Abstract

Ghost imaging (GI) is an imaging technique that uses the correlation between two light beams to reconstruct the image of an object. Conventional GI algorithms require large memory space to store the measured data and perform complicated offline calculations, limiting practical applications of GI. Here we develop an instant ghost imaging (IGI) technique with a differential algorithm and an implemented high-speed on-chip IGI hardware system. This algorithm uses the signal between consecutive temporal measurements to reduce the memory requirements without degradation of image quality compared with conventional GI algorithms. The on-chip IGI system can immediately reconstruct the image once the measurement finishes; there is no need to rely on post-processing or offline reconstruction. This system can be developed into a realtime imaging system. These features make IGI a faster, cheaper, and more compact alternative to a conventional GI system and make it viable for practical applications of GI.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Instant single-pixel imaging: on-chip real-time implementation based on the instant ghost imaging algorithm

Zhe Yang, Jun Liu, Wei-Xing Zhang, Dong Ruan, and Jun-Lin Li
OSA Continuum 3(3) 629-636 (2020)

Instant ghost imaging: improving robustness for ghost imaging subject to optical background noise

Zhe Yang, Wei-Xing Zhang, Ma-Chi Zhang, Dong Ruan, and Jun-Lin Li
OSA Continuum 3(2) 391-400 (2020)

Sub-Nyquist computational ghost imaging with deep learning

Heng Wu, Ruizhou Wang, Genping Zhao, Huapan Xiao, Daodang Wang, Jian Liang, Xiaobo Tian, Lianglun Cheng, and Xianmin Zhang
Opt. Express 28(3) 3846-3853 (2020)

References

  • View by:
  • |
  • |
  • |

  1. T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52(5), R3429–R3432 (1995).
    [Crossref]
  2. R. S. Bennink, S. J. Bentley, and R. W. Boyd, “’Two-photon’ coincidence imaging with a classical source,” Phys. Rev. Lett. 89(11), 113601 (2002).
    [Crossref]
  3. A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: comparing entanglement and classicalcorrelation,” Phys. Rev. Lett. 93(9), 093602 (2004).
    [Crossref]
  4. F. Ferri, D. Magatti, A. Gatti, M. Bache, E. A. Brambilla, and L. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94(18), 183602 (2005).
    [Crossref]
  5. A. Valencia, G. Scarcelli, M. D’Angelo, and Y. H. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94(6), 063601 (2005).
    [Crossref]
  6. D. Z. Cao, J. Xiong, and K. Wang, “Geometrical optics in correlated imaging systems,” Phys. Rev. A 71(1), 013801 (2005).
    [Crossref]
  7. G. Scarcelli, V. Berardi, and Y. Shih, “Can two-photon correlation of chaotic light be considered as correlation of intensity fluctuations?” Phys. Rev. Lett. 96(6), 063602 (2006).
    [Crossref]
  8. L. Basano and P. Ottonello, “Experiment in lensless ghost imaging with thermal light,” Appl. Phys. Lett. 89(9), 091109 (2006).
    [Crossref]
  9. J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78(6), 061802 (2008).
    [Crossref]
  10. B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340(6134), 844–847 (2013).
    [Crossref]
  11. M. J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7(1), 12010 (2016).
    [Crossref]
  12. W. Gong, C. Zhao, H. Yu, M. Chen, W. Xu, and S. Han, “Three-dimensional ghost imaging lidar via sparsity constraint,” Sci. Rep. 6(1), 26133 (2016).
    [Crossref]
  13. A. M. Kingston, D. Pelliccia, A. Rack, M. P. Olbinado, Y. Cheng, G. R. Myers, and D. M. Paganin, “Ghost tomography,” Optica 5(12), 1516–1520 (2018).
    [Crossref]
  14. D. Pelliccia, A. Rack, M. Scheel, V. Cantelli, and D. M. Paganin, “Experimental x-ray ghost imaging,” Phys. Rev. Lett. 117(11), 113902 (2016).
    [Crossref]
  15. H. Yu, R. Lu, S. Han, H. Xie, G. Du, T. Xiao, and D. Zhu, “Fourier-transform ghost imaging with hard X rays,” Phys. Rev. Lett. 117(11), 113901 (2016).
    [Crossref]
  16. A. X. Zhang, Y. H. He, L. A. Wu, L. M. Chen, and B. B. Wang, “Tabletop x-ray ghost imaging with ultra-low radiation,” Optica 5(4), 374–377 (2018).
    [Crossref]
  17. M. Bina, D. Magatti, M. Molteni, A. Gatti, L. A. Lugiato, and F. Ferri, “Backscattering differential ghost imaging in turbid media,” Phys. Rev. Lett. 110(8), 083901 (2013).
    [Crossref]
  18. P. A. Morris, R. S. Aspden, J. E. Bell, R. W. Boyd, and M. J. Padgett, “Imaging with a small number of photons,” Nat. Commun. 6(1), 5913 (2015).
    [Crossref]
  19. A. M. Paniagua-Diaz, I. Starshynov, N. Fayard, A. Goetschy, R. Pierrat, R. Carminati, and J. Bertolotti, “Blind ghost imaging,” Optica 6(4), 460–464 (2019).
    [Crossref]
  20. Z. Yang, L. Zhao, X. Zhao, W. Qin, and J. Li, “Lensless ghost imaging through the strongly scattering medium,” Chin. Phys. B 25(2), 024202 (2016).
    [Crossref]
  21. A. V. Diebold, M. F. Imani, T. Sleasman, and D. R. Smith, “Phaseless coherent and incoherent microwave ghost imaging with dynamic metasurface apertures,” Optica 5(12), 1529–1541 (2018).
    [Crossref]
  22. G. Barbastathis, A. Ozcan, and G. Situ, “On the use of deep learning for computational imaging,” Optica 6(8), 921–943 (2019).
    [Crossref]
  23. R. I. Khakimov, B. M. Henson, D. K. Shin, S. S. Hodgman, R. G. Dall, K. G. H. Baldwin, and A. G. Truscott, “Ghost imaging with atoms,” Nature 540(7631), 100–103 (2016).
    [Crossref]
  24. S. S. Hodgman, W. Bu, S. B. Mann, R. I. Khakimov, and A. G. Truscott, “Higher-Order Quantum Ghost Imaging with Ultracold Atoms,” Phys. Rev. Lett. 122(23), 233601 (2019).
    [Crossref]
  25. P. Ryczkowski, M. Barbier, A. T. Friberg, J. M. Dudley, and G. Genty, “Ghost imaging in the time domain,” Nat. Photonics 10(3), 167–170 (2016).
    [Crossref]
  26. F. Devaux, P. A. Moreau, S. Denis, and E. Lantz, “Computational temporal ghost imaging,” Optica 3(7), 698–701 (2016).
    [Crossref]
  27. H. Wu, P. Ryczkowski, A. T. Friberg, J. M. Dudley, and G. Genty, “Temporal ghost imaging using wavelength conversion and two-color detection,” Optica 6(7), 902–906 (2019).
    [Crossref]
  28. L. Chen, J. Lei, and J. Romero, “Quantum digital spiral imaging,” Light: Sci. Appl. 3(3), e153 (2014).
    [Crossref]
  29. Z. Yang, O. S. Maga na-Loaiza, M. Mirhosseini, Y. Zhou, B. Gao, L. Gao, S. M. H. Rafsanjani, G. L. Long, and R. W. Boyd, “Digital spiral object identification using random light,” Light: Sci. Appl. 6(7), e17013 (2017).
    [Crossref]
  30. F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104(25), 253603 (2010).
    [Crossref]
  31. Y. O-oka and S. Fukatsu, “Differential ghost imaging in time domain,” Appl. Phys. Lett. 111(6), 061106 (2017).
    [Crossref]
  32. W. Wang, Y. P. Wang, J. Li, X. Yang, and Y. Wu, “Iterative ghost imaging,” Opt. Lett. 39(17), 5150–5153 (2014).
    [Crossref]
  33. X. R. Yao, W. K. Yu, X. F. Liu, L. Z. Li, M. F. Li, L. A. Wu, and G. J. Zhai, “Iterative denoising of ghost imaging,” Opt. Express 22(20), 24268–24275 (2014).
    [Crossref]
  34. K. W. C. Chan, M. N. O’Sullivan, and R. W. Boyd, “High-order thermal ghost imaging,” Opt. Lett. 34(21), 3343–3345 (2009).
    [Crossref]
  35. S. S. Hodgman, W. Bu, S. B. Mann, R. I. Khakimov, and A. G. Truscott, “Higher-Order Quantum Ghost Imaging with Ultracold Atoms,” Phys. Rev. Lett. 122(23), 233601 (2019).
    [Crossref]
  36. O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95(13), 131110 (2009).
    [Crossref]
  37. Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A 79(5), 053840 (2009).
    [Crossref]
  38. H. Huang, C. Zhou, T. Tian, D. Liu, and L. Song, “High-quality compressive ghost imaging,” Opt. Commun. 412, 60–65 (2018).
    [Crossref]
  39. X. Shi, X. Huang, S. Nan, H. Li, Y. Bai, and X. Fu, “Image quality enhancement in low-light-level ghost imaging using modified compressive sensing method,” Laser Phys. Lett. 15(4), 045204 (2018).
    [Crossref]
  40. Y. Wang, Y. Liu, J. Suo, G. Situ, C. Qiao, and Q. Dai, “High speed computational ghost imaging via spatial sweeping,” Sci. Rep. 7(1), 45325 (2017).
    [Crossref]
  41. Z. Zhang, X. Ma, and J. Zhong, “Single-pixel imaging by means of Fourier spectrum acquisition,” Nat. Commun. 6(1), 6225 (2015).
    [Crossref]
  42. K. M. Czajkowski, A. Pastuszczak, and R. Kotynski, “Real-time single-pixel video imaging with Fourier domain regularization,” Opt. Express 26(16), 20009–20022 (2018).
    [Crossref]
  43. L. Wang and S. Zhao, “Fast reconstructed and high-quality ghost imaging with fast Walsh-Hadamard transform,” Photonics Res. 4(6), 240–244 (2016).
    [Crossref]
  44. Z. H. Xu, W. Chen, J. Penuelas, M. J. Padgett, and M. J. Sun, “1000 fps computational ghost imaging using LED-based structured illumination,” Opt. Express 26(3), 2427–2434 (2018).
    [Crossref]
  45. J. L. Li, “Study on second-order correlated imaging with pseudo-thermal light,” Doctoral dissertation, Tsinghua University, (2016) (In Chinese).
  46. J. L. Li, Z. Yang, and L. L. Long, Patent CN201510151008.2 (2015) (In Chinese).
  47. Z. Yang, J. L. Li, and W. X. Zhang, Patent CN201910795456.4 (2019) (In Chinese).
  48. Y. X. Li, W. K. Yu, J. Leng, and S. F. Wang, “Pseudo-thermal imaging by using sequential-deviations for real-time image reconstruction,” Opt. Express 27(24), 35166–35181 (2019).
    [Crossref]
  49. J. W. Goodman, Statistical Optics (Wiley, 1985).

2019 (6)

2018 (7)

2017 (3)

Z. Yang, O. S. Maga na-Loaiza, M. Mirhosseini, Y. Zhou, B. Gao, L. Gao, S. M. H. Rafsanjani, G. L. Long, and R. W. Boyd, “Digital spiral object identification using random light,” Light: Sci. Appl. 6(7), e17013 (2017).
[Crossref]

Y. O-oka and S. Fukatsu, “Differential ghost imaging in time domain,” Appl. Phys. Lett. 111(6), 061106 (2017).
[Crossref]

Y. Wang, Y. Liu, J. Suo, G. Situ, C. Qiao, and Q. Dai, “High speed computational ghost imaging via spatial sweeping,” Sci. Rep. 7(1), 45325 (2017).
[Crossref]

2016 (9)

L. Wang and S. Zhao, “Fast reconstructed and high-quality ghost imaging with fast Walsh-Hadamard transform,” Photonics Res. 4(6), 240–244 (2016).
[Crossref]

P. Ryczkowski, M. Barbier, A. T. Friberg, J. M. Dudley, and G. Genty, “Ghost imaging in the time domain,” Nat. Photonics 10(3), 167–170 (2016).
[Crossref]

F. Devaux, P. A. Moreau, S. Denis, and E. Lantz, “Computational temporal ghost imaging,” Optica 3(7), 698–701 (2016).
[Crossref]

R. I. Khakimov, B. M. Henson, D. K. Shin, S. S. Hodgman, R. G. Dall, K. G. H. Baldwin, and A. G. Truscott, “Ghost imaging with atoms,” Nature 540(7631), 100–103 (2016).
[Crossref]

Z. Yang, L. Zhao, X. Zhao, W. Qin, and J. Li, “Lensless ghost imaging through the strongly scattering medium,” Chin. Phys. B 25(2), 024202 (2016).
[Crossref]

D. Pelliccia, A. Rack, M. Scheel, V. Cantelli, and D. M. Paganin, “Experimental x-ray ghost imaging,” Phys. Rev. Lett. 117(11), 113902 (2016).
[Crossref]

H. Yu, R. Lu, S. Han, H. Xie, G. Du, T. Xiao, and D. Zhu, “Fourier-transform ghost imaging with hard X rays,” Phys. Rev. Lett. 117(11), 113901 (2016).
[Crossref]

M. J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7(1), 12010 (2016).
[Crossref]

W. Gong, C. Zhao, H. Yu, M. Chen, W. Xu, and S. Han, “Three-dimensional ghost imaging lidar via sparsity constraint,” Sci. Rep. 6(1), 26133 (2016).
[Crossref]

2015 (2)

P. A. Morris, R. S. Aspden, J. E. Bell, R. W. Boyd, and M. J. Padgett, “Imaging with a small number of photons,” Nat. Commun. 6(1), 5913 (2015).
[Crossref]

Z. Zhang, X. Ma, and J. Zhong, “Single-pixel imaging by means of Fourier spectrum acquisition,” Nat. Commun. 6(1), 6225 (2015).
[Crossref]

2014 (3)

2013 (2)

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340(6134), 844–847 (2013).
[Crossref]

M. Bina, D. Magatti, M. Molteni, A. Gatti, L. A. Lugiato, and F. Ferri, “Backscattering differential ghost imaging in turbid media,” Phys. Rev. Lett. 110(8), 083901 (2013).
[Crossref]

2010 (1)

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104(25), 253603 (2010).
[Crossref]

2009 (3)

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95(13), 131110 (2009).
[Crossref]

Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A 79(5), 053840 (2009).
[Crossref]

K. W. C. Chan, M. N. O’Sullivan, and R. W. Boyd, “High-order thermal ghost imaging,” Opt. Lett. 34(21), 3343–3345 (2009).
[Crossref]

2008 (1)

J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78(6), 061802 (2008).
[Crossref]

2006 (2)

G. Scarcelli, V. Berardi, and Y. Shih, “Can two-photon correlation of chaotic light be considered as correlation of intensity fluctuations?” Phys. Rev. Lett. 96(6), 063602 (2006).
[Crossref]

L. Basano and P. Ottonello, “Experiment in lensless ghost imaging with thermal light,” Appl. Phys. Lett. 89(9), 091109 (2006).
[Crossref]

2005 (3)

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. A. Brambilla, and L. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94(18), 183602 (2005).
[Crossref]

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. H. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94(6), 063601 (2005).
[Crossref]

D. Z. Cao, J. Xiong, and K. Wang, “Geometrical optics in correlated imaging systems,” Phys. Rev. A 71(1), 013801 (2005).
[Crossref]

2004 (1)

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: comparing entanglement and classicalcorrelation,” Phys. Rev. Lett. 93(9), 093602 (2004).
[Crossref]

2002 (1)

R. S. Bennink, S. J. Bentley, and R. W. Boyd, “’Two-photon’ coincidence imaging with a classical source,” Phys. Rev. Lett. 89(11), 113601 (2002).
[Crossref]

1995 (1)

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52(5), R3429–R3432 (1995).
[Crossref]

Aspden, R. S.

P. A. Morris, R. S. Aspden, J. E. Bell, R. W. Boyd, and M. J. Padgett, “Imaging with a small number of photons,” Nat. Commun. 6(1), 5913 (2015).
[Crossref]

Bache, M.

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. A. Brambilla, and L. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94(18), 183602 (2005).
[Crossref]

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: comparing entanglement and classicalcorrelation,” Phys. Rev. Lett. 93(9), 093602 (2004).
[Crossref]

Bai, Y.

X. Shi, X. Huang, S. Nan, H. Li, Y. Bai, and X. Fu, “Image quality enhancement in low-light-level ghost imaging using modified compressive sensing method,” Laser Phys. Lett. 15(4), 045204 (2018).
[Crossref]

Baldwin, K. G. H.

R. I. Khakimov, B. M. Henson, D. K. Shin, S. S. Hodgman, R. G. Dall, K. G. H. Baldwin, and A. G. Truscott, “Ghost imaging with atoms,” Nature 540(7631), 100–103 (2016).
[Crossref]

Barbastathis, G.

Barbier, M.

P. Ryczkowski, M. Barbier, A. T. Friberg, J. M. Dudley, and G. Genty, “Ghost imaging in the time domain,” Nat. Photonics 10(3), 167–170 (2016).
[Crossref]

Basano, L.

L. Basano and P. Ottonello, “Experiment in lensless ghost imaging with thermal light,” Appl. Phys. Lett. 89(9), 091109 (2006).
[Crossref]

Bell, J. E.

P. A. Morris, R. S. Aspden, J. E. Bell, R. W. Boyd, and M. J. Padgett, “Imaging with a small number of photons,” Nat. Commun. 6(1), 5913 (2015).
[Crossref]

Bennink, R. S.

R. S. Bennink, S. J. Bentley, and R. W. Boyd, “’Two-photon’ coincidence imaging with a classical source,” Phys. Rev. Lett. 89(11), 113601 (2002).
[Crossref]

Bentley, S. J.

R. S. Bennink, S. J. Bentley, and R. W. Boyd, “’Two-photon’ coincidence imaging with a classical source,” Phys. Rev. Lett. 89(11), 113601 (2002).
[Crossref]

Berardi, V.

G. Scarcelli, V. Berardi, and Y. Shih, “Can two-photon correlation of chaotic light be considered as correlation of intensity fluctuations?” Phys. Rev. Lett. 96(6), 063602 (2006).
[Crossref]

Bertolotti, J.

Bina, M.

M. Bina, D. Magatti, M. Molteni, A. Gatti, L. A. Lugiato, and F. Ferri, “Backscattering differential ghost imaging in turbid media,” Phys. Rev. Lett. 110(8), 083901 (2013).
[Crossref]

Bowman, A.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340(6134), 844–847 (2013).
[Crossref]

Bowman, R.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340(6134), 844–847 (2013).
[Crossref]

Boyd, R. W.

Z. Yang, O. S. Maga na-Loaiza, M. Mirhosseini, Y. Zhou, B. Gao, L. Gao, S. M. H. Rafsanjani, G. L. Long, and R. W. Boyd, “Digital spiral object identification using random light,” Light: Sci. Appl. 6(7), e17013 (2017).
[Crossref]

P. A. Morris, R. S. Aspden, J. E. Bell, R. W. Boyd, and M. J. Padgett, “Imaging with a small number of photons,” Nat. Commun. 6(1), 5913 (2015).
[Crossref]

K. W. C. Chan, M. N. O’Sullivan, and R. W. Boyd, “High-order thermal ghost imaging,” Opt. Lett. 34(21), 3343–3345 (2009).
[Crossref]

R. S. Bennink, S. J. Bentley, and R. W. Boyd, “’Two-photon’ coincidence imaging with a classical source,” Phys. Rev. Lett. 89(11), 113601 (2002).
[Crossref]

Brambilla, E.

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: comparing entanglement and classicalcorrelation,” Phys. Rev. Lett. 93(9), 093602 (2004).
[Crossref]

Brambilla, E. A.

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. A. Brambilla, and L. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94(18), 183602 (2005).
[Crossref]

Bromberg, Y.

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95(13), 131110 (2009).
[Crossref]

Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A 79(5), 053840 (2009).
[Crossref]

Bu, W.

S. S. Hodgman, W. Bu, S. B. Mann, R. I. Khakimov, and A. G. Truscott, “Higher-Order Quantum Ghost Imaging with Ultracold Atoms,” Phys. Rev. Lett. 122(23), 233601 (2019).
[Crossref]

S. S. Hodgman, W. Bu, S. B. Mann, R. I. Khakimov, and A. G. Truscott, “Higher-Order Quantum Ghost Imaging with Ultracold Atoms,” Phys. Rev. Lett. 122(23), 233601 (2019).
[Crossref]

Cantelli, V.

D. Pelliccia, A. Rack, M. Scheel, V. Cantelli, and D. M. Paganin, “Experimental x-ray ghost imaging,” Phys. Rev. Lett. 117(11), 113902 (2016).
[Crossref]

Cao, D. Z.

D. Z. Cao, J. Xiong, and K. Wang, “Geometrical optics in correlated imaging systems,” Phys. Rev. A 71(1), 013801 (2005).
[Crossref]

Carminati, R.

Chan, K. W. C.

Chen, L.

L. Chen, J. Lei, and J. Romero, “Quantum digital spiral imaging,” Light: Sci. Appl. 3(3), e153 (2014).
[Crossref]

Chen, L. M.

Chen, M.

W. Gong, C. Zhao, H. Yu, M. Chen, W. Xu, and S. Han, “Three-dimensional ghost imaging lidar via sparsity constraint,” Sci. Rep. 6(1), 26133 (2016).
[Crossref]

Chen, W.

Cheng, Y.

Czajkowski, K. M.

D’Angelo, M.

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. H. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94(6), 063601 (2005).
[Crossref]

Dai, Q.

Y. Wang, Y. Liu, J. Suo, G. Situ, C. Qiao, and Q. Dai, “High speed computational ghost imaging via spatial sweeping,” Sci. Rep. 7(1), 45325 (2017).
[Crossref]

Dall, R. G.

R. I. Khakimov, B. M. Henson, D. K. Shin, S. S. Hodgman, R. G. Dall, K. G. H. Baldwin, and A. G. Truscott, “Ghost imaging with atoms,” Nature 540(7631), 100–103 (2016).
[Crossref]

Denis, S.

Devaux, F.

Diebold, A. V.

Du, G.

H. Yu, R. Lu, S. Han, H. Xie, G. Du, T. Xiao, and D. Zhu, “Fourier-transform ghost imaging with hard X rays,” Phys. Rev. Lett. 117(11), 113901 (2016).
[Crossref]

Dudley, J. M.

H. Wu, P. Ryczkowski, A. T. Friberg, J. M. Dudley, and G. Genty, “Temporal ghost imaging using wavelength conversion and two-color detection,” Optica 6(7), 902–906 (2019).
[Crossref]

P. Ryczkowski, M. Barbier, A. T. Friberg, J. M. Dudley, and G. Genty, “Ghost imaging in the time domain,” Nat. Photonics 10(3), 167–170 (2016).
[Crossref]

Edgar, M. P.

M. J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7(1), 12010 (2016).
[Crossref]

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340(6134), 844–847 (2013).
[Crossref]

Fayard, N.

Ferri, F.

M. Bina, D. Magatti, M. Molteni, A. Gatti, L. A. Lugiato, and F. Ferri, “Backscattering differential ghost imaging in turbid media,” Phys. Rev. Lett. 110(8), 083901 (2013).
[Crossref]

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104(25), 253603 (2010).
[Crossref]

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. A. Brambilla, and L. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94(18), 183602 (2005).
[Crossref]

Friberg, A. T.

H. Wu, P. Ryczkowski, A. T. Friberg, J. M. Dudley, and G. Genty, “Temporal ghost imaging using wavelength conversion and two-color detection,” Optica 6(7), 902–906 (2019).
[Crossref]

P. Ryczkowski, M. Barbier, A. T. Friberg, J. M. Dudley, and G. Genty, “Ghost imaging in the time domain,” Nat. Photonics 10(3), 167–170 (2016).
[Crossref]

Fu, X.

X. Shi, X. Huang, S. Nan, H. Li, Y. Bai, and X. Fu, “Image quality enhancement in low-light-level ghost imaging using modified compressive sensing method,” Laser Phys. Lett. 15(4), 045204 (2018).
[Crossref]

Fukatsu, S.

Y. O-oka and S. Fukatsu, “Differential ghost imaging in time domain,” Appl. Phys. Lett. 111(6), 061106 (2017).
[Crossref]

Gao, B.

Z. Yang, O. S. Maga na-Loaiza, M. Mirhosseini, Y. Zhou, B. Gao, L. Gao, S. M. H. Rafsanjani, G. L. Long, and R. W. Boyd, “Digital spiral object identification using random light,” Light: Sci. Appl. 6(7), e17013 (2017).
[Crossref]

Gao, L.

Z. Yang, O. S. Maga na-Loaiza, M. Mirhosseini, Y. Zhou, B. Gao, L. Gao, S. M. H. Rafsanjani, G. L. Long, and R. W. Boyd, “Digital spiral object identification using random light,” Light: Sci. Appl. 6(7), e17013 (2017).
[Crossref]

Gatti, A.

M. Bina, D. Magatti, M. Molteni, A. Gatti, L. A. Lugiato, and F. Ferri, “Backscattering differential ghost imaging in turbid media,” Phys. Rev. Lett. 110(8), 083901 (2013).
[Crossref]

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104(25), 253603 (2010).
[Crossref]

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. A. Brambilla, and L. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94(18), 183602 (2005).
[Crossref]

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: comparing entanglement and classicalcorrelation,” Phys. Rev. Lett. 93(9), 093602 (2004).
[Crossref]

Genty, G.

H. Wu, P. Ryczkowski, A. T. Friberg, J. M. Dudley, and G. Genty, “Temporal ghost imaging using wavelength conversion and two-color detection,” Optica 6(7), 902–906 (2019).
[Crossref]

P. Ryczkowski, M. Barbier, A. T. Friberg, J. M. Dudley, and G. Genty, “Ghost imaging in the time domain,” Nat. Photonics 10(3), 167–170 (2016).
[Crossref]

Gibson, G. M.

M. J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7(1), 12010 (2016).
[Crossref]

Goetschy, A.

Gong, W.

W. Gong, C. Zhao, H. Yu, M. Chen, W. Xu, and S. Han, “Three-dimensional ghost imaging lidar via sparsity constraint,” Sci. Rep. 6(1), 26133 (2016).
[Crossref]

Goodman, J. W.

J. W. Goodman, Statistical Optics (Wiley, 1985).

Han, S.

W. Gong, C. Zhao, H. Yu, M. Chen, W. Xu, and S. Han, “Three-dimensional ghost imaging lidar via sparsity constraint,” Sci. Rep. 6(1), 26133 (2016).
[Crossref]

H. Yu, R. Lu, S. Han, H. Xie, G. Du, T. Xiao, and D. Zhu, “Fourier-transform ghost imaging with hard X rays,” Phys. Rev. Lett. 117(11), 113901 (2016).
[Crossref]

He, Y. H.

Henson, B. M.

R. I. Khakimov, B. M. Henson, D. K. Shin, S. S. Hodgman, R. G. Dall, K. G. H. Baldwin, and A. G. Truscott, “Ghost imaging with atoms,” Nature 540(7631), 100–103 (2016).
[Crossref]

Hodgman, S. S.

S. S. Hodgman, W. Bu, S. B. Mann, R. I. Khakimov, and A. G. Truscott, “Higher-Order Quantum Ghost Imaging with Ultracold Atoms,” Phys. Rev. Lett. 122(23), 233601 (2019).
[Crossref]

S. S. Hodgman, W. Bu, S. B. Mann, R. I. Khakimov, and A. G. Truscott, “Higher-Order Quantum Ghost Imaging with Ultracold Atoms,” Phys. Rev. Lett. 122(23), 233601 (2019).
[Crossref]

R. I. Khakimov, B. M. Henson, D. K. Shin, S. S. Hodgman, R. G. Dall, K. G. H. Baldwin, and A. G. Truscott, “Ghost imaging with atoms,” Nature 540(7631), 100–103 (2016).
[Crossref]

Huang, H.

H. Huang, C. Zhou, T. Tian, D. Liu, and L. Song, “High-quality compressive ghost imaging,” Opt. Commun. 412, 60–65 (2018).
[Crossref]

Huang, X.

X. Shi, X. Huang, S. Nan, H. Li, Y. Bai, and X. Fu, “Image quality enhancement in low-light-level ghost imaging using modified compressive sensing method,” Laser Phys. Lett. 15(4), 045204 (2018).
[Crossref]

Imani, M. F.

Katz, O.

Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A 79(5), 053840 (2009).
[Crossref]

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95(13), 131110 (2009).
[Crossref]

Khakimov, R. I.

S. S. Hodgman, W. Bu, S. B. Mann, R. I. Khakimov, and A. G. Truscott, “Higher-Order Quantum Ghost Imaging with Ultracold Atoms,” Phys. Rev. Lett. 122(23), 233601 (2019).
[Crossref]

S. S. Hodgman, W. Bu, S. B. Mann, R. I. Khakimov, and A. G. Truscott, “Higher-Order Quantum Ghost Imaging with Ultracold Atoms,” Phys. Rev. Lett. 122(23), 233601 (2019).
[Crossref]

R. I. Khakimov, B. M. Henson, D. K. Shin, S. S. Hodgman, R. G. Dall, K. G. H. Baldwin, and A. G. Truscott, “Ghost imaging with atoms,” Nature 540(7631), 100–103 (2016).
[Crossref]

Kingston, A. M.

Kotynski, R.

Lamb, R.

M. J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7(1), 12010 (2016).
[Crossref]

Lantz, E.

Lei, J.

L. Chen, J. Lei, and J. Romero, “Quantum digital spiral imaging,” Light: Sci. Appl. 3(3), e153 (2014).
[Crossref]

Leng, J.

Li, H.

X. Shi, X. Huang, S. Nan, H. Li, Y. Bai, and X. Fu, “Image quality enhancement in low-light-level ghost imaging using modified compressive sensing method,” Laser Phys. Lett. 15(4), 045204 (2018).
[Crossref]

Li, J.

Z. Yang, L. Zhao, X. Zhao, W. Qin, and J. Li, “Lensless ghost imaging through the strongly scattering medium,” Chin. Phys. B 25(2), 024202 (2016).
[Crossref]

W. Wang, Y. P. Wang, J. Li, X. Yang, and Y. Wu, “Iterative ghost imaging,” Opt. Lett. 39(17), 5150–5153 (2014).
[Crossref]

Li, J. L.

Z. Yang, J. L. Li, and W. X. Zhang, Patent CN201910795456.4 (2019) (In Chinese).

J. L. Li, “Study on second-order correlated imaging with pseudo-thermal light,” Doctoral dissertation, Tsinghua University, (2016) (In Chinese).

J. L. Li, Z. Yang, and L. L. Long, Patent CN201510151008.2 (2015) (In Chinese).

Li, L. Z.

Li, M. F.

Li, Y. X.

Liu, D.

H. Huang, C. Zhou, T. Tian, D. Liu, and L. Song, “High-quality compressive ghost imaging,” Opt. Commun. 412, 60–65 (2018).
[Crossref]

Liu, X. F.

Liu, Y.

Y. Wang, Y. Liu, J. Suo, G. Situ, C. Qiao, and Q. Dai, “High speed computational ghost imaging via spatial sweeping,” Sci. Rep. 7(1), 45325 (2017).
[Crossref]

Long, G. L.

Z. Yang, O. S. Maga na-Loaiza, M. Mirhosseini, Y. Zhou, B. Gao, L. Gao, S. M. H. Rafsanjani, G. L. Long, and R. W. Boyd, “Digital spiral object identification using random light,” Light: Sci. Appl. 6(7), e17013 (2017).
[Crossref]

Long, L. L.

J. L. Li, Z. Yang, and L. L. Long, Patent CN201510151008.2 (2015) (In Chinese).

Lu, R.

H. Yu, R. Lu, S. Han, H. Xie, G. Du, T. Xiao, and D. Zhu, “Fourier-transform ghost imaging with hard X rays,” Phys. Rev. Lett. 117(11), 113901 (2016).
[Crossref]

Lugiato, L.

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. A. Brambilla, and L. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94(18), 183602 (2005).
[Crossref]

Lugiato, L. A.

M. Bina, D. Magatti, M. Molteni, A. Gatti, L. A. Lugiato, and F. Ferri, “Backscattering differential ghost imaging in turbid media,” Phys. Rev. Lett. 110(8), 083901 (2013).
[Crossref]

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104(25), 253603 (2010).
[Crossref]

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: comparing entanglement and classicalcorrelation,” Phys. Rev. Lett. 93(9), 093602 (2004).
[Crossref]

Ma, X.

Z. Zhang, X. Ma, and J. Zhong, “Single-pixel imaging by means of Fourier spectrum acquisition,” Nat. Commun. 6(1), 6225 (2015).
[Crossref]

Maga na-Loaiza, O. S.

Z. Yang, O. S. Maga na-Loaiza, M. Mirhosseini, Y. Zhou, B. Gao, L. Gao, S. M. H. Rafsanjani, G. L. Long, and R. W. Boyd, “Digital spiral object identification using random light,” Light: Sci. Appl. 6(7), e17013 (2017).
[Crossref]

Magatti, D.

M. Bina, D. Magatti, M. Molteni, A. Gatti, L. A. Lugiato, and F. Ferri, “Backscattering differential ghost imaging in turbid media,” Phys. Rev. Lett. 110(8), 083901 (2013).
[Crossref]

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104(25), 253603 (2010).
[Crossref]

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. A. Brambilla, and L. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94(18), 183602 (2005).
[Crossref]

Mann, S. B.

S. S. Hodgman, W. Bu, S. B. Mann, R. I. Khakimov, and A. G. Truscott, “Higher-Order Quantum Ghost Imaging with Ultracold Atoms,” Phys. Rev. Lett. 122(23), 233601 (2019).
[Crossref]

S. S. Hodgman, W. Bu, S. B. Mann, R. I. Khakimov, and A. G. Truscott, “Higher-Order Quantum Ghost Imaging with Ultracold Atoms,” Phys. Rev. Lett. 122(23), 233601 (2019).
[Crossref]

Mirhosseini, M.

Z. Yang, O. S. Maga na-Loaiza, M. Mirhosseini, Y. Zhou, B. Gao, L. Gao, S. M. H. Rafsanjani, G. L. Long, and R. W. Boyd, “Digital spiral object identification using random light,” Light: Sci. Appl. 6(7), e17013 (2017).
[Crossref]

Molteni, M.

M. Bina, D. Magatti, M. Molteni, A. Gatti, L. A. Lugiato, and F. Ferri, “Backscattering differential ghost imaging in turbid media,” Phys. Rev. Lett. 110(8), 083901 (2013).
[Crossref]

Moreau, P. A.

Morris, P. A.

P. A. Morris, R. S. Aspden, J. E. Bell, R. W. Boyd, and M. J. Padgett, “Imaging with a small number of photons,” Nat. Commun. 6(1), 5913 (2015).
[Crossref]

Myers, G. R.

Nan, S.

X. Shi, X. Huang, S. Nan, H. Li, Y. Bai, and X. Fu, “Image quality enhancement in low-light-level ghost imaging using modified compressive sensing method,” Laser Phys. Lett. 15(4), 045204 (2018).
[Crossref]

O’Sullivan, M. N.

Olbinado, M. P.

O-oka, Y.

Y. O-oka and S. Fukatsu, “Differential ghost imaging in time domain,” Appl. Phys. Lett. 111(6), 061106 (2017).
[Crossref]

Ottonello, P.

L. Basano and P. Ottonello, “Experiment in lensless ghost imaging with thermal light,” Appl. Phys. Lett. 89(9), 091109 (2006).
[Crossref]

Ozcan, A.

Padgett, M. J.

Z. H. Xu, W. Chen, J. Penuelas, M. J. Padgett, and M. J. Sun, “1000 fps computational ghost imaging using LED-based structured illumination,” Opt. Express 26(3), 2427–2434 (2018).
[Crossref]

M. J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7(1), 12010 (2016).
[Crossref]

P. A. Morris, R. S. Aspden, J. E. Bell, R. W. Boyd, and M. J. Padgett, “Imaging with a small number of photons,” Nat. Commun. 6(1), 5913 (2015).
[Crossref]

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340(6134), 844–847 (2013).
[Crossref]

Paganin, D. M.

A. M. Kingston, D. Pelliccia, A. Rack, M. P. Olbinado, Y. Cheng, G. R. Myers, and D. M. Paganin, “Ghost tomography,” Optica 5(12), 1516–1520 (2018).
[Crossref]

D. Pelliccia, A. Rack, M. Scheel, V. Cantelli, and D. M. Paganin, “Experimental x-ray ghost imaging,” Phys. Rev. Lett. 117(11), 113902 (2016).
[Crossref]

Paniagua-Diaz, A. M.

Pastuszczak, A.

Pelliccia, D.

A. M. Kingston, D. Pelliccia, A. Rack, M. P. Olbinado, Y. Cheng, G. R. Myers, and D. M. Paganin, “Ghost tomography,” Optica 5(12), 1516–1520 (2018).
[Crossref]

D. Pelliccia, A. Rack, M. Scheel, V. Cantelli, and D. M. Paganin, “Experimental x-ray ghost imaging,” Phys. Rev. Lett. 117(11), 113902 (2016).
[Crossref]

Penuelas, J.

Pierrat, R.

Pittman, T. B.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52(5), R3429–R3432 (1995).
[Crossref]

Qiao, C.

Y. Wang, Y. Liu, J. Suo, G. Situ, C. Qiao, and Q. Dai, “High speed computational ghost imaging via spatial sweeping,” Sci. Rep. 7(1), 45325 (2017).
[Crossref]

Qin, W.

Z. Yang, L. Zhao, X. Zhao, W. Qin, and J. Li, “Lensless ghost imaging through the strongly scattering medium,” Chin. Phys. B 25(2), 024202 (2016).
[Crossref]

Rack, A.

A. M. Kingston, D. Pelliccia, A. Rack, M. P. Olbinado, Y. Cheng, G. R. Myers, and D. M. Paganin, “Ghost tomography,” Optica 5(12), 1516–1520 (2018).
[Crossref]

D. Pelliccia, A. Rack, M. Scheel, V. Cantelli, and D. M. Paganin, “Experimental x-ray ghost imaging,” Phys. Rev. Lett. 117(11), 113902 (2016).
[Crossref]

Radwell, N.

M. J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7(1), 12010 (2016).
[Crossref]

Rafsanjani, S. M. H.

Z. Yang, O. S. Maga na-Loaiza, M. Mirhosseini, Y. Zhou, B. Gao, L. Gao, S. M. H. Rafsanjani, G. L. Long, and R. W. Boyd, “Digital spiral object identification using random light,” Light: Sci. Appl. 6(7), e17013 (2017).
[Crossref]

Romero, J.

L. Chen, J. Lei, and J. Romero, “Quantum digital spiral imaging,” Light: Sci. Appl. 3(3), e153 (2014).
[Crossref]

Ryczkowski, P.

H. Wu, P. Ryczkowski, A. T. Friberg, J. M. Dudley, and G. Genty, “Temporal ghost imaging using wavelength conversion and two-color detection,” Optica 6(7), 902–906 (2019).
[Crossref]

P. Ryczkowski, M. Barbier, A. T. Friberg, J. M. Dudley, and G. Genty, “Ghost imaging in the time domain,” Nat. Photonics 10(3), 167–170 (2016).
[Crossref]

Scarcelli, G.

G. Scarcelli, V. Berardi, and Y. Shih, “Can two-photon correlation of chaotic light be considered as correlation of intensity fluctuations?” Phys. Rev. Lett. 96(6), 063602 (2006).
[Crossref]

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. H. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94(6), 063601 (2005).
[Crossref]

Scheel, M.

D. Pelliccia, A. Rack, M. Scheel, V. Cantelli, and D. M. Paganin, “Experimental x-ray ghost imaging,” Phys. Rev. Lett. 117(11), 113902 (2016).
[Crossref]

Sergienko, A. V.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52(5), R3429–R3432 (1995).
[Crossref]

Shapiro, J. H.

J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78(6), 061802 (2008).
[Crossref]

Shi, X.

X. Shi, X. Huang, S. Nan, H. Li, Y. Bai, and X. Fu, “Image quality enhancement in low-light-level ghost imaging using modified compressive sensing method,” Laser Phys. Lett. 15(4), 045204 (2018).
[Crossref]

Shih, Y.

G. Scarcelli, V. Berardi, and Y. Shih, “Can two-photon correlation of chaotic light be considered as correlation of intensity fluctuations?” Phys. Rev. Lett. 96(6), 063602 (2006).
[Crossref]

Shih, Y. H.

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. H. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94(6), 063601 (2005).
[Crossref]

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52(5), R3429–R3432 (1995).
[Crossref]

Shin, D. K.

R. I. Khakimov, B. M. Henson, D. K. Shin, S. S. Hodgman, R. G. Dall, K. G. H. Baldwin, and A. G. Truscott, “Ghost imaging with atoms,” Nature 540(7631), 100–103 (2016).
[Crossref]

Silberberg, Y.

Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A 79(5), 053840 (2009).
[Crossref]

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95(13), 131110 (2009).
[Crossref]

Situ, G.

G. Barbastathis, A. Ozcan, and G. Situ, “On the use of deep learning for computational imaging,” Optica 6(8), 921–943 (2019).
[Crossref]

Y. Wang, Y. Liu, J. Suo, G. Situ, C. Qiao, and Q. Dai, “High speed computational ghost imaging via spatial sweeping,” Sci. Rep. 7(1), 45325 (2017).
[Crossref]

Sleasman, T.

Smith, D. R.

Song, L.

H. Huang, C. Zhou, T. Tian, D. Liu, and L. Song, “High-quality compressive ghost imaging,” Opt. Commun. 412, 60–65 (2018).
[Crossref]

Starshynov, I.

Strekalov, D. V.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52(5), R3429–R3432 (1995).
[Crossref]

Sun, B.

M. J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7(1), 12010 (2016).
[Crossref]

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340(6134), 844–847 (2013).
[Crossref]

Sun, M. J.

Z. H. Xu, W. Chen, J. Penuelas, M. J. Padgett, and M. J. Sun, “1000 fps computational ghost imaging using LED-based structured illumination,” Opt. Express 26(3), 2427–2434 (2018).
[Crossref]

M. J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7(1), 12010 (2016).
[Crossref]

Suo, J.

Y. Wang, Y. Liu, J. Suo, G. Situ, C. Qiao, and Q. Dai, “High speed computational ghost imaging via spatial sweeping,” Sci. Rep. 7(1), 45325 (2017).
[Crossref]

Tian, T.

H. Huang, C. Zhou, T. Tian, D. Liu, and L. Song, “High-quality compressive ghost imaging,” Opt. Commun. 412, 60–65 (2018).
[Crossref]

Truscott, A. G.

S. S. Hodgman, W. Bu, S. B. Mann, R. I. Khakimov, and A. G. Truscott, “Higher-Order Quantum Ghost Imaging with Ultracold Atoms,” Phys. Rev. Lett. 122(23), 233601 (2019).
[Crossref]

S. S. Hodgman, W. Bu, S. B. Mann, R. I. Khakimov, and A. G. Truscott, “Higher-Order Quantum Ghost Imaging with Ultracold Atoms,” Phys. Rev. Lett. 122(23), 233601 (2019).
[Crossref]

R. I. Khakimov, B. M. Henson, D. K. Shin, S. S. Hodgman, R. G. Dall, K. G. H. Baldwin, and A. G. Truscott, “Ghost imaging with atoms,” Nature 540(7631), 100–103 (2016).
[Crossref]

Valencia, A.

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. H. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94(6), 063601 (2005).
[Crossref]

Vittert, L. E.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340(6134), 844–847 (2013).
[Crossref]

Wang, B. B.

Wang, K.

D. Z. Cao, J. Xiong, and K. Wang, “Geometrical optics in correlated imaging systems,” Phys. Rev. A 71(1), 013801 (2005).
[Crossref]

Wang, L.

L. Wang and S. Zhao, “Fast reconstructed and high-quality ghost imaging with fast Walsh-Hadamard transform,” Photonics Res. 4(6), 240–244 (2016).
[Crossref]

Wang, S. F.

Wang, W.

Wang, Y.

Y. Wang, Y. Liu, J. Suo, G. Situ, C. Qiao, and Q. Dai, “High speed computational ghost imaging via spatial sweeping,” Sci. Rep. 7(1), 45325 (2017).
[Crossref]

Wang, Y. P.

Welsh, S.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340(6134), 844–847 (2013).
[Crossref]

Wu, H.

Wu, L. A.

Wu, Y.

Xiao, T.

H. Yu, R. Lu, S. Han, H. Xie, G. Du, T. Xiao, and D. Zhu, “Fourier-transform ghost imaging with hard X rays,” Phys. Rev. Lett. 117(11), 113901 (2016).
[Crossref]

Xie, H.

H. Yu, R. Lu, S. Han, H. Xie, G. Du, T. Xiao, and D. Zhu, “Fourier-transform ghost imaging with hard X rays,” Phys. Rev. Lett. 117(11), 113901 (2016).
[Crossref]

Xiong, J.

D. Z. Cao, J. Xiong, and K. Wang, “Geometrical optics in correlated imaging systems,” Phys. Rev. A 71(1), 013801 (2005).
[Crossref]

Xu, W.

W. Gong, C. Zhao, H. Yu, M. Chen, W. Xu, and S. Han, “Three-dimensional ghost imaging lidar via sparsity constraint,” Sci. Rep. 6(1), 26133 (2016).
[Crossref]

Xu, Z. H.

Yang, X.

Yang, Z.

Z. Yang, O. S. Maga na-Loaiza, M. Mirhosseini, Y. Zhou, B. Gao, L. Gao, S. M. H. Rafsanjani, G. L. Long, and R. W. Boyd, “Digital spiral object identification using random light,” Light: Sci. Appl. 6(7), e17013 (2017).
[Crossref]

Z. Yang, L. Zhao, X. Zhao, W. Qin, and J. Li, “Lensless ghost imaging through the strongly scattering medium,” Chin. Phys. B 25(2), 024202 (2016).
[Crossref]

J. L. Li, Z. Yang, and L. L. Long, Patent CN201510151008.2 (2015) (In Chinese).

Z. Yang, J. L. Li, and W. X. Zhang, Patent CN201910795456.4 (2019) (In Chinese).

Yao, X. R.

Yu, H.

W. Gong, C. Zhao, H. Yu, M. Chen, W. Xu, and S. Han, “Three-dimensional ghost imaging lidar via sparsity constraint,” Sci. Rep. 6(1), 26133 (2016).
[Crossref]

H. Yu, R. Lu, S. Han, H. Xie, G. Du, T. Xiao, and D. Zhu, “Fourier-transform ghost imaging with hard X rays,” Phys. Rev. Lett. 117(11), 113901 (2016).
[Crossref]

Yu, W. K.

Zhai, G. J.

Zhang, A. X.

Zhang, W. X.

Z. Yang, J. L. Li, and W. X. Zhang, Patent CN201910795456.4 (2019) (In Chinese).

Zhang, Z.

Z. Zhang, X. Ma, and J. Zhong, “Single-pixel imaging by means of Fourier spectrum acquisition,” Nat. Commun. 6(1), 6225 (2015).
[Crossref]

Zhao, C.

W. Gong, C. Zhao, H. Yu, M. Chen, W. Xu, and S. Han, “Three-dimensional ghost imaging lidar via sparsity constraint,” Sci. Rep. 6(1), 26133 (2016).
[Crossref]

Zhao, L.

Z. Yang, L. Zhao, X. Zhao, W. Qin, and J. Li, “Lensless ghost imaging through the strongly scattering medium,” Chin. Phys. B 25(2), 024202 (2016).
[Crossref]

Zhao, S.

L. Wang and S. Zhao, “Fast reconstructed and high-quality ghost imaging with fast Walsh-Hadamard transform,” Photonics Res. 4(6), 240–244 (2016).
[Crossref]

Zhao, X.

Z. Yang, L. Zhao, X. Zhao, W. Qin, and J. Li, “Lensless ghost imaging through the strongly scattering medium,” Chin. Phys. B 25(2), 024202 (2016).
[Crossref]

Zhong, J.

Z. Zhang, X. Ma, and J. Zhong, “Single-pixel imaging by means of Fourier spectrum acquisition,” Nat. Commun. 6(1), 6225 (2015).
[Crossref]

Zhou, C.

H. Huang, C. Zhou, T. Tian, D. Liu, and L. Song, “High-quality compressive ghost imaging,” Opt. Commun. 412, 60–65 (2018).
[Crossref]

Zhou, Y.

Z. Yang, O. S. Maga na-Loaiza, M. Mirhosseini, Y. Zhou, B. Gao, L. Gao, S. M. H. Rafsanjani, G. L. Long, and R. W. Boyd, “Digital spiral object identification using random light,” Light: Sci. Appl. 6(7), e17013 (2017).
[Crossref]

Zhu, D.

H. Yu, R. Lu, S. Han, H. Xie, G. Du, T. Xiao, and D. Zhu, “Fourier-transform ghost imaging with hard X rays,” Phys. Rev. Lett. 117(11), 113901 (2016).
[Crossref]

Appl. Phys. Lett. (3)

L. Basano and P. Ottonello, “Experiment in lensless ghost imaging with thermal light,” Appl. Phys. Lett. 89(9), 091109 (2006).
[Crossref]

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95(13), 131110 (2009).
[Crossref]

Y. O-oka and S. Fukatsu, “Differential ghost imaging in time domain,” Appl. Phys. Lett. 111(6), 061106 (2017).
[Crossref]

Chin. Phys. B (1)

Z. Yang, L. Zhao, X. Zhao, W. Qin, and J. Li, “Lensless ghost imaging through the strongly scattering medium,” Chin. Phys. B 25(2), 024202 (2016).
[Crossref]

Laser Phys. Lett. (1)

X. Shi, X. Huang, S. Nan, H. Li, Y. Bai, and X. Fu, “Image quality enhancement in low-light-level ghost imaging using modified compressive sensing method,” Laser Phys. Lett. 15(4), 045204 (2018).
[Crossref]

Light: Sci. Appl. (2)

L. Chen, J. Lei, and J. Romero, “Quantum digital spiral imaging,” Light: Sci. Appl. 3(3), e153 (2014).
[Crossref]

Z. Yang, O. S. Maga na-Loaiza, M. Mirhosseini, Y. Zhou, B. Gao, L. Gao, S. M. H. Rafsanjani, G. L. Long, and R. W. Boyd, “Digital spiral object identification using random light,” Light: Sci. Appl. 6(7), e17013 (2017).
[Crossref]

Nat. Commun. (3)

Z. Zhang, X. Ma, and J. Zhong, “Single-pixel imaging by means of Fourier spectrum acquisition,” Nat. Commun. 6(1), 6225 (2015).
[Crossref]

M. J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7(1), 12010 (2016).
[Crossref]

P. A. Morris, R. S. Aspden, J. E. Bell, R. W. Boyd, and M. J. Padgett, “Imaging with a small number of photons,” Nat. Commun. 6(1), 5913 (2015).
[Crossref]

Nat. Photonics (1)

P. Ryczkowski, M. Barbier, A. T. Friberg, J. M. Dudley, and G. Genty, “Ghost imaging in the time domain,” Nat. Photonics 10(3), 167–170 (2016).
[Crossref]

Nature (1)

R. I. Khakimov, B. M. Henson, D. K. Shin, S. S. Hodgman, R. G. Dall, K. G. H. Baldwin, and A. G. Truscott, “Ghost imaging with atoms,” Nature 540(7631), 100–103 (2016).
[Crossref]

Opt. Commun. (1)

H. Huang, C. Zhou, T. Tian, D. Liu, and L. Song, “High-quality compressive ghost imaging,” Opt. Commun. 412, 60–65 (2018).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Optica (7)

Photonics Res. (1)

L. Wang and S. Zhao, “Fast reconstructed and high-quality ghost imaging with fast Walsh-Hadamard transform,” Photonics Res. 4(6), 240–244 (2016).
[Crossref]

Phys. Rev. A (4)

Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A 79(5), 053840 (2009).
[Crossref]

J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78(6), 061802 (2008).
[Crossref]

D. Z. Cao, J. Xiong, and K. Wang, “Geometrical optics in correlated imaging systems,” Phys. Rev. A 71(1), 013801 (2005).
[Crossref]

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52(5), R3429–R3432 (1995).
[Crossref]

Phys. Rev. Lett. (11)

R. S. Bennink, S. J. Bentley, and R. W. Boyd, “’Two-photon’ coincidence imaging with a classical source,” Phys. Rev. Lett. 89(11), 113601 (2002).
[Crossref]

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: comparing entanglement and classicalcorrelation,” Phys. Rev. Lett. 93(9), 093602 (2004).
[Crossref]

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. A. Brambilla, and L. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94(18), 183602 (2005).
[Crossref]

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. H. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94(6), 063601 (2005).
[Crossref]

G. Scarcelli, V. Berardi, and Y. Shih, “Can two-photon correlation of chaotic light be considered as correlation of intensity fluctuations?” Phys. Rev. Lett. 96(6), 063602 (2006).
[Crossref]

S. S. Hodgman, W. Bu, S. B. Mann, R. I. Khakimov, and A. G. Truscott, “Higher-Order Quantum Ghost Imaging with Ultracold Atoms,” Phys. Rev. Lett. 122(23), 233601 (2019).
[Crossref]

S. S. Hodgman, W. Bu, S. B. Mann, R. I. Khakimov, and A. G. Truscott, “Higher-Order Quantum Ghost Imaging with Ultracold Atoms,” Phys. Rev. Lett. 122(23), 233601 (2019).
[Crossref]

D. Pelliccia, A. Rack, M. Scheel, V. Cantelli, and D. M. Paganin, “Experimental x-ray ghost imaging,” Phys. Rev. Lett. 117(11), 113902 (2016).
[Crossref]

H. Yu, R. Lu, S. Han, H. Xie, G. Du, T. Xiao, and D. Zhu, “Fourier-transform ghost imaging with hard X rays,” Phys. Rev. Lett. 117(11), 113901 (2016).
[Crossref]

M. Bina, D. Magatti, M. Molteni, A. Gatti, L. A. Lugiato, and F. Ferri, “Backscattering differential ghost imaging in turbid media,” Phys. Rev. Lett. 110(8), 083901 (2013).
[Crossref]

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104(25), 253603 (2010).
[Crossref]

Sci. Rep. (2)

Y. Wang, Y. Liu, J. Suo, G. Situ, C. Qiao, and Q. Dai, “High speed computational ghost imaging via spatial sweeping,” Sci. Rep. 7(1), 45325 (2017).
[Crossref]

W. Gong, C. Zhao, H. Yu, M. Chen, W. Xu, and S. Han, “Three-dimensional ghost imaging lidar via sparsity constraint,” Sci. Rep. 6(1), 26133 (2016).
[Crossref]

Science (1)

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science 340(6134), 844–847 (2013).
[Crossref]

Other (4)

J. L. Li, “Study on second-order correlated imaging with pseudo-thermal light,” Doctoral dissertation, Tsinghua University, (2016) (In Chinese).

J. L. Li, Z. Yang, and L. L. Long, Patent CN201510151008.2 (2015) (In Chinese).

Z. Yang, J. L. Li, and W. X. Zhang, Patent CN201910795456.4 (2019) (In Chinese).

J. W. Goodman, Statistical Optics (Wiley, 1985).

Supplementary Material (2)

NameDescription
» Visualization 1       A movie of online HBT effect
» Visualization 2       A movie of online instant ghost imaging

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a), Schematic of the experimental setup. CMOS1, CMOS2: complementary metal-oxide semiconductor; FPGA: field-programmable gate array. The pseudo-thermal light is produced by passing a 532 nm laser through a rotating ground glass disk and the light beam is split into two: one beam illustrates the object and is collected by CMOS1; the other is directly recorded by CMOS2. The FPGA-based on-chip IGI is used to reconstruct the image of the object using the IGI algorithm, and the intermediate results are shown in the monitor. The distances from the rotating ground glass disk to the object and to CMOS2 are both equal to 300 mm. (b), The workflow of the IGI system. Green dashed lines: the FPGA extracts data from the corresponding register; Blue dashed lines: the FPGA stores new data in the register, overwriting old data. An orange ball represents a register unit; $S_n$ and $I_n(x)$ are stored in the registers $R_S$ and $R_I$, and the intermediate result $\mathcal {G}_{n}(x) = ({S_{n + 1}} - {S_n})[{I_{n + 1}}(x) - {I_n}(x)]$ is stored in the register $R_{\mathcal {G}}$.
Fig. 2.
Fig. 2. The Hanbury Brown and Twiss effect. The offline HBT effect from 15,000 measurements obtained (a) by the conventional $G_{HBT}$ algorithm; (b) by the $G_{HBT}^{IGI}$ algorithm. (c)-(g) The intermediate results and (h) the final result of the online IGI hardware system using the $G_{HBT}^{IGI}$ algorithm.
Fig. 3.
Fig. 3. The images acquired by offline and online experiments. (a) The object and (b) the object imaged directly on CMOS1; the image of the object reconstituted offline by (c) the background subtraction algorithm; (d) the IGI algorithm from 30,000 measurements. (e)-(m) The intermediate results and (n) the final result of the online IGI hardware system with the number of measurements and the time in the top of each image.
Fig. 4.
Fig. 4. The experimental results of two variants. (a) The HBT effect and (b) the results of the variant $G^{IGI_S}(x)$; (c) the HBT effect and (d) the results of the variant $G^{IGI_I}(x)$.
Fig. 5.
Fig. 5. Analysis for the conventional GI algorithm and the IGI algorithm. Increases in the total value of $\sum \nolimits _{i = 1}^n {{S_i}{I_i}} (x)$ and ${{\cal G}_n}(x) = \sum \nolimits _{i = 1}^n {({S_{i + 1}} - {S_i})} [{I_{i + 1}}(x) - {I_i}(x)]$ for measured $n$.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

G ( x ) = ( S S ) [ I ( x ) I ( x ) ] ,
G ( x ) = 1 N n = 1 N S n I n ( x ) 1 N n = 1 N S n 1 N n = 1 N I n ( x ) ,
G I G I ( x ) = 1 2 N n = 1 N ( S n + 1 S n ) [ I n + 1 ( x ) I n ( x ) ] ,
G I G I ( x ) = 1 2 N n = 1 N S n + 1 I n + 1 ( x ) + 1 2 N n = 1 N S n I n ( x ) 1 2 N n = 1 N S n + 1 I n ( x ) 1 2 N n = 1 N S n I n + 1 ( x ) .
S I ( x ) = 1 N n = 1 N S n I n ( x ) 1 N n = 1 N S n + 1 I n + 1 ( x ) S = 1 N n = 1 N S n 1 N n = 1 N S n + 1 I ( x ) = 1 N n = 1 N I n ( x ) 1 N n = 1 N I n + 1 ( x ) .
1 N n = 1 N S n + 1 I n ( x ) = 1 N n = 1 N S n + 1 1 N n = 1 N I n ( x ) 1 N n = 1 N S n I n + 1 ( x ) = 1 N n = 1 N S n 1 N n = 1 N I n + 1 ( x ) .
G ( x ) G I G I ( x ) .
G H B T ( x t , x r ) = [ I ( x t ) I ( x t ) ] [ I ( x r ) I ( x r ) ] ,
G H B T I G I ( x t , x r ) = 1 2 N n = 1 N [ I n + 1 ( x t ) I n ( x t ) ] [ I n + 1 ( x r ) I n ( x r ) ] .
G I G I S ( x ) = ( S n + 1 S n ) [ I n + 1 ( x ) ] G I G I I ( x ) = ( S n + 1 ) [ I n + 1 ( x ) I n ( x ) ] .
G H B T ( x t , x r ) = 1 N n = 1 N [ I n ( x t ) I n ( x r ) ] 1 N n = 1 N I n ( x t ) 1 N n = 1 N I n ( x r ) .
G H B T I G I ( x t , x r ) = 1 2 N n = 1 N [ I n + 1 ( x t ) I n ( x t ) ] [ I n + 1 ( x r ) I n ( x r ) ] ,
G H B T I G I ( x t , x r ) = 1 2 N n = 1 N [ I n + 1 ( x t ) I n + 1 ( x r ) ] + 1 2 N n = 1 N [ I n ( x t ) I n ( x r ) ] 1 2 N n = 1 N [ I n + 1 ( x t ) I n ( x r ) ] 1 2 N n = 1 N [ I n ( x t ) I n + 1 ( x r ) ] .
I ( x t ) I ( x r ) = 1 N n = 1 N I n ( x t ) I n ( x r ) 1 N n = 1 N I n + 1 ( x t ) I n + 1 ( x r ) I ( x t ) = 1 N n = 1 N I n ( x t ) 1 N n = 1 N I n + 1 ( x t ) I ( x r ) = 1 N n = 1 N I n ( x r ) 1 N n = 1 N I n + 1 ( x r ) .
G H B T ( x t , x r ) G H B T I G I ( x t , x r ) .

Metrics