jarrahi, “Noise analysis of photoconductive terahertz detectors,” J. Infrared, Millimeter, Terahertz Waves 34(9), 519–528 (2013).
    [Crossref]
  46. I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, and B. J. Drouin, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
    [Crossref]
  47. N. T. Yardimci, S. Cakmakyapan, S. Hemmati, and M. Jarrahi, “A High-Power Broadband Terahertz Source Enabled by Three- Dimensional Light Confinement in a Plasmonic Nanocavity,” Sci. Rep. 7(1), 4166 (2017).
    [Crossref]

2018 (4)

T. Bowman, T. Chavez, K. Khan, J. Wu, A. Chakraborty, N. Rajaram, K. Bailey, and M. El-Shenawee, “Pulsed terahertz imaging of breast cancer in freshly excised murine tumors,” J. Biomed. Opt. 23(02), 1 (2018).
[Crossref]

U. Nandi, J. C. Norman, A. C. Gossard, H. Lu, and S. Preu, “1550-nm Driven ErAs:In(Al)GaAs Photoconductor-Based Terahertz Time Domain System with 6.5 THz Bandwidth,” J. Infrared, Millimeter, Terahertz Waves 39(4), 340–348 (2018).
[Crossref]

N. T. Yardimci, D. Turan, S. Cakmakyapan, and M. Jarrahi, “A high-responsivity and broadband photoconductive terahertz detector based on a plasmonic nanocavity,” Appl. Phys. Lett. 113(25), 251102 (2018).
[Crossref]

N. T. Yardimci and M. Jarrahi, “Nanostructure-Enhanced Photoconductive Terahertz Emission and Detection,” Small 14(44), 1802437 (2018).
[Crossref]

2017 (3)

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, and B. J. Drouin, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
[Crossref]

N. T. Yardimci, S. Cakmakyapan, S. Hemmati, and M. Jarrahi, “A High-Power Broadband Terahertz Source Enabled by Three- Dimensional Light Confinement in a Plasmonic Nanocavity,” Sci. Rep. 7(1), 4166 (2017).
[Crossref]

N. T. Yardimci and M. Jarrahi, “High Sensitivity Terahertz Detection through Large-Area Plasmonic Nano-Antenna Arrays,” Sci. Rep. 7(1), 42667 (2017).
[Crossref]

2016 (4)

M. S. Kong, J. S. Kim, S. P. Han, N. Kim, K. Moon, K. Hyun, and M. Y. Jeon, “Terahertz radiation using log-spiral-based low- temperature-grown InGaAs photoconductive antenna pumped by mode-locked Yb-doped fiber laser,” Opt. Express 24(7), 7037–7045 (2016).
[Crossref]

A. Redo-Sanchez, A. Aghasi, S. Naqvi, M. Zhang, J. Romberg, R. Raskar, B. Heshmat, A. Aghasi, S. Naqvi, M. Zhang, J. Romberg, and R. Raskar, “Terahertz time-gated spectral imaging for content extraction through layered structures,” Nat. Commun. 7(1), 12665 (2016).
[Crossref]

M. Kato, S. R. Tripathi, K. Murate, K. Imayama, and K. Kawase, “Non-destructive drug inspection in covering materials using a terahertz spectral imaging system with injection-seeded terahertz parametric generation and detection,” Opt. Express 24(6), 6425–6432 (2016).
[Crossref]

N. T. Yardimci, H. Lu, and M. Jarrahi, “High power telecommunication-compatible photoconductive terahertz emitters based on plasmonic nano-antenna arrays,” Appl. Phys. Lett. 109(19), 191103 (2016).
[Crossref]

2015 (6)

N. T. Yardimci, R. Salas, E. M. Krivoy, H. P. Nair, S. R. Bank, and M. Jarrahi, “Impact of substrate characteristics on performance of large area plasmonic photoconductive emitters,” Opt. Express 23(25), 32035–32043 (2015).
[Crossref]

N. T. Yardimci, S. H. Yang, C. W. Berry, and M. Jarrahi, “High-power terahertz generation using large-area plasmonic photoconductive emitters,” IEEE Trans. Terahertz Sci. Technol. 5(2), 223–229 (2015).
[Crossref]

M. Jarrahi, “Advanced Photoconductive Terahertz Optoelectronics Based on Nano-Antennas and Nano-Plasmonic Light Concentrators,” IEEE Trans. Terahertz Sci. Technol. 5(3), 391–397 (2015).
[Crossref]

T. C. Bowman, M. El-Shenawee, and L. K. Campbell, “Terahertz Imaging of Excised Breast Tumor Tissue on Paraffin Sections,” IEEE Trans. Antennas Propag. 63(5), 2088–2097 (2015).
[Crossref]

R. J. B. Dietz, A. Brahm, A. Velauthapillai, A. Wilms, C. Lammers, B. Globisch, M. Koch, G. Notni, A. Tünnermann, T. Göbel, and M. Schell, “Low temperature grown photoconductive antennas for pulsed 1060 nm excitation: Influence of excess energy on the electron relaxation,” J. Infrared, Millimeter, Terahertz Waves 36(1), 60–71 (2015).
[Crossref]

R. Salas, S. Guchhait, S. D. Sifferman, K. M. McNicholas, V. D. Dasika, E. M. Krivoy, D. Jung, M. L. Lee, and S. R. Bank, “Growth and properties of rare-earth arsenide InGaAs nanocomposites for terahertz generation,” Appl. Phys. Lett. 106(8), 081103 (2015).
[Crossref]

2014 (3)

R. J. B. B. Dietz, B. Globisch, H. Roehle, D. Stanze, T. Göbel, and M. Schell, “Influence and adjustment of carrier lifetimes in InGaAs/InAlAs photoconductive pulsed terahertz detectors: 6 THz bandwidth and 90 dB dynamic range,” Opt. Express 22(16), 19411 (2014).
[Crossref]

S. H. Yang, M. R. Hashemi, C. W. Berry, and M. Jarrahi, “7.5% Optical-to-terahertz conversion efficiency offered by photoconductive emitters with three-dimensional plasmonic contact electrodes,” IEEE Trans. Terahertz Sci. Technol. 4(5), 575–581 (2014).
[Crossref]

C. W. Berry, M. R. Hashemi, and M. Jarrahi, “Generation of high power pulsed terahertz radiation using a plasmonic photoconductive emitter array with logarithmic spiral antennas,” Appl. Phys. Lett. 104(8), 081122 (2014).
[Crossref]

2013 (4)

N. Wang and M. Jarrahi, “Noise analysis of photoconductive terahertz detectors,” J. Infrared, Millimeter, Terahertz Waves 34(9), 519–528 (2013).
[Crossref]

C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun. 4(1), 1622 (2013).
[Crossref]

R. J. B. B. Dietz, B. Globisch, M. Gerhard, A. Velauthapillai, D. Stanze, H. Roehle, M. Koch, T. Göbel, and M. Schell, “64 µW pulsed terahertz emission from growth optimized InGaAs/InAlAs heterostructures with separated photoconductive and trapping regions,” Appl. Phys. Lett. 103(6), 061103 (2013).
[Crossref]

R. J. B. Dietz, R. Wilk, B. Globisch, H. Roehle, D. Stanze, S. Ullrich, S. Schumann, N. Born, M. Koch, B. Sartorius, and M. Schell, “Low temperature grown Be-doped InGaAs/InAlAs photoconductive antennas excited at 1030 nm,” J. Infrared, Millimeter, Terahertz Waves 34(3-4), 231–237 (2013).
[Crossref]

2012 (2)

S. Preu, M. Mittendorff, H. Lu, H. B. Weber, S. Winnerl, and A. C. Gossard, “2012 nm ErAs:In(Al)GaAs large area photoconductive emitters,” Appl. Phys. Lett. 101(10), 101105 (2012).
[Crossref]

C. W. Berry and M. Jarrahi, “Terahertz generation using plasmonic photoconductive gratings,” New J. Phys. 14(10), 105029 (2012).
[Crossref]

2011 (2)

B. Y. Hsieh and M. Jarrahi, “Analysis of periodic metallic nano-slits for efficient interaction of terahertz and optical waves at nano-scale dimensions,” J. Appl. Phys. 109(8), 084326 (2011).
[Crossref]

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging - Modern techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
[Crossref]

2010 (2)

V. Pačebutas, A. Bičiũnas, S. Balakauskas, A. Krotkus, G. Andriukaitis, D. Lorenc, A. Pugžlys, and A. Baltuška, “Terahertz time-domain-spectroscopy system based on femtosecond Yb:fiber laser and GaBiAs photoconducting components,” Appl. Phys. Lett. 97(3), 031111 (2010).
[Crossref]

C. D. Wood, O. Hatem, J. E. Cunningham, E. H. Linfield, A. G. Davies, P. J. Cannard, M. J. Robertson, and D. G. Moodie, “Terahertz emission from metal-organic chemical vapor deposition grown Fe:InGaAs using 830 nm to 1.55 µm excitation,” Appl. Phys. Lett. 96(19), 194104 (2010).
[Crossref]

2008 (3)

V. Pačebutas, A. Bičiũnas, K. Bertulis, and A. Krotkus, “Optoelectronic terahertz radiation system based on femtosecond 1um laser pulses and GaBiAs detector,” Electron. Lett. 44(19), 1154 (2008).
[Crossref]

G. Matthäus, B. Ortaç, J. Limpert, S. Nolte, R. Hohmuth, M. Voitsch, B. Pradarutti, and A. Tünnermann, “Intracavity terahertz generation inside a high-energy ultrafast soliton fiber laser,” Appl. Phys. Lett. 93(26), 261105 (2008).
[Crossref]

E. Castro-Camus, L. Fu, J. Lloyd-Hughes, H. H. Tan, C. Jagadish, and M. B. Johnston, “Photoconductive response correction for detectors of terahertz radiation,” J. Appl. Phys. 104(5), 053113 (2008).
[Crossref]

2007 (3)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70(8), 1325–1379 (2007).
[Crossref]

A. Takazato, M. Kamakura, T. Matsui, J. Kitagawa, and Y. Kadoya, “Detection of terahertz waves using low-temperature-grown InGaAs with 1.56 µm pulse excitation,” Appl. Phys. Lett. 90(10), 101119 (2007).
[Crossref]

2006 (1)

G. Matthäus, T. Schreiber, J. Limpert, S. Nolte, G. Torsoyan, R. Beigang, S. Riehemann, G. Notni, and A. Tünnermann, “Surface-emitted THz generation using a compact ultrashort pulse fiber amplifier at 1060 nm,” Opt. Commun. 261(1), 114–117 (2006).
[Crossref]

2005 (2)

M. Suzuki and M. Tonouchi, “Fe-implanted InGaAs terahertz emitters for 1.56 µm wavelength excitation,” Appl. Phys. Lett. 86(5), 051104 (2005).
[Crossref]

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications - explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

2003 (3)

K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, “Non-destructive terahertz imaging of illicit drugs using spectral fingerprints,” Opt. Express 11(20), 2549 (2003).
[Crossref]

R. M. Woodward, V. P. Wallace, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulsed imaging of skin cancer in the time and frequency domain,” J. Biol. Phys. 29(2/3), 257–259 (2003).
[Crossref]

C. Baker, I. S. Gregory, W. R. Tribe, I. V. Bradley, M. J. Evans, M. Withers, P. F. Taday, V. P. Wallace, E. H. Linfield, A. G. Davies, and M. Missous, “Terahertz pulsed imaging with 1.06 µm laser excitation,” Appl. Phys. Lett. 83(20), 4113–4115 (2003).
[Crossref]

2000 (1)

S. Kono, M. Tani, P. Gu, and K. Sakai, “Detection of up to 20 THz with a low-temperature-grown GaAs photoconductive antenna gated with 15 fs light pulses,” Appl. Phys. Lett. 77(25), 4104–4106 (2000).
[Crossref]

1996 (2)

1995 (1)

X. Liu, A. Prasad, J. Nishio, E. R. Weber, Z. Liliental-Weber, and W. Walukiewicz, “Native point defects in low-temperature- grown GaAs,” Appl. Phys. Lett. 67(2), 279–281 (1995).
[Crossref]

1978 (1)

R. E. Nahory, M. A. Pollack, W. D. Johnston, and R. L. Barns, “Band gap versus composition and demonstration of Vegard’s law for In 1-xGaxAsyP1-y lattice matched to InP,” Appl. Phys. Lett. 33(7), 659–661 (1978).
[Crossref]

Aghasi, A.

A. Redo-Sanchez, A. Aghasi, S. Naqvi, M. Zhang, J. Romberg, R. Raskar, B. Heshmat, A. Aghasi, S. Naqvi, M. Zhang, J. Romberg, and R. Raskar, “Terahertz time-gated spectral imaging for content extraction through layered structures,” Nat. Commun. 7(1), 12665 (2016).
[Crossref]

A. Redo-Sanchez, A. Aghasi, S. Naqvi, M. Zhang, J. Romberg, R. Raskar, B. Heshmat, A. Aghasi, S. Naqvi, M. Zhang, J. Romberg, and R. Raskar, “Terahertz time-gated spectral imaging for content extraction through layered structures,” Nat. Commun. 7(1), 12665 (2016).
[Crossref]

Andriukaitis, G.

V. Pačebutas, A. Bičiũnas, S. Balakauskas, A. Krotkus, G. Andriukaitis, D. Lorenc, A. Pugžlys, and A. Baltuška, “Terahertz time-domain-spectroscopy system based on femtosecond Yb:fiber laser and GaBiAs photoconducting components,” Appl. Phys. Lett. 97(3), 031111 (2010).
[Crossref]

Arnone, D. D.

R. M. Woodward, V. P. Wallace, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulsed imaging of skin cancer in the time and frequency domain,” J. Biol. Phys. 29(2/3), 257–259 (2003).
[Crossref]

Bailey, K.

T. Bowman, T. Chavez, K. Khan, J. Wu, A. Chakraborty, N. Rajaram, K. Bailey, and M. El-Shenawee, “Pulsed terahertz imaging of breast cancer in freshly excised murine tumors,” J. Biomed. Opt. 23(02), 1 (2018).
[Crossref]

Baker, C.

C. Baker, I. S. Gregory, W. R. Tribe, I. V. Bradley, M. J. Evans, M. Withers, P. F. Taday, V. P. Wallace, E. H. Linfield, A. G. Davies, and M. Missous, “Terahertz pulsed imaging with 1.06 µm laser excitation,” Appl. Phys. Lett. 83(20), 4113–4115 (2003).
[Crossref]

Balakauskas, S.

V. Pačebutas, A. Bičiũnas, S. Balakauskas, A. Krotkus, G. Andriukaitis, D. Lorenc, A. Pugžlys, and A. Baltuška, “Terahertz time-domain-spectroscopy system based on femtosecond Yb:fiber laser and GaBiAs photoconducting components,” Appl. Phys. Lett. 97(3), 031111 (2010).
[Crossref]

Baltuška, A.

V. Pačebutas, A. Bičiũnas, S. Balakauskas, A. Krotkus, G. Andriukaitis, D. Lorenc, A. Pugžlys, and A. Baltuška, “Terahertz time-domain-spectroscopy system based on femtosecond Yb:fiber laser and GaBiAs photoconducting components,” Appl. Phys. Lett. 97(3), 031111 (2010).
[Crossref]

Bank, S. R.

R. Salas, S. Guchhait, S. D. Sifferman, K. M. McNicholas, V. D. Dasika, E. M. Krivoy, D. Jung, M. L. Lee, and S. R. Bank, “Growth and properties of rare-earth arsenide InGaAs nanocomposites for terahertz generation,” Appl. Phys. Lett. 106(8), 081103 (2015).
[Crossref]

N. T. Yardimci, R. Salas, E. M. Krivoy, H. P. Nair, S. R. Bank, and M. Jarrahi, “Impact of substrate characteristics on performance of large area plasmonic photoconductive emitters,” Opt. Express 23(25), 32035–32043 (2015).
[Crossref]

Barat, R.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications - explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Barns, R. L.

R. E. Nahory, M. A. Pollack, W. D. Johnston, and R. L. Barns, “Band gap versus composition and demonstration of Vegard’s law for In 1-xGaxAsyP1-y lattice matched to InP,” Appl. Phys. Lett. 33(7), 659–661 (1978).
[Crossref]

Beigang, R.

G. Matthäus, T. Schreiber, J. Limpert, S. Nolte, G. Torsoyan, R. Beigang, S. Riehemann, G. Notni, and A. Tünnermann, “Surface-emitted THz generation using a compact ultrashort pulse fiber amplifier at 1060 nm,” Opt. Commun. 261(1), 114–117 (2006).
[Crossref]

Bernath, P. F.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, and B. J. Drouin, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
[Crossref]

Berry, C. W.

N. T. Yardimci, S. H. Yang, C. W. Berry, and M. Jarrahi, “High-power terahertz generation using large-area plasmonic photoconductive emitters,” IEEE Trans. Terahertz Sci. Technol. 5(2), 223–229 (2015).
[Crossref]

C. W. Berry, M. R. Hashemi, and M. Jarrahi, “Generation of high power pulsed terahertz radiation using a plasmonic photoconductive emitter array with logarithmic spiral antennas,” Appl. Phys. Lett. 104(8), 081122 (2014).
[Crossref]

S. H. Yang, M. R. Hashemi, C. W. Berry, and M. Jarrahi, “7.5% Optical-to-terahertz conversion efficiency offered by photoconductive emitters with three-dimensional plasmonic contact electrodes,” IEEE Trans. Terahertz Sci. Technol. 4(5), 575–581 (2014).
[Crossref]

C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun. 4(1), 1622 (2013).
[Crossref]

C. W. Berry and M. Jarrahi, “Terahertz generation using plasmonic photoconductive gratings,” New J. Phys. 14(10), 105029 (2012).
[Crossref]

Bertulis, K.

V. Pačebutas, A. Bičiũnas, K. Bertulis, and A. Krotkus, “Optoelectronic terahertz radiation system based on femtosecond 1um laser pulses and GaBiAs detector,” Electron. Lett. 44(19), 1154 (2008).
[Crossref]

Biciunas, A.

V. Pačebutas, A. Bičiũnas, S. Balakauskas, A. Krotkus, G. Andriukaitis, D. Lorenc, A. Pugžlys, and A. Baltuška, “Terahertz time-domain-spectroscopy system based on femtosecond Yb:fiber laser and GaBiAs photoconducting components,” Appl. Phys. Lett. 97(3), 031111 (2010).
[Crossref]

V. Pačebutas, A. Bičiũnas, K. Bertulis, and A. Krotkus, “Optoelectronic terahertz radiation system based on femtosecond 1um laser pulses and GaBiAs detector,” Electron. Lett. 44(19), 1154 (2008).
[Crossref]

Birk, M.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, and B. J. Drouin, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
[Crossref]

Born, N.

R. J. B. Dietz, R. Wilk, B. Globisch, H. Roehle, D. Stanze, S. Ullrich, S. Schumann, N. Born, M. Koch, B. Sartorius, and M. Schell, “Low temperature grown Be-doped InGaAs/InAlAs photoconductive antennas excited at 1030 nm,” J. Infrared, Millimeter, Terahertz Waves 34(3-4), 231–237 (2013).
[Crossref]

Boudon, V.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, and B. J. Drouin, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
[Crossref]

Bowman, T.

T. Bowman, T. Chavez, K. Khan, J. Wu, A. Chakraborty, N. Rajaram, K. Bailey, and M. El-Shenawee, “Pulsed terahertz imaging of breast cancer in freshly excised murine tumors,” J. Biomed. Opt. 23(02), 1 (2018).
[Crossref]

Bowman, T. C.

T. C. Bowman, M. El-Shenawee, and L. K. Campbell, “Terahertz Imaging of Excised Breast Tumor Tissue on Paraffin Sections,” IEEE Trans. Antennas Propag. 63(5), 2088–2097 (2015).
[Crossref]

Bradley, I. V.

C. Baker, I. S. Gregory, W. R. Tribe, I. V. Bradley, M. J. Evans, M. Withers, P. F. Taday, V. P. Wallace, E. H. Linfield, A. G. Davies, and M. Missous, “Terahertz pulsed imaging with 1.06 µm laser excitation,” Appl. Phys. Lett. 83(20), 4113–4115 (2003).
[Crossref]

Brahm, A.

R. J. B. Dietz, A. Brahm, A. Velauthapillai, A. Wilms, C. Lammers, B. Globisch, M. Koch, G. Notni, A. Tünnermann, T. Göbel, and M. Schell, “Low temperature grown photoconductive antennas for pulsed 1060 nm excitation: Influence of excess energy on the electron relaxation,” J. Infrared, Millimeter, Terahertz Waves 36(1), 60–71 (2015).
[Crossref]

Cakmakyapan, S.

N. T. Yardimci, D. Turan, S. Cakmakyapan, and M. Jarrahi, “A high-responsivity and broadband photoconductive terahertz detector based on a plasmonic nanocavity,” Appl. Phys. Lett. 113(25), 251102 (2018).
[Crossref]

N. T. Yardimci, S. Cakmakyapan, S. Hemmati, and M. Jarrahi, “A High-Power Broadband Terahertz Source Enabled by Three- Dimensional Light Confinement in a Plasmonic Nanocavity,” Sci. Rep. 7(1), 4166 (2017).
[Crossref]

Campargue, A.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, and B. J. Drouin, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
[Crossref]

Campbell, L. K.

T. C. Bowman, M. El-Shenawee, and L. K. Campbell, “Terahertz Imaging of Excised Breast Tumor Tissue on Paraffin Sections,” IEEE Trans. Antennas Propag. 63(5), 2088–2097 (2015).
[Crossref]

Cannard, P. J.

C. D. Wood, O. Hatem, J. E. Cunningham, E. H. Linfield, A. G. Davies, P. J. Cannard, M. J. Robertson, and D. G. Moodie, “Terahertz emission from metal-organic chemical vapor deposition grown Fe:InGaAs using 830 nm to 1.55 µm excitation,” Appl. Phys. Lett. 96(19), 194104 (2010).
[Crossref]

Castro-Camus, E.

E. Castro-Camus, L. Fu, J. Lloyd-Hughes, H. H. Tan, C. Jagadish, and M. B. Johnston, “Photoconductive response correction for detectors of terahertz radiation,” J. Appl. Phys. 104(5), 053113 (2008).
[Crossref]

Chakraborty, A.

T. Bowman, T. Chavez, K. Khan, J. Wu, A. Chakraborty, N. Rajaram, K. Bailey, and M. El-Shenawee, “Pulsed terahertz imaging of breast cancer in freshly excised murine tumors,” J. Biomed. Opt. 23(02), 1 (2018).
[Crossref]

Chan, W. L.

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70(8), 1325–1379 (2007).
[Crossref]

Chance, K. V.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, and B. J. Drouin, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
[Crossref]

Chavez, T.

T. Bowman, T. Chavez, K. Khan, J. Wu, A. Chakraborty, N. Rajaram, K. Bailey, and M. El-Shenawee, “Pulsed terahertz imaging of breast cancer in freshly excised murine tumors,” J. Biomed. Opt. 23(02), 1 (2018).
[Crossref]

Cooke, D. G.

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging - Modern techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
[Crossref]

Cunningham, J. E.

C. D. Wood, O. Hatem, J. E. Cunningham, E. H. Linfield, A. G. Davies, P. J. Cannard, M. J. Robertson, and D. G. Moodie, “Terahertz emission from metal-organic chemical vapor deposition grown Fe:InGaAs using 830 nm to 1.55 µm excitation,” Appl. Phys. Lett. 96(19), 194104 (2010).
[Crossref]

Dasika, V. D.

R. Salas, S. Guchhait, S. D. Sifferman, K. M. McNicholas, V. D. Dasika, E. M. Krivoy, D. Jung, M. L. Lee, and S. R. Bank, “Growth and properties of rare-earth arsenide InGaAs nanocomposites for terahertz generation,” Appl. Phys. Lett. 106(8), 081103 (2015).
[Crossref]

Davies, A. G.

C. D. Wood, O. Hatem, J. E. Cunningham, E. H. Linfield, A. G. Davies, P. J. Cannard, M. J. Robertson, and D. G. Moodie, “Terahertz emission from metal-organic chemical vapor deposition grown Fe:InGaAs using 830 nm to 1.55 µm excitation,” Appl. Phys. Lett. 96(19), 194104 (2010).
[Crossref]

C. Baker, I. S. Gregory, W. R. Tribe, I. V. Bradley, M. J. Evans, M. Withers, P. F. Taday, V. P. Wallace, E. H. Linfield, A. G. Davies, and M. Missous, “Terahertz pulsed imaging with 1.06 µm laser excitation,” Appl. Phys. Lett. 83(20), 4113–4115 (2003).
[Crossref]

Deibel, J.

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70(8), 1325–1379 (2007).
[Crossref]

Dietz, R. J. B.

R. J. B. Dietz, A. Brahm, A. Velauthapillai, A. Wilms, C. Lammers, B. Globisch, M. Koch, G. Notni, A. Tünnermann, T. Göbel, and M. Schell, “Low temperature grown photoconductive antennas for pulsed 1060 nm excitation: Influence of excess energy on the electron relaxation,” J. Infrared, Millimeter, Terahertz Waves 36(1), 60–71 (2015).
[Crossref]

R. J. B. Dietz, R. Wilk, B. Globisch, H. Roehle, D. Stanze, S. Ullrich, S. Schumann, N. Born, M. Koch, B. Sartorius, and M. Schell, “Low temperature grown Be-doped InGaAs/InAlAs photoconductive antennas excited at 1030 nm,” J. Infrared, Millimeter, Terahertz Waves 34(3-4), 231–237 (2013).
[Crossref]

Dietz, R. J. B. B.

R. J. B. B. Dietz, B. Globisch, H. Roehle, D. Stanze, T. Göbel, and M. Schell, “Influence and adjustment of carrier lifetimes in InGaAs/InAlAs photoconductive pulsed terahertz detectors: 6 THz bandwidth and 90 dB dynamic range,” Opt. Express 22(16), 19411 (2014).
[Crossref]

R. J. B. B. Dietz, B. Globisch, M. Gerhard, A. Velauthapillai, D. Stanze, H. Roehle, M. Koch, T. Göbel, and M. Schell, “64 µW pulsed terahertz emission from growth optimized InGaAs/InAlAs heterostructures with separated photoconductive and trapping regions,” Appl. Phys. Lett. 103(6), 061103 (2013).
[Crossref]

Drouin, B. J.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, and B. J. Drouin, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
[Crossref]

El-Shenawee, M.

T. Bowman, T. Chavez, K. Khan, J. Wu, A. Chakraborty, N. Rajaram, K. Bailey, and M. El-Shenawee, “Pulsed terahertz imaging of breast cancer in freshly excised murine tumors,” J. Biomed. Opt. 23(02), 1 (2018).
[Crossref]

T. C. Bowman, M. El-Shenawee, and L. K. Campbell, “Terahertz Imaging of Excised Breast Tumor Tissue on Paraffin Sections,” IEEE Trans. Antennas Propag. 63(5), 2088–2097 (2015).
[Crossref]

Evans, M. J.

C. Baker, I. S. Gregory, W. R. Tribe, I. V. Bradley, M. J. Evans, M. Withers, P. F. Taday, V. P. Wallace, E. H. Linfield, A. G. Davies, and M. Missous, “Terahertz pulsed imaging with 1.06 µm laser excitation,” Appl. Phys. Lett. 83(20), 4113–4115 (2003).
[Crossref]

Federici, J. F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications - explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Fu, L.

E. Castro-Camus, L. Fu, J. Lloyd-Hughes, H. H. Tan, C. Jagadish, and M. B. Johnston, “Photoconductive response correction for detectors of terahertz radiation,” J. Appl. Phys. 104(5), 053113 (2008).
[Crossref]

Gary, D.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications - explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Gerhard, M.

R. J. B. B. Dietz, B. Globisch, M. Gerhard, A. Velauthapillai, D. Stanze, H. Roehle, M. Koch, T. Göbel, and M. Schell, “64 µW pulsed terahertz emission from growth optimized InGaAs/InAlAs heterostructures with separated photoconductive and trapping regions,” Appl. Phys. Lett. 103(6), 061103 (2013).
[Crossref]

Globisch, B.

R. J. B. Dietz, A. Brahm, A. Velauthapillai, A. Wilms, C. Lammers, B. Globisch, M. Koch, G. Notni, A. Tünnermann, T. Göbel, and M. Schell, “Low temperature grown photoconductive antennas for pulsed 1060 nm excitation: Influence of excess energy on the electron relaxation,” J. Infrared, Millimeter, Terahertz Waves 36(1), 60–71 (2015).
[Crossref]

R. J. B. B. Dietz, B. Globisch, H. Roehle, D. Stanze, T. Göbel, and M. Schell, “Influence and adjustment of carrier lifetimes in InGaAs/InAlAs photoconductive pulsed terahertz detectors: 6 THz bandwidth and 90 dB dynamic range,” Opt. Express 22(16), 19411 (2014).
[Crossref]

R. J. B. B. Dietz, B. Globisch, M. Gerhard, A. Velauthapillai, D. Stanze, H. Roehle, M. Koch, T. Göbel, and M. Schell, “64 µW pulsed terahertz emission from growth optimized InGaAs/InAlAs heterostructures with separated photoconductive and trapping regions,” Appl. Phys. Lett. 103(6), 061103 (2013).
[Crossref]

R. J. B. Dietz, R. Wilk, B. Globisch, H. Roehle, D. Stanze, S. Ullrich, S. Schumann, N. Born, M. Koch, B. Sartorius, and M. Schell, “Low temperature grown Be-doped InGaAs/InAlAs photoconductive antennas excited at 1030 nm,” J. Infrared, Millimeter, Terahertz Waves 34(3-4), 231–237 (2013).
[Crossref]

Göbel, T.

R. J. B. Dietz, A. Brahm, A. Velauthapillai, A. Wilms, C. Lammers, B. Globisch, M. Koch, G. Notni, A. Tünnermann, T. Göbel, and M. Schell, “Low temperature grown photoconductive antennas for pulsed 1060 nm excitation: Influence of excess energy on the electron relaxation,” J. Infrared, Millimeter, Terahertz Waves 36(1), 60–71 (2015).
[Crossref]

R. J. B. B. Dietz, B. Globisch, H. Roehle, D. Stanze, T. Göbel, and M. Schell, “Influence and adjustment of carrier lifetimes in InGaAs/InAlAs photoconductive pulsed terahertz detectors: 6 THz bandwidth and 90 dB dynamic range,” Opt. Express 22(16), 19411 (2014).
[Crossref]

R. J. B. B. Dietz, B. Globisch, M. Gerhard, A. Velauthapillai, D. Stanze, H. Roehle, M. Koch, T. Göbel, and M. Schell, “64 µW pulsed terahertz emission from growth optimized InGaAs/InAlAs heterostructures with separated photoconductive and trapping regions,” Appl. Phys. Lett. 103(6), 061103 (2013).
[Crossref]

Gordon, I. E.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, and B. J. Drouin, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
[Crossref]

Gossard, A. C.

U. Nandi, J. C. Norman, A. C. Gossard, H. Lu, and S. Preu, “1550-nm Driven ErAs:In(Al)GaAs Photoconductor-Based Terahertz Time Domain System with 6.5 THz Bandwidth,” J. Infrared, Millimeter, Terahertz Waves 39(4), 340–348 (2018).
[Crossref]

S. Preu, M. Mittendorff, H. Lu, H. B. Weber, S. Winnerl, and A. C. Gossard, “2012 nm ErAs:In(Al)GaAs large area photoconductive emitters,” Appl. Phys. Lett. 101(10), 101105 (2012).
[Crossref]

Gregory, I. S.

C. Baker, I. S. Gregory, W. R. Tribe, I. V. Bradley, M. J. Evans, M. Withers, P. F. Taday, V. P. Wallace, E. H. Linfield, A. G. Davies, and M. Missous, “Terahertz pulsed imaging with 1.06 µm laser excitation,” Appl. Phys. Lett. 83(20), 4113–4115 (2003).
[Crossref]

Gu, P.

S. Kono, M. Tani, P. Gu, and K. Sakai, “Detection of up to 20 THz with a low-temperature-grown GaAs photoconductive antenna gated with 15 fs light pulses,” Appl. Phys. Lett. 77(25), 4104–4106 (2000).
[Crossref]

Guchhait, S.

R. Salas, S. Guchhait, S. D. Sifferman, K. M. McNicholas, V. D. Dasika, E. M. Krivoy, D. Jung, M. L. Lee, and S. R. Bank, “Growth and properties of rare-earth arsenide InGaAs nanocomposites for terahertz generation,” Appl. Phys. Lett. 106(8), 081103 (2015).
[Crossref]

Han, S. P.

Hashemi, M. R.

S. H. Yang, M. R. Hashemi, C. W. Berry, and M. Jarrahi, “7.5% Optical-to-terahertz conversion efficiency offered by photoconductive emitters with three-dimensional plasmonic contact electrodes,” IEEE Trans. Terahertz Sci. Technol. 4(5), 575–581 (2014).
[Crossref]

C. W. Berry, M. R. Hashemi, and M. Jarrahi, “Generation of high power pulsed terahertz radiation using a plasmonic photoconductive emitter array with logarithmic spiral antennas,” Appl. Phys. Lett. 104(8), 081122 (2014).
[Crossref]

C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun. 4(1), 1622 (2013).
[Crossref]

Hatem, O.

C. D. Wood, O. Hatem, J. E. Cunningham, E. H. Linfield, A. G. Davies, P. J. Cannard, M. J. Robertson, and D. G. Moodie, “Terahertz emission from metal-organic chemical vapor deposition grown Fe:InGaAs using 830 nm to 1.55 µm excitation,” Appl. Phys. Lett. 96(19), 194104 (2010).
[Crossref]

Hemmati, S.

N. T. Yardimci, S. Cakmakyapan, S. Hemmati, and M. Jarrahi, “A High-Power Broadband Terahertz Source Enabled by Three- Dimensional Light Confinement in a Plasmonic Nanocavity,” Sci. Rep. 7(1), 4166 (2017).
[Crossref]

Heshmat, B.

A. Redo-Sanchez, A. Aghasi, S. Naqvi, M. Zhang, J. Romberg, R. Raskar, B. Heshmat, A. Aghasi, S. Naqvi, M. Zhang, J. Romberg, and R. Raskar, “Terahertz time-gated spectral imaging for content extraction through layered structures,” Nat. Commun. 7(1), 12665 (2016).
[Crossref]

Hill, C.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, and B. J. Drouin, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
[Crossref]

Hohmuth, R.

G. Matthäus, B. Ortaç, J. Limpert, S. Nolte, R. Hohmuth, M. Voitsch, B. Pradarutti, and A. Tünnermann, “Intracavity terahertz generation inside a high-energy ultrafast soliton fiber laser,” Appl. Phys. Lett. 93(26), 261105 (2008).
[Crossref]

Hsieh, B. Y.

B. Y. Hsieh and M. Jarrahi, “Analysis of periodic metallic nano-slits for efficient interaction of terahertz and optical waves at nano-scale dimensions,” J. Appl. Phys. 109(8), 084326 (2011).
[Crossref]

Huang, F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications - explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Hyun, K.

Imayama, K.

Inoue, H.

Jacobsen, R. H.

Jagadish, C.

E. Castro-Camus, L. Fu, J. Lloyd-Hughes, H. H. Tan, C. Jagadish, and M. B. Johnston, “Photoconductive response correction for detectors of terahertz radiation,” J. Appl. Phys. 104(5), 053113 (2008).
[Crossref]

Jarrahi, M.

N. T. Yardimci and M. Jarrahi, “Nanostructure-Enhanced Photoconductive Terahertz Emission and Detection,” Small 14(44), 1802437 (2018).
[Crossref]

N. T. Yardimci, D. Turan, S. Cakmakyapan, and M. Jarrahi, “A high-responsivity and broadband photoconductive terahertz detector based on a plasmonic nanocavity,” Appl. Phys. Lett. 113(25), 251102 (2018).
[Crossref]

N. T. Yardimci and M. Jarrahi, “High Sensitivity Terahertz Detection through Large-Area Plasmonic Nano-Antenna Arrays,” Sci. Rep. 7(1), 42667 (2017).
[Crossref]

N. T. Yardimci, S. Cakmakyapan, S. Hemmati, and M. Jarrahi, “A High-Power Broadband Terahertz Source Enabled by Three- Dimensional Light Confinement in a Plasmonic Nanocavity,” Sci. Rep. 7(1), 4166 (2017).
[Crossref]

N. T. Yardimci, H. Lu, and M. Jarrahi, “High power telecommunication-compatible photoconductive terahertz emitters based on plasmonic nano-antenna arrays,” Appl. Phys. Lett. 109(19), 191103 (2016).
[Crossref]

N. T. Yardimci, R. Salas, E. M. Krivoy, H. P. Nair, S. R. Bank, and M. Jarrahi, “Impact of substrate characteristics on performance of large area plasmonic photoconductive emitters,” Opt. Express 23(25), 32035–32043 (2015).
[Crossref]

M. Jarrahi, “Advanced Photoconductive Terahertz Optoelectronics Based on Nano-Antennas and Nano-Plasmonic Light Concentrators,” IEEE Trans. Terahertz Sci. Technol. 5(3), 391–397 (2015).
[Crossref]

N. T. Yardimci, S. H. Yang, C. W. Berry, and M. Jarrahi, “High-power terahertz generation using large-area plasmonic photoconductive emitters,” IEEE Trans. Terahertz Sci. Technol. 5(2), 223–229 (2015).
[Crossref]

C. W. Berry, M. R. Hashemi, and M. Jarrahi, “Generation of high power pulsed terahertz radiation using a plasmonic photoconductive emitter array with logarithmic spiral antennas,” Appl. Phys. Lett. 104(8), 081122 (2014).
[Crossref]

S. H. Yang, M. R. Hashemi, C. W. Berry, and M. Jarrahi, “7.5% Optical-to-terahertz conversion efficiency offered by photoconductive emitters with three-dimensional plasmonic contact electrodes,” IEEE Trans. Terahertz Sci. Technol. 4(5), 575–581 (2014).
[Crossref]

N. Wang and M. Jarrahi, “Noise analysis of photoconductive terahertz detectors,” J. Infrared, Millimeter, Terahertz Waves 34(9), 519–528 (2013).
[Crossref]

C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun. 4(1), 1622 (2013).
[Crossref]

C. W. Berry and M. Jarrahi, “Terahertz generation using plasmonic photoconductive gratings,” New J. Phys. 14(10), 105029 (2012).
[Crossref]

B. Y. Hsieh and M. Jarrahi, “Analysis of periodic metallic nano-slits for efficient interaction of terahertz and optical waves at nano-scale dimensions,” J. Appl. Phys. 109(8), 084326 (2011).
[Crossref]

Jeon, M. Y.

Jepsen, P. U.

Johnston, M. B.

E. Castro-Camus, L. Fu, J. Lloyd-Hughes, H. H. Tan, C. Jagadish, and M. B. Johnston, “Photoconductive response correction for detectors of terahertz radiation,” J. Appl. Phys. 104(5), 053113 (2008).
[Crossref]

Johnston, W. D.

R. E. Nahory, M. A. Pollack, W. D. Johnston, and R. L. Barns, “Band gap versus composition and demonstration of Vegard’s law for In 1-xGaxAsyP1-y lattice matched to InP,” Appl. Phys. Lett. 33(7), 659–661 (1978).
[Crossref]

Jung, D.

R. Salas, S. Guchhait, S. D. Sifferman, K. M. McNicholas, V. D. Dasika, E. M. Krivoy, D. Jung, M. L. Lee, and S. R. Bank, “Growth and properties of rare-earth arsenide InGaAs nanocomposites for terahertz generation,” Appl. Phys. Lett. 106(8), 081103 (2015).
[Crossref]

Kadoya, Y.

A. Takazato, M. Kamakura, T. Matsui, J. Kitagawa, and Y. Kadoya, “Detection of terahertz waves using low-temperature-grown InGaAs with 1.56 µm pulse excitation,” Appl. Phys. Lett. 90(10), 101119 (2007).
[Crossref]

Kamakura, M.

A. Takazato, M. Kamakura, T. Matsui, J. Kitagawa, and Y. Kadoya, “Detection of terahertz waves using low-temperature-grown InGaAs with 1.56 µm pulse excitation,” Appl. Phys. Lett. 90(10), 101119 (2007).
[Crossref]

Kato, M.

Kawase, K.

Keiding, S. R.

Khan, K.

T. Bowman, T. Chavez, K. Khan, J. Wu, A. Chakraborty, N. Rajaram, K. Bailey, and M. El-Shenawee, “Pulsed terahertz imaging of breast cancer in freshly excised murine tumors,” J. Biomed. Opt. 23(02), 1 (2018).
[Crossref]

Kim, J. S.

Kim, N.

Kitagawa, J.

A. Takazato, M. Kamakura, T. Matsui, J. Kitagawa, and Y. Kadoya, “Detection of terahertz waves using low-temperature-grown InGaAs with 1.56 µm pulse excitation,” Appl. Phys. Lett. 90(10), 101119 (2007).
[Crossref]

Koch, M.

R. J. B. Dietz, A. Brahm, A. Velauthapillai, A. Wilms, C. Lammers, B. Globisch, M. Koch, G. Notni, A. Tünnermann, T. Göbel, and M. Schell, “Low temperature grown photoconductive antennas for pulsed 1060 nm excitation: Influence of excess energy on the electron relaxation,” J. Infrared, Millimeter, Terahertz Waves 36(1), 60–71 (2015).
[Crossref]

R. J. B. Dietz, R. Wilk, B. Globisch, H. Roehle, D. Stanze, S. Ullrich, S. Schumann, N. Born, M. Koch, B. Sartorius, and M. Schell, “Low temperature grown Be-doped InGaAs/InAlAs photoconductive antennas excited at 1030 nm,” J. Infrared, Millimeter, Terahertz Waves 34(3-4), 231–237 (2013).
[Crossref]

R. J. B. B. Dietz, B. Globisch, M. Gerhard, A. Velauthapillai, D. Stanze, H. Roehle, M. Koch, T. Göbel, and M. Schell, “64 µW pulsed terahertz emission from growth optimized InGaAs/InAlAs heterostructures with separated photoconductive and trapping regions,” Appl. Phys. Lett. 103(6), 061103 (2013).
[Crossref]

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging - Modern techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
[Crossref]

Kochanov, R. V.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, and B. J. Drouin, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
[Crossref]

Kong, M. S.

Kono, S.

S. Kono, M. Tani, P. Gu, and K. Sakai, “Detection of up to 20 THz with a low-temperature-grown GaAs photoconductive antenna gated with 15 fs light pulses,” Appl. Phys. Lett. 77(25), 4104–4106 (2000).
[Crossref]

Krivoy, E. M.

R. Salas, S. Guchhait, S. D. Sifferman, K. M. McNicholas, V. D. Dasika, E. M. Krivoy, D. Jung, M. L. Lee, and S. R. Bank, “Growth and properties of rare-earth arsenide InGaAs nanocomposites for terahertz generation,” Appl. Phys. Lett. 106(8), 081103 (2015).
[Crossref]

N. T. Yardimci, R. Salas, E. M. Krivoy, H. P. Nair, S. R. Bank, and M. Jarrahi, “Impact of substrate characteristics on performance of large area plasmonic photoconductive emitters,” Opt. Express 23(25), 32035–32043 (2015).
[Crossref]

Krotkus, A.

V. Pačebutas, A. Bičiũnas, S. Balakauskas, A. Krotkus, G. Andriukaitis, D. Lorenc, A. Pugžlys, and A. Baltuška, “Terahertz time-domain-spectroscopy system based on femtosecond Yb:fiber laser and GaBiAs photoconducting components,” Appl. Phys. Lett. 97(3), 031111 (2010).
[Crossref]

V. Pačebutas, A. Bičiũnas, K. Bertulis, and A. Krotkus, “Optoelectronic terahertz radiation system based on femtosecond 1um laser pulses and GaBiAs detector,” Electron. Lett. 44(19), 1154 (2008).
[Crossref]

Lammers, C.

R. J. B. Dietz, A. Brahm, A. Velauthapillai, A. Wilms, C. Lammers, B. Globisch, M. Koch, G. Notni, A. Tünnermann, T. Göbel, and M. Schell, “Low temperature grown photoconductive antennas for pulsed 1060 nm excitation: Influence of excess energy on the electron relaxation,” J. Infrared, Millimeter, Terahertz Waves 36(1), 60–71 (2015).
[Crossref]

Lee, M. L.

R. Salas, S. Guchhait, S. D. Sifferman, K. M. McNicholas, V. D. Dasika, E. M. Krivoy, D. Jung, M. L. Lee, and S. R. Bank, “Growth and properties of rare-earth arsenide InGaAs nanocomposites for terahertz generation,” Appl. Phys. Lett. 106(8), 081103 (2015).
[Crossref]

Liliental-Weber, Z.

X. Liu, A. Prasad, J. Nishio, E. R. Weber, Z. Liliental-Weber, and W. Walukiewicz, “Native point defects in low-temperature- grown GaAs,” Appl. Phys. Lett. 67(2), 279–281 (1995).
[Crossref]

Limpert, J.

G. Matthäus, B. Ortaç, J. Limpert, S. Nolte, R. Hohmuth, M. Voitsch, B. Pradarutti, and A. Tünnermann, “Intracavity terahertz generation inside a high-energy ultrafast soliton fiber laser,” Appl. Phys. Lett. 93(26), 261105 (2008).
[Crossref]

G. Matthäus, T. Schreiber, J. Limpert, S. Nolte, G. Torsoyan, R. Beigang, S. Riehemann, G. Notni, and A. Tünnermann, “Surface-emitted THz generation using a compact ultrashort pulse fiber amplifier at 1060 nm,” Opt. Commun. 261(1), 114–117 (2006).
[Crossref]

Linfield, E. H.

C. D. Wood, O. Hatem, J. E. Cunningham, E. H. Linfield, A. G. Davies, P. J. Cannard, M. J. Robertson, and D. G. Moodie, “Terahertz emission from metal-organic chemical vapor deposition grown Fe:InGaAs using 830 nm to 1.55 µm excitation,” Appl. Phys. Lett. 96(19), 194104 (2010).
[Crossref]

R. M. Woodward, V. P. Wallace, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulsed imaging of skin cancer in the time and frequency domain,” J. Biol. Phys. 29(2/3), 257–259 (2003).
[Crossref]

C. Baker, I. S. Gregory, W. R. Tribe, I. V. Bradley, M. J. Evans, M. Withers, P. F. Taday, V. P. Wallace, E. H. Linfield, A. G. Davies, and M. Missous, “Terahertz pulsed imaging with 1.06 µm laser excitation,” Appl. Phys. Lett. 83(20), 4113–4115 (2003).
[Crossref]

Liu, X.

X. Liu, A. Prasad, J. Nishio, E. R. Weber, Z. Liliental-Weber, and W. Walukiewicz, “Native point defects in low-temperature- grown GaAs,” Appl. Phys. Lett. 67(2), 279–281 (1995).
[Crossref]

Lloyd-Hughes, J.

E. Castro-Camus, L. Fu, J. Lloyd-Hughes, H. H. Tan, C. Jagadish, and M. B. Johnston, “Photoconductive response correction for detectors of terahertz radiation,” J. Appl. Phys. 104(5), 053113 (2008).
[Crossref]

Lorenc, D.

V. Pačebutas, A. Bičiũnas, S. Balakauskas, A. Krotkus, G. Andriukaitis, D. Lorenc, A. Pugžlys, and A. Baltuška, “Terahertz time-domain-spectroscopy system based on femtosecond Yb:fiber laser and GaBiAs photoconducting components,” Appl. Phys. Lett. 97(3), 031111 (2010).
[Crossref]

Lu, H.

U. Nandi, J. C. Norman, A. C. Gossard, H. Lu, and S. Preu, “1550-nm Driven ErAs:In(Al)GaAs Photoconductor-Based Terahertz Time Domain System with 6.5 THz Bandwidth,” J. Infrared, Millimeter, Terahertz Waves 39(4), 340–348 (2018).
[Crossref]

N. T. Yardimci, H. Lu, and M. Jarrahi, “High power telecommunication-compatible photoconductive terahertz emitters based on plasmonic nano-antenna arrays,” Appl. Phys. Lett. 109(19), 191103 (2016).
[Crossref]

S. Preu, M. Mittendorff, H. Lu, H. B. Weber, S. Winnerl, and A. C. Gossard, “2012 nm ErAs:In(Al)GaAs large area photoconductive emitters,” Appl. Phys. Lett. 101(10), 101105 (2012).
[Crossref]

Matsui, T.

A. Takazato, M. Kamakura, T. Matsui, J. Kitagawa, and Y. Kadoya, “Detection of terahertz waves using low-temperature-grown InGaAs with 1.56 µm pulse excitation,” Appl. Phys. Lett. 90(10), 101119 (2007).
[Crossref]

Matthäus, G.

G. Matthäus, B. Ortaç, J. Limpert, S. Nolte, R. Hohmuth, M. Voitsch, B. Pradarutti, and A. Tünnermann, “Intracavity terahertz generation inside a high-energy ultrafast soliton fiber laser,” Appl. Phys. Lett. 93(26), 261105 (2008).
[Crossref]

G. Matthäus, T. Schreiber, J. Limpert, S. Nolte, G. Torsoyan, R. Beigang, S. Riehemann, G. Notni, and A. Tünnermann, “Surface-emitted THz generation using a compact ultrashort pulse fiber amplifier at 1060 nm,” Opt. Commun. 261(1), 114–117 (2006).
[Crossref]

McNicholas, K. M.

R. Salas, S. Guchhait, S. D. Sifferman, K. M. McNicholas, V. D. Dasika, E. M. Krivoy, D. Jung, M. L. Lee, and S. R. Bank, “Growth and properties of rare-earth arsenide InGaAs nanocomposites for terahertz generation,” Appl. Phys. Lett. 106(8), 081103 (2015).
[Crossref]

Missous, M.

C. Baker, I. S. Gregory, W. R. Tribe, I. V. Bradley, M. J. Evans, M. Withers, P. F. Taday, V. P. Wallace, E. H. Linfield, A. G. Davies, and M. Missous, “Terahertz pulsed imaging with 1.06 µm laser excitation,” Appl. Phys. Lett. 83(20), 4113–4115 (2003).
[Crossref]

Mittendorff, M.

S. Preu, M. Mittendorff, H. Lu, H. B. Weber, S. Winnerl, and A. C. Gossard, “2012 nm ErAs:In(Al)GaAs large area photoconductive emitters,” Appl. Phys. Lett. 101(10), 101105 (2012).
[Crossref]

Mittleman, D. M.

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70(8), 1325–1379 (2007).
[Crossref]

Moodie, D. G.

C. D. Wood, O. Hatem, J. E. Cunningham, E. H. Linfield, A. G. Davies, P. J. Cannard, M. J. Robertson, and D. G. Moodie, “Terahertz emission from metal-organic chemical vapor deposition grown Fe:InGaAs using 830 nm to 1.55 µm excitation,” Appl. Phys. Lett. 96(19), 194104 (2010).
[Crossref]

Moon, K.

Murate, K.

Nahory, R. E.

R. E. Nahory, M. A. Pollack, W. D. Johnston, and R. L. Barns, “Band gap versus composition and demonstration of Vegard’s law for In 1-xGaxAsyP1-y lattice matched to InP,” Appl. Phys. Lett. 33(7), 659–661 (1978).
[Crossref]

Nair, H. P.

Nandi, U.

U. Nandi, J. C. Norman, A. C. Gossard, H. Lu, and S. Preu, “1550-nm Driven ErAs:In(Al)GaAs Photoconductor-Based Terahertz Time Domain System with 6.5 THz Bandwidth,” J. Infrared, Millimeter, Terahertz Waves 39(4), 340–348 (2018).
[Crossref]

Naqvi, S.

A. Redo-Sanchez, A. Aghasi, S. Naqvi, M. Zhang, J. Romberg, R. Raskar, B. Heshmat, A. Aghasi, S. Naqvi, M. Zhang, J. Romberg, and R. Raskar, “Terahertz time-gated spectral imaging for content extraction through layered structures,” Nat. Commun. 7(1), 12665 (2016).
[Crossref]

A. Redo-Sanchez, A. Aghasi, S. Naqvi, M. Zhang, J. Romberg, R. Raskar, B. Heshmat, A. Aghasi, S. Naqvi, M. Zhang, J. Romberg, and R. Raskar, “Terahertz time-gated spectral imaging for content extraction through layered structures,” Nat. Commun. 7(1), 12665 (2016).
[Crossref]

Nishio, J.

X. Liu, A. Prasad, J. Nishio, E. R. Weber, Z. Liliental-Weber, and W. Walukiewicz, “Native point defects in low-temperature- grown GaAs,” Appl. Phys. Lett. 67(2), 279–281 (1995).
[Crossref]

Nolte, S.

G. Matthäus, B. Ortaç, J. Limpert, S. Nolte, R. Hohmuth, M. Voitsch, B. Pradarutti, and A. Tünnermann, “Intracavity terahertz generation inside a high-energy ultrafast soliton fiber laser,” Appl. Phys. Lett. 93(26), 261105 (2008).
[Crossref]

G. Matthäus, T. Schreiber, J. Limpert, S. Nolte, G. Torsoyan, R. Beigang, S. Riehemann, G. Notni, and A. Tünnermann, “Surface-emitted THz generation using a compact ultrashort pulse fiber amplifier at 1060 nm,” Opt. Commun. 261(1), 114–117 (2006).
[Crossref]

Norman, J. C.

U. Nandi, J. C. Norman, A. C. Gossard, H. Lu, and S. Preu, “1550-nm Driven ErAs:In(Al)GaAs Photoconductor-Based Terahertz Time Domain System with 6.5 THz Bandwidth,” J. Infrared, Millimeter, Terahertz Waves 39(4), 340–348 (2018).
[Crossref]

Notni, G.

R. J. B. Dietz, A. Brahm, A. Velauthapillai, A. Wilms, C. Lammers, B. Globisch, M. Koch, G. Notni, A. Tünnermann, T. Göbel, and M. Schell, “Low temperature grown photoconductive antennas for pulsed 1060 nm excitation: Influence of excess energy on the electron relaxation,” J. Infrared, Millimeter, Terahertz Waves 36(1), 60–71 (2015).
[Crossref]

G. Matthäus, T. Schreiber, J. Limpert, S. Nolte, G. Torsoyan, R. Beigang, S. Riehemann, G. Notni, and A. Tünnermann, “Surface-emitted THz generation using a compact ultrashort pulse fiber amplifier at 1060 nm,” Opt. Commun. 261(1), 114–117 (2006).
[Crossref]

Ogawa, Y.

Oliveira, F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications - explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Ortaç, B.

G. Matthäus, B. Ortaç, J. Limpert, S. Nolte, R. Hohmuth, M. Voitsch, B. Pradarutti, and A. Tünnermann, “Intracavity terahertz generation inside a high-energy ultrafast soliton fiber laser,” Appl. Phys. Lett. 93(26), 261105 (2008).
[Crossref]

Pacebutas, V.

V. Pačebutas, A. Bičiũnas, S. Balakauskas, A. Krotkus, G. Andriukaitis, D. Lorenc, A. Pugžlys, and A. Baltuška, “Terahertz time-domain-spectroscopy system based on femtosecond Yb:fiber laser and GaBiAs photoconducting components,” Appl. Phys. Lett. 97(3), 031111 (2010).
[Crossref]

V. Pačebutas, A. Bičiũnas, K. Bertulis, and A. Krotkus, “Optoelectronic terahertz radiation system based on femtosecond 1um laser pulses and GaBiAs detector,” Electron. Lett. 44(19), 1154 (2008).
[Crossref]

Pepper, M.

R. M. Woodward, V. P. Wallace, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulsed imaging of skin cancer in the time and frequency domain,” J. Biol. Phys. 29(2/3), 257–259 (2003).
[Crossref]

Pollack, M. A.

R. E. Nahory, M. A. Pollack, W. D. Johnston, and R. L. Barns, “Band gap versus composition and demonstration of Vegard’s law for In 1-xGaxAsyP1-y lattice matched to InP,” Appl. Phys. Lett. 33(7), 659–661 (1978).
[Crossref]

Pradarutti, B.

G. Matthäus, B. Ortaç, J. Limpert, S. Nolte, R. Hohmuth, M. Voitsch, B. Pradarutti, and A. Tünnermann, “Intracavity terahertz generation inside a high-energy ultrafast soliton fiber laser,” Appl. Phys. Lett. 93(26), 261105 (2008).
[Crossref]

Prasad, A.

X. Liu, A. Prasad, J. Nishio, E. R. Weber, Z. Liliental-Weber, and W. Walukiewicz, “Native point defects in low-temperature- grown GaAs,” Appl. Phys. Lett. 67(2), 279–281 (1995).
[Crossref]

Preu, S.

U. Nandi, J. C. Norman, A. C. Gossard, H. Lu, and S. Preu, “1550-nm Driven ErAs:In(Al)GaAs Photoconductor-Based Terahertz Time Domain System with 6.5 THz Bandwidth,” J. Infrared, Millimeter, Terahertz Waves 39(4), 340–348 (2018).
[Crossref]

S. Preu, M. Mittendorff, H. Lu, H. B. Weber, S. Winnerl, and A. C. Gossard, “2012 nm ErAs:In(Al)GaAs large area photoconductive emitters,” Appl. Phys. Lett. 101(10), 101105 (2012).
[Crossref]

Pugžlys, A.

V. Pačebutas, A. Bičiũnas, S. Balakauskas, A. Krotkus, G. Andriukaitis, D. Lorenc, A. Pugžlys, and A. Baltuška, “Terahertz time-domain-spectroscopy system based on femtosecond Yb:fiber laser and GaBiAs photoconducting components,” Appl. Phys. Lett. 97(3), 031111 (2010).
[Crossref]

Rajaram, N.

T. Bowman, T. Chavez, K. Khan, J. Wu, A. Chakraborty, N. Rajaram, K. Bailey, and M. El-Shenawee, “Pulsed terahertz imaging of breast cancer in freshly excised murine tumors,” J. Biomed. Opt. 23(02), 1 (2018).
[Crossref]

Raskar, R.

A. Redo-Sanchez, A. Aghasi, S. Naqvi, M. Zhang, J. Romberg, R. Raskar, B. Heshmat, A. Aghasi, S. Naqvi, M. Zhang, J. Romberg, and R. Raskar, “Terahertz time-gated spectral imaging for content extraction through layered structures,” Nat. Commun. 7(1), 12665 (2016).
[Crossref]

A. Redo-Sanchez, A. Aghasi, S. Naqvi, M. Zhang, J. Romberg, R. Raskar, B. Heshmat, A. Aghasi, S. Naqvi, M. Zhang, J. Romberg, and R. Raskar, “Terahertz time-gated spectral imaging for content extraction through layered structures,” Nat. Commun. 7(1), 12665 (2016).
[Crossref]

Redo-Sanchez, A.

A. Redo-Sanchez, A. Aghasi, S. Naqvi, M. Zhang, J. Romberg, R. Raskar, B. Heshmat, A. Aghasi, S. Naqvi, M. Zhang, J. Romberg, and R. Raskar, “Terahertz time-gated spectral imaging for content extraction through layered structures,” Nat. Commun. 7(1), 12665 (2016).
[Crossref]

Riehemann, S.

G. Matthäus, T. Schreiber, J. Limpert, S. Nolte, G. Torsoyan, R. Beigang, S. Riehemann, G. Notni, and A. Tünnermann, “Surface-emitted THz generation using a compact ultrashort pulse fiber amplifier at 1060 nm,” Opt. Commun. 261(1), 114–117 (2006).
[Crossref]

Robertson, M. J.

C. D. Wood, O. Hatem, J. E. Cunningham, E. H. Linfield, A. G. Davies, P. J. Cannard, M. J. Robertson, and D. G. Moodie, “Terahertz emission from metal-organic chemical vapor deposition grown Fe:InGaAs using 830 nm to 1.55 µm excitation,” Appl. Phys. Lett. 96(19), 194104 (2010).
[Crossref]

Roehle, H.

R. J. B. B. Dietz, B. Globisch, H. Roehle, D. Stanze, T. Göbel, and M. Schell, “Influence and adjustment of carrier lifetimes in InGaAs/InAlAs photoconductive pulsed terahertz detectors: 6 THz bandwidth and 90 dB dynamic range,” Opt. Express 22(16), 19411 (2014).
[Crossref]

R. J. B. B. Dietz, B. Globisch, M. Gerhard, A. Velauthapillai, D. Stanze, H. Roehle, M. Koch, T. Göbel, and M. Schell, “64 µW pulsed terahertz emission from growth optimized InGaAs/InAlAs heterostructures with separated photoconductive and trapping regions,” Appl. Phys. Lett. 103(6), 061103 (2013).
[Crossref]

R. J. B. Dietz, R. Wilk, B. Globisch, H. Roehle, D. Stanze, S. Ullrich, S. Schumann, N. Born, M. Koch, B. Sartorius, and M. Schell, “Low temperature grown Be-doped InGaAs/InAlAs photoconductive antennas excited at 1030 nm,” J. Infrared, Millimeter, Terahertz Waves 34(3-4), 231–237 (2013).
[Crossref]

Romberg, J.

A. Redo-Sanchez, A. Aghasi, S. Naqvi, M. Zhang, J. Romberg, R. Raskar, B. Heshmat, A. Aghasi, S. Naqvi, M. Zhang, J. Romberg, and R. Raskar, “Terahertz time-gated spectral imaging for content extraction through layered structures,” Nat. Commun. 7(1), 12665 (2016).
[Crossref]

A. Redo-Sanchez, A. Aghasi, S. Naqvi, M. Zhang, J. Romberg, R. Raskar, B. Heshmat, A. Aghasi, S. Naqvi, M. Zhang, J. Romberg, and R. Raskar, “Terahertz time-gated spectral imaging for content extraction through layered structures,” Nat. Commun. 7(1), 12665 (2016).
[Crossref]

Rothman, L. S.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, and B. J. Drouin, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
[Crossref]

Sakai, K.

S. Kono, M. Tani, P. Gu, and K. Sakai, “Detection of up to 20 THz with a low-temperature-grown GaAs photoconductive antenna gated with 15 fs light pulses,” Appl. Phys. Lett. 77(25), 4104–4106 (2000).
[Crossref]

Salas, R.

N. T. Yardimci, R. Salas, E. M. Krivoy, H. P. Nair, S. R. Bank, and M. Jarrahi, “Impact of substrate characteristics on performance of large area plasmonic photoconductive emitters,” Opt. Express 23(25), 32035–32043 (2015).
[Crossref]

R. Salas, S. Guchhait, S. D. Sifferman, K. M. McNicholas, V. D. Dasika, E. M. Krivoy, D. Jung, M. L. Lee, and S. R. Bank, “Growth and properties of rare-earth arsenide InGaAs nanocomposites for terahertz generation,” Appl. Phys. Lett. 106(8), 081103 (2015).
[Crossref]

Sartorius, B.

R. J. B. Dietz, R. Wilk, B. Globisch, H. Roehle, D. Stanze, S. Ullrich, S. Schumann, N. Born, M. Koch, B. Sartorius, and M. Schell, “Low temperature grown Be-doped InGaAs/InAlAs photoconductive antennas excited at 1030 nm,” J. Infrared, Millimeter, Terahertz Waves 34(3-4), 231–237 (2013).
[Crossref]

Schell, M.

R. J. B. Dietz, A. Brahm, A. Velauthapillai, A. Wilms, C. Lammers, B. Globisch, M. Koch, G. Notni, A. Tünnermann, T. Göbel, and M. Schell, “Low temperature grown photoconductive antennas for pulsed 1060 nm excitation: Influence of excess energy on the electron relaxation,” J. Infrared, Millimeter, Terahertz Waves 36(1), 60–71 (2015).
[Crossref]

R. J. B. B. Dietz, B. Globisch, H. Roehle, D. Stanze, T. Göbel, and M. Schell, “Influence and adjustment of carrier lifetimes in InGaAs/InAlAs photoconductive pulsed terahertz detectors: 6 THz bandwidth and 90 dB dynamic range,” Opt. Express 22(16), 19411 (2014).
[Crossref]

R. J. B. B. Dietz, B. Globisch, M. Gerhard, A. Velauthapillai, D. Stanze, H. Roehle, M. Koch, T. Göbel, and M. Schell, “64 µW pulsed terahertz emission from growth optimized InGaAs/InAlAs heterostructures with separated photoconductive and trapping regions,” Appl. Phys. Lett. 103(6), 061103 (2013).
[Crossref]

R. J. B. Dietz, R. Wilk, B. Globisch, H. Roehle, D. Stanze, S. Ullrich, S. Schumann, N. Born, M. Koch, B. Sartorius, and M. Schell, “Low temperature grown Be-doped InGaAs/InAlAs photoconductive antennas excited at 1030 nm,” J. Infrared, Millimeter, Terahertz Waves 34(3-4), 231–237 (2013).
[Crossref]

Schreiber, T.

G. Matthäus, T. Schreiber, J. Limpert, S. Nolte, G. Torsoyan, R. Beigang, S. Riehemann, G. Notni, and A. Tünnermann, “Surface-emitted THz generation using a compact ultrashort pulse fiber amplifier at 1060 nm,” Opt. Commun. 261(1), 114–117 (2006).
[Crossref]

Schulkin, B.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications - explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Schumann, S.

R. J. B. Dietz, R. Wilk, B. Globisch, H. Roehle, D. Stanze, S. Ullrich, S. Schumann, N. Born, M. Koch, B. Sartorius, and M. Schell, “Low temperature grown Be-doped InGaAs/InAlAs photoconductive antennas excited at 1030 nm,” J. Infrared, Millimeter, Terahertz Waves 34(3-4), 231–237 (2013).
[Crossref]

Sifferman, S. D.

R. Salas, S. Guchhait, S. D. Sifferman, K. M. McNicholas, V. D. Dasika, E. M. Krivoy, D. Jung, M. L. Lee, and S. R. Bank, “Growth and properties of rare-earth arsenide InGaAs nanocomposites for terahertz generation,” Appl. Phys. Lett. 106(8), 081103 (2015).
[Crossref]

Stanze, D.

R. J. B. B. Dietz, B. Globisch, H. Roehle, D. Stanze, T. Göbel, and M. Schell, “Influence and adjustment of carrier lifetimes in InGaAs/InAlAs photoconductive pulsed terahertz detectors: 6 THz bandwidth and 90 dB dynamic range,” Opt. Express 22(16), 19411 (2014).
[Crossref]

R. J. B. B. Dietz, B. Globisch, M. Gerhard, A. Velauthapillai, D. Stanze, H. Roehle, M. Koch, T. Göbel, and M. Schell, “64 µW pulsed terahertz emission from growth optimized InGaAs/InAlAs heterostructures with separated photoconductive and trapping regions,” Appl. Phys. Lett. 103(6), 061103 (2013).
[Crossref]

R. J. B. Dietz, R. Wilk, B. Globisch, H. Roehle, D. Stanze, S. Ullrich, S. Schumann, N. Born, M. Koch, B. Sartorius, and M. Schell, “Low temperature grown Be-doped InGaAs/InAlAs photoconductive antennas excited at 1030 nm,” J. Infrared, Millimeter, Terahertz Waves 34(3-4), 231–237 (2013).
[Crossref]

Suzuki, M.

M. Suzuki and M. Tonouchi, “Fe-implanted InGaAs terahertz emitters for 1.56 µm wavelength excitation,” Appl. Phys. Lett. 86(5), 051104 (2005).
[Crossref]

Taday, P. F.

C. Baker, I. S. Gregory, W. R. Tribe, I. V. Bradley, M. J. Evans, M. Withers, P. F. Taday, V. P. Wallace, E. H. Linfield, A. G. Davies, and M. Missous, “Terahertz pulsed imaging with 1.06 µm laser excitation,” Appl. Phys. Lett. 83(20), 4113–4115 (2003).
[Crossref]

Takazato, A.

A. Takazato, M. Kamakura, T. Matsui, J. Kitagawa, and Y. Kadoya, “Detection of terahertz waves using low-temperature-grown InGaAs with 1.56 µm pulse excitation,” Appl. Phys. Lett. 90(10), 101119 (2007).
[Crossref]

Tan, H. H.

E. Castro-Camus, L. Fu, J. Lloyd-Hughes, H. H. Tan, C. Jagadish, and M. B. Johnston, “Photoconductive response correction for detectors of terahertz radiation,” J. Appl. Phys. 104(5), 053113 (2008).
[Crossref]

Tan, Y.

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, and B. J. Drouin, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
[Crossref]

Tani, M.

S. Kono, M. Tani, P. Gu, and K. Sakai, “Detection of up to 20 THz with a low-temperature-grown GaAs photoconductive antenna gated with 15 fs light pulses,” Appl. Phys. Lett. 77(25), 4104–4106 (2000).
[Crossref]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

M. Suzuki and M. Tonouchi, “Fe-implanted InGaAs terahertz emitters for 1.56 µm wavelength excitation,” Appl. Phys. Lett. 86(5), 051104 (2005).
[Crossref]

Torsoyan, G.

G. Matthäus, T. Schreiber, J. Limpert, S. Nolte, G. Torsoyan, R. Beigang, S. Riehemann, G. Notni, and A. Tünnermann, “Surface-emitted THz generation using a compact ultrashort pulse fiber amplifier at 1060 nm,” Opt. Commun. 261(1), 114–117 (2006).
[Crossref]

Tribe, W. R.

C. Baker, I. S. Gregory, W. R. Tribe, I. V. Bradley, M. J. Evans, M. Withers, P. F. Taday, V. P. Wallace, E. H. Linfield, A. G. Davies, and M. Missous, “Terahertz pulsed imaging with 1.06 µm laser excitation,” Appl. Phys. Lett. 83(20), 4113–4115 (2003).
[Crossref]

Tripathi, S. R.

Tünnermann, A.

R. J. B. Dietz, A. Brahm, A. Velauthapillai, A. Wilms, C. Lammers, B. Globisch, M. Koch, G. Notni, A. Tünnermann, T. Göbel, and M. Schell, “Low temperature grown photoconductive antennas for pulsed 1060 nm excitation: Influence of excess energy on the electron relaxation,” J. Infrared, Millimeter, Terahertz Waves 36(1), 60–71 (2015).
[Crossref]

G. Matthäus, B. Ortaç, J. Limpert, S. Nolte, R. Hohmuth, M. Voitsch, B. Pradarutti, and A. Tünnermann, “Intracavity terahertz generation inside a high-energy ultrafast soliton fiber laser,” Appl. Phys. Lett. 93(26), 261105 (2008).
[Crossref]

G. Matthäus, T. Schreiber, J. Limpert, S. Nolte, G. Torsoyan, R. Beigang, S. Riehemann, G. Notni, and A. Tünnermann, “Surface-emitted THz generation using a compact ultrashort pulse fiber amplifier at 1060 nm,” Opt. Commun. 261(1), 114–117 (2006).
[Crossref]

Turan, D.

N. T. Yardimci, D. Turan, S. Cakmakyapan, and M. Jarrahi, “A high-responsivity and broadband photoconductive terahertz detector based on a plasmonic nanocavity,” Appl. Phys. Lett. 113(25), 251102 (2018).
[Crossref]

Ullrich, S.

R. J. B. Dietz, R. Wilk, B. Globisch, H. Roehle, D. Stanze, S. Ullrich, S. Schumann, N. Born, M. Koch, B. Sartorius, and M. Schell, “Low temperature grown Be-doped InGaAs/InAlAs photoconductive antennas excited at 1030 nm,” J. Infrared, Millimeter, Terahertz Waves 34(3-4), 231–237 (2013).
[Crossref]

Unlu, M.

C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun. 4(1), 1622 (2013).
[Crossref]

Velauthapillai, A.

R. J. B. Dietz, A. Brahm, A. Velauthapillai, A. Wilms, C. Lammers, B. Globisch, M. Koch, G. Notni, A. Tünnermann, T. Göbel, and M. Schell, “Low temperature grown photoconductive antennas for pulsed 1060 nm excitation: Influence of excess energy on the electron relaxation,” J. Infrared, Millimeter, Terahertz Waves 36(1), 60–71 (2015).
[Crossref]

R. J. B. B. Dietz, B. Globisch, M. Gerhard, A. Velauthapillai, D. Stanze, H. Roehle, M. Koch, T. Göbel, and M. Schell, “64 µW pulsed terahertz emission from growth optimized InGaAs/InAlAs heterostructures with separated photoconductive and trapping regions,” Appl. Phys. Lett. 103(6), 061103 (2013).
[Crossref]

Voitsch, M.

G. Matthäus, B. Ortaç, J. Limpert, S. Nolte, R. Hohmuth, M. Voitsch, B. Pradarutti, and A. Tünnermann, “Intracavity terahertz generation inside a high-energy ultrafast soliton fiber laser,” Appl. Phys. Lett. 93(26), 261105 (2008).
[Crossref]

Wallace, V. P.

R. M. Woodward, V. P. Wallace, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulsed imaging of skin cancer in the time and frequency domain,” J. Biol. Phys. 29(2/3), 257–259 (2003).
[Crossref]

C. Baker, I. S. Gregory, W. R. Tribe, I. V. Bradley, M. J. Evans, M. Withers, P. F. Taday, V. P. Wallace, E. H. Linfield, A. G. Davies, and M. Missous, “Terahertz pulsed imaging with 1.06 µm laser excitation,” Appl. Phys. Lett. 83(20), 4113–4115 (2003).
[Crossref]

Walukiewicz, W.

X. Liu, A. Prasad, J. Nishio, E. R. Weber, Z. Liliental-Weber, and W. Walukiewicz, “Native point defects in low-temperature- grown GaAs,” Appl. Phys. Lett. 67(2), 279–281 (1995).
[Crossref]

Wang, N.

C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun. 4(1), 1622 (2013).
[Crossref]

N. Wang and M. Jarrahi, “Noise analysis of photoconductive terahertz detectors,” J. Infrared, Millimeter, Terahertz Waves 34(9), 519–528 (2013).
[Crossref]

Watanabe, Y.

Weber, E. R.

X. Liu, A. Prasad, J. Nishio, E. R. Weber, Z. Liliental-Weber, and W. Walukiewicz, “Native point defects in low-temperature- grown GaAs,” Appl. Phys. Lett. 67(2), 279–281 (1995).
[Crossref]

Weber, H. B.

S. Preu, M. Mittendorff, H. Lu, H. B. Weber, S. Winnerl, and A. C. Gossard, “2012 nm ErAs:In(Al)GaAs large area photoconductive emitters,” Appl. Phys. Lett. 101(10), 101105 (2012).
[Crossref]

Wilk, R.

R. J. B. Dietz, R. Wilk, B. Globisch, H. Roehle, D. Stanze, S. Ullrich, S. Schumann, N. Born, M. Koch, B. Sartorius, and M. Schell, “Low temperature grown Be-doped InGaAs/InAlAs photoconductive antennas excited at 1030 nm,” J. Infrared, Millimeter, Terahertz Waves 34(3-4), 231–237 (2013).
[Crossref]

Wilms, A.

R. J. B. Dietz, A. Brahm, A. Velauthapillai, A. Wilms, C. Lammers, B. Globisch, M. Koch, G. Notni, A. Tünnermann, T. Göbel, and M. Schell, “Low temperature grown photoconductive antennas for pulsed 1060 nm excitation: Influence of excess energy on the electron relaxation,” J. Infrared, Millimeter, Terahertz Waves 36(1), 60–71 (2015).
[Crossref]

Winnerl, S.

S. Preu, M. Mittendorff, H. Lu, H. B. Weber, S. Winnerl, and A. C. Gossard, “2012 nm ErAs:In(Al)GaAs large area photoconductive emitters,” Appl. Phys. Lett. 101(10), 101105 (2012).
[Crossref]

Withers, M.

C. Baker, I. S. Gregory, W. R. Tribe, I. V. Bradley, M. J. Evans, M. Withers, P. F. Taday, V. P. Wallace, E. H. Linfield, A. G. Davies, and M. Missous, “Terahertz pulsed imaging with 1.06 µm laser excitation,” Appl. Phys. Lett. 83(20), 4113–4115 (2003).
[Crossref]

Wood, C. D.

C. D. Wood, O. Hatem, J. E. Cunningham, E. H. Linfield, A. G. Davies, P. J. Cannard, M. J. Robertson, and D. G. Moodie, “Terahertz emission from metal-organic chemical vapor deposition grown Fe:InGaAs using 830 nm to 1.55 µm excitation,” Appl. Phys. Lett. 96(19), 194104 (2010).
[Crossref]

Woodward, R. M.

R. M. Woodward, V. P. Wallace, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulsed imaging of skin cancer in the time and frequency domain,” J. Biol. Phys. 29(2/3), 257–259 (2003).
[Crossref]

Wu, J.

T. Bowman, T. Chavez, K. Khan, J. Wu, A. Chakraborty, N. Rajaram, K. Bailey, and M. El-Shenawee, “Pulsed terahertz imaging of breast cancer in freshly excised murine tumors,” J. Biomed. Opt. 23(02), 1 (2018).
[Crossref]

Yang, S. H.

N. T. Yardimci, S. H. Yang, C. W. Berry, and M. Jarrahi, “High-power terahertz generation using large-area plasmonic photoconductive emitters,” IEEE Trans. Terahertz Sci. Technol. 5(2), 223–229 (2015).
[Crossref]

S. H. Yang, M. R. Hashemi, C. W. Berry, and M. Jarrahi, “7.5% Optical-to-terahertz conversion efficiency offered by photoconductive emitters with three-dimensional plasmonic contact electrodes,” IEEE Trans. Terahertz Sci. Technol. 4(5), 575–581 (2014).
[Crossref]

Yardimci, N. T.

N. T. Yardimci, D. Turan, S. Cakmakyapan, and M. Jarrahi, “A high-responsivity and broadband photoconductive terahertz detector based on a plasmonic nanocavity,” Appl. Phys. Lett. 113(25), 251102 (2018).
[Crossref]

N. T. Yardimci and M. Jarrahi, “Nanostructure-Enhanced Photoconductive Terahertz Emission and Detection,” Small 14(44), 1802437 (2018).
[Crossref]

N. T. Yardimci, S. Cakmakyapan, S. Hemmati, and M. Jarrahi, “A High-Power Broadband Terahertz Source Enabled by Three- Dimensional Light Confinement in a Plasmonic Nanocavity,” Sci. Rep. 7(1), 4166 (2017).
[Crossref]

N. T. Yardimci and M. Jarrahi, “High Sensitivity Terahertz Detection through Large-Area Plasmonic Nano-Antenna Arrays,” Sci. Rep. 7(1), 42667 (2017).
[Crossref]

N. T. Yardimci, H. Lu, and M. Jarrahi, “High power telecommunication-compatible photoconductive terahertz emitters based on plasmonic nano-antenna arrays,” Appl. Phys. Lett. 109(19), 191103 (2016).
[Crossref]

N. T. Yardimci, R. Salas, E. M. Krivoy, H. P. Nair, S. R. Bank, and M. Jarrahi, “Impact of substrate characteristics on performance of large area plasmonic photoconductive emitters,” Opt. Express 23(25), 32035–32043 (2015).
[Crossref]

N. T. Yardimci, S. H. Yang, C. W. Berry, and M. Jarrahi, “High-power terahertz generation using large-area plasmonic photoconductive emitters,” IEEE Trans. Terahertz Sci. Technol. 5(2), 223–229 (2015).
[Crossref]

Zhang, M.

A. Redo-Sanchez, A. Aghasi, S. Naqvi, M. Zhang, J. Romberg, R. Raskar, B. Heshmat, A. Aghasi, S. Naqvi, M. Zhang, J. Romberg, and R. Raskar, “Terahertz time-gated spectral imaging for content extraction through layered structures,” Nat. Commun. 7(1), 12665 (2016).
[Crossref]

A. Redo-Sanchez, A. Aghasi, S. Naqvi, M. Zhang, J. Romberg, R. Raskar, B. Heshmat, A. Aghasi, S. Naqvi, M. Zhang, J. Romberg, and R. Raskar, “Terahertz time-gated spectral imaging for content extraction through layered structures,” Nat. Commun. 7(1), 12665 (2016).
[Crossref]

Zhang, X. C.

Zimdars, D.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications - explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Appl. Phys. Lett. (15)

R. J. B. B. Dietz, B. Globisch, M. Gerhard, A. Velauthapillai, D. Stanze, H. Roehle, M. Koch, T. Göbel, and M. Schell, “64 µW pulsed terahertz emission from growth optimized InGaAs/InAlAs heterostructures with separated photoconductive and trapping regions,” Appl. Phys. Lett. 103(6), 061103 (2013).
[Crossref]

S. Kono, M. Tani, P. Gu, and K. Sakai, “Detection of up to 20 THz with a low-temperature-grown GaAs photoconductive antenna gated with 15 fs light pulses,” Appl. Phys. Lett. 77(25), 4104–4106 (2000).
[Crossref]

X. Liu, A. Prasad, J. Nishio, E. R. Weber, Z. Liliental-Weber, and W. Walukiewicz, “Native point defects in low-temperature- grown GaAs,” Appl. Phys. Lett. 67(2), 279–281 (1995).
[Crossref]

C. Baker, I. S. Gregory, W. R. Tribe, I. V. Bradley, M. J. Evans, M. Withers, P. F. Taday, V. P. Wallace, E. H. Linfield, A. G. Davies, and M. Missous, “Terahertz pulsed imaging with 1.06 µm laser excitation,” Appl. Phys. Lett. 83(20), 4113–4115 (2003).
[Crossref]

A. Takazato, M. Kamakura, T. Matsui, J. Kitagawa, and Y. Kadoya, “Detection of terahertz waves using low-temperature-grown InGaAs with 1.56 µm pulse excitation,” Appl. Phys. Lett. 90(10), 101119 (2007).
[Crossref]

R. Salas, S. Guchhait, S. D. Sifferman, K. M. McNicholas, V. D. Dasika, E. M. Krivoy, D. Jung, M. L. Lee, and S. R. Bank, “Growth and properties of rare-earth arsenide InGaAs nanocomposites for terahertz generation,” Appl. Phys. Lett. 106(8), 081103 (2015).
[Crossref]

S. Preu, M. Mittendorff, H. Lu, H. B. Weber, S. Winnerl, and A. C. Gossard, “2012 nm ErAs:In(Al)GaAs large area photoconductive emitters,” Appl. Phys. Lett. 101(10), 101105 (2012).
[Crossref]

C. D. Wood, O. Hatem, J. E. Cunningham, E. H. Linfield, A. G. Davies, P. J. Cannard, M. J. Robertson, and D. G. Moodie, “Terahertz emission from metal-organic chemical vapor deposition grown Fe:InGaAs using 830 nm to 1.55 µm excitation,” Appl. Phys. Lett. 96(19), 194104 (2010).
[Crossref]

M. Suzuki and M. Tonouchi, “Fe-implanted InGaAs terahertz emitters for 1.56 µm wavelength excitation,” Appl. Phys. Lett. 86(5), 051104 (2005).
[Crossref]

N. T. Yardimci, D. Turan, S. Cakmakyapan, and M. Jarrahi, “A high-responsivity and broadband photoconductive terahertz detector based on a plasmonic nanocavity,” Appl. Phys. Lett. 113(25), 251102 (2018).
[Crossref]

V. Pačebutas, A. Bičiũnas, S. Balakauskas, A. Krotkus, G. Andriukaitis, D. Lorenc, A. Pugžlys, and A. Baltuška, “Terahertz time-domain-spectroscopy system based on femtosecond Yb:fiber laser and GaBiAs photoconducting components,” Appl. Phys. Lett. 97(3), 031111 (2010).
[Crossref]

G. Matthäus, B. Ortaç, J. Limpert, S. Nolte, R. Hohmuth, M. Voitsch, B. Pradarutti, and A. Tünnermann, “Intracavity terahertz generation inside a high-energy ultrafast soliton fiber laser,” Appl. Phys. Lett. 93(26), 261105 (2008).
[Crossref]

R. E. Nahory, M. A. Pollack, W. D. Johnston, and R. L. Barns, “Band gap versus composition and demonstration of Vegard’s law for In 1-xGaxAsyP1-y lattice matched to InP,” Appl. Phys. Lett. 33(7), 659–661 (1978).
[Crossref]

N. T. Yardimci, H. Lu, and M. Jarrahi, “High power telecommunication-compatible photoconductive terahertz emitters based on plasmonic nano-antenna arrays,” Appl. Phys. Lett. 109(19), 191103 (2016).
[Crossref]

C. W. Berry, M. R. Hashemi, and M. Jarrahi, “Generation of high power pulsed terahertz radiation using a plasmonic photoconductive emitter array with logarithmic spiral antennas,” Appl. Phys. Lett. 104(8), 081122 (2014).
[Crossref]

Electron. Lett. (1)

V. Pačebutas, A. Bičiũnas, K. Bertulis, and A. Krotkus, “Optoelectronic terahertz radiation system based on femtosecond 1um laser pulses and GaBiAs detector,” Electron. Lett. 44(19), 1154 (2008).
[Crossref]

IEEE Trans. Antennas Propag. (1)

T. C. Bowman, M. El-Shenawee, and L. K. Campbell, “Terahertz Imaging of Excised Breast Tumor Tissue on Paraffin Sections,” IEEE Trans. Antennas Propag. 63(5), 2088–2097 (2015).
[Crossref]

IEEE Trans. Terahertz Sci. Technol. (3)

M. Jarrahi, “Advanced Photoconductive Terahertz Optoelectronics Based on Nano-Antennas and Nano-Plasmonic Light Concentrators,” IEEE Trans. Terahertz Sci. Technol. 5(3), 391–397 (2015).
[Crossref]

S. H. Yang, M. R. Hashemi, C. W. Berry, and M. Jarrahi, “7.5% Optical-to-terahertz conversion efficiency offered by photoconductive emitters with three-dimensional plasmonic contact electrodes,” IEEE Trans. Terahertz Sci. Technol. 4(5), 575–581 (2014).
[Crossref]

N. T. Yardimci, S. H. Yang, C. W. Berry, and M. Jarrahi, “High-power terahertz generation using large-area plasmonic photoconductive emitters,” IEEE Trans. Terahertz Sci. Technol. 5(2), 223–229 (2015).
[Crossref]

J. Appl. Phys. (2)

B. Y. Hsieh and M. Jarrahi, “Analysis of periodic metallic nano-slits for efficient interaction of terahertz and optical waves at nano-scale dimensions,” J. Appl. Phys. 109(8), 084326 (2011).
[Crossref]

E. Castro-Camus, L. Fu, J. Lloyd-Hughes, H. H. Tan, C. Jagadish, and M. B. Johnston, “Photoconductive response correction for detectors of terahertz radiation,” J. Appl. Phys. 104(5), 053113 (2008).
[Crossref]

J. Biol. Phys. (1)

R. M. Woodward, V. P. Wallace, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulsed imaging of skin cancer in the time and frequency domain,” J. Biol. Phys. 29(2/3), 257–259 (2003).
[Crossref]

J. Biomed. Opt. (1)

T. Bowman, T. Chavez, K. Khan, J. Wu, A. Chakraborty, N. Rajaram, K. Bailey, and M. El-Shenawee, “Pulsed terahertz imaging of breast cancer in freshly excised murine tumors,” J. Biomed. Opt. 23(02), 1 (2018).
[Crossref]

J. Infrared, Millimeter, Terahertz Waves (4)

U. Nandi, J. C. Norman, A. C. Gossard, H. Lu, and S. Preu, “1550-nm Driven ErAs:In(Al)GaAs Photoconductor-Based Terahertz Time Domain System with 6.5 THz Bandwidth,” J. Infrared, Millimeter, Terahertz Waves 39(4), 340–348 (2018).
[Crossref]

N. Wang and M. Jarrahi, “Noise analysis of photoconductive terahertz detectors,” J. Infrared, Millimeter, Terahertz Waves 34(9), 519–528 (2013).
[Crossref]

R. J. B. Dietz, A. Brahm, A. Velauthapillai, A. Wilms, C. Lammers, B. Globisch, M. Koch, G. Notni, A. Tünnermann, T. Göbel, and M. Schell, “Low temperature grown photoconductive antennas for pulsed 1060 nm excitation: Influence of excess energy on the electron relaxation,” J. Infrared, Millimeter, Terahertz Waves 36(1), 60–71 (2015).
[Crossref]

R. J. B. Dietz, R. Wilk, B. Globisch, H. Roehle, D. Stanze, S. Ullrich, S. Schumann, N. Born, M. Koch, B. Sartorius, and M. Schell, “Low temperature grown Be-doped InGaAs/InAlAs photoconductive antennas excited at 1030 nm,” J. Infrared, Millimeter, Terahertz Waves 34(3-4), 231–237 (2013).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Quant. Spectrosc. Radiat. Transfer (1)

I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, and B. J. Drouin, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).
[Crossref]

Laser Photonics Rev. (1)

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging - Modern techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
[Crossref]

Nat. Commun. (2)

C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun. 4(1), 1622 (2013).
[Crossref]

A. Redo-Sanchez, A. Aghasi, S. Naqvi, M. Zhang, J. Romberg, R. Raskar, B. Heshmat, A. Aghasi, S. Naqvi, M. Zhang, J. Romberg, and R. Raskar, “Terahertz time-gated spectral imaging for content extraction through layered structures,” Nat. Commun. 7(1), 12665 (2016).
[Crossref]

Nat. Photonics (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

New J. Phys. (1)

C. W. Berry and M. Jarrahi, “Terahertz generation using plasmonic photoconductive gratings,” New J. Phys. 14(10), 105029 (2012).
[Crossref]

Opt. Commun. (1)

G. Matthäus, T. Schreiber, J. Limpert, S. Nolte, G. Torsoyan, R. Beigang, S. Riehemann, G. Notni, and A. Tünnermann, “Surface-emitted THz generation using a compact ultrashort pulse fiber amplifier at 1060 nm,” Opt. Commun. 261(1), 114–117 (2006).
[Crossref]

Opt. Express (5)

Rep. Prog. Phys. (1)

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70(8), 1325–1379 (2007).
[Crossref]

Sci. Rep. (2)

N. T. Yardimci, S. Cakmakyapan, S. Hemmati, and M. Jarrahi, “A High-Power Broadband Terahertz Source Enabled by Three- Dimensional Light Confinement in a Plasmonic Nanocavity,” Sci. Rep. 7(1), 4166 (2017).
[Crossref]

N. T. Yardimci and M. Jarrahi, “High Sensitivity Terahertz Detection through Large-Area Plasmonic Nano-Antenna Arrays,” Sci. Rep. 7(1), 42667 (2017).
[Crossref]

Semicond. Sci. Technol. (1)

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications - explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Small (1)

N. T. Yardimci and M. Jarrahi, “Nanostructure-Enhanced Photoconductive Terahertz Emission and Detection,” Small 14(44), 1802437 (2018).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Schematic of the designed plasmonic photoconductive terahertz detector
Fig. 2.
Fig. 2. Optical absorption spectra inside the In0.24Ga0.76As layer for the optimized nanoantenna geometries for different In0.24Ga0.76As thicknesses (left) and the color plot of the optical absorption profile inside the In0.24Ga0.76As layer at a 1.04 µm wavelength (right). Nanoantennas with a 225 nm width, 305 nm periodicity, and 3/77 nm Ti/Au thickness, covered with a 370-nm-thick Si3N4 anti-reflection coating are designed for the detector fabricated on the substrates with a 50 nm In0.24Ga0.76As thicknesses. Nanoantennas with a 200 nm width, 280 nm periodicity, and 3/77 nm Ti/Au thickness, covered with a 380-nm-thick Si3N4 anti-reflection coating are designed for the detector fabricated on the substrates with a 200 nm In0.24Ga0.76As thicknesses.
Fig. 3.
Fig. 3. Color map of the optical absorption inside the In0.24Ga0.76As layer at a 1.04 µm wavelength (top) and the optical absorption at a 1 nm depth below the surface of the substrate (bottom) plotted at a yz-cross section passing through the middle of a nanoantenna for different tip-to-tip gap sizes.
Fig. 4.
Fig. 4. (a) Color map of the electric field enhancement factor inside the In0.24Ga0.76As layer at 1 THz (top) and the electric field enhancement factor at a 1 nm depth below the surface of the substrate (bottom) plotted at a yz-cross section passing through the middle of a nanoantenna for different tip-to-tip gap sizes. (b) The electric field enhancement factor in the middle of the nanoantenna tips at a 1 nm depth below the surface of the substrate as a function of frequency for different tip-to-tip gap sizes.
Fig. 5.
Fig. 5. (a) Photoluminescence measurements of a 200-nm-thick In0.24Ga0.76As layer epitaxially grown on a 200-nm-thick AlAs layer on an SI-GaAs substrate. (b) Atomic force microscopy scan of the grown In0.24Ga0.76As/AlAs epilayer. (c) Microscopy image of the fabricated detector on this substrate and the scanning electron microscopy image of the plasmonic nanoantennas.
Fig. 6.
Fig. 6. Measured electric field as a function of (a) the tip-to-tip gap size between the nanoantenna terminals, (b) the nanoantenna array size, (c) the In0.24Ga0.76As layer thickness and their corresponding radiation spectra are shown in (d), (e), and (f), respectively.
Fig. 7.
Fig. 7. Measured electric field profiles and their corresponding radiation spectra at different optical pump powers for the detector fabricated on a 200-nm-thick In0.24Ga0.76As layer with a 0.5 µm tip-to-tip gap size and a 0.5×0.5 mm2 active area are shown in (a) and (b), respectively. Dependence of the peak time-domain electric field and the noise current level to the optical pump power is shown in (c). The red dotted line shows the square root of the optical pump power.
Fig. 8.
Fig. 8. Impact of the number of the time-domain traces that are captured and averaged to resolve the radiation spectrum. The dashed lines indicate the noise level of the resolved spectra.

Metrics