Abstract

We present a new all-optical method for the magnification of small-intensity fluctuations using the nonlinear Kerr effect. A fluctuation of interest is impressed onto a sinusoidally modulated optical signals (SMOS) and spectral sidebands are generated as the SMOS experiences self-phase modulation in a nonlinear medium. Magnification of these temporal variation is obtained by filtering one of the sidebands. For small fluctuations, the amount of magnification obtained is proportional to (2m + 1), with m being the sideband order. This technique enhances fiber-based point sensor capabilities by bringing signals originally too small to be detected into the detection range of photodetectors.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Enhancement of optical pulse extinction-ratio using the nonlinear Kerr effect for phase-OTDR

Chams Baker, Benoit Vanus, Marc Wuilpart, Liang Chen, and Xiaoyi Bao
Opt. Express 24(17) 19424-19434 (2016)

All-optical sampling and magnification based on XPM-induced focusing

J. Nuño, M. Gilles, M. Guasoni, C. Finot, and J. Fatome
Opt. Express 24(22) 24921-24929 (2016)

All-optical switching using Kerr effect in a silica toroid microcavity

Wataru Yoshiki and Takasumi Tanabe
Opt. Express 22(20) 24332-24341 (2014)

References

  • View by:
  • |
  • |
  • |

  1. B. J. Luff, J. S. Wilkinson, J. Piehler, U. Hollenbach, J. Ingenhoff, and N. Fabricius, “Integrated optical Mach-Zehnder biosensor,” J. Lightwave Technol. 16(4), 583–592 (1998).
    [Crossref]
  2. L. V. Nguyen, D. Hwang, S. Moon, D. S. Moon, and Y. Chung, “High temperature fiber sensor with high sensitivity based on core diameter mismatch,” Opt. Express 16(15), 11369 (2008).
    [Crossref]
  3. P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
    [Crossref]
  4. L. Li, L. Xia, Z. Xie, and D. Liu, “All-fiber Mach-Zehnder interferometers for sensing applications,” Opt. Express 20(10), 11109 (2012).
    [Crossref]
  5. P. V. Mamyshev, “All-optical data regeneration based on self-phase modulation effect,” in 24th European Conference on Optical Communication, vol. 1, (1998), pp. 475–476.
  6. M. Matsumoto, “Performance analysis and comparison of optical 3r regenerators utilizing self-phase modulation in fibers,” J. Lightwave Technol. 22(6), 1472–1482 (2004).
    [Crossref]
  7. M. Rochette, L. Fu, V. Ta’eed, D. J. Moss, and B. J. Eggleton, “2r optical regeneration: an all-optical solution for BER improvement,” IEEE J. Sel. Top. Quantum Electron. 12(4), 736–744 (2006).
    [Crossref]
  8. W. Yu, C. Lou, L. Huo, and J. Chen, “A modified SPM-based 2r-regenerator based on an imbalanced nonlinear optical loop mirror,” in Asia Communications and Photonics Conference and Exhibition, (2010), pp. 130–131.
  9. A. E. Willner, S. Khaleghi, M. R. Chitgarha, and O. F. Yilmaz, “All-Optical Signal Processing,” J. Lightwave Technol. 32(4), 660–680 (2014).
    [Crossref]
  10. A. Boskovic, S. V. Chernikov, J. R. Taylor, L. Gruner-Nielsen, and O. A. Levring, “Direct continuous-wave measurement of n2 in various types of telecommunication fiber at 1.55 µm,” Opt. Lett. 21(24), 1966–1968 (1996).
    [Crossref]
  11. C. Baker, B. Vanus, M. Wuilpart, L. Chen, and X. Bao, “Enhancement of optical pulse extinction-ratio using the nonlinear Kerr effect for phase-OTDR,” Opt. Express 24(17), 19424 (2016).
    [Crossref]

2016 (1)

2014 (1)

2012 (1)

2009 (1)

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[Crossref]

2008 (1)

2006 (1)

M. Rochette, L. Fu, V. Ta’eed, D. J. Moss, and B. J. Eggleton, “2r optical regeneration: an all-optical solution for BER improvement,” IEEE J. Sel. Top. Quantum Electron. 12(4), 736–744 (2006).
[Crossref]

2004 (1)

1998 (1)

1996 (1)

Baker, C.

Bao, X.

Boskovic, A.

Chen, J.

W. Yu, C. Lou, L. Huo, and J. Chen, “A modified SPM-based 2r-regenerator based on an imbalanced nonlinear optical loop mirror,” in Asia Communications and Photonics Conference and Exhibition, (2010), pp. 130–131.

Chen, L.

Chen, Q.

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[Crossref]

Chernikov, S. V.

Chitgarha, M. R.

Chung, Y.

Eggleton, B. J.

M. Rochette, L. Fu, V. Ta’eed, D. J. Moss, and B. J. Eggleton, “2r optical regeneration: an all-optical solution for BER improvement,” IEEE J. Sel. Top. Quantum Electron. 12(4), 736–744 (2006).
[Crossref]

Fabricius, N.

Fu, L.

M. Rochette, L. Fu, V. Ta’eed, D. J. Moss, and B. J. Eggleton, “2r optical regeneration: an all-optical solution for BER improvement,” IEEE J. Sel. Top. Quantum Electron. 12(4), 736–744 (2006).
[Crossref]

Gruner-Nielsen, L.

Hollenbach, U.

Huo, L.

W. Yu, C. Lou, L. Huo, and J. Chen, “A modified SPM-based 2r-regenerator based on an imbalanced nonlinear optical loop mirror,” in Asia Communications and Photonics Conference and Exhibition, (2010), pp. 130–131.

Hwang, D.

Ingenhoff, J.

Khaleghi, S.

Levring, O. A.

Li, L.

Liu, D.

Lou, C.

W. Yu, C. Lou, L. Huo, and J. Chen, “A modified SPM-based 2r-regenerator based on an imbalanced nonlinear optical loop mirror,” in Asia Communications and Photonics Conference and Exhibition, (2010), pp. 130–131.

Lu, P.

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[Crossref]

Luff, B. J.

Mamyshev, P. V.

P. V. Mamyshev, “All-optical data regeneration based on self-phase modulation effect,” in 24th European Conference on Optical Communication, vol. 1, (1998), pp. 475–476.

Matsumoto, M.

Men, L.

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[Crossref]

Moon, D. S.

Moon, S.

Moss, D. J.

M. Rochette, L. Fu, V. Ta’eed, D. J. Moss, and B. J. Eggleton, “2r optical regeneration: an all-optical solution for BER improvement,” IEEE J. Sel. Top. Quantum Electron. 12(4), 736–744 (2006).
[Crossref]

Nguyen, L. V.

Piehler, J.

Rochette, M.

M. Rochette, L. Fu, V. Ta’eed, D. J. Moss, and B. J. Eggleton, “2r optical regeneration: an all-optical solution for BER improvement,” IEEE J. Sel. Top. Quantum Electron. 12(4), 736–744 (2006).
[Crossref]

Sooley, K.

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[Crossref]

Ta’eed, V.

M. Rochette, L. Fu, V. Ta’eed, D. J. Moss, and B. J. Eggleton, “2r optical regeneration: an all-optical solution for BER improvement,” IEEE J. Sel. Top. Quantum Electron. 12(4), 736–744 (2006).
[Crossref]

Taylor, J. R.

Vanus, B.

Wilkinson, J. S.

Willner, A. E.

Wuilpart, M.

Xia, L.

Xie, Z.

Yilmaz, O. F.

Yu, W.

W. Yu, C. Lou, L. Huo, and J. Chen, “A modified SPM-based 2r-regenerator based on an imbalanced nonlinear optical loop mirror,” in Asia Communications and Photonics Conference and Exhibition, (2010), pp. 130–131.

Appl. Phys. Lett. (1)

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Rochette, L. Fu, V. Ta’eed, D. J. Moss, and B. J. Eggleton, “2r optical regeneration: an all-optical solution for BER improvement,” IEEE J. Sel. Top. Quantum Electron. 12(4), 736–744 (2006).
[Crossref]

J. Lightwave Technol. (3)

Opt. Express (3)

Opt. Lett. (1)

Other (2)

W. Yu, C. Lou, L. Huo, and J. Chen, “A modified SPM-based 2r-regenerator based on an imbalanced nonlinear optical loop mirror,” in Asia Communications and Photonics Conference and Exhibition, (2010), pp. 130–131.

P. V. Mamyshev, “All-optical data regeneration based on self-phase modulation effect,” in 24th European Conference on Optical Communication, vol. 1, (1998), pp. 475–476.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Illustration of the amplification and magnification of small intensity fluctuations. $\epsilon$: Strain, P: Power, PD: Photodetector, T: Temperature, V: Voltage. a) Optical sensor operating at the quadrature point, b) The original signal power with respect to the PD saturation level, c) The amplified signal is above the saturation level and can not be detected, d) The magnified signal is below the saturation level and can be detected.
Fig. 2.
Fig. 2. Illustration of the signal parameters, defining the maximum and minimum powers as well as the signal offset power.
Fig. 3.
Fig. 3. Relative output intensity for each sideband as a function of the nonlinear phase shift ($\phi _{SPM}$) using the equation $P^{(m)}(\phi _{SPM}) = P_0\left [ J_m^2(0.5\phi _{SPM}) + J^2_{m+1}(0.5\phi _{SPM})\right ]$ [11], fitted with a slope proportional to $2m$, with $m$ being the sideband order, $P_0 =P_p/4$ and $P_p$ the input signal’s peak power.
Fig. 4.
Fig. 4. Schematic of the optical signal magnification experimental setup. BPF: Band-Pass Filter, EDFA: Erbium-Doped Fiber Amplifier, EOM: Electro-Optical Modulator, HP-EDFA: High-Power EDFA, KM: Kerr Medium, OSC: Oscilloscope, PC: Polarization Controller, PD: Photodetector
Fig. 5.
Fig. 5. Experimental measurement and theoretical approximation of a normalized reference signal and its magnification of first and second order.
Fig. 6.
Fig. 6. Measurement of the magnification of small intensity fluctuations. a) Measured normalized original signal with a modulation depth of 50 mV, b) measured normalized $2^{nd}$ order sideband signal, c) ratios between of the output and input signal’s contrast as a function of the modulation depth of the sinusoidal signal on EOM2.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ρ i n = P m a x P m i n P m i n
ρ i n = P o f f s e t + max { P s i g n a l } P o f f s e t 1.
P ( m ) P i n ( 2 m + 1 ) .
ρ o u t = ( P o f f s e t + max { P s i g n a l } ) 2 m + 1 P o f f s e t 2 m + 1 1 ρ o u t = ( 1 + max { P s i g n a l } P o f f s e t ) 2 m + 1 1
ρ o u t ( 2 m + 1 ) max { P s i g } P o f f + ρ o u t ( 2 m + 1 ) ρ i n

Metrics